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A voice disorder database is an essential element in doing research on automatic voice disorder detection and classi�cation. Ethnicity
a
ects the voice characteristics of a person, and so it is necessary to develop a database by collecting the voice samples of the
targeted ethnic group. 	is will enhance the chances of arriving at a global solution for the accurate and reliable diagnosis of
voice disorders by understanding the characteristics of a local group. Motivated by such idea, an Arabic voice pathology database
(AVPD) is designed and developed in this study by recording three vowels, running speech, and isolated words. For each recorded
samples, the perceptual severity is also provided which is a unique aspect of the AVPD. During the development of the AVPD,
the shortcomings of di
erent voice disorder databases were identi�ed so that they could be avoided in the AVPD. In addition, the
AVPD is evaluated by using six di
erent types of speech features and four types of machine learning algorithms. 	e results of
detection and classi�cation of voice disorders obtained with the sustained vowel and the running speech are also compared with
the results of an English-language disorder database, the Massachusetts Eye and Ear In�rmary (MEEI) database.

1. Introduction

	e Arabic voice pathology database (AVPD) will have a
potential impact on the assessment of voice disorders in the
Arab region. Race has been suggested to contribute to the
perception of voice, withWalton andOrliko
 [1] showing, for
example, thatmeasures of amplitude and frequency perturba-
tion in African-American adult males are not equal to those
of white adult males. Additionally, Sapienza [2] analyzed the
vowel /a/ in a group of 20 African Americans and 20 white
Americans, �nding thatAfrican-Americanmales and females
had higher mean fundamental frequencies and lower sound
pressure levels, although the di
erences were not signi�cant.
	is di
erence was partially attributed to the large ratio of the
membranous to cartilaginous portion of the vocal folds and
increased thickness, a �nding previously reported by Bosho


[3]. Sapienza [2] did not examine other acoustic parameters
for gender or racial di
erences. Walton and Orliko
 [1]
found, through acoustical analysis, that African-American
speakers had signi�cantly greater amplitude perturbation
measures and signi�cantly lower harmonics-to-noise ratios
than did white adult males. Although the former had a lower
mean speaking fundamental frequency than the latter, the
di
erences were not signi�cant in the group of 50 subjects.

In a study by Malki et al. [4], the acoustic voice analysis
of 100 normal Saudi adult subjects was compared using built-
in normative data in the KayPENTAX Multi-Dimensional
Voice Program (MDVP) so
ware [5].	e authors concluded
that fundamental frequency and many of the frequency and
amplitude perturbation variables showed statistically signif-
icant di
erences between normal Saudi males and females.
In addition, the groups of Saudi males and females showed
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signi�cant di
erences in the perturbation parameters com-
pared with a standard North American database. 	e data
from this study support the hypothesis that these di
erences
aremost likely due to racial di
erences.	is is the reason that
researchers have used databases of di
erent languages in the
studies to investigate the �ndings more precisely. A Korean
database is used in [6], a German one is considered in [7],
another German database is used in [8], a Spanish database
is considered in [9], and another Spanish database is used in
[10].

Voice disorder databases can be used in clinics as well
as in automatic voice disorder detection systems to study
the acoustic behavior of the voices su
ering from di
erent
types of vocal disorders.	e evaluation of disordered speech,
such as dysphonia, is a vital element in the clinical appraisal
and treatment of the human voice. In addition to endoscopic
examination of the larynx and vocal folds, perceptual and
acoustic measurement techniques are crucial components of
the clinical assessment of dysphonia. 	e perceptual assess-
ment includes various rating scales such as the consensus
auditory perceptual evaluation of voice (CAPE-V) scale [11]
and the Grade, Roughness, Breathiness, Asthenia, Strain
(GRBAS) scale [12] that assesses the overall grade of dyspho-
nia, degree of roughness, breathiness, asthenia, and strain.
Although those techniques are commonly used in clinical
practice, there are potential limitations for their application
because of the subjective nature of the evaluation.	ose lim-
itations may include the clinician’s experience, the degree of
the patient’s dysphonia, the type of auditory perceptual rating
scale, and the stimulus or speaking task. Based on the pitfalls
of the perceptual evaluation, clinicians and researchers have
developed a more objective tool for quantifying the degree
of dysphonia that patients have via the acoustic analysis of
voice. As a result of acoustic analysis, a numerical value is
obtained that describes the severity of the pathology, allows
for treatment and follow-up, and makes this information
available to other stakeholders.

A database should contain a variety of recorded text, as
many voice clinicians use sustained vowel samples rather
than continuous speech samples in performing an acoustic
analysis of their patients. Although some researchers have
found that the sustained vowel is optimal for obtaining a voice
sample for a variety of reasons, it does not truly represent
voice use patterns in daily speech. At the same time, �uctua-
tions of vocal characteristics in relation to voice onset, voice
termination, and voice breaks, which are considered to be
crucial in voice quality evaluation, are not fully represented in
short signals of phonation such as sustained vowels. Further-
more, dysphonic symptoms are o
en more evident in con-
versational voice production than sustained vowels, and they
are most o
en gestured by the dysphonic persons themselves
in continuous speech. In addition, some voice pathologies,
like adductor spasmodic dysphonia during sustained vowel
production, can be distinguished from a relatively normal
voice.Moreover, some of the acoustic correlates of an individ-
ual’s voice are the result of the in�uence of the segmental and
suprasegmental structure of speech that cannot be repre-
sented in the sustained vowel.

A good quality voice disorder database can help to solve
the growing number of voice complications in the Arab

region and beyond. 	e number of patients with a voice
pathology has increased signi�cantly in recent years, with
approximately 17.9 million people in the United States alone
su
ering from a vocal di�culty [13]. It has been found that
15% of the total visitors to the King Abdulaziz University
Hospital in Saudi Arabia complain of a voice disorder [14].
	e complications caused by a voice problem in a teaching
professional are signi�cantly greater than in a nonteaching
professional, and studies have revealed that, in the United
States, the prevalence of voice disorders during a person’s
lifetime is 57.7% for teachers and 28.8% for nonteachers [15].
Approximately 33% of male and female teachers in the
Riyadh area of Saudi Arabia su
er from voice disorders [16].
However, spasmodic dysphonia is a voice disorder caused
by involuntary movements of the muscles of the larynx.
At our voice center at the Communication and Swallowing
Disorders Unit of the King Abdulaziz University Hospital, we
see a high volume of voice disorder cases (almost 760 cases
per year) in individuals with various professional and etio-
logical backgrounds.

Based on our previous study [4], which explored the
acoustic voice characteristics of normal adult Saudi subjects
and a voice sample database derived from normal North
American subjects, there were signi�cant di
erences between
the two groups when only a sustained vowel was analyzed.
Accordingly, wewill study the acoustic correlates in the voice-
disordered Arab population and use the developed AVPD
to explore the acoustic characteristics of the voices in com-
parison with other databases, especially when incorporating
connected speech in the analysis.

	e recorded AVPD database is evaluated by using many
speech features to provide baseline results. 	e features are
MDVP,Mel-frequencyCepstral Coe�cients (MFCC) [17, 18],
Linear Predictive Cepstral Coe�cients (LPCC) [19], Linear
Prediction Coe�cients (LPC) [20], Perceptual Linear Pre-
dictive Coe�cients [21], and Relative Spectral Transform-
Perceptual Linear PredictionCoe�cients (RASTA-PLP) [22].
To generate the acousticmodels of normal and di
erent types
of voice disorder, a number of machine learning algorithms
are implemented with each type of speech feature. 	e algo-
rithms are Gaussian Mixture Model (GMM) [23], Hidden
Markov Model (HMM) [24, 25], Support Vector Machine
(SVM) [26], and Vector Quantization (VQ) based on the
Linde-Buzo-Gray algorithm [27].

	e rest of the paper is organized as follows. Section 2
describes the design and development of the AVPD database,
Section 3 delivers the baseline results of the AVPD by using
various speech features and machine learning algorithms,
Section 4 provides the discussion, and Section 5 draws some
conclusions.

2. Arabic Voice Pathology Database

	is section describes the steps to designing and developing
the AVPD and includes an overview of the text recorded and
provides the statistics of the database. Moreover, segmenta-
tion and veri�cation processes are also discussed.

2.1. Video-Laryngeal Stroboscopic Examination. KayPEN-
TAX’s video-laryngeal stroboscopic system (Model 9200C2)



Journal of Healthcare Engineering 3

Table 1: Arabic digits with international phonetic alphabets (IPAs) and English translation.

Arabic digits English translation IPAs of Arabic digits

� ��� Zero /s./, /i/, /f/, /r/

���	 One /w/, /a/, /ℏ/, /i/, /d/
�
�� �
��

�
� Two /a/, /th/, /n/, /a/, /y/, /n/

������� 	ree /th/, /a/, /l/, /a/, /th/, /a/

����� �
�
� Four /a/, /r/, /b/, /�/, /a/

����
�� Five /kh/, /a/, /m/, /s/, /a/

���
� Six /s/, /i/, /t/, /t/, /a/
���
�� Seven /s/, /a/, /b/, /�/, /a/
��
� �� ��

�� Eight /th/, /a/, /m/, /a/, /n/, /y/, /a/
������ Nine /t/, /i/, /s/, /�/, /a/
����� ! Ten /�/, /a/, /⎰/, /a/, /r/, /a/

—

was used in the examination, including a 70∘ rigid endoscope,
3CCDToshiba camera, Sony LCDmonitor, and a light source
(Model RLS 9100B). Clinical diagnosis and classi�cation of
voice disorders were decided based on laryngoscopic exami-
nation. Two experienced phoniatricians were responsible for
clinical diagnosis and classi�cation of voice disorders. In case
of unclear diagnosis, two examiners reviewed the recorded
video-laryngeal examinations and a consensus decision about
clinical diagnosis was obtained.

2.2. Recording Equipment and Protocol. 	e AVPD recorded
both normal and disordered subjects by using Comput-
erized Speech Lab model 4500 (CSL 4500), a product
of KayPENTAX (Montvale, NJ, USA). All subjects were
recorded by expert clinicians in a sound treated room at
the Communication and Swallowing Disorders Unit of King
AbdulazizUniversityHospital.	e sampling frequency of the
recorded samples was 48 kHz with a bit rate of 16 bits. All
recordings were done by keeping a �xed distance of 15 cm
between mouth and microphone and stored in two di
erent
audio formats. Five organic voice disorders, vocal fold cysts,
nodules, paralysis, polyps, and sulcus, were considered in
the AVPD. In addition, all normal subjects were recorded
a
er clinical evaluation to make sure that they were not
su
ering from any voice disorder and also that they had not
experienced a voice complication in the past. Information
such as subject’s gender, age, and smoking habit was also
collected, and each subject signed a document to show their
consent and to record that they did not have any objections
to their recorded samples being used for research purposes.
Moreover, perceptual severity of disordered voice quality was
rated on a scale of 1 to 3, where 1 represents mild, 2 represents
moderate, and 3 represents severe voice quality disorder. A
variety of text was recorded by each subject in the AVPD,
which is explained in the following subsection.

2.3. Recording Text. 	ree types of text, including three
vowels, isolated words, and running speech, were considered

Table 2: Common words with IPAs and English translation.

Common words English translation IPAs of common words
�"� �# Envelope /z/, /a/, /r/, /f/

$� �� �! Deer /›/, /a/, /z/, /a/, /l/

%��� Camel /j/, /a/, /m/, /a/, /l/

during the development of the AVPD.	e text was compiled
in a way that ensured that it was simple and short, and at
the same time it covered all the Arabic phonemes. 	e �rst

type of text was three vowels, fatha /a/, damma /u/, and

kasra /i/, which were recorded with a repetition, including
onset and o
set information.	e second type of text involved
isolated words, including Arabic digits from zero to ten and
some common words (see Tables 1 and 2). 	e third type of
text was running speech (see Table 3), and the continuous
speech was taken from the �rst chapter of the Quran, called
the Al-Fateha.

	e third type of text is running speech, and it is given in
Table 3. 	e continuous speech is the �rst chapter from the
Holy book of Muslims, called Al-Fateha. One of the reasons
behind the selection of the religious text is that most of the
visitors to our voice disorder unit are illiterate. 	erefore, we
selected the religious text because everyMuslimmemorizes it
by heart. 	e other reason is the duration of Al-Fateha which
is 20 seconds, and it is better than the duration of running
speech of MEEI database (9 seconds) and SVD database (2
seconds).

	e Arabic digits and Al-Fateha covered all the Arabic

letters except three: &� , ��, and �'. 	erefore, some common
words were included in the text to cover these omissions.
	ese words were

�"� �# (envelope), $� �� �! (deer), and % ���
(camel), as mentioned in Table 2.	e number of occurrences
of each Arabic letter in the recorded text is mentioned in
Table 4. For illiterate patients, we have shown pictures of
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Table 3: Text from Al-Fateha with English translation.

English translation Al-Fateha
Sentence
number

Praise be to God, Lord of all the worlds 1

	e Compassionate, the Merciful 2

Ruler on the Day of Reckoning 3

You alone do we worship, and You alone do we ask for help 4

Guide us on the straight path 5

	e path of those who have received your grace 6

Not the path of those who have brought down wrath, nor of those who wander astray 7

�"� �# (envelope), $� �� �! (deer), and % ��� (camel) to record
these words.

2.4. Statistics. Overall, 366 samples of normal and patho-
logical subjects are recorded in the AVPD. Normal subjects
are 51% of the total subjects, and the remaining subjects are
distributed among �ve voice disorders: sulcus 11%, nodules
5%, cyst 7%, paralysis 14%, and polyp 11% (Figure 1(a)).
Among the 51% of normal subjects (188 samples), there are
116 male and 82 female speakers. In addition, the number
of pathologic male and female patients, respectively, is as
follows for the di
erent disorders: sulcus 20 and 22, nodules
18 and 2, cysts 17 and 7, paralysis 31 and 21, and polyps 18 and
22 (Figure 1(b)). 	e inner ring in Figure 1(b) represents the
number of female subjects, while the outer ring shows the
number of male subjects.

Approximately 60% of the subjects in the AVPD aremale,
while 40% are female. 	e information about the mean age
(in years) of the recorded subjects with standard deviation
(STD) is provided in Figure 2.	e average age ± STD of male
subjects who are normal or su
ering from sulcus, nodules,
cysts, paralysis, or polyps is 27 ± 10, 35 ± 13, 12 ± 2, 25 ±
18, 46 ± 15, and 48 ± 10 years, respectively, while for female
subjects it is 22 ± 5, 32 ± 14, 35 ± 12, 35 ± 17, 36 ± 14, and
32 ± 10 years, respectively. A consent form is signed by each
normal and disordered subject before recording of his\her
voice sample. In the consent form, each subject testi�ed
that his\her participation is completely voluntary, and their
decisions will not a
ect the medical care they receive.

2.5. Terminology for File Name. All the text, including three
vowels with a repetition, Arabic digits, Al-Fateha, and com-
mon words, was recorded and stored in two di
erent audio
formats, wav and nsp. 	e �le names consist of eight parts
and are stored as follows:

disorder-sex-age-smoke-code-severity-surgery.wav

disorder-sex-age-smoke-code-severity-surgery.nsp

	e �rst part of the �le name is the type of voice disorder.
	ree-letter abbreviations are used to represent each voice
disorder: cyt for cysts, ndl for nodules, prl for paralysis, plp for
polyps, and sls for sulcus. 	e abbreviation used to represent

nonpathological subjects is nor. 	e second part of the �le
name refers to the sex of the subject and so is either male
(M) or female (F). 	e third part is the age of the subject,
while the fourth part denotes whether he or she is a smoker
or not. If a subject is a smoker, then the �le name includes
y, but if they are not then it includes n. 	e �
h part is a
unique alphanumeric code which is assigned to every subject
to maintain their history.	e sixth part is perceptual severity
of the voice disorder, which is rated on a scale of 1 (mild) to
3 (severe), whereas perceptual severity of a normal subject is
represented by 0. 	e seventh part provides the information
that a sample is recorded before surgery or a
er surgery. 	e
samples recorded before and a
er surgery are denoted by p
and t, respectively. 	e last part denotes the extension of a
�le, which may be wav or nsp.

For instance, consider the �le name plp-m-20-y-
15034kam-2-p.wav, which indicates that a male smoker of
age 20 years is su
ering from a polyp. In addition, the �le
name indicates that perceptual severity is moderate and the
sample was recorded before surgery. 	e �le has been stored
in wav format. Some voice samples recorded by a normal
person and patients su
ering from di
erent disorders are
provided as a Supplementary Material available online at
https://doi.org/10.1155/2017/8783751. 	ese supplementary
samples are cyt-m-55-n-360527-kam-3-p.wav, nor-m-23-n-
90021-kac-0-p.wav, prl-f-34-n-569624-kac-2-p.wav, and sls-
m-20-y-545716-kac-1-p.wav.

2.6. Segmentation of Recorded Samples. Recorded samples
were divided into the following 22 segments: six segments
for vowels (three vowels plus their repetition), 11 segments
for Arabic digits (zero to ten), two segments for Al-Fateha
(divided in this manner so that the �rst part may be used to
train the system and the second part to test the system), and
three segments for the common words. 	e �rst part of Al-
Fateha starts from sentence number 1 and ends at 4, while the
second part contains the last three sentences.

Each of the 22 segments was stored in a separate wav
�le. 	e segmentation was performed with the help of Praat
so
ware [28] by labeling the start and end time of each
segment. 	en, these two times were used to extract a
segment from a recorded sample. Once each recorded sample

https://doi.org/10.1155/2017/8783751
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Table 4: Number of occurrences of each Arabic letter in the
recorded text.

Letters Number of occurrences

� 30

(� 5

�( 5

�( 4

&� 1

& 4

) 1

* 5
�* 1

� 10

�� 1

+ 6

�+ 1

, 3

�, 2

' 2

�' 1

- 10
�- 3
�" 2

�. 1

/ 3

$ 21

0 15

�1 13

� 4

	 5

2� 14

was divided into segments and stored into 22 wav �les, the
next step was the veri�cation process, which ensured that
each segmented wav �le consisted of a complete utterance.
During the veri�cation process, we encountered three types
of errors, as described in Table 5.

A record of the errors was maintained in an excel sheet,
where 22 segments were listed along the columns and the
recorded samples were listed along the rows. If a segment
had any of the above errors in any segment, then i, m, or d
were mentioned under that segment. 	e next step was the
correction of these errors by updating the start and end times
of the segments, because these errors occur due to incorrect
labeling of these two times. A
er updating the time, the
erroneous segments were extracted again by using updated

Normal

Sulcus

Nodules

Cyst
Paralysis

Polyp

Total samples: 366

11%

14%

7%

5%

11%

51%

(a)

18

31

17

18

20
Male

116
72

Female

22

21

7

2

22

(b)

Figure 1: (a) Distribution of normal and voice disorder subjects in
theAVPD. (b)Number ofmale and female samples for each disorder
and normal subjects.
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Figure 2: Age distribution ofmale and female subjects in the AVPD.
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Table 5: Description of errors encountered during the veri�cation process.

Errors in the
segments

Abbreviation Description Examples

Incomplete i
When some part of the extracted text is
missing at the start or end

(a) “d” is missing in wahid(b) “w” is missing in wahid(c)
Both “w” and “d” are missing

More m
When a segment contains some part of the
next or previous segment

(a) Segment of Sifar also contains “w” of next segment wahid
(b) Segment of Ithnayn also contains “d” of previous segment
wahid

Di
erent d
When the text in a segment is other than
the expected one

Segment contains wahid instead of sifar

Table 6: Tasks for the AVPD.

Number Tasks Description

Task 1 Time labeling
Start and end times of the recorded
vowels, digits, Al-Fateha, and
common words

Task 2 Extraction

By using start and end times, the
recorded vowels, digits, Al-Fateha,
and common words are extracted
and stored in a new wav �le

Task 3 Veri�cation
Veri�cation of the extracted vowels,
digits, Al-Fateha, and common
words

When errors are found during veri	cation process (Task 3),
continue with Tasks 4 and 5

Task 4
Repeat time
labeling

Update start and end time of the
erroneous segments

Task 5 Repeat extraction
Extract the segments again using
updated time

time information. All tasks associated with the segmentation
of the AVPD are presented and described in Table 6.

3. Evaluation of the AVPD

To evaluate the AVPD, various experiments for detection
and classi�cation of voice disorders were performed by
implementing an automatic assessment system. 	e same
experiments were performed for the Massachusetts Eye and
Ear In�rmary (MEEI) to compare its results with those of the
AVPD.	e automatic assessment system is comprised of two
main modules: the �rst module is the extraction of speech
features, and the secondmodule is patternmatching, which is
implemented by using di
erentmachine learning techniques.

3.1. Feature Extraction Techniques. Many speech features
extraction algorithms, MFCC, LPC, LPCC, PLP, RASTA-
PLP, and MDVP, were implemented in this module of
the automatic assessment system. Before the extraction of
features, the speech signal was divided into frames of 20
milliseconds, which made the analysis easy because speech
changes quickly over time. 	e MFCC mimics the human
auditory perception, while the LPC and the LPCC mimic
the human speech production system. 	e PLP and the
RASTA-PLP simulate, to some extent, both the auditory and

the production mechanisms. In the MFCC [17, 18], the time-
domain speech signal was converted into a frequency-
domain signal, which was �ltered by applying a set of band-
pass �lters. 	e center frequencies of the �lters were spaced
on a Mel-scale and the bandwidths corresponded to the
critical bandwidths of the human auditory system. 	e Mel-
scale �lter is given by (1), where � is frequency in Hz and �
represents the corresponding frequency in Mel-scale. In this
study, 29 Mel-scale �lters are used. Later, a discrete cosine
transformwas applied to the �ltered outputs to compress and
decorrelate them.

� = 2595 log10 (1 + �700) . (1)

During extraction of the LPC features, the Linear Prediction
(LP) analysis was performed. 	e LP analysis applies reverse
�ltering on speech signals to remove the e
ects of formants
in order to estimate the source signal [29]. For LP analysis of
orderP, the current sample of a source signal can be estimated
by using P previous samples by using

��� =
�
∑
�=1

���−�, (2)

where, �1, �2, �3, . . . , �� are samples of original speech signal
and 
�’s represent the required LPC features. To get accurate
LPC features, it is necessary to reduce the error E between
the current and estimated sample. 	is can be done by
substituting the �rst-order derivative of E equal to zero and
solve the resulting equations by using the Levinson-Durbin
algorithm [30]. Moreover, the LPCC features are calculated

by using the recursive relation [31] given in (3), where �2 is
the gain in LP analysis, P is the order of the LP analysis, 
�
are LPC features, and �� are obtained LPCC features. In this
study, we performed LP analysis with 
 = 11.

�1 = ln�2

�� = 
� +
�−1
∑
�=1
(��) ��
�−�, 1 < � ≤ 


�� =
�−1
∑
�=1
(��) ��
�−�, � > 
.

(3)

	e extraction of PLP features depends on three psychoa-
coustic principles of hearing [32]: (1) critical bandwidth,
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(2) equal-loudness hearing curve, and (3) intensity loudness
power law of hearing. 	e critical bandwidths are computed
by applying the Bark-scale proposed by Zwicker [33]. 	e
sensitivity of the human auditory mechanism to di
erent
frequencies is di
erent at the same sound intensity.	erefore,
each critical band is multiplied with the equal-loudness
weight. 	e weight for the �th critical band is computed as

�	 = �	2 × (�	2 + 1.44 × 106)
(�	2 + 1.6 × 105) × (�	2 + 9.61 × 106) . (4)

	e center frequency of the �th critical band is represented
by �	 in (4). Furthermore, the intensity loudness power law
of hearing is used to simulate the nonlinear relationship
between the intensity of sound and perceived loudness [34].
	e extraction process of RASTA-PLP is the same as PLP,
except that the RASTA �lter given by (5) is applied a
er
the critical bandwidth phenomena to remove the e
ect of
constant and slowly varying parts [22].

� (�) = �4 × (0.2 + 0.1�
−1 − 0.1�−3 − 0.2�−4)
1 − 0.94�−1 . (5)

In all types of experiments, static as well as delta and delta-
delta features were considered. 	e delta and delta-delta
coe�cients were computed by taking the �rst-order and
second-order derivatives of static features, respectively. 	e
derivative was calculated by taking the linear regression with
a window size of �ve elements. All experiments for MFCC,
LPCC, and RASTA-PLP were conducted using 12 features
(static), 24 features (12 static and 12 delta), and 36 features
(12 static, 12 delta, and 12 delta-delta). For LPC and PLP, all
experiments were performed by using only 12 static features.

In addition, 22 acoustic parameters were also extracted
from each normal and pathological sample. 	ese 22 speech
samples are de�ned in Table 1 of [35], and theywere extracted
by usingMDVP so
ware [5].	is so
ware is used frequently
for the objective assessment of voice disorders in clinics.

3.2. Pattern Matching. 	e computed features are multi-
dimensional and their interpretation is not easy for the
human mind. 	erefore, a pattern-matching phase becomes
important in such situations in order to determine the trend
in the data [36]. In this study, the pattern matching was
performed by using di
erent machine learning techniques,
which performed better than statistical approaches in dif-
ferent areas [37, 38]. Machine learning techniques do not
make strict assumptions about the data but instead learn
to represent complex relationships in a data-driven manner
[39].

In this module, various machine learning techniques
(e.g., SVM [26], VQ [27], GMM [23], and HMM [24, 25])
were implemented for automatic detection and classi�cation
of voice disorders. SVM was implemented with linear and
RBF kernels, GMMwas implemented using 2, 4, 8, 16, and 32
mixtures, VQ used 2, 4, 8, 16, and 32 codebooks to generate
acoustic models, and HMM was applied by using �ve states
with 2, 4, and 6 mixtures in each state.

3.3. Detection and Classi	cation Results for the AVPD. Exper-
iments for detection determine whether an unknown test
sample is normal or disordered. It is a two-class problem:
the �rst class consists of all normal samples, and the second
class contains samples of all types of disorder. During the
classi�cation of disorders, the objective is to determine the
type of voice disorder.	e classi�cation of voice disorders is a
many class problem, and the number of classes depends upon
the number of types of voice disorder. 	e number of classes
in this studywas �ve because the AVPDhas �ve types of vocal
fold disorders: sulcus, nodules, cysts, paralysis, and polyps.

To be consistent, all voice samples of the MEEI and
the AVPD are downsampled to 25KHz, and each speech
signal was divided into a frame of 20 milliseconds with 50%
overlapping the previous frame. To avoid bias in the training
and testing samples, all experiments were performed using
a �vefold cross validation approach. In this approach, all
samples were divided into �ve disjointed testing sets. Each
time one of the sets was used to test the system, the remaining
four were used to train the system.	e accuracy of detection
and classi�cation of voice disorders for the AVPD with the
sustained vowel /AH/ and the running speech “Al-Fateha” are
listed inTable 7. In all experiments, the accuracy for detection
and classi�cation was calculated by using

Accuracy (%) = Total Correctly Detected Samples

Total Number of Samples

× 100.
(6)

Only the overall best accuracies (%) of voice disorder
detection and classi�cation for all types of feature extraction
and machine learning techniques are presented in Table 7.
For instance, the best detection accuracies for 12, 24, and
36 MFCC features are 73.59% with two Gaussian mixtures,
72.78% with four Gaussian mixtures, and 74.42% also with
four Gaussian mixtures, respectively. However, only the
overall best accuracy of 74.4% is mentioned in Table 7,
and it is averaged over �vefold. 	e highest detection rate
for a sustained vowel with MFCC is obtained by using
SVM, which is 76.5%. However, among all feature extraction
techniques, the maximum obtained detection rate is 79.5%.
	is maximum detection rate is achieved with MDVP by
using SVM. In Table 7, “—” represents that experiments
are not applicable here. For running speech, the maximum
detection rate is 81.6%, which is obtained by using PLP and
HMM. Similarly, the maximum accuracy for classi�cation of
voice disorder is 92.9% for sustained vowels and obtained
with RASTA-PLP by using SVM. Furthermore, in the case
of running speech, the maximum classi�cation accuracy is
92.72%, which is obtained with RASTA-PLP and HMM.

3.4. Detection and Classi	cation Results for the MEEI. All
experiments performed for the AVPD were also performed
with the MEEI database in order to make a comparison
between the results. 	e experimental setup for the MEEI
database is the same as the one used for the AVPD. 	e
MEEI database was recorded by the Massachusetts Eye
and Ear In�rmary voice and speech laboratory [40], and
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Table 7: Overall best accuracies (%) for sustained vowels and running speech by using the AVPD.

Features Experiments
SVM GMM VQ HMM

/AH/ Al-Fateha /AH/ Al-Fateha /AH/ Al-Fateha /AH/ Al-Fateha

MFCC
Detection 76.5∗ 77.4 74.4 77.1 70.3 71.1 71.6 78.1�

Classi�cation 89.2� 89.2 88.9 89.5 75.3 81.6 88.7 90.9�
LPCC

Detection 60.1 76.5 54.5 76.7� 70.3 75.9 73.5∗ 71.5

Classi�cation 67.6 84.7 75.4 86.0� 75.5� 77.9 59.0 86.0�
RASTA-PLP

Detection 77.0∗ 76.7 72.8 74.5 67.1 75.0 66.3 79.0�
Classi�cation 92.9� 90.2 91.3 91.2 88.9 90.3 88.7 92.7�

LPC
Detection 62.3 71.6 53.7 71.9� 70.7 71.5 71.4∗ 62.3

Classi�cation 66.3 82.4� 74.6 79.7 78.6 75.3 85.9� 75.9

PLP
Detection 75.8∗ 79.1 73.2 78.5 72.0 78.1 73.6 81.6�

Classi�cation 91.5� 90.1 88.9 91.2� 79.4 77.2 88.7 85.8

MDVP
Detection 79.5∗ — 69.8 — 64.8 — — —

Classi�cation 82.3� — — — — — — —
∗
The best detection rate for sustained vowels. �	e best detection rate for running speech. �	e best classi�cation rate for sustained vowels. �	e best

classi�cation rate for running speech.

Table 8: Overall best accuracies (%) for sustained vowels and running speech by using the MEEI database.

Features Experiments
SVM GMM VQ HMM

/AH/ Rainbow /AH/ Rainbow /AH/ Rainbow /AH/ Rainbow

MFCC
Detection 93.6∗ 97.4 91.6 97.3 90.3 96.0 88.9 98.3�

Classi�cation 95.4 97.3� 97.3� 97.3 96.3 97.3 87.5 88.9

LPCC
Detection 91.0∗ 97.9 90.7 96.4 83.2 97.8 87.6 98.2�

Classi�cation 95.4 97.3� 97.3 97.3 98.2� 97.3 87.5 97.3

RASTA-PLP
Detection 93.6∗ 98.0 91.6 98.1� 84.1 96.4 88.9 98.1

Classi�cation 95.5 97.3� 97.3� 97.3 97.3 96.3 85.2 84.6

LPC
Detection 82.9 96.0 83.2∗ 98.7� 78.3 97.3 80.1 96.3

Classi�cation 95.2 97.3� 97.3� 97.3 97.3 94.4 75.0 82.5

PLP
Detection 87.8 96.8 91.2∗ 97.8� 89.4 97.8� 87.4 96.3

Classi�cation 95.0 97.3� 97.3 97.3 98.2� 94.4 61.1 84.6

MDVP
Detection 89.5∗ — 88.3 — 68.3 — — —

Classi�cation 88.9� — — — — — — —
∗
The best detection rate for sustained vowels. �	e best detection rate for running speech. �	e best classi�cation rate for sustained vowels. �	e best

classi�cation rate for running speech.

the language of the database is English. A subset of the
database that has been used in a number of studies was
considered for the experiments in this study [9, 36, 41–44].
	e subset contained 53 normal subjects and 173 samples
of disordered subjects su
ering from adductor spasmodic
dysphonia, nodules, keratosis, polyps, and paralysis. 	e
detection and classi�cation accuracies for the MEEI database
are presented in Table 8. 	e maximum obtained detection
accuracy for the MEEI database with the sustained vowel is
93.6%, which is obtained by using MFCC and RASTA-PLP
when used with SVM. 	e maximum accuracy for running
speech is 98.7%, obtained by using LPC and GMM. Similarly,
for the classi�cation of disorders, the maximum obtained
accuracy with the sustained vowel is 98.2%, achieved with
LPCC and PLP with VQ. 	e classi�cation of disorders with
running speech obtained an accuracy of 97.3% by using SVM
with all types of speech features.

4. Discussion

Various steps for development of the AVPD, from recording
protocol to the statistics, are presented in this study. Ethnicity
in�uences the voice characteristics of people, as concluded by
Walton and Orliko
 [1] and Malki et al. [4]. 	erefore, the
development of the AVPD was a good initiative, and it will
contribute in the area of pathology assessment, especially in
the Arab region. 	e AVPD is compared with the German
voice disorder database (SVD) and an English voice disorder
database (MEEI) by di
erent aspects in Table 9.	e SVD and
MEEI databases are only two publicly available voice disorder
databases.

During the development of the AVPD, di
erent short-
comings of the SVD and MEEI databases were avoided. For
instance, only the phonation part of the vowels is available
in the SVD and MEEI databases, whereas De Krom [45]
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Table 9: Comparison of AVPD with two publicly available voice disorder databases.

Sr.
number

Characteristics MEEI AVPD SVD

(1) Language English Arabic German

(2) Recording
location

Massachusetts Eye & Ear
In�rmary (MEEI) voice
and speech laboratory,
USA

Communication and
Swallowing Disordered
Unit, King Abdulaziz
University Hospital,
Saudi Arabia

Saarland
University,
Germany

(3) Sampling
frequency

Samples are recorded at
di
erent sampling
frequencies
(i) 10 kHz
(ii) 25 kHz
(iii) 50 kHz

All samples are recorded
at same frequency
(i) 48 kHz

All samples are
recorded at same
frequency
(i) 50 kHz

(4)
Extension of
recorded
samples

Recorded samples are
stored in .NSP format
only

Recorded samples are
stored in .wav and .nsp
format

Recorded samples
are stored in .wav
and .nsp format

(5) Recorded text
(i) Vowel /a/
(ii) Rainbow passage

(i) Vowel /a/
(ii) Vowel /i/
(iii) Vowel /u/
(iv) Al-Fateha (running
speech)
(v) Arabic digits
(vi) Common words
(All vowels are recorded
with a repetition)

(i) Vowel /a/
(ii) Vowel /i/
(iii) Vowel /u/
(iv) A sentence

(6) Recording of
vowels

Only stable part of the
phonation

Complete phonation
including onset and
o
set parts

Only stable part of
the phonation

(7)
Length of
recorded
samples

Normal
(i) Vowel: 3 sec
(ii) Rainbow: 12 sec
Patient
(i) Vowel: 1 sec
(ii) Rainbow: 9 sec

(i) Vowel: 5 sec
(ii) Al-Fateha: 18 sec
(iii) Digits: 10 sec
(iv) Words: 3 sec
(	e length of a
complete recorded
sample is 60 sec approx.)

Vowels: 1∼3 sec
Sentence: 2 sec

(8)
Ratio of normal
and pathological

subjects

Normal: 7%
Pathological: 93%

Normal: 51%
Pathological: 49%

Normal: 33%
Pathological: 67%

(9) Perceptual
severity

M

✓
Perceptual severity is
rated on a scale of 1 (low)
to 3 (high)

M

(10) Pathology types Functional and organic Organic
Functional and
organic

(11) Evaluation of
normal subjects

M ✓
No such
information is
available

suggested that the complete recording of a vowel, including
onset and o
set parts, provides more acoustic information
than only sustained phonation. Another drawback of a
sustained phonation is a loss of information of the signal-to-
noise ratio because a complete recording, including silence
at the start and end of the recording, is necessary for its
computation. In addition, the perpetual severity plays a very
important role in pathology assessment, and it is not available
in either the SVD or MEEI databases. In an automatic

disorder detection system, a confusion matrix provides the
information about truly and falsely classi�ed subjects. In that
matrix, the perceptual severity can determine the reason for
misclassi�cation. Automatic systems are sometimes unable to
di
erentiate between normal and mildly severe pathological
subjects. 	is is the reason why perceptual severity is also
considered in the AVPD and rated over the scale of 1 to
3, where 3 represents a voice disorder with a high severity.
Furthermore, the normal subjects in the AVPD are recorded
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a
er the clinical evaluation under the same condition as those
used for the pathological subjects. In the MEEI database, the
normal subjects are not clinically evaluated, although they do
not have any history of voice complication [44]. In the SVD
database, no such information is mentioned.

	e AVPD has a balance between the number of normal
andpathological subjects.Normal subjects are 51%of the total
subjects in the AVPD. On the other hand, the percentage
of normal subjects in the MEEI and SVD databases are 7%
and 33%, respectively. 	e number of normal subjects in
the MEEI database compared with pathological subjects is
alarming. 	e numbers of normal and pathological samples
in the MEEI database are 7% and 93%, respectively. As a
result, an automatic system for disorder detection based
on the MEEI database may be biased and cannot provide
reliable results. For example, Dibazar et al. [46] obtained a
classi�cation accuracy of 65.26% when MFCC features are
used with the nearest mean classi�er.	e numbers of normal
and pathological samples used in the study are 53 and 657,
respectively, taken fromMEEI database.	e interpretation of
the results (accuracy of 65.26%) becomes di�cult when data
are unbalanced, because it cannot be determined how many
normal and pathological samples are detected correctly by the
system. One of the many possibilities may be that speci�city
is 0% and sensitivity is 70.47%. Another possibility may be
that speci�city is 100% and sensitivity is 62.40%. Speci�city is
a ratio between correctly detected normal samples and the
total number of normal samples, and sensitivity is a ratio
between correctly detected pathological samples and the total
number of pathological samples [47]. 	e problem occurs
due to imbalanced normal and pathological data. 	erefore,
Arjmandi et al. used 50 normal and 50 pathological samples
to establish a balance between normal and pathological
subjects in the study [35]. Unfortunately, this signi�cantly
limited the total sample number, whichmay have a
ected the
reliability of results obtained in the study.

Unlike the MEEI database, it is assured that all normal
and pathological samples are recorded at a unique sampling
frequency in the AVPD. It is important because Deliyski
et al. concluded that sampling frequency in�uenced the
accuracy and reliability of acoustic analysis [48]. In addition,
the MEEI database contains one vowel, whereas the AVPD
records three vowels. Although the SVD also records three
vowels, they are recorded only once. In the AVPD, the
three vowels are recorded with a repetition, as some studies
recommended that more than one sample of the same vowel
helps to model the intraspeaker variability [49, 50]. Another
important characteristic of the AVPD is the total length
of the recorded sample, which is 60 seconds, as described
in Table 1. All recorded text in the AVPD is of the same
length for normal as well as disordered subjects. In the MEEI
database, the recording times for normal and pathological
subjects are di
erent. Moreover, the duration of connected
speech (a sentence) in the SVD database is only 2 seconds,
which is too short and not su�cient to develop an automatic
detection system based on connected speech. Furthermore,
a text-independent system is not possible to build with the
SVD database. 	e average length of the running speech
(Al-Fateha) in the AVPD is 18 seconds, and it consists of
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Figure 3: Comparison of detection and classi�cation accuracy for
the AVPD and MEEI databases.

seven sentences. Al-Fateha is segmented into two parts, as
described in Section 2.5, so that it may be used to develop
text-independent systems.

Another unique aspect of the AVPD, other than the
perceptual severity, is the recording of the isolated words.
	e AVPD contains 14 isolated words: Arabic digits (zero
to ten) and three common words. 	e common words were
recorded to introduce the missing Arabic letters. In this way,
the AVPD contains each and every Arabic letter. Due to the
isolated words, the AVPD can be used to develop di
er-
ent speech recognition applications for dysphonic patients,
which are not possible to develop by using the SVDandMEEI
databases. 	e development of a speech recognition system
that can detect how accurate the speech of a voice-disordered
patient is or has improved a
er treatment may have impor-
tant prognostic value throughout the management of voice
disorders.

Di
erent automatic detection systems are implemented
to evaluate the AVPD, and the obtained results are compared
with the results of the MEEI database. Automatic detection
systems have extracted the following speech features: MDVP,
MFCC, LPCC, RASTA-PLP, LPC, and PLP. For every type of
feature, each of the following machine learning algorithms is
implemented: SVM, GMM, HMM, and VQ. All accuracies
of automatic detection systems for the AVPD and the MEEI
database are presented in Tables 7 and 8. A comparison of
the highest accuracies for the detection and classi�cation of
the AVPD and MEEI databases is depicted in Figure 3. It
can be observed from Figure 3 that the highest accuracy for
detection with the sustained vowel is 79.5% for the AVPD and
93.6% for the MEEI database.

Similarly, the maximum accuracy for detection with
running speech is 81.6% for the AVPD and 98.7% for the
MEEI database. 	ere is a signi�cant di
erence between
accuracies of the MEEI database and the AVPD, 14.1% for
sustained vowels and 17.1% for running speech. 	e same
kind of trend for accuracy is observed in the study by [51],
in which the results of the MEEI database were compared
with the results of a Spanish database (UPM). A di
erence
of 20% was observed between accuracies. In another study
[52], the result obtained with the sustained vowel /a/ for
the MEEI database was around 95%, while that for the SVD
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was approximately 80%. Again, a signi�cant di
erence of
15% was observed. 	e reason for the di
erence might be
the recording environments of the MEEI database, as [53]
mentions that “Normal and pathological voices were recorded
at di
erent locations (Kay Elemetrics and MEEI Voice and
Speech Lab., respectively), assumedly under the same acoustic
conditions, but there is no guarantee that this fact has no
in�uence on an automatic detection system.”

5. Conclusion

Design, development, and evaluation of the AVPD have been
presented in this study. 	e AVPD could be a key factor
in the advances of voice pathology assessment for the Arab
region. Dysphonic patients su
ering from �ve di
erent types
of organic voice disorders (cysts, nodules, polyps, paralysis,
and sulcus) were included in the database. 	e database
contains repeated vowels, a running speech, Arabic digits,
and some common words. 	e rating of perceptual severity
of the voice disorders and recording of isolated words are the
unique aspects of the AVPD. All subjects, including patients
and normal persons, were recorded a
er clinical evaluation.
Baseline results of the AVPD were provided by using various
types of speech features with a number of machine learning
algorithms. 	e accuracy for detection and classi�cation of
voice disorders was computed for the sustained vowels as
well as for the running speech. 	e obtained results were
compared with the English voice disorder database (MEEI),
and the classi�cation results of the two were comparable,
although a signi�cant di
erence was observed in the case
of disorder detection. 	e detection results of the MEEI
database also di
er signi�cantly from the German voice
disorder database (SVD). 	e reason might be the di
erent
recording environments of theMEEI database for normal and
pathological subjects. 	erefore, di
erent shortcomings of
the SVD andMEEI databases were taken into account before
recording the AVPD.
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