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Abstract A full understanding of the development of the
brain’s functional network architecture requires not only an
understanding of developmental changes in neural process-
ing in individual brain regions but also an understanding of
changes in inter-regional interactions. Resting state function-
al connectivity MRI (rs-fcMRI) is increasingly being used to
study functional interactions between brain regions in both
adults and children. We briefly review methods used to study
functional interactions and networks with rs-fcMRI and how
these methods have been used to define developmental
changes in network functional connectivity. The develop-
mental rs-fcMRI studies to date have found two general
properties. First, regional interactions change from being
predominately anatomically local in children to interactions

spanning longer cortical distances in young adults. Second,
this developmental change in functional connectivity occurs,
in general, via mechanisms of segregation of local regions
and integration of distant regions into disparate subnetworks.
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Segregation . Integration

Humans undergo an enormous number of developmental
changes from birth through adulthood. Not only do we learn
to walk, talk and perform other “fundamental” functions, we
also increase our ability to identify and control emotions, follow
complex “rules”, coordinate precise movements, and attend to
task demands for longer periods of time, among many other
capacities. Concomitantly, and relatedly, our brains undergo
notable changes: synapses form, elaborate, and are removed
(Cowan et al. 1984; Huttenlocher 1979), exuberant axonal
projections are pruned (Luo and O’Leary 2005), axons are
myelinated (Yakovlev and Lecours 1967; Asato et al. 2010),
and patterns of neural activity in response to various task
demands change considerably, (discussed in more detail below)
(Stiles 2008). While it is clear that the human brain undergoes
significant developmental transformations, the nascent field of
developmental cognitive neuroscience is only beginning to
explore and characterize the extent of these changes.

The advent of human neuroimaging, particularly functional
magnetic resonance imaging (fMRI), has made it possible for
developmental cognitive neuroscientists to begin to investi-
gate how the neural regions used in individual cognitive tasks
change with age (Stiles et al. 2003). For example, in
comparison with adults, children performing control-
demanding tasks show less blood oxygenation level depen-
dent (BOLD) activity in some regions and more activity in
other regions (i.e., Tamm et al. 2002). This differential use of
neural regions is seen in tasks as disparate as response
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inhibition (i.e., Luna et al. 2001; Tamm et al. 2002), working
memory (i.e., Bunge andWright 2007) and lexical processing
(i.e., Schlaggar et al. 2002; Brown et al. 2005; Church et al.
2008), to name a few.

These age-related activity differences in the brain are
thought to reflect both differential use of neural processing
units and increased specialization of the component
operations performed in individual processing units through
development. This transformation is sometimes referred to
as interactive specialization because regional developmen-
tal changes in neural processing do not occur in isolation.
Rather, the developmental changes are thought to be the
consequence of inter-regional interactions (Johnson 2000;
Brown et al. 2005; Schlaggar and McCandliss 2007). For
example, as the processing performed in one region
becomes more specialized, there may be less need to use
other processes. The importance of changing neural
relationships is underscored by the knowledge that accom-
plishing complex tasks typically requires a large set of
regions, and that interactions between regions are necessary
for efficient functioning (e.g., Mesulam 1990; Poldrack
2010). Hence, a full understanding of neural development
encompasses not only an understanding of how activity
within brain regions changes with age, but also how the
interactions between regions change with age.

This review focuses on such developmental changes as
revealed by a relatively new method for studying inter-
actions in the brain, called resting state functional connec-
tivity magnetic resonance imaging (rs-fcMRI). First we
describe the rs-fcMRI signal and common rs-fcMRI
analysis techniques, including the measurement of brain
networks. We then discuss developmental differences in
network configuration and between-region relationships
found using rs-fcMRI. Next, we consider the possible
neurobiological changes that drive large-scale developmen-
tal effects. Then, we briefly explore how this approach to
the investigation of network development may influence
the study of developmental disorders. We end with a short
discussion of the possible advantages and difficulties in
performing developmental studies with rs-fcMRI data.

Resting State Functional Connectivity MRI Signal,
Brain Networks, and Common Analysis Techniques

Resting State Functional Connectivity MRI (rs-fcMRI)
Signal

fMRI studies generally report differences in the brain’s
BOLD response to various task conditions (i.e., reading
words as compared to reading nonwords). However, such
task responses are only part of the BOLD signal; large, very
slow BOLD signal fluctuations are known to occur in the

range of 0.01 to 0.1 Hz. These slow, spontaneous
fluctuations occur with or without subjects performing a
task. For the types of analysis presented in this review,
typically 5–10 min of fMRI data are acquired from subjects
resting quietly in the MRI bore (i.e., the resting state). In
1995, Biswal and colleagues first reported that, at rest, low
frequency BOLD signal fluctuations appear to define
relationships between functionally related regions (Biswal
et al. 1995). Specifically, the low-frequency timecourse of a
region in somatomotor cortex was found to correlate well
with timecourses in the contralateral somatomotor cortex,
as well as to timecourses in bilateral ventral thalamus and
bilateral supplementary motor areas. These correlations in
timecourses are referred to as “functional connectivity”, and
an example of these correlations can be found in Fig. 1a.

Further research has shown that not only do motor
regions show correlated resting state timecourses, but other
groups of regions that often activate (or deactivate) at the
same time in task settings possess correlated rs-fcMRI
timecourses at rest. For example, visual processing regions
in occipital cortex correlate strongly (Lowe et al. 1998), as
do regions within the default mode network (Greicius et al.
2003) task control networks (Dosenbach et al. 2007; Seeley
et al. 2007), attention networks (Fox et al. 2006), reading
networks (Koyama et al. 2010), and memory networks
(Hampson et al. 2006, 2010). A growing number of studies
have utilized the rs-fcMRI signal to explore changes in brain
networks over development, both typical (e.g., Fair et al.
2007, 2009; Kelly et al. 2009; Supekar et al. 2009; Stevens
et al. 2009; Fransson et al. 2010) and atypical (e.g., Gozzo et
al. 2009; Myers et al. 2010; Smyser et al. 2010), and in
disease states (e.g., He et al. 2007; Church et al. 2009a;
Cullen et al. 2009; Hampson et al. 2009; Jones et al. 2010).

An important aspect of these correlations is that they
appear to be strongest between functionally related regions
(Biswal et al. 1995; Lowe et al. 1998; Greicius et al. 2003;
Fox et al. 2005; Dosenbach et al. 2007), even when those
regions do not possess direct anatomical connections
(Vincent et al. 2007). This observation has led to
suggestions that the rs-fcMRI signal reflects the statistical
history of coactivity between brain regions, and that this
signal can therefore inform researchers about functional
relationships within the brain (Dosenbach et al. 2007; Fair
et al. 2007; Kelly et al. 2009). Consistent with this idea,
recent work has demonstrated that visual perceptual
learning (Lewis et al. 2009), repetition priming (Stevens
et al. 2010) and memory training (Tambini et al. 2010) can
modify rs-fcMRI signal between brain regions.

What is a Brain Network?

Having established a method to measure functional rela-
tionships within the brain, one must decide what relation-
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ships to study. Hundreds of rs-fcMRI (and fMRI) studies
state that they are investigating “networks”, but the
meaning of the term “network” varies significantly (detailed
below). Networks are studied in a wide variety of fields, and
an entire branch of mathematics, called graph theory, is
devoted to the study of networks. Networks, from both an
intuitive and a more formal graph theoretical perspective, are
collections of items (or nodes) that possess pairwise relation-
ships (called edges). It becomes immediately obvious how
entities such as the Internet or transportation systems are well-
defined networks in this sense.

The brain, of course, is also a network. With perfect
knowledge, one could define a brain network composed of
billions of interconnected neurons, with a (general) hierar-
chical arrangement of, for example, cortical neurons into
columns, functional areas (e.g., V1, V2), and functional
systems (e.g., visual or somatosensory systems) (Churchland
and Sejnowski 1991). Just as economies may be described as
interactions between people, between cities, or between
nations, brain networks may be described as interactions
between neurons, between functional areas, or between
functional systems.

fMRI-based techniques can only deliver data at a
macroscopic view of this network, since fMRI provides
brain activity measurements at the level of the voxel (a cube
typically measuring several millimeters per side). fMRI
techniques are therefore restricted to describing brain
networks at the upper levels of their hierarchy (i.e.,
functional areas, functional systems). To further complicate
matters, the number (and locations) of functional areas (and
even functional systems) in the human brain is poorly
understood, and so researchers are currently unable to form
clean networks corresponding to the brain’s functional

architecture. Lacking strong constraints, human brain net-
works are defined and measured in a variety of ways,
including forming networks with nodes of voxels (e.g.,
Buckner et al. 2009; Sepulcre et al. 2010; Fransson et al.
2010), pre-defined anatomical parcellations of voxels (e.g.,
He et al. 2009), or pre-defined regions of interest obtained
from fMRI studies (e.g., Dosenbach et al. 2007; Fair et al.
2009). While ultimately any region definition technique
should be subject to anatomical constraints, current ana-
tomical parcellation schemes underestimate the number of
functional areas in the brain. For example, the cytoarchitec-
tonic parcellation of human orbital and medial prefrontal
cortex in Ongur et al. (2003) finds many more distinctions
than are defined by the AAL parcellation (Tzourio-Mazoyer
et al. 2002). Networks formed using regions of interest
thought to reflect functional areas or systems should
presumably represent the underlying functional network
structure more faithfully, but our knowledge of this
architecture is currently incomplete. Node definition is the
critical underpinning of network properties and organiza-
tion (i.e., Zalesky et al. 2010; Smith et al. in press), and a
better understanding of the organization of functional areas
and systems is a clear and pressing challenge in neuro-
imaging (Power et al. 2010b).

Though some authors study rs-fcMRI networks from the
graph theoretic perspective, the word “network” has been
applied in a number of other contexts in the neuroimaging
literature. Sets of regions that activate or deactivate at the
same time have been called “networks”, as have regions
whose functional timecourses show some statistical depen-
dency (e.g., Bitan et al. 2007; Saur et al. 2010). Groups of
voxels that have correlated timecourses or shared covariance
in the rs-fcMRI signal (methods detailed below) are also often

Fig. 1 rs-fcMRI signal. a
rs-fcMRI timecourses from left
and right anterior insula/frontal
operculum (aI/fO) regions,
showing the high correlation or
rs-fcMRI “connectivity” found
between homotopic regions. b
Left aI/fO seed map: the seed
map uses the same type of
correlations depicted in (a), but
instead of determining the
correlation between only the left
and right aI/fO regions, the seed
map shows all voxels with
rs-fcMRI timecourses
significantly correlated with
the left aI/fO
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referred to as networks. However, none of these examples are
well-defined networks in a broader sense (i.e., nodes related
by edges). From this point forward in the present review, when
describing data, we will use the word “network” to denote
well-defined networks and will avoid this terminology when
describing non-graph-theoretic “networks”.

One exception to this rule, however, needs to be made:
the “networks” (e.g., dorsal attention network, task control
networks) referred to in the previous section were all
initially defined by task-induced activations or deactiva-
tions in PET and fMRI studies. These groups of regions are
not necessarily networks from the broader perspective,
although in some cases they are explicitly treated as such
(e.g., Dosenbach et al. 2007; Fair et al. 2008), making the
“network” label correct in those situations. However, even
when these groups of regions are not specifically treated as
a network we will continue to use these labels, rather than
creating unfamiliar labels, as they are widely accepted and
recognized. To be clear, though, we believe the default
mode “network” and task control “network” are subsets of
potentially related regions within a much larger scale
network of regions (Power et al. 2010b).

Common Analysis Techniques for rs-fcMRI Data

Methods used to study rs-fcMRI relationships have varied
greatly. Some papers reviewed here have defined relation-
ships of single brain regions to the rest of the brain using
seed correlation maps, and others have defined relation-
ships between groups of brain regions using a matrix-based
approach. Each of these methodologies has been used to
define “networks”, and here we review these methods and
the relationships they describe.

Independent and Principal Components Analysis

Though none of the studies reviewed here have defined
relationships with independent or principal component
analyses (ICA/PCA), these methods are relatively popular
tools for identifying “resting state networks” (Damoiseaux
et al. 2006; Bullmore and Sporns 2009). These approaches
employ dimensionality reduction techniques to partition
voxels into groups with shared covariance. Nodes are not
defined, nor are edges, and such methods do not utilize or
produce networks in either an intuitive or graph-theoretic
sense, though they are often labeled as networks. Such
analyses are not addressed in this review.

Seed Map Analyses

The earliest rs-fcMRI studies (Biswal et al. 1995; Greicius
et al. 2003; Fox et al. 2005) used seed correlation maps to
define relationships between a single brain region (the seed)

and the rest of the brain. In a typical seed-based analysis,
researchers first delineate a particular region of interest,
generally either a functionally defined region from a task-
based fMRI study or an anatomically defined region. The
rs-fcMRI timecourses of all voxels within the defined
region are extracted and averaged together. This average
timecourse is correlated with the rs-fcMRI timecourses of
all other voxels in the brain to create a “seed map”. This
map reveals the spatial locations of other brain regions
whose timecourse correlates highly with the seed’s. An
example of the “map” produced by such correlations can be
found in Fig. 1b. Seed map analysis yields a peculiar form
of a network, in which only relationships to a single seed
are defined, and relationships between non-seed regions are
left undefined.

Region Matrix Analyses

In contrast to the seed map approach, which finds voxels
related to only a single seed, a region or seed matrix
approach can be used to study the relationships between a
defined set of regions. While on the surface, this approach
may be thought of as “seed based” in that it utilizes seed
regions, it is very different from the seed maps described
above. Instead of starting with a single functionally- or
anatomically-defined region of interest and correlating its
timecourse with every other voxel, one starts with a group
of regions either functionally or anatomically defined. The
average timecourse of each region is then correlated with
that of each other region to make a matrix of correlation
values (see Fig. 2). Since the rs-fcMRI correlations used to
define edges are a measure of similarity between two
regions, each cell of the matrix will have a value. In an
attempt to study biologically significant functional relation-
ships, correlations above a given value may be labeled as
connections or edges (see Dosenbach et al. 2007 and Fair et
al. 2007 for examples). However, it should be noted that no
one threshold is the “right” one and interpretations should
be based on findings that are consistent across multiple
thresholds. This regional matrix produced can rightly be
described as a network since it describes a distinct set of
nodes with defined connections or edges between them.

Graph Theoretic Analyses of Region Matrices:
Communities and Small-World Properties

In the course of this review, we will encounter several
studies in which graph theoretic tools are applied to the
aforementioned region matrices. Here we describe several
graph theoretic tools and their meanings.

Many networks can be viewed as being composed of
sub-networks. For example, a person’s social network
might consist of a group of friends, a group of coworkers,
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and a group of teammates, each with rather dense internal
relationships, but few relationships between groups. These
groupings of nodes, or sub-network structures, are called
communities or modules. Communities have been found in
a wide variety of complex networks, and tend to group
nodes with shared characteristics (Newman 2010). Viewing
networks in terms of communities can simplify and clarify
the form and significance of the overall network structure.
In functional brain networks, communities should identify
brain regions with similar features or functions, which are
potentially functional systems. Community detection tools
such as modularity optimization algorithms (Newman and
Girvan 2004; Newman 2006) or Infomap (Rosvall and
Bergstrom 2008) can be applied to the region matrices
described above to detect communities of brain regions.
These algorithm-based community assignments are attrac-
tive because they are 1) quantitative, 2) objective, and 3)
work in situations where the eye cannot (for example, when
the relationships between large numbers of regions are in
question).

In addition to providing the basis for dividing networks
of nodes into communities, graph theory can be used to
describe the properties of networks (Watts and Strogatz
1998). Network measures include the characteristic path
length (the average number of connections it takes to travel
from one node to another) and the average clustering
coefficient (on average, how many of the nodes connected
to a given node are also connected to one another). Until a
decade ago, classic models of networks came in two
predominant strains: random and regular networks. Random
networks, in which edges are placed between nodes randomly,

have short average path lengths but low clustering coeffi-
cients, affording them the ability to transfer information
efficiently globally (though the whole graph) but not locally
(to nearby nodes). Regular networks have nodes connected to
nearby nodes in a regular, lattice-like pattern of edges. These
networks have high clustering coefficients because each node
is well-connected to nearby nodes, but they also have a long
average path length. Thus regular networks have efficient
local but not global information transfer. A critical discovery,
made by Watts and Strogatz in 1998, is that a wide variety of
real-world networks, which have been termed small world
networks, enjoy the best of both worlds—a high clustering
coefficient and a short path length, allowing for both globally
and locally efficient information transfer (Watts and Strogatz
1998; Sporns and Honey 2006). These networks possess
intermediate structures to the random and regular graphs,
such that lattice-like portions of networks are connected by
long-range shortcuts, facilitating both local and global
efficiency. In other words, small world networks allow all
nodes to share information with all other nodes, despite each
node having only a small number of connections. Different
networks are efficient to differing extents, and the small-
world properties capture how well or poorly networks are
suited to efficient processing. Note that here we are using
efficiency to refer to the ease of information transfer (passing
information from node to node); a mathematical definition of
efficiency can be found in Latora and Marchiori 2001.

More comprehensive reviews of region matrix analysis
techniques in the study of brain connectivity, both
functional and structural, can be found in Rubinov and
Sporns (2009) and Bullmore and Sporns (2009).

Fig. 2 rs-fcMRI analyses using
a region matrix approach to
network definition. In contrast
to a seed map analysis, this
approach finds the relationships
between a group of functionally
or anatomically defined regions.
The rs-fcMRI timecourse is
extracted from each region, and
the timecourse from each region
is correlated with each other
region to form a matrix. The
correlation matrix can then be
thresholded to define any corre-
lation above a given value as an
edge or connection, which can
either be depicted visually (see
example in bottom left) or
entered into a community
detection algorithm (see exam-
ple on top right). The matrix, in
that it includes nodes and edges,
constitutes a network in the
graph theoretical sense
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Mature Network Architecture Develops Via Segregation
and Integration

Network Relationships Defined Using Region Matrix
and Community Detection Methods

The methods described above (seed maps, region matrix
analyses, and community detection techniques, network
properties) have been used to describe the development of
the brain’s functional network architecture. Many of these
analyses have focused on the task control and default mode
networks. In adults, default mode regions were originally
defined by the feature of decreased neural activity during
attention-demanding tasks (Shulman et al. 1997; Raichle et
al. 2001). Greicius and colleagues, in 2003, showed that
brain regions sharing this characteristic of decreased
activity during task also showed robust functional connec-
tivity (Greicius et al. 2003). Multiple analyses have
converged on a default mode network composed of a
distributed set of brain regions including bilateral precu-
neus, posterior cingulate, angular gyrus, inferior temporal,
parahippocampal, superior frontal and medial prefrontal
cortex regions, all shown in red in Fig. 3 (Fox et al. 2005;
Greicius et al. 2003).

In contrast, task control regions show increased BOLD
activity in a wide variety of tasks upon task initiation, with
task maintenance, or with error commission (Dosenbach et
al. 2006). Task control networks are also composed of a
distributed set of regions and display correlated rs-fcMRI
timecourses (Dosenbach et al. 2007). A fronto-parietal
control network, which seems to be related to short-acting
control like task instantiation and adjustment, includes
regions in the precuneus, lateral inferior parietal sulcus,
mid-cingulate cortex, and dorsolateral prefrontal cortex

(depicted in yellow in Fig. 3). A cingulo-opercular network,
which seems to be related to longer-acting task set
instantiation and maintenance, includes regions in the
anterior cingulate cortex, anterior prefrontal cortex, anterior
insula/frontal operculum, and subcortical structures (shown
in black in Fig. 3) (Dosenbach et al. 2006, 2007, 2008;
Seeley et al. 2007).

The community structure of default mode and control
regions develops from a local, anatomical organization into
a distributed, functional organization. Fair et al. (2009) used
community detection algorithms on matrices derived from
default and task control regions, and found that communi-
ties were organized largely into lobar communities (e.g.,
frontal or parietal, see gray and light blue nodes in Fig. 3a)
in children, whereas familiar functional systems were
recovered in adult modules (e.g., the red default regions
of Fig. 3b). This change occurred through segregation of
the anatomically adjacent regions and integration of these
regions in the distributed adult networks (Fig. 3). For
example, while the left angular gyrus and lateral inferior
parietal sulcus regions are located in the same module in
children, they are separated into the default and fronto-
parietal modules in adults (Fig. 3) (Fair et al. 2009).
Likewise, the left lateral inferior parietal sulcus and
dorsolateral prefrontal cortex regions are in separate
modules in children (parietal and frontal, respectively),
but integrate into the fronto-parietal module in adults
(Fig. 3) (Fair et al. 2007, 2009).

Though we have discussed network development in
terms of the task control and default networks, the observed
developmental shift from local community organization to a
distributed structure via segregation and integration is not
restricted to these select sets of regions. We have also used
graph theoretic methods, including modularity optimization

Fig. 3 Development of
community structure from local
to distributed communities via
segregation and integration
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and Infomap to define developmental changes in network
organization of three larger sets of regions: 97 regions
defined from a meta-analysis of both speaking and button
press tasks (Power et al. 2009), 89 regions from a meta-
analysis of single word reading studies (Vogel et al. 2009),
and 265 regions defined from multiple meta-analyses and
other fcMRI techniques (Power et al. 2010a). As with
previous work (Fair et al. 2009), community detection
algorithms show children have a preponderance of local
relationships, while adults show communities composed of
regions distributed across the brain.

Developmental Changes in Functional Relationships
Observed with Support Vector Machines

Development via integration and segregation can also be
seen using a methodologically distinct analysis utilizing
support vector machines. Dosenbach and colleagues used a
support vector machine analysis to both determine whether
children and adult rs-fcMRI scans can be separated into two
groups by the machine and on what basis that separation is
made. Support vector machine analyses learn to make
group assignments using measurements (features) from
many examples of each group. In this case the machine
was given rs-fcMRI correlation values for region pairs (the
features) for both children and adults (the assignment
groups). When a new person is added, the machine can
use its pattern of features to assign it to the child or adult
group. The machine can also report which features (pair
correlation values) were most useful in making the
assignment. When dividing children and adults, the support
vector machine was 91% accurate. In addition to classifi-
cation, SVM regression was used to predict an individual’s
relative brain maturity on a functional connectivity matu-
ration index (See Fig. 4). The functional maturation curve,
derived from SVM regression, accounted for 55% of the
sample variance and followed a classic nonlinear growth
curve shape. For both the SVM classification and regres-
sion approaches, the features used by the SVM to make its
determinations were predominately those that reflected
segregation of networks (decreased correlations between
anatomically local regions) with age (Dosenbach et al.
2010).

Distance Based Comparisons of Child and Adult Regional
Relationships

In addition to the aforementioned network analyses,
developmental changes in rs-fcMRI defined relationships
may be seen by directly comparing the correlation strength
between region pairs using t-tests. If regions are developing
via segregation of highly related anatomically proximal
regions in children and integration of anatomically separate

regions into distributed functional modules in adults, the rs-
fcMRI correlational relationships between nearby regions
should generally decrease with age and the correlations
between distant regions should generally increase with age.
In fact, when the rs-fcMRI correlation values of every pair
of the task control regions described above are compared
between children and adults (see Fig. 5), pairs showing
significantly higher correlations in children were closer
together (mean 45 mm apart in Euclidean distance) than
pairs with significantly higher correlations in adults (mean
95 mm apart in Euclidean distance) (Fair et al. 2007). A
similar result was seen in rs-fcMRI networks of 90
anatomically defined regions in 7–9 year old children and
adults (Supekar et al. 2009). Pairs with higher correlation
values in children were closer together (mean 54 mm
“DTI wiring distance”) than those showing higher
correlation values in adults (mean 63 mm “DTI wiring
distance”) (Supekar et al. 2009). Thus, in a variety of
matrix-based studies, higher correlations are seen at longer
distances in adults than in children, consistent with a
developmental trajectory of local segregation and distrib-
uted integration.

Kelly et al. (2009) took a different approach to directly
compare rs-fcMRI regional relationships in children and
adults (see Fig. 6). They started with five seed regions in

Fig. 4 Functional brain maturation curve: 238 individual measures of
brain maturity are shown as open circles (115 females in red), plotted
by chronological age on the x-axis and rs-fcMRI brain maturation
index on the y-axis. The data was fit to curves using information
criteria analyses and form a non-linear shape typical of many growth
curves. The maturation curves for two separate algorithms are shown
in solid gray and black lines, while the 95% prediction limits are
shown in the dashed lines. Figure from Dosenbach et al. 2010
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the anterior cingulate cortex and calculated voxelwise seed
maps for each of these five regions in children (8–13 years
old) and adults. They binned significantly correlated voxels
from each seed map as within 5 mm Euclidean distance, 5–
10 mm distance, 10–15 mm distance, and so forth. For the
cingulate region purported to be involved in motor control
there was essentially no difference between the groups. For
the regions purportedly related to cognitive control and
conflict monitoring, there were significant age-related
decreases in the number of nearby voxels (0–20 mm)
showing correlations with those regions. There were also
significant age-related decreases in the number of nearby
voxels showing functional connections to the regions

thought to be involved in social processing and emotional
regulation. However, these regions also showed age related
increases in the number of correlated voxels far from the
original region location (101–140 mm). Thus it seems that
regions related to functions that reach maturity relatively
early (i.e., motor control) have already developed a mature
pattern of relationships at the age range studied, while
regions involved in later developing functions (i.e., emo-
tional regulation) show continued decreases in their local
rs-fcMRI relationships (segregation) and increases in their
distant relationships (integration).

Children and Adults Show Similar Small World Properties

Interestingly, these developmental differences do not appear
to cause or reflect large changes in small world network
properties. Fair et al. (2009) determined the path length and
clustering coefficient for the task control and default mode
network regions in children and adults and found no
qualitative differences between the two groups. When
Supekar et al. (2009) calculated path length and clustering
coefficient on a brain wide scale, children and adults did
not differ significantly in small world metrics tested at a
single matrix threshold. Fransson and colleagues qualita-
tively observed small-world networks in infants and in
adults, but could not perform direct comparisons (Fransson
et al. 2010). Taken together, these findings from the handful
of available studies suggest that across development, the
brains of infants, children, adolescents, and young adults
possess a functional network architecture that has demon-
strable small world features. This implies that despite
substantial organizational differences within the functional
network architecture across development, there does not
appear to be a gross deficit in efficiency of network
organization in the pediatric age range. Rather, the mature
organization appears to emerge largely from a reconfigura-
tion of an already efficient scheme. That said, it will be
necessary to re-evaluate the developmental trajectory of
network features quantitatively using larger node sets and
direct comparisons across age groups.

Synaptic and Anatomical Changes May Underlie
Developmental Changes in Resting State Functional
Connectivity

It is likely that progressive events (e.g., myelination, axon
terminal arborization, synapse formation and elaboration)
and regressive events (e.g., axon collateral pruning,
removal of axon terminal branching, synaptic pruning) in
neurogenesis (Cowan et al. 1984; Luo and O’Leary 2005),
play some role in the functional connectivity changes
observed here. It is possible that developmental segregation

Fig. 5 Direct comparison of region-pair correlations between children
and adults. a Connections that get significantly stronger with age
(shown in red) are between generally nearby regions. Connections that
get significantly weaker with age (shown in blue) are between
generally distant regions. Note that regions from both hemispheres
are reflected onto a single surface, with the left hemisphere regions
displayed in a darker yellow. (Figure adapted from Fair et al. 2007). b
Plot of difference between adult and child correlation values by
Euclidean distance for each of the pairwise connections shown in
panel a. The mean distance for correlations greater in children than
adults (red regions) is significantly shorter than the mean distance for
correlations greater in adults than children. (Figure adapted from Fair
et al. 2007)
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of regions in local networks may be partly related to
synaptic pruning. Synaptic density increases early in
development, but by the age range studied in the papers
presented here, the major effect is synaptic pruning
(Huttenlocher 1979). Synaptic pruning is also thought to
result in decreased gray matter, which is seen throughout
this age range in structural MRI scans (Sowell et al. 2004).
In contrast, integration of anatomically disparate regions
into an adult network may be assisted by myelination of
long distance cortical axon tracts. Structural MRI measure-
ments of white matter (Giedd et al. 1999), diffusion tensor
imaging (DTI, Snook et al. 2005) and post-mortem myelin
staining (Yakovlev and Lecours 1967) have demonstrated
increased cortical myelination in the age ranges found in
the studies described in this review. However, despite these
demonstrable changes, a note of caution is needed
regarding directly linking processes such as myelination
and synaptic pruning to the phenomenology observed in the
development of the brain’s functional architecture. One
should avoid assuming that there is an isomorphic
relationship between myelination and integration on the
one hand, and pruning and segregation on the other.

Changes in synaptic density and myelination cannot be
fully responsible for the observed developmental changes.

Primarily, not all regions showing functional “connections”
show monosynaptic anatomical connections. For example,
non-human primates show robust rs-fcMRI connections
between eccentric visual field representations in V1
(Vincent et al. 2007); this location lacks direct homotopic
callosal connections (Newsome and Allman 1980). While
an anatomic study of synaptic pruning shows an adult-like
synaptic density in frontal cortex by age 16 (Huttenlocher
1990), there seems to be continued changes in rs-fcMRI
connectivity in frontal cortex through the early part of the
third decade (Fair et al. 2009; Dosenbach et al. 2010).
Additionally, gross changes in myelination cannot explain
the specific increases in functional connectivity between
regions of adult networks, or decreases in connectivity
between regions that continue to show increased myelina-
tion with development (i.e., prefrontal cortex). In fact,
Supekar and colleagues found developmental increases in
functional connectivity in the absence of increased frac-
tional anisotropy, a DTI marker of myelination, although
not myelination specifically (Supekar et al. 2010). More-
over, a modest amount of training in adults, which is
unlikely to induce myelination or synaptic pruning, can
increase functional connectivity between regions (Lewis et
al. 2009; Stevens et al. 2010; Tambini et al. 2010).

Fig. 6 Development of rs-fcMRI correlations via functional segrega-
tion and integration occurs differentially in functionally distinct
regions. a Location of anterior cingulate regions. S1, S3, S5, S7,
and I9 are used in the developmental analysis. b Plots reflect the
number of voxels significantly correlated with the seed region (S1, S3,
S5, S7, and I9) in bins of 20 mm Euclidean distance from the original
seed. Significant differences between age groups are denoted with an

asterisk. While the S1 region, related to motor control, shows no
developmental effects, the S3 region related to attentional control
shows decreased correlations with nearby voxels and the S5, S7 and I9
regions related to conflict monitoring, social processing, and emo-
tional regulation, repectively, show both decreased correlations with
nearby voxels and increased correlations with distant voxels. (Figure
adapted from Kelly et al. 2009)
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Rather, increased rs-fcMRI connectivity with training
supports the hypothesis that at least some of the develop-
mental changes in resting state networks are due to an
increased history of co-activation, such as might be found
with Hebbian processes (Hebb 1949). Lewis et al. (2009)
demonstrated modulations in connectivity between a
section of retinotopic visual cortex and frontal eye fields
and retinotopic visual cortex and default mode brain
regions when subjects repeatedly made eye movements to
the same location in the visual field. Similarly, Stevens et
al. (2010) showed increased connectivity between the right
inferior frontal gyrus and fusiform face area or a fusiform
area responsive to scenes when subjects performed a
repetition priming task with face and scene stimuli
respectively. Finally, a similar increase in resting state
correlations between the medial temporal lobes and lateral
occipital cortex was observed by Tambini et al. (2010)
following an associative object learning task. Taken
together, these studies suggest that rs-fcMRI connectivity
is likely related to a history of co-activity, a process that
may be especially prominent in child and adolescent
development.

Understanding the Typical Network Developmental
Pattern of Segregation and Integration Will Aid
in Our Understanding of Disordered Development

Many common neurologic and psychiatric illnesses, such as
autism, attention deficit hyperactivity disorder (ADHD), and
Tourette syndrome (among others) have their origin in infancy
or childhood. Without knowing the typical developmental
network trajectories, we cannot know whether those with
developmental disorders differ from that typical trajectory.
Without knowledge of the typical developmental track, we
also cannot knowwhether therapeutic interventions help place
children back on the typical track or achieve their benefits via
an alternate route. Understanding where in the brain and in
what ways the rs-fcMRI connectivity deviates from typical
development may also inform what types of therapeutic
interventions might be useful in treating specific develop-
mental disorders.

The finding of network development via segregation and
integration has already increased our understanding of
network dysfunction in Tourette syndrome (Church et al.
2009a). Church and colleagues demonstrated that children
with Tourette syndrome showed immature as well as
atypical functional connectivity in the task control net-
works. Specifically, for functional connections between
task control regions that had a known typical developmen-
tal profile, the authors determined that for adolescents with
Tourette syndrome, several functional connections within
both the cingulo-opercular and fronto-parietal task control

systems were immature (lower than expected for integrating
connections, higher for segregating connections) in com-
parison to typically developing cohorts of the same age.
Additionally, multiple atypical functional connections, with
values lying well outside the typical developmental
trajectory were observed in the fronto-parietal, but not the
cingulo-opercular systems, suggesting that in addition to a
global immaturity, there was also aberrant functional
connectivity selectively involving the system most involved
in rapid, adaptive online control. In a subsequent fMRI
study, frank functional abnormality of the fronto-parietal
network and immaturity of the cingulo-opercular task
control network were confirmed in adolescents with
Tourette syndrome (Church et al. 2009b). It remains unclear
whether these results are specific to Tourette Syndrome; a
topic for future investigation.

Likewise, an understanding of the developmental trajec-
tory utilizing segregation and integration in other region
sets may help inform our understanding of developmental
disorders such as autism and ADHD. rs-fcMRI connectivity
studies of the default mode network in autism show reduced
connectivity within the network in adults (Cherkassky et al.
2006; Kennedy and Courchesne 2008) and adolescents
(Jones et al. 2010). Similarly, Uddin et al. (2008) show
decreased homogeneity in default mode network connectiv-
ity in adults with ADHD. Since correlations between long
distance regions in the default mode and control networks
increase with age, these findings are consistent with a
hypothesis of an “immature” default network underlying
these clinical states. Moreover, Fair et al. (2010) have shown
immaturity in the default mode network via both reduced
correlation values for rs-fcMRI connections that increase
with age and an increased correlation value for an rs-fcMRI
connection that decrease with age. This atypical default
mode network functional connectivity in ADHD is consis-
tent with the hypothesis that inattention and impulsivity are
consequences of intrusions of the default mode network
during intended maintenance of the task state (Castellanos et
al. 2008). However, while disorders as different as autism
and ADHD may both display “immaturity” of the default
network, they likely arise from disparate pathophysiological
mechanisms, and subsequent studies should investigate the
possible causes of “immaturity” in these systems.

Advantages and Caveats in Using rs-fcMRI
Connectivity to Study Development

The use of resting state data to study developmental
differences has many advantages (Fair et al. 2007). Data
acquisition requires minimal task demands, so task-related
differences between children and adults that confound
many developmental functional imaging studies are not an
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issue (see Church et al. 2010 for a discussion). Moreover,
rs-fcMRI analyses require relatively little time to acquire:
5–10 min of data are often adequate to perform these
analyses. rs-fcMRI analyses can also be performed on a
brain-wide scale, in contrast with connectivity measured
based on functional data such as effective connectivity
(Friston et al. 2003) and Granger causality (Granger 1969;
Eichler 2005). It may also allow network definition that
considers a broad history of co-activity across many tasks,
rather than relying on relationships defined in a single task,
like those used in dynamic causal modeling (Friston et al.
2003) or Granger causality (Granger 1969; Eichler 2005).
Note that these comments are by no means intended to
denigrate the role of task-based connectivity measures.
Such measures accomplish what rs-fcMRI cannot—a
measure of the relationship between regions activated in a
specific task. But this approach addresses a different
question. In rs-fcMRI studies the question is “what is the
general functional network structure?”, while in task-based
connectivity the question is “what are the functional
relationships between regions during the performance of a
specific task?”.

Yet there are many considerations of which one should
be mindful when using rs-fcMRI in developmental studies.
While there is no “task” per se during rest, these analyses
do require the subjects to be still, which may be harder for
some subject groups than others. The results discussed in
this review used a variety of motion correction approaches.
In some, groups of adults and children were matched for
movement (Fair et al. 2007, 2009; Church et al. 2009a),
while in others data was corrected for movement frame by
frame (Fair et al. 2007, 2009; Church et al. 2009a) or with a
six parameter movement regression (Kelly et al. 2009).
Some authors also did a “visual inspection” of movement
effects (Kelly et al. 2009). Efforts to remove the effect of
movement are particularly important given the principles of
segregation and integration. Movement increases the noise
in the signal, making long distance correlations more
difficult to detect (Fair et al. 2007).

Additionally, there are continued methodological debates
regarding rs-fcMRI data acquisition and processing. Some
groups define rest as lying quietly with eyes closed (e.g.,
Supekar et al. 2009, 2010), some with eyes open, some
using fixation blocks extracted from block design studies
(e.g., Dosenbach et al. 2006; Fair et al. 2007, 2009), and
some using data acquired during task with the task
regressed out (Fair et al. 2007; Andrews-Hanna et al.
2007). These various acquisition conditions may affect rs-
fcMRI relationships as there are small changes in rs-fcMRI
correlations during sleep (Larson-Prior et al. 2009), and
certainly some changes even with task regressed (Fair et al.
2007; Jones et al. 2010). There is also continued debate
about what steps should be taken to remove nuisance

variable such as heart rate and breathing (Birn et al. 2006;
Chang et al. 2009) and whether using a whole brain signal
regression to account for these noise effects is appropriate
(Fox et al. 2009) or induces spurious negative correlations
(Murphy et al. 2009).

Finally, there is considerable debate over the various
analysis regimes used to evaluate rs-fcMRI data. The field
is in the process of evaluating the relative merits of various
node and edge definitions in network analyses (Rubinov
and Sporns 2009; Power et al. 2010b), and comparisons of
graph theoretic networks to component analyses and seed
maps are generally lacking. It is also important to note that
graph theoretic network metrics are best performed using a
large set of nodes or regions (e.g., >100), since in small
networks the addition or removal of a single edge can
impact findings. However, with a large enough collection of
nodes, small world features are essentially assured (Zalesky
et al. 2010). These methodological debates are beyond the
scope of this review, though hopefully many of them will
be resolved as the field matures.

Conclusions

rs-fcMRI is increasingly used to study the development of
functional brain networks. Thus far, developmental studies
of a number of brain networks including task control
networks (Fair et al. 2007, 2009), the default mode network
(Fair et al. 2008, 2009), and even whole brain anatomical
networks (Supekar et al. 2009) indicate a general principle
of anatomical segregation and functional integration where-
by child networks are organized primarily by anatomical
proximity, while adult networks are organized in a
distributed manner across the brain.
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