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A hydraulic jump is the sudden and rapid transition from a sub-
critical to a subcritical flow motion, and may be considered as a
flow singularity. For a horizontal rectangular channel and neglect-
ing boundary friction, the continuity and momentum principles
yield a relationship between the upstream and downstream flow
depths

d, 1 =

dl_2><(\1+8Fl 1) (1)
where subscripts 1 and 2 refer to the upstream and downstream
flow conditions, respectively; F=Froude number; F=V/ Vgd; d
and V=flow depth and velocity, respectively; and g=gravity ac-
celeration. The hydraulic jump is tywlly classified in terms of
its inflow Froude number F,=V,/\gd,, which must be greater
than unity (Bélanger 1828; Henderson 1966). For F; slightly
above unity, the hydraulic jump is characterized by a train of
stationary free-surface undulations. For larger Froude numbers,
the jump has a marked roller with large-scale vortices, and the
flow is characterized by significant kinetic energy dissipation and
air bubble entrainment. Historical contributions on the hydraulic
jumps included the experiments of Bidone (1819), the theoretical
analysis of Bélanger (1828, 1841), the experiments of Darcy and
Bazin (1865), the solutions of Boussinesq (1877), and the work of
Bakhmeteff (1932). Recent technical reviews encompass Hager
(1992) and Chanson (2007, 2009).

Bélanger is commonly linked to the application of the momen-
tum principle to the hydraulic jump (i.e., the Bélanger equation),
but few people realize that his 1828 treaty was focused on the
study of gradually varied open channel flows. The original work
of Bélanger (1828) is reconsidered herein and it is highlighted
that his development of the backwater equation was remarkable
for a period when numerical integration calculations were per-
formed by hand. Bélanger introduced the notion of critical flow
conditions as a singularity of the backwater equation, and showed
that the backwater equation cannot be solved across a hydraulic
jump. Instead, he understood the rapidly varied nature of the jump
flow, though his 1828 theoretical treatment was incorrect.

Life of Jean-Baptiste Bélanger (1790-1874)

Born in Valenciennes, in northern France, on April 4, 1790 (Chan-
son 2008), Jean-Baptiste Charles Joseph Bélanger studied at the
Ecole Polytechnique and later at the Ecole des Ponts et Chaussées
in Paris. Ingénieur du Corps des Ponts et Chaussées (Bridges and
Roads Corps of Engineers), he started his engineering career in
1816. From 1821, he worked on the Somme navigation canal and
from 1826 on the Ardennes navigation canal (La Houille Blanche

1960). It was during these two projects that he studied specifically
the hydraulics of gradually varied open channel flows. He later
became a lecturer at the Ecole Centrale des Arts et Manufactures
between 1838 and 1864, at the Ecole des Ponts et Chaussées from
1841 to 1855, and at the Ecole Polytechnique from 1851 to 1860
(Chatzis 1995). At the Ecole Centrale, one of his students was
Gustave Eiffel (1832-1923) who built the Eiffel tower. Jean-
Baptiste Bélanger retired in 1864 and died on May 8, 1874 at
Neuilly-sur-Seine.

Development of the Bélanger Equation

From 1821, Jean-Baptiste Bélanger worked as a practicing engi-
neer on a solution of gradually varied open channel flows. He
published a preliminary report in 1823 but he felt that the work
lacked theoretical foundations: “il a senti de lui-méme le désir de
I’améliorer” (“he felt himself the need to improve it”) (Bélanger
1828). His revised document was successfully examined by the
Commission des Ponts et Chaussées et des Mines on 21 July 1827
and published in 1828 (Bélanger 1828).

Bélanger (1828, p. 31-36) considered the hydraulic jump as a
rapidly varied flow, across which the gradually varied flow equa-
tion could not be applied (Fig. 1). Based upon the experimental
observations of Bidone (1819), he treated the flow singularity by
applying the energy principle, using a formulation derived from a
“Traité Spécial” published in 1819 by Gustave Gaspard Coriolis
(1792-1843): “je me sers du théoreme de Mécanique connu sous
le nom d’équation des forces vives” (“I use the mechanics theo-
rem known as the equation of conservation of energy”). Gustave
Gaspard Coriolis, another Ingénieur du Corps des Ponts et
Chaussées, introduced the kinetic energy correction coefficient
(Coriolis 1836) and is known for his works on rotating bodies.

Jean-Baptiste Bélanger considered the general case of a hy-
draulic jump in a sloping channel of irregular section. For the
special case of a horizontal, rectangular, prismatic channel (Fig.
1), he derived the result
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Fig. 1. Bélanger’s original sketch of a hydraulic jump

JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MARCH 2009 / 159

Downloaded 23 Feb 2009 to 137.121.21.31. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



| Momentum Eq. o
BELANGER o
9] 4 EBIDONE data o

- m} UQ data

dafdy
[ o
LI
m]
. [m]
%ﬂ

Fig. 2. Ratio of conjugate depths for a hydraulic jump in a rectan-
gular, horizontal, and prismatic channel: comparison of Eq. (1), Eq.
(3) by Bélanger (1828), experimental data by Bidone (1819), and
experiments in a 0.5-m-wide channel at the University of Queensland

Vi d;
dz—d1=—1(1——§) (2)

Eq. (2) corresponds to Bélanger’s Eq. (59) (Bélanger 1828, p. 35)
and is nothing more than the solution of the energy equation in
terms of the specific energy. It would give a reasonable approxi-
mation to the hydraulic jump solution for undular and weak
jumps since there is very little energy loss in the jump for Froude
numbers not much greater than unity (Montes 1986), but the de-
velopment is incorrect.
Eq. (2) may be rewritten in a dimensionless form as

1ot
4" +2Fl 1 d, (3)

This result, compared to Eq. (1), is obviously wrong, as illustrated
in Fig. 2, because it neglects energy dissipation. While Bélanger’s
results matched the experimental observations for Bidone (1819)
for low F; quite well, it diverges from the theoretical solution
[Eq. (1)] at larger F, because energy dissipation is ignored. Fig. 2
compares Egs. (1) and (3), and experimental observations, includ-
ing data of Bidone (1819) used by Bélanger to check his results,
as well as new experimental observations in the 0.5-m-wide rect-
angular channel at the University of Queensland. Simply Bé-
langer (1828) applied incorrectly the Bernoulli principle to the
hydraulic jump.

Bélanger found his error in 1838: “de nouvelles réflexions
m’ont conduit en 1838 a reconnaitre que cette hypothese n’était
pas admissible” (“new thoughts led me in 1838 to acknowledge
that the assumption was incorrect”) (Bélanger 1849, p. 91). Bé-
langer (1841) correctly solved correctly the momentum equation
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for a hydraulic jump in a flat channel, and his reasoning became
commonly accepted thereafter (Bélanger 1849; Bresse 1860). For
example, Bresse (1860, p. 251) presented the correct expression

in the form
1 2
=——+1/-+2F] 4)
d; 2 4

that is a mere rewriting of Eq. (1).

Bélanger (1828) highlighted the significance of the inflow
Froude number F1=V1/\s'a, showing that a hydraulic jump oc-
curs only for F; > 1. He also showed the existence of critical flow
conditions in a rectangular horizontal channel for V?=gd. This
was 24 and 44 years, respectively, before the publications of Fer-
dinand Reech (1852) and William Froude (1872), who were both
credited with the introduction of the Reech-Froude number
V/igd.

Further, Bélanger (1828) applied successfully the backwater
equation upstream and downstream of the hydraulic jump, and
pointed out that it cannot be applied across the jump itself. He
showed also how to estimate the jump location by combining the
backwater calculations, upstream and downstream of the jump,
with the hydraulic jump equation.

Backwater Equation

To calculate the free-surface profiles of gradually varied open
channel flows, Bélanger (1828) developed the backwater equation
with the following basic assumptions: (1) a steady flow; (2) a
one-dimensional flow motion; (3) a gradual variation of the wet-
ted surface with distance x along the channel; (4) friction losses
that are the same as for an uniform equilibrium flow for the same
depth and discharge; and (5) a hydrostatic pressure distribution.
Bélanger (1828, p. 1-11) derived the backwater equation from
momentum considerations in a manner somehow similar to the
modern development of normal flow conditions (Henderson 1966;
Chanson 1999, 2004), obtaining

P 2
sin 8dx — cos 0dd — —(aV + bV?) + — A =0 (5)
A gA”

where 6O=angle between the bed and the horizontal; x
=longitudinal distance positive downstream; d=flow depth mea-
sured normal to the invert; A=cross-sectional area; P,,=wetted
perimeter; and Q=discharge. Eq. (5) corresponds to Eq. (16) in
Bélanger (1828, p. 9). It may be rewritten in a more conventional
form as a differential equation

_ ad P, . 0% A
sin@—cos0———(aV+bV)+——=0 (6)
ox A gA” ox
In Egs. (5) and (6), Bélanger (1828) estimated the friction
losses using the Prony formula

oH 4 V2
-—=—(aV+ bV2)=i— (7)
ox Dy Dy2g

where H=total head; Dy=hydraulic diameter; Dy=4A/P,; and a
and b are constant (a=4.44499 1073 and »=3.093140 10~) (in SI
units). [The values of a and b are directly reported with the same
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accuracy as Bélanger (1828).] In Eq. (7), the right terms corre-
spond to the traditional expression of the head losses in terms of
the Darcy-Weisbach friction factor f. Denoting S as the friction
slope (S;=—dH/dx), and S, as the bed slope (S,=sin6), Bé-
langer’s backwater Eq. (5) may be combined with the continuity
equation to yield

d V2
—|dcosb+—|=§,-5; (8)
ox 2g

Eq. (8) is essentially identical to modern expressions of the back-
water equation (Henderson 1966; Montes 1998; Chanson 2004).
In its general form, Chanson (1999) expressed the backwater
equation as

ad .8 0> A
cosO— —dsinf— -« 3=
ox ox g XA’ ox

S, )

where a=Xkinetic energy correction coefficient, or Coriolis coef-
ficient. The main differences between Bélanger’s Eq. (8) and Eq.
(9) are the Coriolis coefficient and the nonconstant bed slope
term. But Bélanger made no further assumption and his develop-
ment (Bélanger 1828, p. 9) is basically identical to the modern
forms of the backwater equation used by today’s hydraulic
engineers.

Eq. (6) was tested for a nonprismatic smooth drop inlet. Fig.
3(a) shows the experimental facility and Fig. 3(b) compares the
experimental observations with (a) Eq. (6) in which the flow re-
sistance was calculated using the Prony formula (Eq. (7)), with
(b) Eq. (8) in which the friction slope was calculated in terms of
the Darcy friction factor, and with (c) Eq. (9). All the calculations
were performed using the step-method distance calculated from
depth (see following paragraphs). The experimental data (symbols
[ *]) are plotted together with the bed elevation z, and sidewall
profiles, and agree well with computations [Fig. 3(b)]. The results
show basically very little differences between data and calcula-
tions, despite the challenging geometry and the crude nature of
the Prony formula. Bélanger’s calculations give identical results
to modern estimates. But Bélanger had neither computer nor cal-
culator, nor even a slide rule, to integrate the backwater equation.
All the calculations were performed manually, and this explains
the usage of Prony’s simplified formula (Brown 2002).

Discussion

Bélanger integrated the backwater equation by selecting known
water depths and calculating manually the distance in between: “il
s’agit d’intégrer entre deux limites h” (“the integration takes place
between two [water depth] limits h”) (Bélanger 1828, p. 11-13).
Today this technique is called the step-method distance calculated
from depth (Henderson 1966; Chanson 1999) or the direct step
method.

Further he investigated the two singularities of the backwater
equation. One corresponded to the uniform equilibrium flow con-
ditions S,=Sy, for which the flow depth equals the normal depth.
Bélanger (1828, p. 10) obtained the normal depth expression of
Prony (1804)

(@V+bV?)
—& -
4

sin 0 (10)
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Fig. 3. Free-surface profile in a smooth drop inlet for Q
=0.010 m?/s: (a) photograph of the smooth drop inlet experiment,
flow from bottom right to top left; (b) Comparison between experi-
mental data and backwater calculations

The second singularity of the backwater equation corre-
sponded to dx/dd=0 and it yielded the condition

0 A

——=1 11
g cos 0A> ad an

where JA/dd=free-surface width. Eq. (11) expresses the critical
flow conditions for a channel of irregular cross section. For a
wide rectangular open channel with hydrostatic pressure distribu-
tion, it yields: V2=gd cos § (Liggett 1993; Chanson 2006). Bé-
langer (1828, p. 29) did not use the term “critical flow” but he
highlighted explicitly the flow singularity: “un cas peu ordinaire”
(“a special case”). He stressed further the physical impossibility
to observe dd/dx=+c for this special case.

Conclusion

In the 1820s, Jean-Baptiste Bélanger (1790-1874) worked on a
method to calculate gradually varied open channel flow properties
for steady flow conditions. Although he succeeded, his treatise
(Bélanger 1828) is better known for his treatment of the station-
ary hydraulic jump, today called the Bélanger equation. It is
shown herein that although he correctly considered a hydraulic
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jump as a rapidly varied flow, he applied the wrong basic prin-
ciple in 1828. Bélanger applied the energy principle neglecting
the rate of energy dissipation. He corrected his development
10 years later (Bélanger 1841).

The true originality of Bélanger’s (1828) work lay in the suc-
cessful development of the backwater equation for steady one-
dimensional gradually varied flows in an open channel. His work
outlined the fundamental assumptions and he derived from mo-
mentum considerations an equation that is still in use today (but
for the flow resistance model). In the same study, Bélanger intro-
duced two further modern concepts: the step-method distance cal-
culated from depth and the critical flow conditions. He associated
the notion of critical flow with one of the two singularities of the
backwater equation. His technique of numerical integration was
ahead of his time, particularly when there was no computer nor
electronic calculator.

Considering Bélanger’s contribution, the backwater equation
should be called the “Bélanger equation,” while the application of
the momentum principle to the hydraulic jump could be referred
to as the “Bélanger method.”
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Notation

The following symbols are used in this paper:
A = flow cross section area (m?);
a = coefficient of the Prony resistance formula;
B = channel width;
coefficient of the Prony resistance formula;
hydraulic diameter (m) defined as:
Dy=4A/P,;
water depth (m);
Froude number;
Darcy-Weisbach friction factor;
gravity acceleration (m/s?);
total head (m);
wetted perimeter (m);
discharge (m°/s);
Reynolds number (R=pVd/p);
= friction slope;
bed slope (S,=sin 0);
flow velocity (m/s);
longitudinal flow direction (m);
= bed elevation (m);
= angle between the channel bed and the
horizontal;
dynamic viscosity of the fluid (Pa/s); and
p = fluid density (m3/s);

>
SO
[l

o8« <§A&£’1 :UfQ;U Toe o~ T
Il

=
Il

162 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MARCH 2009

Subscripts:

1 = inflow conditions; and
2 = downstream conjugate flow conditions.
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