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穴井 宏和
HIROKAZU ANAI

(株) 画面通研究所/(独) 科学技術振興機構
FUJITSU LAEORATORIES LTD. CREST, JST \ddagger

Abstract

We have been developing SyNRAC, a toolbox on Maple for solving real algebraic constraints derived
from various engineering problems. In this paper we present newly implemented procedures in our toolbox.
The current$\mathrm{n}\mathrm{t}$ version of $\mathrm{S}\mathrm{y}\mathrm{N}$ RAC has added quantifier elimination (QE) by cylindrical algebraic decom po-
sition (CAD) as wel as QE by virtual substitution for quadratic formulas. We also show an application
of CAD-based QE to the common Lyapunov function problem.

1 Introduction
Recently symbolic computation methods have been gradually applied to solving engineering problems,

which has been caused by the efficient symbolic algorithms introduced and improved for these few decades
and by the advancement of computer technology that has hugely increased the CPU power and memory
capacity.

We have been developing SyNRAC, a Maple toolbox, for solving real algebraic constraints. This tool
has been presented in 2003 [1] and in 2004 [2]. SyNRAC stands for a Symbolic-Num eric toolbox for Real
Algebraic Constraints and is aimed at being a comprehensive toolbox including a collection of symbolic,
numerical, and symbolic-numeric solvers for real algebraic constraints derived from various engineering
problems. When we say a real algebraic constraint, what we have in mind is a first-order formula over
the reals. Our main method is quantifier elimination (QE), which removes the quantified variables in a
given formula to return a quantifier-free equivalent.

In this paper we present newly implemented procedures in SyNRAC. The current version of SyNRAC
has added the following:
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. a special QE procedure by virtual substitution for quadratic formulas

. a general QE procedure by cylindrical algebraic decomposition (CAD)

A special QE method for quadratic formulas has widened the application areas of SyNRAC in actual

problems (see [3]). CAD-based QE is regarded as a general QE in the sense that it can deal with any
type of form $\mathrm{u}\mathrm{l}\mathrm{a}$ , if the efficiency is ignored. Historically, CAD-based approaches preceded the special QE

methods we had already implemented in SyNRAC. We implemented special QE first because there was
a good class of formulas to which many practical problems could be reduced and a much more efficient

special QE method was applicable $[4, 5]$ .
This paper is organized as follows. In Section 2 we present special QE by virtual substitution for

quadratic formulas. We briefly describe CAD and show the commands on CAD in SyNRAC in Section 3.

In Section 4 we show an example problem to which SyNRAC’s CAD command can apply. We end with

a conclusion in Section 5.

2 Solving quadratic algebraic constraints over the reals

We briefly explain a special QE by virtual substitution of parametric test points that is applicable

to formulas in which the quantified variables appear at most quadratically (see [6] for details). We call

a formula whose atomic subformulas are at most quadratic with respect to its quantified variables a

quadratic formula.
Let

$\psi(p_{1}, \ldots , p_{m})\equiv Q_{1}x_{1}\cdots Q_{n}x_{n}\varphi(p_{1}, \ldots,p_{m}, x_{1}, \ldots, x_{n})$

be a linear or quadratic formula, where $Q_{i}\in\{\forall, \exists\}$ and $\varphi$ is a quantifier-free formula. By using the

equivalence $\forall x\varphi(x)\Leftarrow\gg\neg(\exists x\neg\varphi(x))$ , we can change the formula into an equivalent formula of the form
$(\neg)\exists x_{1}\cdots(\neg)\exists x_{n}$ $(\neg)\varphi$ . The possible negation $\zeta_{\neg}$ ’that precedes a quantifier-free formula can be easily

eliminated (use De Morgan’s law and rewrite the atomic subformulas , which is not essential part of

quantifier elimination. Therefore we may focus our attention on an existential for rmula, i.e., a formula

of the form $\exists x_{1}\cdots$ $\exists x_{n}\varphi(p_{1}, \ldots,\mathrm{p}\mathrm{m}, x_{1}, \ldots, x_{n})$. Furthermore, it is sufficient to show how to eliminate

Hx in $\exists x\varphi$ , since all the quantifiers in the formula can be eliminated by removing one by one from the

innermost one.
Now our main purpose is to eliminate the quantified variable $\exists x$ in

$\exists x\varphi(p_{1}, \ldots , p_{m}, x)$ ,

with $\varphi(p_{1}, \ldots,p_{m}, x)$ quantifier-free and quadratic to obtain an equivalent quantifier-free formula. For

fixed real values $q_{1}$ , $\ldots$ , $q_{m}$ for the parameters $p_{1}$ , $\ldots$ $7p_{m}$ , the set $M=\{r\in \mathbb{R}|\varphi(q_{1}, \ldots, q_{m}, r)\}$ of real

values $r$ for $x$ satisfying $\varphi$ is a finite union of closed, open, and half-open intervals over $\mathbb{R}$ , since all

polynomials appearing in $\varphi(x)$ are linear or quadratic. The endpoints of these intervals are among $\pm\infty$

and the real zeros of atomic formulas in $\varphi$ . Then candidate terms, say, $t_{1}$ , $\ldots$ , $t_{k}$ , for those zeros can be

constructed by the solution form ulas for linear or quadratic equations.

If $\varphi$ does not contain any strict inequalities, all the intervals composing $\mathrm{i}\mathrm{t}/\mathrm{I}$ are either unbounded or

closed. In the closed case such an interval contains its real endpoint. So $M$ is nonempty if and only if

the substitution of $\pm\infty$ or of one of the candidate solutions $t_{j}$ for $x$ satisfies $\varphi$ . Let $S$ be the candidate
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set $S=\{t_{1}, \ldots, t_{k}, \mathrm{f}\mathrm{o}\mathrm{o}\}$. Such a set is called an elimination set for $\exists x\varphi$ . We obtain a quantifier-free
formula equivalent to $\exists x\varphi$ by substituting all candidates in $S$ into $\varphi$ disjunctively:

$\exists x\varphi\Leftrightarrow t\in S\vee\varphi(x//t)$
.

We note that there is a procedure assigning the expression $\varphi(x/t)$ obtained from $\varphi$ by substituting $t$ for
$x$ an equivalent formula [6]. We denote the resulting formula by $\varphi(x//t)$ . If $\varphi$ contains strict inequalities,

we need to add to $S$ other candidates of the form $s$ $\pm\epsilon$ , where $s$ is a candidate solution for some left-hand
polynomial in a strict inequality and $\epsilon$ is a positive infinitesimal For improving the efficiency of this
method, the following two points are crucial: (i) refining the elimination set $S$ by a scrupulous selection
of a smaller number of candidates in $S$ ; (ii) integrating with sophisticated simplifications of quantifier-free

formulas. SyNRAC now employs three types of elimination sets proposed in [7].
Moreover, (heuristic) techniques for decreasing the degree during elimination are important for raising

the applicability of quadratic $\mathrm{Q}\mathrm{E}$ , because after one quantifier is eliminated for a quadratic case the degree
of other quantified variables may increase. Only simple degree-decreasing functions are implemented in

the current version of SyNRAC.

3 Cylindrical Algebraic Decomposition

Cylindrical algebraic decomposition (CAD) was discovered by Collins in 1973; see [8] for his monu-
mental work. Collins also proposed a general QE algorithm based on CAD, which provided a powerful
method for solving real algebraic constraints.

Let $A$ be a finite subset of $\mathbb{Z}[x_{1}, \ldots, x_{n}]$ . An algebraic decomposition for $A$ is a collection of mutually
disjoint, semi-algebraic A-invariant sets that partitions the Euclidean -space En. To define the term
cylindrical, we explain three parts of a CAD procedure–the projection phase, the base phase, and the
lifting phase.

In the projection phase of a CAD, the PROJ function plays a central role. Let $r$ be an integer greater
than 1. PROJ maps a finite set of integral polynom ials in $r$ variables to a finite set of integral polynomials
in $r$ –1 variables: for $A_{r}\subset \mathbb{Z}[x_{1}, \ldots, x_{r}]$ , $\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{J}(A_{r})\subset \mathbb{Z}[x_{1}, \ldots, x_{r-1}]$ . For a given A $\subset \mathbb{Z}[x_{1}$ , $\ldots$ , $x_{n}\overline{\rfloor}$ ,
we obtain a list

PROJ PROJ PROJ PROJ
$A$ $=A_{0}$ $\mapsto$ $A_{1}$ $\mapsto$ $A_{2}$ $\mapsto$ . . . $\mapsto$ $A_{n-1}$ ,

where $A_{i}\subseteq \mathbb{Z}[x_{1}$ , $\ldots$ , $x_{n-i_{J}}\rceil$ .
In the base phase we partition $E^{1}$ by using a set of um’variate polynomials $A_{n-1}\subset \mathbb{Z}[x_{1}]$ ; we find all

the real zeros of $A_{n-1}$ and partition $E^{1}$ into $A_{n-1}$ -invariant regions that consist of the zeros of $A_{n-1}$ and
the remaining open intervals. These points and intervals are called sections and sectors, respectively.

The lifting phase inductively constructs a decomposition of $E^{i+1}$ from the decomposition of $E^{i}$ ,
$i=1,2$ , $\ldots$ , $n-1$ . Suppose $D$ is a decomposition of $E^{i}$ . A lifting of $D$ is a decomposition $\overline{D}$ of $E^{\nu+1}$

obtained by decomposing the space $R\mathrm{x}$ $E^{1}$ by using $\mathrm{A}\mathrm{n}-\mathrm{i}-\mathrm{i}$ for each region $R$ $\in D$ and putting all of
them together. Let $R$ be a region of a decomposition $D$ of $E^{i}$ . $R\mathrm{x}$ $E^{1}$ is decomposed by the following;
Take a point $(\mathrm{p}\mathrm{i}, \ldots,p_{i})$ in $R$ and substitute it for $(x_{1}$ , . . . , $x_{\mathrm{t}})$ in each polynomial in $A_{n-i-1}$ to obtain a
set of univariate polynomials in $x_{i+1}$ ; Partition $E^{1}$ into, say, Lq, $L_{1}$ , $\ldots$ )

$L_{2k+1}$ by using the roots of the
polynom ials in $x_{i+1}$ ; Regard $R\cross$ $L_{0}$ , $R\cross$ $L_{1}$ , $\ldots$ , $R\mathrm{x}$ $L_{2k+1}$ as the resulting decomposition. The condition
for this process to work is that $A_{n-\mathrm{i}-1}$ is delineable on $R$ , in other words, every pair of polynomials in
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$A_{\mathrm{n}-i-1}$ has no intersections on $R$ . In such a case the decom position is independent of the choice of a

sample point. A decomposition $D$ of $E^{r}$ is cylindrical if it is constructed by iterating the above lifting
method, i.e., $r=1$ and $E^{1}$ is decomposed as in the base phase, or $r>1$ and $D$ is a lifting of some
cylindrical decom $\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\dot{\tau}$ ion $D’$ of $E^{r-1}$ .

Given a form ula $\varphi$ one can construct a CAD for the polynomials of the atomic formulas in $\varphi$ . The

point for CAD-based QE is that the value $(\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{t}\mathrm{h}/\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e})$ of $\varphi$ is determ ined regionwise because each region

in the CAD is $A$-invariant. See [8] for details. It is the PROJ function that is crucial in a CAD procedure.

The fewer polynomials PROJ produces, the more efficient the CAD program becomes. But PROJ must

be constructed to maintain the delineability and make the lifting phase possible. Some improvements in

Figure 1: The graph of A
Here we show some exam pies of CAD commands in SyNRAC. We construct a CAD for fl $:=\{x^{2}+$

$y^{2}-1$ , $x^{3}-y^{2}\}\subset \mathrm{Z}[\mathrm{a}, y]$ . The graph of the two polynomials in $A$ is shown in Fig. 1. The Projection

command repeats PROJ and returns $\mathrm{P}[1]$ $=\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{J}^{0}(A)$ $=A$ and $\mathrm{p}[2]$ $=\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{J}(A)$ .
$>$ read $\mathfrak{l}1$ synrac ” ;
$>\mathrm{A}:^{=[}\mathrm{x}^{\wedge}2+$ $\mathrm{y}^{-}2-\mathit{1}$ , $\mathrm{x}^{\sim}3-\mathrm{y}^{\wedge}2]$ :
$>\mathrm{P}:=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(\mathrm{A}, [\mathrm{y},\mathrm{x}] )$ :
$>\mathrm{P}$ [il $j\mathrm{P}\zeta 2$] :

$[\mathrm{x}^{\wedge}2+\mathrm{y}^{\wedge}2-1. \mathrm{x}^{-}3-\mathrm{y}^{\wedge}2]$

$[\mathrm{x}" 2 - 1, \mathrm{x}^{\wedge}2-1 +\mathrm{x}^{\wedge}3, \mathrm{x}]$

Next the Base command partitions $E^{1}$ by using $\mathrm{P}[2]$ and returns a list of points that represent
respective sections or sectors. A rational point is taken as a sample point for a sector, and a vanishing
polynomial and an isolated interval are taken for a section. There are four real roots (sections) in $\mathrm{P}[21$

and they make five open intervals (sectors).

$>$ Base $(\mathrm{P}[2] , \mathrm{x})$ ;

[-2, $[\mathrm{x} + 1, [-1, -1] ]$ , $-\mathrm{i}/2$ , [$\mathrm{x},$ $[0, 03]$ , 318,
$[\mathrm{x}^{-}2 - 1 +\mathrm{x}^{arrow}3, [3/4, 7/8]]_{\mathrm{J}}$ 15/16, [ $\mathrm{x}$

– 1, [1, 111, 2]
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Lastly the Lifting command makes a stack for each section or sector. Out of nine regions, we have
the third and the fifth ones displayed. The third region is a sector with a rational sample point [-1/2]

and the stack on it is represented in a list of five sample points of $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}$ . The data for the fifth
sector are shown in a similar way. The data for It is similar for the fifth sector, which has [3/8] as a
sample point.
$>\mathrm{L}:=\mathrm{L}\mathrm{i}\mathrm{f}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}(\mathrm{P},$ $[\mathrm{y},\mathrm{x}]$ $\}$ :
$>\mathrm{o}\mathrm{p}$ $(\mathrm{L}[3] )$ ; $\mathrm{o}\mathrm{p}(\mathrm{L}[5])i$

[3], [-1/2], [-2, [-3 $*$ $4\mathrm{y}^{\wedge}2_{2}$ [-1, 0] 13 0, $[-3 +4\mathrm{y}^{\wedge}2, [0, 1] 1 2 2]$

[5], [3/8]. [-2, $[-55 +64\mathrm{y}^{\wedge}2, [-1, -1/2]]$ , -1/2,
$[512 \mathrm{y}^{\mathrm{r}}2-27, [-1/2, 0]]$ , O. $[512 \mathrm{y}^{-}2-27, [0, 1/2]]$ , 1/2,
$[-55 +64\mathrm{y}^{\wedge}2, [1/2, 1]]$ , 21

4 Application of CAD-based QE

In this section we show an application of CAD to a practical problem. The common Lyapunov
function problem is a problem that studies the existence of a common Lyapunov function for a set of
linear time-invariant systems. The problem often arises in stability analysis and control design of various
types of control systems such as uncertain systems, fuzzy systems, switched systems, etc. We focus on
one of the main types of common Lyapunov functions, a common quadratic Lyapunov function (CQLF).

See [12, 13, 14] for details.
One important issue of a CQLF problem is to find an existence condition of CQLF. For a given

set of stable constant linear systems, we can verify whether the systems share a CQLF and construct
the CQLF if they do with some numerical semidefinite programming (SDP) package. We consider here
the problem of finding symbolic existence conditions on system matrices such that these systems share a
com mon Lyapunov function. An existence condition provides us stability regions of parameters for control
systems. Although there are some attempts to resolve this so far, only partial results are obtained. The
CQLF problems to compute an existence condition can be solved by using QE systematically; see [15].

Common Lyapunov Function Problem: We consider a set of continuous-tim $\mathrm{e}$ linear time-invariant
systems

$\dot{\mathrm{x}}=\mathrm{A}\mathrm{c}\mathrm{i}\mathrm{x}$, $\mathrm{x}\in \mathbb{R}^{n}$ , $\mathrm{A}_{ci}\in \mathbb{R}^{n\mathrm{x}n}$ , $\mathrm{i}=1$ , $\ldots$ , $q$ . (1)

The set of systems (1) is said to have a CQLF if there exists a symmetrical positive definite matrix
$\mathrm{P}=\mathrm{P}^{T}>0$ such that the following Lyapunov inequalities

$\mathrm{P}\mathrm{A}_{ci}+\mathrm{A}_{ci}^{T}\mathrm{P}<0$ , Vi $=1_{\}\ldots$ , $q$ (2)

are satisfied. Then the CQLF is $\mathrm{V}(\mathrm{x})=\mathrm{x}^{T}\mathrm{P}\mathrm{x}$.

Solving Common Lyapunov Function Problem by $\mathrm{Q}\mathrm{E}$ : We consider two Hurwitz stable continuous-
time linear time-invariant systems, i.e., the case $n=2$ and $q=2$ in (1):

$\dot{\mathrm{x}}$ $=$ Acix, $\mathrm{x}\in \mathbb{R}^{2}$ , $\mathrm{A}_{c\iota}\in \mathbb{R}^{2\mathrm{x}2}$ , $\mathrm{i}=1,2$ . (3)

Moreover let Acl, $\mathrm{A}_{c2}$ be

$\mathrm{A}_{\mathrm{c}1}=\ovalbox{\tt\small REJECT}$

$yx$ $-10||$ , $\mathrm{A}_{c2}=[-10$ $-21\ovalbox{\tt\small REJECT}$ , (4)

respectively, where $x$ , $y\in \mathbb{R}$ are system parameters. We have the following theorem
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Theorem 1
($R.N$ Shorten et.al [13]) A necessary and sufhcient condition for the two second-order systems (3) to
have a CQLF is

$R\mathrm{e}(\lambda(co(\mathrm{A}_{c1}, \mathrm{A}_{c2})))<0$ , (5)

$R\mathrm{e}(\lambda\{co(\mathrm{A}_{\mathrm{c}1)}\mathrm{A}_{c2}^{-1})))$ $<0$ , (6)

where $co(.)$ denotes the convex hull (polytope) of matrices: $co(\mathrm{X}, \mathrm{Y})=\{\alpha \mathrm{X} +(1-\alpha)\mathrm{Y} : \alpha\in[\mathrm{O}, 1_{\rfloor}^{1}\}$,
$\lambda(\mathrm{X})$ denotes the eigenvalues of matrix $\mathrm{X}$ and $\mathrm{R}e($ . $)$ denotes the real part of a complex number.

This im plies that our desired condition is that all roots of characteristic polynomials of $\mathrm{c}\mathrm{o}(\mathrm{A}_{\mathrm{c}1}, \mathrm{A}_{\mathrm{c}2})$ and
$\mathrm{c}\mathrm{o}(\mathrm{A}_{\mathrm{c}1}, \mathrm{A}_{c2}^{-1})$ locate within a left half of the Gaussian plane for a $\in[0, 1]$ . The conditions can be reduced
to a set of polynomial inequalities by using the well-known Lienard-Chipart criterion. Then we can apply

QE for the polynom ial inequalities.

Now we compute feasible regions of $x$ , $y$ so that the systems (3) have a CQLF by $\mathrm{Q}\mathrm{E}$ , As men-
tioned above, by applying the Lienard-Chipart criterion to characteristic polynomials of $\mathrm{c}\mathrm{o}(\mathrm{A}_{c1}, \mathrm{A}_{c2})$

and $\mathrm{c}\mathrm{o}(\mathrm{A}_{c1}, \mathrm{A}_{c2}^{-1})$ , the CQLF existence condition can be described by the following formula:

$\forall\alpha((0\leq\alpha\leq 1)$ $\Rightarrow$ ($2-\alpha-x\alpha>0$ A $1+y\alpha-\alpha^{2}-x\alpha^{2}-y\alpha^{2}>0\Lambda$

(7)
1 - $2\alpha$ $-2x\alpha$ - ya $+\alpha^{2}+x\alpha^{2}+y\alpha^{2}>0\rangle$ ).

Applying CAD-based QE in SyNRAC to (7), the output turns out to be

$x<0$ A $-2-2\sqrt{-x}<y$ A $y<2\sqrt{-x}-2x$ . (S)

5 Conclusion
We have presented a newly developed procedure in Maple-package SyNRAC. The current version of

SyNRAC provides quantifier elimination (QE) by virtual substitution up to quadratic formulas and a

CAD-based QE procedure, as well as some standard simplifiers. The new added CAD command greatly

extends the applicability and tractability of $\mathrm{S}\mathrm{y}\mathrm{N}$ RAC for solving real algebraic constraints in engineering.

As an application of $\mathrm{S}\mathrm{y}\mathrm{N}$ RAC, we have treated an example of the common Lyapunov function problem.

We proceed to implement other known QE algorithms and improve them, and are setting about

developing symbolic-num eric algorithms. We also plan to develop a toolbox for parametric robust control

design on MATLAB using $\mathrm{S}\mathrm{y}\mathrm{N}$ RAC as a core engine.
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