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Abstract 

Background: Optimizing the somatic embryogenesis protocol can be considered as the first and foremost step in 
successful gene transformation studies. However, it is usually difficult to achieve an optimized embryogenesis proto-
col due to the cost and time-consuming as well as the complexity of this process. Therefore, it is necessary to use a 
novel computational approach, such as machine learning algorithms for this aim. In the present study, two machine 
learning algorithms, including Multilayer Perceptron (MLP) as an artificial neural network (ANN) and support vector 
regression (SVR), were employed to model somatic embryogenesis of chrysanthemum, as a case study, and compare 
their prediction accuracy.

Results: The results showed that SVR  (R2 > 0.92) had better performance accuracy than MLP  (R2 > 0.82). Moreover, the 
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was also applied for the optimization of the somatic embryo-
genesis and the results showed that the highest embryogenesis rate (99.09%) and the maximum number of somatic 
embryos per explant (56.24) can be obtained from a medium containing 9.10 μM 2,4-dichlorophenoxyacetic acid 
(2,4-D), 4.70 μM kinetin (KIN), and 18.73 μM sodium nitroprusside (SNP). According to our results, SVR-NSGA-II was able 
to optimize the chrysanthemum’s somatic embryogenesis accurately.

Conclusions: SVR-NSGA-II can be employed as a reliable and applicable computational methodology in future plant 
tissue culture studies.
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learning algorithms, Multilayer perceptron, Somatic embryogenesis, Chrysanthemum, Nitric oxide
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Background
Chrysanthemum (Dendranthema × grandiflorum) can be 
categorized as one of the most economically important 
ornamental species due to its color and morphological 
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diversity. Moreover, chrysanthemum has been used as a 
model plant for color modification studies [1–3]. Con-
ventional propagation and breeding approaches are not 
able to meet the increasing demands of the market for 
this valuable ornamental plant. �erefore, novel bio-
technological methods can be employed in order to sat-
isfy the demands of consumers [1, 3]. Nowadays, in vitro 
culture methods as biotechnological tools are applied to 
the rapid multiplication of rare plant genotypes, micro-
propagation of disease-free plants, production of plant-
derived metabolites, and gene transformation [1, 3–5]. 
To study in vitro functional genomics, somatic embryos 
have been employed as a potential explant material [2, 
3, 6, 7]. Moreover, many studies proved the usefulness 
of embryogenesis as a comprehensive model in study-
ing plant growth and development [6, 8, 9]. �e unique 
developmental pathway represented by somatic embry-
ogenesis can be categorized in different characteristic 
events such as cell differentiation, activation of cell divi-
sion, dedifferentiation of cells and reprogramming of 
their metabolism, gene expression patterns, and physiol-
ogy [9]. �us, efficient somatic embryogenesis protocol 
can play a conspicuous role in successful chrysanthemum 
genetic manipulation and regeneration. Using the appro-
priate type and concentration of plant growth regula-
tors (PGRs) in various combinations could improve the 
somatic embryogenesis of different plant species and 
explants [10–12]. Indeed, in vitro embryogenesis is con-
trolled by the balances of exogenous PGRs and concen-
trations of endogenous phytohormones. �e levels of 
endogenous phytohormones regulate the in vitro explant 
differentiation and are assumed to be the major variation 
sources between different genotypes and explants [1, 13–
17]. �erefore, optimizing the somatic embryogenesis 
protocol can be considered as the first and foremost step 
in successful gene transformation studies. However, it is 
usually difficult to achieve an optimized embryogenesis 
protocol because it is a laborious, time-consuming, and 
complex process. �erefore, it is necessary to use a novel 
computational approach for addressing this bottleneck.

In vitro culture consists of highly complex and nonlin-
ear processes such as dedifferentiation, re-differentiation, 
or differentiation due to the genetic and environmental 
factors [18–21]. �erefore, it would be difficult to pre-
dict different in  vitro culture parameters such as cal-
logenesis rate, embryogenesis rate, and the number of 
somatic embryos as well as optimize factors involved in 
these parameters by simple conventional mathematical 
methods [22–24]. Furthermore, biological processes such 
as somatic embryogenesis cannot be described as a sim-
ple stepwise algorithm, especially when the datasets are 
highly noisy and complex [25–29]. �erefore, machine 
learning algorithms can be employed as an efficient and 

reliable computational methodology to interpret and pre-
dict different unpredictable datasets [30–34]. Recently, 
Multilayer Perceptron (MLP) as one of the common arti-
ficial neural networks (ANNs) has been widely employed 
for modeling and predicting in vitro culture systems such 
as in vitro sterilization [35, 36], callogenesis [37–39], cell 
growth and protoplast culture [40, 41], somatic embry-
ogenesis [38, 42, 43], shoot regeneration [25, 44–46], 
androgenesis [47], hairy root culture [48, 49], and in vitro 
rooting and acclimatization [31]. MLP is a type of non-
linear computational methods, which can be applied for 
different aims such as clustering, predicting, and classify-
ing the complex systems [47, 50]. MLP is able to identify 
the relationship between output and input variables and 
recognize the inherent knowledge existent in the datasets 
without previous physical considerations [29, 51]. �is 
algorithm consists of numerous highly interconnected 
processing neurons that work in parallel to find a solu-
tion for a particular problem. MLP is learned by exam-
ple, which should be carefully chosen otherwise time is 
wasted or even in worse scenarios, the model might be 
working inaccurately [52].

Support vector machines (SVMs), developed by Vapnik 
[53], are a kind of interesting, powerful, and easy to inter-
pret machine learning algorithms that analyze data and 
recognize patterns, used for clustering, classification and 
regression analysis of nonlinear relationships [54]. Some 
of the advantages of SVMs in comparison with MLP are 
related to the complexity of the networks; MLP usually 
implementing very small number of hidden neurons, 
whereas SVM uses a large number of hidden units. �e 
best advantage of SVMs is the formulation of the learn-
ing problem, resulting in the quadratic optimization task 
[55, 56]. Support Vector Regression (SVR) is a regression 
version of SVM. Recently, several studies were published 
regarding SVM-based approaches in solving industrially 
or chemically important problems [57–59]. However, 
SVR, unlike MLP, is relatively unknown to scientists in 
the field of plant tissue culture. Also, there is no com-
prehensive study to compare MLP with other machine 
learning algorithms (e.g. SVR) in order to develop an 
appropriate model for predicting in vitro culture param-
eters such as callogenesis rate, embryogenesis rate, and 
number of somatic embryos.

Different studies [25, 28, 30, 31, 34] have widely 
employed evolutionary optimization algorithms, in 
particular, genetic algorithm (GA) as a single optimiza-
tion algorithm to optimize different factors involved in 
in  vitro culture parameters. �is common single-objec-
tive optimization algorithm offers merit points over 
more conventional optimization methods [60, 61]. Also, 
GA has the benefit that it does not need initial estimates 
for the decision variables. However, GA can be just 
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employed for a single objective function. On the other 
hand, the Non-dominated Sorting Genetic Algorithm 
(NSGA) developed by Srinivas and Deb [62] has been 
successfully employed to optimize many multi-objective 
variables. However, the main disadvantage of NSGA has 
been the lack of elitism, the requirements for specifying 
sharing parameters, and its high computational com-
plexity of non-dominated sorting [60]. NSGA-II is the 
improved version of NSGA, which has a better incorpo-
rates elitism, sorting algorithm, and no sharing parameter 
requires to be chosen a priori [35]. �erefore, the elitist 
NSGA-II can be utilized for multi-objective optimization 
with two, three, or more objective functions [7]. Recently, 
NSGA-II has been successfully applied to optimize shoot 
regeneration rate, number of shoots, and callus weight, 
simultaneously [33].

In the current study, SVR has been employed to pre-
dict the somatic embryogenesis parameters, including 
callogenesis rate, embryogenesis rate, and the number 
of somatic embryos of chrysanthemum. �e developed 
SVR-based model was compared with MLP in terms of 
statistical performance parameters to find the most suit-
able model for modeling and predicting in vitro culture 
systems. Furthermore, NSGA-II was linked to the best 
model to find the optimal level of PGRs for somatic 
embryogenesis. According to the best of our knowledge, 
this study is the first report of the application of SVR in 
the field of plant tissue culture.

Results
E�ects of PGRs on somatic embryogenesis

Although several investigations have focused on the 
impact of auxins and cytokinins concentrations in chry-
santhemum embryogenesis, there is a lack of study on 
the influence of auxins, cytokinins, nitric oxide, and their 
interactions. �e PGRs are essential factors in plant tis-
sue culture processes that are remarkably impacted the 
somatic embryogenesis. �e current study was deter-
mined the effects of 2,4-dichlorophenoxyacetic acid (2,4-
D), kinetin (KIN), sodium nitroprusside (SNP), and their 
interactions on callogenesis rate (%), number of somatic 
embryos per explant, and embryogenesis rate (%) of 
chrysanthemum.

�e results of this study showed that leaf explants in 
the medium containing both 2,4-D and KIN led to both 
callogenesis and embryogenesis. On the other hand, 
the medium without PGR was not able to produce calli 
and embryos. After two and three weeks from cultur-
ing, the cut ends of the leaf segments produced calli and 
embryos, respectively. According to Table 1, high embry-
ogenesis rate and the number of somatic embryos per 
explant were achieved by using SNP along with 2,4-D and 
KIN, which is higher than that produced by the media 

without SNP. Also, the highest callogenesis rate (100%), 
embryogenesis rate (100%), and the number of somatic 
embryos per explant (57.8) were observed in the com-
bination of 9.09 μM 2,4-D and 4.65 μM BAP along with 
20 μM SNP (Table 1).

SVR modeling and evaluation

SVR was used for modeling the three target variables 
(callogenesis rate, embryogenesis rate, and the number of 
somatic embryos) based on three input variables, includ-
ing 2,4-D, KIN, and SNP.

Two machine learning algorithms, including MLP and 
SVR were used for modeling and predicting target varia-
bles.  R2, RMSE, and MAE of each developed model were 
presented in Table  2. Comparative analysis of MLP and 
SVR (Table 2) showed that SVR was more accurate than 
MLP in all studied parameters in somatic embryogen-
esis in both training and testing sets. As can be seen in 
Figs. 1, 2 and 3, the regression lines demonstrated that a 
good fit correlation between the predicted and observed 
data of callogenesis rate, embryogenesis rate, and the 
number of somatic embryos for both the training and 
testing set.  R2, RMSE, and MAE of SVR vs. MLP for cal-
logenesis rate were 0.93 vs. 0.89, 9.82 vs.10.03, and 1.33 
vs. 1.64 during the training set, and 0.93 vs. 0. 82, 10.67 
vs. 15.40, and 1.87 vs. 2.01 during testing set, respec-
tively (Table 2).  R2, RMSE, and MAE of SVR vs. MLP for 
embryogenesis rate were 0.97 vs. 0.93, 8.47 10.00, and 
0.071 vs. 1.75 during the training set, and 0.96 vs. 0. 90, 
9.71 vs. 13.75, and 0.55 vs. 1.91 during testing set, respec-
tively. Also, the performance parameters for the training 
set for the number of somatic embryos were  R2 = 0.99 
and 0.96, RMSE = 0.81 and 1.64, MAE = 0.02 and 0.06 for 
SVR and MLP, respectively, and in the testing data set for 
the number of somatic embryos were  R2 = 0.99 and 0.91, 
RMSE = 0.94 and 2.07, MAE = 0.004 and 0.021 for SVR 
and MLP, respectively (Table 2).

Sensitivity analysis of the models

Five hundred seventy-six data points were used to deter-
mine the overall variable sensitivity ratio (VSR) for iden-
tifying the comparative rank of inputs. �e results of the 
sensitivity analysis were summarized in Table  3. Based 
on sensitivity analysis, callogenesis rate was more sensi-
tive to 2,4-D, followed by KIN, and SNP (Table 3). Also, 
as can be seen in Table 3, 2,4-D was the most important 
factor for both embryogenesis rate and the number of 
somatic embryos per explant, followed by SNP and KIN.

Model optimization

NSGA-II was linked to the SVR in order to determine the 
optimal level of 2,4-D, KIN, and SNP for obtaining the 
highest embryogenesis rate and the maximum number of 
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Table 1 E�ects of  2,4-D, KIN, and  SNP on  callogenesis rate, number of  somatic embryos, and  embryogenesis rate 

of chrysanthemum of chrysanthemum

2,4-D (μM) Kin (μM) SNP (μM) Callogenesis rate (%) Embryogenesis rate (%) Embryo number

0 0 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

4.54 0 0 84.44 ± 5.56 0.00 ± 0.00 0.00 ± 0.00

9.09 0 0 93.33 ± 3.33 0.00 ± 0.00 0.00 ± 0.00

13.63 0 0 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

0 4.65 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

4.54 4.65 0 80.00 ± 4.71 48.89 ± 5.88 4.48 ± 0.34

9.09 4.65 0 100.00 ± 0.00 100.00 ± 0.00 31.71 ± 0.74

13.63 4.65 0 100.00 ± 0.00 71.11 ± 5.88 9.02 ± 0.34

0 9.29 0 22.22 ± 7.78 0.00 ± 0.00 0.00 ± 0.00

4.54 9.29 0 91.11 ± 4.84 73.33 ± 5.77 7.69 ± 0.24

9.09 9.29 0 100.00 ± 0.00 100.00 ± 0.00 21.73 ± 0.44

13.63 9.29 0 100.00 ± 0.00 100.00 ± 0.00 4.23 ± 0.30

0 13.94 0 24.44 ± 8.01 0.00 ± 0.00 0.00 ± 0.00

4.54 13.94 0 97.78 ± 2.22 60.00 ± 6.67 6.93 ± 0.24

9.09 13.94 0 100.00 ± 0.00 86.67 ± 4.71 13.01 ± 0.36

13.63 13.94 0 100.00 ± 0.00 100.00 ± 0.00 4.06 ± 0.24

0 0 10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

4.54 0 10 88.89 ± 4.84 0.00 ± 0.00 0.00 ± 0.00

9.09 0 10 95.56 ± 2.94 0.00 ± 0.00 0.00 ± 0.00

13.63 0 10 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

0 4.65 10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

4.54 4.65 10 91.11 ± 4.84 62.22 ± 7.03 5.96 ± 0.39

9.09 4.65 10 100.00 ± 0.00 100.00 ± 0.00 35.60 ± 0.69

13.63 4.65 10 100.00 ± 0.00 86.67 ± 4.71 9.87 ± 0.36

0 9.29 10 31.11 ± 6.76 0.00 ± 0.00 0.00 ± 0.00

4.54 9.29 10 95.56 ± 4.44 86.67 ± 4.71 8.82 ± 0.29

9.09 9.29 10 100.00 ± 0.00 100.00 ± 0.00 25.86 ± 0.63

13.63 9.29 10 100.00 ± 0.00 100.00 ± 0.00 5.51 ± 0.26

0 13.94 10 33.33 ± 7.45 0.00 ± 0.00 0.00 ± 0.00

4.54 13.94 10 100.00 ± 0.00 75.56 ± 4.44 7.77 ± 0.20

9.09 13.94 10 100.00 ± 0.00 100.00 ± 0.00 16.79 ± 0.37

13.63 13.94 10 100.00 ± 0.00 100.00 ± 0.00 5.28 ± 0.19

0 0 20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

4.54 0 20 95.56 ± 2.94 2.22 ± 2.22 0.22 ± 0.22

9.09 0 20 100.00 ± 0.00 4.44 ± 2.94 0.33 ± 0.24

13.63 0 20 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

0 4.65 20 13.33 ± 7.45 8.89 ± 4.84 0.73 ± 0.37

4.54 4.65 20 100.00 ± 0.00 84.44 ± 5.56 9.56 ± 0.21

9.09 4.65 20 100.00 ± 0.00 100.00 ± 0.00 57.80 ± 0.21

13.63 4.65 20 100.00 ± 0.00 100.00 ± 0.00 17.07 ± 0.29

0 9.29 20 46.67 ± 5.77 13.33 ± 4.71 0.81 ± 0.30

4.54 9.29 20 100.00 ± 0.00 100.00 ± 0.00 11.64 ± 0.19

9.09 9.29 20 100.00 ± 0.00 100.00 ± 0.00 29.08 ± 0.26

13.63 9.29 20 100.00 ± 0.00 100.00 ± 0.00 7.38 ± 0.20

0 13.94 20 57.78 ± 7.03 17.78 ± 5.21 0.78 ± 0.22

4.54 13.94 20 100.00 ± 0.00 95.56 ± 2.94 11.38 ± 0.26

9.09 13.94 20 100.00 ± 0.00 100.00 ± 0.00 25.63 ± 0.42

13.63 13.94 20 100.00 ± 0.00 100.00 ± 0.00 8.60 ± 0.34



Page 5 of 15Hesami et al. Plant Methods          (2020) 16:112  

somatic embryos per explant. �e results of the optimi-
zation process were presented in Table  4 and Fig.  4. As 
can be seen in Table  4, the highest embryogenesis rate 
(99.09%) and the maximum number of somatic embryos 
per explant (56.24) can be obtained from a medium con-
taining 9.10 μM 2,4-D, 4.70 μM KIN, and 18.73 μM SNP.

Validation experiment

According to the validation experiment, the differences 
between biological validation data and predicted data via 
SVR-NSGA-II were not significant (Table 5). Indeed, the 
optimized level of PGRs (9.10  μM 2,4-D, 4.70  μM KIN, 
and 18.73 μM SNP) led to the highest embryogenesis rate 
(100%) and the maximum number of somatic embryos 
per explant (57.86) which is negligibly higher than the 
predicted result. �erefore, it can be concluded that 
SVR-NSGA-II can be employed for accurately predicting 
and optimizing plant tissue culture processes.

Discussion
Being successful in in  vitro somatic embryogenesis 
depends on different factors such as the composition of 
the medium, gelling agents, light and temperature con-
ditions, and the application of specific combinations of 
PGRs [1, 13–16, 63]. However, optimizing these factors is 
time and cost consuming. Also, somatic embryogenesis is 
a highly complex and nonlinear process. �erefore, there 
is a dire need to employ robust nonlinear computational 
methods for optimizing embryogenesis parameters. �e 
efficiency of a good statistical approach depends on the 
neat understanding of the variable structure, experi-
mental design, and using the appropriate model [64]. 
One of the most important primary requirements to 
identify suitable statistical approaches is comprehend-
ing the type of data [65]. Variables can be clustered into 
two groups, including quantitative (continuous and dis-
crete) and qualitative (ordinal and nominal). Names 

Table 1 (continued)

2,4-D (μM) Kin (μM) SNP (μM) Callogenesis rate (%) Embryogenesis rate (%) Embryo number

0 0 40 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

4.54 0 40 97.78 ± 2.22 0.00 ± 0.00 0.00 ± 0.00

9.09 0 40 100.00 ± 0.00 2.22 ± 2.22 0.22 ± 0.22

13.63 0 40 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

0 4.65 40 17.78 ± 6.19 8.89 ± 3.51 0.44 ± 0.18

4.54 4.65 40 100.00 ± 0.00 77.78 ± 5.21 8.06 ± 0.13

9.09 4.65 40 100.00 ± 0.00 100.00 ± 0.00 45.77 ± 0.33

13.63 4.65 40 100.00 ± 0.00 100.00 ± 0.00 14.54 ± 0.20

0 9.29 40 31.11 ± 4.84 11.11 ± 4.84 0.44 ± 0.18

4.54 9.29 40 100.00 ± 0.00 100.00 ± 0.00 8.83 ± 0.18

9.09 9.29 40 100.00 ± 0.00 100.00 ± 0.00 24.74 ± 0.18

13.63 9.29 40 100.00 ± 0.00 100.00 ± 0.00 6.58 ± 0.17

0 13.94 40 68.89 ± 5.88 11.11 ± 3.51 0.56 ± 0.18

4.54 13.94 40 100.00 ± 0.00 93.33 ± 3.33 10.60 ± 0.14

9.09 13.94 40 100.00 ± 0.00 100.00 ± 0.00 21.32 ± 0.28

13.63 13.94 40 100.00 ± 0.00 91.11 ± 3.51 7.59 ± 0.18

Values in each column represent mean ± standard error

Table 2 Statistics of  MLP and  SVR models for  callogenesis rate, number of  somatic embryos, and  embryogenesis rate 

of chrysanthemum in training and testing process

Model Item Callogenesis rate Embryogenesis rate Embryo number

Training Testing Training Testing Training Testing

SVR R2 0.928 0.928 0.966 0.956 0.996 0.994

RMSE 9.822 10.697 8.474 9.715 0.813 0.942

MAE 1.327 1.871 0.071 0.555 0.018 0.004

MLP R2 0.893 0.824 0.927 0.905 0.961 0.912

RMSE 10.029 15.403 10.003 13.747 1.645 2.073

MAE 1.644 2.012 1.746 1.908 0.061 0.021
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with two or more classes without a hierarchical order 
are categorized as nominal variables, while ordinal data 
have distinct order (level X is more intense than level 
Y) [65, 66]. Counts that include integers are classified as 
discrete data, while measurements along a continuum, 
which could be included smaller fractions, are catego-
rized as continuous variables [67]. Plant tissue culture 
data can be categorized as ordinal (callus quality rated as 

weak, moderate, and good), nominal (callus types such as 
embryogenic and non-embryogenic callus), continuous 
(embryogenesis rate), and discrete (number of somatic 
embryos). Traditional linear methods such as regres-
sion and ANOVA must be just applied with continuous 
variables that demonstrate a linear relationship between 
the explanatory and dependent variables [52, 68]. On 
the other hand, in  vitro culture systems are considered 

Fig. 1 Scatter plot of model predicted vs. observed data of chrysanthemum callogenesis rate for PGRs adjustment obtained by SVR model. a 
Training set (n = 432). b Testing set (n = 144)

Fig. 2 Scatter plot of model predicted vs. observed values of chrysanthemum embryogenesis rate for PGRs adjustment obtained by SVR model. a 
Training set (n = 432). b Testing set (n = 144)



Page 7 of 15Hesami et al. Plant Methods          (2020) 16:112  

as complex biological systems that multiple factors can 
affect the system in nonlinear ways. Hence, the conven-
tional computational approaches are not appropriate for 
analyzing plant tissue culture data [65]. Recently, dif-
ferent machine learning algorithms such as neural net-
works [34, 46, 47], fuzzy logic [7, 69], and decision trees 
[70, 71] have been successfully employed for predicting 
and optimizing various in vitro culture processes. Many 
studies [35, 44, 46, 72] used MLP to predict the optimal 

in vitro conditions for different plant tissue culture sys-
tems. However, they only applied the MLP model and did 
not compare this common algorithm with other models. 
Another promising computational method not previ-
ously employed in in  vitro data analyses is the SVR. In 
the current study, MLP and SVR, for the first time, were 
used to develop a suitable model for chrysanthemum 
somatic embryogenesis and compare their prediction 
accuracy. According to our results, SVR had more accu-
racy than MLP for modeling and predicting the system. 
Although there is no report regarding the application of 
SVR in plant tissue culture, in line with our results, com-
parative studies in other fields revealed the better per-
formance of SVR in comparison to ANNs such as MLP 
[57–59]. On the other hand, one of the weaknesses of 
using machine learning algorithms is that it is hard to 
obtain an optimized solution [52]. To tackle this problem, 
several studies [25, 28, 30, 31, 34] used GA to optimize 
in  vitro culture conditions. However, plant tissue cul-
ture consists of different functions that sometimes they 
show conflict interaction. Hence, GA, as a single objec-
tive function, cannot optimize multi-objective function 
[7]. �erefore, it is necessary to employ multi-objective 
optimization algorithms such as NSGA-II. In the current 
study, NSGA-II was linked to SVR as the most suitable 
model for the optimization process. After predicting and 
optimizing somatic embryogenesis via SVR-NSGA-II, the 
predicted-optimized results were experimentally tested. 
Based on our results, SVR-NSGA-II can be considered 
as an efficient computational methodology for predicting 
and optimizing different plant tissue culture systems.

Fig. 3 Scatter plot of model predicted vs. observed values of number of chrysanthemum somatic embryos for PGRs adjustment obtained by SVR 
model. a Training set (n = 432). b Testing set (n = 144)

Table 3 Importance of  PGRs for  callogenesis rate, 

number of  somatic embryos, and  embryogenesis rate 

of chrysanthemum according to sensitivity analysis

Output Item 2,4-D KIN SNP

Callogenesis rate VSR 4.10 1.94 1.49

Rank 1 2 3

Embryogenesis rate VSR 5.86 2.30 5.69

Rank 1 3 2

Number of somatic embryos VSR 100.33 98.93 99.04

Rank 1 3 2

Table 4 Optimizing PGRs according to  optimization 

process via  SVR-NSGAII for  embryo number 

and embryogenesis rate in chrysanthemum

input variable (μM) Predicted 
embryogenesis rate

Predicted embryo 
number

2,4-D KIN SNP

9.10 4.70 18.73 99.09 56.23
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�e results of the sensitivity analysis showed that 2,4-D 
is the most important component in the somatic embryo-
genesis followed by SNP as a donor nitric oxide (NO), and 
KIN. In line with our results, after several years of molec-
ular and biological somatic embryogenesis studies, it has 
been shown that 2,4-D is the most important signaling 
in somatic embryogenesis followed by NO and cytokinin 
signaling [73]. �e type and concentration of PGRs play a 
pivotal role in somatic embryogenesis. Several studies [1, 
14, 74] have elucidated that among tested auxins, 2,4-D 
as one of the synthetic auxins resulted in the maximum 
somatic embryogenesis in chrysanthemum. In addition, 
kinetin, as a cytokinin, promotes somatic embryogenesis 
in the chrysanthemum [75, 76]. For instance, Shinoyama 
et  al. [75] reported that the maximum number of the 
somatic embryos (21.3 ± 1.2) was obtained from 2  mg/l 
2,4-D along with 1  mg/l kinetin. Nitric oxide is known 

as a messenger molecule regulating plant development 
and a ubiquitous bioactive molecule mainly contributed 
to various plant developmental processes such as fruit 
ripening, flowering, organ senescence, and germina-
tion [73]. �is molecule has recently been characterized 
as one of the phytohormones [77]. �e exterior usage 
of nitric oxide might improve the tolerance of plants 
under various stresses such as temperature, heavy met-
als, ultraviolet radiation, drought, and salinity [78–80]. 
�e activation rate of nitric oxide has been evaluated by 
the exterior usage of sodium nitroprusside (SNP) instead 
of using NO gas directly because of some technical dif-
ficulties [81]. In recent years, nitric oxide gets involved in 
developing in vitro plant propagation [82]. Ötvös et al. [9] 
demonstrated that despite NO does not affect cell cycle 
progression in plant tissue culture, it may have a close 
relation with auxins linking the adjust of cell division to 
differentiation. Plants have significant developmental 
plasticity in comparison with animals. During the de- dif-
ferentiation process, somatic plant cells can repossess the 
ability to divide and ‘de-differentiated’ plant cells can ‘re-
differentiate’ into whole plants under appropriate condi-
tions. Ötvös et al. [9] reported that NO accompany with 
auxin can play a significant role in the embryogenesis of 
leaf protoplast-derived cells. In the absence of auxin, SNP 

Fig. 4 Pareto front obtained by NSGA-II as a multi-objective optimization algorithm for the highest of embryogenesis rate and the maximum 
number of somatic embryos per explant of chrysanthemum. The ideal point is presented as the red point

Table 5 Experimental validation of  the  predicted-

optimized result via  SVR-NSGA-II for  embryo number 

and embryogenesis rate of chrysanthemum

Treatment Embryogenesis rate (%) Embryo number

9.1 μM 2,4-D + 4.7 μM 
KIN + 18.73 μM SNP

100 ± 0.00 57.86 ± 0.42
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could not induce the protoplast-derived cells division. 
Also, the alternative response of protoplast-derived cells 
to various concentrations of external auxin in the pres-
ence of SNP or L-NMMA may show that NO can alter 
the sensitivity of the cells to auxin and involved in inter-
mediary of the auxins role during these processes [8].

Furthermore, NO and auxins were suggested to share 
similar steps in signal transduction pathways caused to 
root formation and root elongation [73]. In addition to 
affecting the dividing cells frequency, SNP and L-NMMA 
have a massive impact on the pathway of auxin con-
centration-dependent development of leaf protoplast 
obtained from cells [73]. It previously indicated that 
these cells could develop into elongated cells or small, 
vacuolized, and isodiametric cells with dense cytoplasm 
showing embryogenic competence [83–85]. Although 
the formation of embryo-genic-type cells can be obtained 
at the high concentration of auxins (5–10 μM 2,4-D), by 
using SNP, this type of cell can be achieved at a low con-
centration of 2,4-D [9]. Somatic embryo formation can 
be obtained by the high-level expression of the MsSERK1 
gene as well as the development of the cells [86] so this 
fact proved the usage of SNP in altering the pathway of 
the auxin-treated cells. SERK gene expression is usually 
applied as a marker of embryogenic potential [73] despite 
its up-regulated expression. �is was also accompanying 
with auxin-promoted root formation [86] and was rec-
ommended to be morphogenic instead of only being an 
embryogenic marker.

Conclusion
Recently, MLP has been widely applied for modeling 
and predicting in  vitro culture systems. In the cur-
rent study, SVR for the first time was applied to model 
and predict somatic embryogenesis and to compare its 
accuracy with MLP. Our results showed that the SVR 
model has better accuracy than MLP for modeling and 
predicting complex systems such as somatic embryo-
genesis. Also, SVR-NSGA-II was able to optimize the 
chrysanthemum’s somatic embryogenesis accurately. 
�e results of the sensitivity analysis showed that 
2,4-D is the most important component in the somatic 
embryogenesis followed by SNP as a donor nitric oxide 
(NO), and KIN. Interestingly, after several years of 
molecular and biological somatic embryogenesis stud-
ies, it has been shown that 2,4-D is the most important 
signaling in somatic embryogenesis followed by NO 
and cytokinin signaling. �ese results demonstrate that 
SVR-NSGA-II can open a reliable and accurate window 
to a comprehensive study of the plant’s biological pro-
cesses. It would be recommended to compare SVR with 
the current machine-learning methods (e.g., Random 
Forest, Gradient Boosting), to allow a more thorough 

appreciation of the relative merit of SVM applied to the 
presented problem.

Methods
Plant material, media, and culture condition

In this study, leaf explants of chrysanthemum ‘Hornbill 
Dark’ were selected for in  vitro somatic embryogenesis 
study. To primary disinfect, the explants were washed 
for 20 min with tap water. �en, further steps were per-
formed under a laminar airflow cabinet. Subsequently, 
the explants were soaked with 70% ethanol for 40 s and 
then washed with sterilized distilled water for 3  min. 
Afterward, the explants dipped in 1.5% (v/v) NaOCl solu-
tion for 15 min. Subsequently, the explants were washed 
with sterilized distilled water for 5 min three times. �e 
basal medium in this study was Murashige and Skoog 
[87] (MS) medium consisted of 3% sucrose, 0.7% agar, 
and 100 mg/l Myo-inositol. Also, the pH of the medium 
by using 1 and/or 0.1 N NaOH as well as 1 and/or 0.1 N 
HCl was adjusted to 5.8 before autoclaving for 20  min 
at 120 ◦C. �e explants were cultured in 200-ml culture 
boxes supplemented with 45 ml basal media. All culture 
boxes were kept in the growth chamber under 16-h Pho-
toperiod with 50 μmol m−2 s−1 light intensity at 25 + 2 °C.

Experimental design

�e leaf explants were cultured in the basal medium 
containing different concentrations of 2,4-D, (0, 4.54, 
9.09, and 13.63  μM) Kinetin (KIN) (0, 4.65, 9.29, and 
13.94 μM), and sodium nitroprusside (SNP) (0, 10, 20, 
and 40 μM). �e callogenesis rate (Eq. 1), embryogen-
esis rate (Eq.  2), and the number of somatic embryos 
were calculated after 6 weeks of culture.

�e somatic embryogenesis experiments were con-
ducted based on a randomized complete block design 
(RCBD) with a factorial arrangement with a total of 64 
treatments with nine replications per treatment, and 
each replication consisted of five leaf explants.

(1)

Callogenesis rate (%)

=

Number of explants that produce callus

Total number of explants

× 100

(2)

Embryogenesis rate (%)

=

Number of explants that produce embryo

Total number of explants

× 100
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Modeling procedures

�e input variables were 2,4-dichlorophenoxyacetic acid 
(2,4-D), kinetin (KIN), sodium nitroprusside (SNP). �e 
target variables were callogenesis rate, embryogenesis 
rate, and the number of the somatic embryos per explant. 
Before modeling, the datasets were scaled between 0 and 
1 to ensure that all variables receive equal attention dur-
ing the training process. In the current study, two types 
of machine learning algorithms, including MLP and SVR, 
were employed to model somatic embryogenesis of chry-
santhemum. To train and test each model, 70 and 30% of 
the data lines were randomly selected, respectively.

Multilayer perceptron (MLP) model

�e MLP, as one of the common ANNs, consists of three 
layers, including input, hidden, and output. In the present 
study, this model was employed, according to Hesami 
et  al. [35] procedure. Briefly, in the present investiga-
tion, a 3-layer backpropagation network (feed-forward 
backpropagation) was applied for constructing the MLP 
model. To determine the optimal weights and bias as well 
as train the network, a Levenberg–Marquardt algorithm 
was applied. Also, the hyperbolic tangent sigmoid (tan-
sig) and linear (purelin) activation functions were utilized 
for hidden and output layers, respectively.

Support vector regression (SVR) model

Support vector machines (SVMs), developed by Vap-
nik [53], can be used for clustering, classification, and 
regression analysis of nonlinear relationships [54]. SVR, 
as a regression version of SVM, was employed in the cur-
rent study. Considering {(xi, ti)}ni  as a dataset, xi shows ith 
input vector, ti represents ith output vector, and n equals 
a total number of observations. �e following function 
used for the SVR estimation:

where w shows weights, b is bias, and ϕ(x) represents 
the high dimensional feature space, which is non-lin-
early mapped from the input space x and y is output 
value. SVR tried to minimize a loss function, and the 
main goal is that all the estimated variables are placed 
between the upper and lower prediction error bounds. 
Upper and lower prediction error bounds in SVR are 
y = wϕ(x) + b + ε and y = wϕ(x) + b − ε , respectively. 
Figure  5 shows a schematic view of SVR. An optimiza-
tion process was used to find out w and b coefficients as 
follows:

(3)y = wϕ(x) + b

(4)Min : L = C
1

n

n∑

i=1

Lε(ti, yi) +
1

2
w.wT

where, ε , Lε , and C represents an acceptable error (tube 
size), insensitive loss function, and penalty parameter, 
respectively. Both and C are user-prescribed parameters. 
�e dual function of the problem with the application of 
Lagrange multipliers is as follows: 

After solving the optimization problem, w and b are 
determined. �e lagrange multipliers with non-zero val-
ues were assumed as the supporting vector. �en the 
SVR can be carried out as follows:

Among the various kernel functions in SVR, radial basis 
function (RBF) is one of the common kernel functions for 
nonlinear problems. �erefore, SVR along with RBF ker-
nel function could be presented with three parameters as 
SVR (y, C, Ɛ).

Performance measures

To assess and compare the accuracy of mentioned mod-
els, three following performance measures including R2 
(coefficient of determination), Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE) were used:

(5)Lε(ti, yi) =

{

|t − y| − ε |t − y| > ε

0 otherwise

(6)

Max LD =

n∑

i=1

ti(αi − α∗

i ) − ε

n∑

i=1

(αi + α∗

i )

−
1

2

n∑

i=1

n∑

j=1

(αi − α∗

i )(αj − α∗

j )k(xi, xj)

Subjected to :

n∑

i=1

(αi − α∗

i ) = 0

0 ≤ αi ≤ C i = 1, 2, . . . , n

0 ≤ α∗

i ≤ C i = 1, 2, . . . , n

(7)y =

n∑

i=1

(αi − α∗

i )k(x, xi) + b

(8)R2
=









�T
t=1

�

yt − ȳ
�

�

ŷt − ˆ̄y
�

�

�T
t=1

�

yt − ȳ
�

�
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(9)MAE = 1/n

n
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where yt, ȳ , ŷt , and T are the tth observed data, the mean 
of observed values, the mean of predicted values, and 
total number of predicted values, respectively. Greater 

 R2 and smaller RMSE and MAE indicated better perfor-
mance of the constructed models.

Optimization of somatic embryogenesis via NSGA-II

To identify the optimal levels of inputs (2,4-D, KIN, and 
SNP) for maximizing embryogenesis rate and the number 
of the somatic embryo per explant, the developed SVR 
models were exposed to NSGA-II (Fig.  6). Also, a rou-
lette wheel selection method was applied to choose the 
elite population for crossover [88]. To obtain the best fit-
ness, the initial population, generation number, mutation 

(10)RMSE =

√

(

∑n

i=1

(

yi − ŷi
)2

)

/ n
rate, and crossover rate were respectively adjusted to 200, 
1000, 0.5, and 0.7. In the current study, the ideal point 
of Pareto was selected such that embryogenesis rate and 
the number of somatic embryos per explant became 
the maximum. Indeed, a point in the Pareto front was 
detected as the best optimal answer such that: 

Was minimal; where x and y were the highest embryo-
genesis rate and the maximum number of somatic 
embryos per explant in observed data, respectively

Sensitivity analysis

Sensitivity analysis was conducted to identify the impor-
tance degree of KIN, SNP, and 2,4-D on the embryogen-
esis rate, callogenesis rate, and the number of the somatic 
embryo per explant. �e sensitivity of these parameters 
was measured by the criteria including variable sensitivity 
error (VSE) value displaying the performance (root mean 

(11)
√

(

embryogenesis rate − x
)2

+
(

number of somatic embryos per explant − y
)2

Fig. 5 The schematic view of the support vector regression (SVR) model
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square error (RMSE)) of SVR-NSGA-II model when that 
input variable is removed from the model. Variable sen-
sitivity ratio (VSR) value was determined as the ratio of 
VSE and SVR-NSGA-II model error (RMSE value) when 
all input variables are available. A higher important vari-
able in the model was detected by higher VSR.

MATLAB (Matlab, 2010) software was employed to 
write codes and run the models.

Validation experiments

In order to approve the efficiency of the developed 
model, the optimized PGRs (medium containing 9.10 μM 
2,4-D, 4.70 μM KIN, and 18.73 μM SNP) obtained from 
SVR-NSGA-II were experimentally tested in the lab with 
three replications and each replication consisted of ten 
leaf explants. �e obtained experimental results were 
compared with predicted results.
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