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Abstract

This thesis presents developments in the use of probability density function (PDF)

kinetic equations to model the dispersion of inertial particles in turbulent boundary

layers. The PDF kinetic equation is used as a master equation from which to construct

continuum equations for the particle-phase, and these continuum equations form an

infinite set of coupled equations which require closure in the particle velocity statistics.

Furthermore, the continuum equations contain dispersion tensors which describe the

effect of the underlying fluid turbulence on the dispersion of the particles throughout

the flow field. These dispersion tensors themselves require closure and in this thesis

new closure models are developed which are non-local and attempt to take into account

the effects of turbulence inhomogeneity, anisotropy and particle-wall collisions on the

dispersion tensors.

The first closure model developed is for particles dispersing under Stokes drag forcing

only; appropriate for particles whose material density is much greater than that of

the fluid in which they are dispersed. This closure model is tested against equivalent

particle tracking simulation data over a range of particle sizes and the closure model

predictions are found to be in excellent agreement. In contrast to the new closure model

predictions, the traditional ‘local’ approximations to the dispersion tensors are found

to be in significant error when compared to the particle tracking data.

The closure model is then developed to account for particles dispersing under Stokes

drag, added mass and gravitational forcing; added mass forcing being important for

particles whose material density is comparable to or less than that of the fluid in which

they are dispersed. The modelling is presented and a discussion is given regarding the

various complex terms that require approximation in this closure model. The closure

model predictions are then compared against the alternative local approximations. It

is seen that with added mass forcing the local approximations can be qualitatively and

quantitatively different to the non-local predictions, whereas under only a drag force,

errors in the local approximations are mainly quantitative.

Finally, consideration is given to the forms of the dispersion tensors appearing in

the PDF and continuum equations. It is shown theoretically that the dispersion tensors

(and therefore the PDF and continuum equations themselves) are free from the so called

‘spurious drift’ phenomena associated with certain types of models for predicting the

dispersion of fluid particles in incompressible, inhomogeneous turbulent flows. However,

it is also shown that closure approximations applied to the dispersion tensors may result

in the introduction of a spurious drift. Nevertheless, it is demonstrated that the artificial

drift introduced by closure approximations does not have any appreciable affect on the

dispersion tensors when they are describing the dispersion of inertial particles.
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G(t; t′) Particle response tensor

mp Particle mass

P(x,v, t) Probability Density Function (PDF) corresponding to a

single realisation of the turbulent flow field and a single

realisation of xp(0), vp(0)

p(x,v, t) = 〈P〉 Probability Density Function (PDF)

pf (x, t) Pressure acting in fluid

Rep Particle Reynolds number

R(x′, t′;x, t) Two-point, two-time correlation tensor for f

Sf Scaling parameter in the inhomogeneous, anisotropic KS

flow field

St = τp/τ
Lp Stokes number scaled on fluid timescale seen by particles

StE = τp/τE Stokes number scaled on fluid Eulerian integral timescale

u(x, t) Fluid velocity
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Nomenclature

〈u〉(x, t) Mean fluid velocity

u′(x, t) Fluctuating fluid velocity

up = u(xp(t), t) Fluid velocity at particle position

〈u〉p = 〈u〉(xp(t), t) Mean fluid velocity evaluated at particle position

uτ Fluid wall friction velocity

vp(t) Particle velocity

v(x, t) Particle mean velocity

xmin
2 Particle radius; co-ordinate at which particle makes con-

tact with wall

xp(t) Particle position

x,v Position and velocity Eulerian phase-space variables

Symbols

〈...〉 Ensemble average

〈

...
〉

x
Conditional ensemble average; conditioned on xp(t) = x

(or sometimes xp(s = 0) = x)

〈...〉p Ensemble average evaluated at the particle position

(

...
)

Particle density weighted mean average
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Chapter1

Background to Research

The research presented in this thesis has been funded through the ‘FACE’ (The Muli-

tiphase Flow Assurance Centre) project which is a long term collaboration between

Institutt for Energiteknikk (IFE), the Foundation for Industrial Research (SINTEF)

and the Norwegian Technical and Natural Science University (NTNU). The research

carried out in FACE is supported by StatoilHydro, GE Oil & Gas, FMC Technologies,

SPTGroup, CD-adapco and Shell. FACE began in August 2007 with the intention of

combining surface and colloid chemistry with fluid mechanics to develop models and

tools which can be used to help understand, predict and prevent a broad range of flow

assurance problems encountered in the oil industry. Flow assurance refers to ensuring

that the oil, gas and water mixture taken from oil wells reaches the delivery location

in a successful and economical manner. There are numerous flow assurance problems

encountered in the oil industry, such as

• Pipeline rupture due to corrosion, and/or erosion.

• Pipeline blockage due to deposition of particles on pipe wall, the formation of

dense particle beds at the bottom of the pipe or plugs which have formed.

• Large pressure losses in pipelines which cause flow rates to be reduced.

FACE is divided into three working groups; (i) suspensions, (ii) separation and (iii)

multiphase transport, each of which addresses different aspects of flow assurance prob-

lems. The research presented in this thesis has been conducted within the suspension

group. This group is concerned with improving the predictions of particle transport

in pipelines and the understanding of the effect of the presence of the particles on the

fluid flow in the pipe. One of the types of particle found in oil pipelines are hydrates.

These are ice-like structures which can form when methane gas and water react under

high pressure and low temperature environments.
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Figure 1.1: Hydrate Plug being removed from an oil pipeline (image taken from
http://supercheminc.com).

As hydrate particles are transported along a pipeline within the oil they may begin to

agglomerate, and can form structures so large that they block the entire pipeline (as

shown in figure 1.1). Clearly this is a problem since in the event of a hydrate plug

formation, the oil flow in the pipeline can be either severely restricted or prevented

altogether.

Another type of particle found in oil pipelines is sand. The presence of sand particles

in oil pipelines is highly problematic since it causes pipeline erosion (as shown in figure

1.2) and the sand particles may form ‘beds’ on the bottom of the pipes which restrict

the flow of oil.

Figure 1.2: Effect of sand erosion on the pipe wall (image taken from
http://ceresist.com).
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In addition wax particles are also found in oil pipelines. Wax particles have a tendency

to deposit on the walls of the pipes (as shown in figure 1.3) and this restricts the effective

cross sectional area of the pipe and hence also restricts the oil flow.

Figure 1.3: Build up of wax deposits on the walls of a pipe (image taken from
http://balmsenergy.com).

In order to address and develop solutions to such problems as these, it is important to

understand how the problems arise in the first place and what physical processes govern

their development. One must have an understanding of how hydrate and wax particles

form from the mixture extracted from the oil wells (which includes oil, gas, water and

other substances) and the physiochemical behavior of the particles which governs the

way they interact with the surrounding fluid, the ability of the particles to agglomerate

and break up as well as deposit on the walls of the pipe. In addition to this, one must

also have an understanding of how the fluid flowing in the pipe dynamically interacts

with the particles and causes them to either disperse or segregate into certain regions

of the pipe.
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Particles
Gas

Oil

Flow
direction

Figure 1.4: Diagram showing a possible flow regime in an oil pipeline. Oil flowing at the
bottom of the pipe with gas flowing above it, with an unsteady wavy interface between
the two fluids. Particles are dispersed throughout the phases with a dense regime near
the pipe floor and a dilute regime above it.

Figure 1.4 shows a possible flow scenario in a pipeline; stratified flow with oil at the

bottom and gas at the top flowing through the pipe, with particles dispersed through-

out both fluids; typically oil droplets entrained and dispersed throughout the gas and

solid particles dispersed throughout the oil. The flow of the gas and oil may be either

laminar, transitional or fully turbulent, and there may be unsteady waves propagat-

ing along the surface of the oil. Often there is also water present with the oil and

gas, in which case the flow is stratified into three layers, with water flowing along the

bottom of the pipe (although the 3 phase mixture may be in the form of water or oil

droplets dispersed throughout the gas phase). A dense regime of particles (in terms

of the number of particles) near the bottom of the pipe (which occurs in part due to

gravitational settling) will affect the nature of the fluid flow, and increases the possibil-

ity of inter-particle collisions and hence agglomeration or break up of particle clusters.

The presence of liquid and gas phases means that slug flow may also occur as well as

entrainment processes, both of which significantly increase the complexity of the dy-

namical interaction between the fluid and particle phases. Flows such as these, where

there are different fluids and phases present are commonly referred to as ‘multiphase

flows’.
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Figure 1.5: Diagram showing the accumulation of particles in a pipe bend.

Figure 1.5 shows another possible flow scenario in a pipeline. As the particles are

transported by the fluid (which may contain a mixture of oil, gas and water) along the

pipe towards the bend, by reason of their inertia they do not follow the streamlines of

the fluid and tend to collide with the pipe wall at the bend. In this region the particles

(especially wax particles) may deposit on the wall of the pipe and over time a dense bed

of particles can form which can severely restrict the flow of the fluid. It is particularly

in pipe bends that the problem of erosion due to sand particles arises, as is illustrated

in figure 1.2.

Flow
direction

Figure 1.6: Diagram showing a dense bed of particles developing along the pipe length.

Figure 1.6 shows yet another possible flow scenario in a pipeline. As the particles are

transported along the pipe by the fluid mixture a bed of particles at the bottom of

the pipe develops, with a dilute regime of particles dispersing above it. The size of the

particle bed increases along the length of the pipe and this significantly affects the flow

dynamics of the fluid and may eventually cause blockage or severe restriction to the

flow.

The formation and development of dense particle beds, particle accumulation in

pipe bends and particle deposition on pipe walls all contribute to the flow assurance
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problems found in the oil industry, and the dynamical interaction between the fluid and

particulate phases is highly complex. Therefore, in order to address such flow assur-

ance problems the aim of the suspension group within FACE is to begin by conducting

experiments and building mathematical models which consider systems somewhat sim-

pler to that found in real oil pipelines. The experimental work serves to provide insight

for the modelling work in addition to providing data against which the models can be

validated.

The research presented in this thesis is aimed at developing mathematical models to

describe how particles disperse in the presence of a single fluid phase which is assumed

to be fully turbulent, Newtonian, isothermal and incompressible. The particles will

be assumed to be of constant mass, spherical, non-deformable, mono-disperse (i.e. all

particles in the system are physically identical) and only mechanical forces acting on

the particle will be considered.

Though these are considerably simplified systems, even they are as of yet not com-

pletely understood, and models which describe such systems accurately are still in-

complete. Nevertheless, by developing the understanding and improving the modelling

of such simplified systems, a route will be provided towards studying more realistic,

complex systems in the future.

25



Chapter2

Fundamentals in Modelling Disperse

Particle Transport in Turbulent Flows

As discussed in chapter 1, the objective of the research presented in this thesis is to be

able to improve the predictive capabilities of mathematical models for particles trans-

port in pipelines. In this chapter the fundamentals for modelling particle dispersion in

turbulent flows will be introduced. To begin, a brief discussion is given of the various

types of fluid-particle flow regimes that may be encountered in disperse particle trans-

port in turbulent flows. This is followed by a general description and comparison of two

fundamentally different approaches to modelling/simulating particle dispersion in tur-

bulent flows; Lagrangian particle tracking and Eulerian statistical models. Then models

and equations describing fluid and particle motion are given, along with a description

of various approximations they contain and solution methodologies. Finally, models

and approximations for describing particle-boundary collisions will be considered and

discussed.

2.1 Particle transport in turbulent flows: different

flow regimes

Particle transport in turbulent flows can be divided into several ‘regimes’, and these

are summarised in figure 2.1
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Figure 2.1: Diagram showing the various types of fluid-particle flow regimes, taken
from [1].

The simplest flow regime is the dilute, one-way coupled flow regime (‘sparse flow’ in

figure 2.1). In this regime the mass loading of particles in the fluid is considered to

be sufficiently low such that the energy expended by the fluid in moving the particles

is negligible. In other words, the system is ‘one-way coupled’, with the fluid affecting

the dynamics of the particles but not vice versa. In addition, the average inter-particle

distance is considered to be large such that inter-particle collisions can be assumed

negligible. The applicability of the one-way coupled assumption may be, to an extent,

determined by the particle Reynolds number Rep , based on the slip velocity between

the local fluid and particle velocities. For particle translation in a quiescent fluid, with

Rep > 300 particles shed vortices [5], and in this case it is probably unreasonable to
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assume that the fluid-particle system is one-way coupled. However, even though a

single particle may modify the local turbulence through vortex shedding, in order to

cause significant modulation to the entire turbulent flow field the mass fraction of the

particles dispersed throughout the fluid must be sufficiently large (e.g. [6]). With regard

to particle transport in turbulent pipe flow, the dilute one-way coupled assumption is

perhaps reasonable for particle dispersion in the upper half of the pipe (for a horizontal

pipe), whereas it may be completely inapplicable to particle dispersion at the floor of

the pipe if the particle bed is very dense (see figure 1.6 for example). In such cases the

flow regime encountered at the floor of a pipe is very different. This scenario would

be best described by the second but last regime in figure 2.1; densely packed particles

with high frequency collisions, both inter-particle and particle-wall collisions. As the

particles are so close together, the dynamics of the fluid flow will be severely affected,

and the system can no longer be treated as being only one-way coupled. In fact, for

such a scenario, it would probably be more feasible to model the fluid-particle system as

being one ‘fluid’ with a modified viscosity, due to the presence of the particles (e.g. [7]).

In this thesis attention will be given to the development of models which describe

the transport of a dilute, one-way coupled system of particles dispersing in turbulence,

such as might be applicable in the upper regions of a pipe cross section. Such dilute

disperse flows are also found in other environmental and industrial applications such

as the dispersion of water droplets in atmospheric turbulence leading to the formation

of rain (i.e. cloud physics), the dispersion of ash particles emitted during volcanic

eruptions, the dispersion and deposition of radioactive aerosols in nuclear reactors, the

dispersion of fuel droplets in combustion engines etc. Therefore it is clear that given

such a diverse range of important applications, it is of great importance to study such

systems.

2.2 Modelling and Simulation of Particle Disper-

sion in a Turbulent Fluid

Regardless of which type of flow regime is being considered, there are essentially two

approaches to modelling and simulating the particle dispersion process in a turbulent

fluid: Lagrangian particle tracking (LPT) and Eulerian statistical modelling (ESM).

Both have their own advantages and disadvantages, and a brief discussion of each is

now given.
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2.2.1 Lagrangian Particle Tracking

In a LPT simulation the fluid flow field is prescribed by either solving the Navier-Stokes

equation numerically or by using some statistical model (these issues are discussed in

section 2.3). In its simplest ‘one-way coupled’ form (i.e. with the assumption that

the particles do not affect the turbulent flow field) the fluid flow field solutions are

used as input into the particle equation of motion, which is then solved (usually nu-

merically). By solving the particle equation of motion in this way, particles may be

‘tracked’ through the flow field, from which information regarding the trajectory and

velocity of the particle are obtained. In addition to providing information on individual

particle trajectories, by tracking many particles one may also obtain statistical infor-

mation regarding the particle dispersion process (i.e. the mean particle velocities, the

mean particle concentrations etc). The advantages of LPT are

1. Relatively simple to include complicated forces on the particle

2. Relatively simple to simulate ‘two-way’ coupled systems, where the particle forc-

ing on the turbulence needs to be taken into account

3. Simple to include complex particle-boundary interactions (inelastic collisions,

rough boundary surfaces etc)

4. Enables the instantaneous features of the particle dispersion process to be ob-

served and analysed (i.e. particle clustering in certain regions of the flow field,

which is important for modelling the agglomeration of particles, for example)

The disadvantages of LPT are

1. If the turbulent flow field is described by either DNS or LES (see section 2.3)

then obtaining statistically steady state results for particle dispersion in a pipe

or channel flow often requires extremely large simulation times [8, 9].

2. LPT can generate much information that is not required; for example often only

statistical information of the dispersion process is required in which case LPT

may be considered an inefficient way to obtain such information.

2.2.2 Eulerian Statistical Models

Whereas in LPT many particles are tracked in order to obtain the statistical information

of the particle dispersion process, in ESM the statistics of the dispersion process are

modelled directly. There are different ESM available, such as PDF (probability density

function) equations and particle continuum equations (also called ‘two-fluid’ models).
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In this thesis attention will be given to a PDF model which provides a theoretically

sound model for the particle statistics in a turbulent flow. Nevertheless, regardless of

which type of ESM is used, its advantages compared to LPT are

1. Solutions can be obtained relatively quickly compared with LPT, giving steady

state, or transient solutions

2. Gives insight into the physics of the statistical processes governing the particle

dispersion

3. ESM can often be solved using the same computational method as is used for the

flow field (i.e. for the case of continuum equations coupled with RANS equations,

see section 2.3), making them efficient to implement numerically

The disadvantages of ESM compared to LPT are

1. Difficult to incorporate complicated aerodynamic forces acting on the particles

2. Difficult to include complicated particle-boundary interactions in the continuum

equation (although possible to specify more complex boundary conditions in PDF

equations)

3. Some information of the dispersion process is lost via a statistical description

Although ESM are often difficult to construct and close, their advantages over LTP

make them worthy of study (particularly for industrial applications, where the compu-

tational expense of LPT can be unacceptable, if not impossible with current computa-

tional power). Indeed, none of their difficulties are necessarily insurmountable.

There is much value in both LPT and ESM, and as discussed, both have their own

advantages and disadvantages. Results obtained from LPT studies are particularly

useful for providing the necessary insight and information needed to correctly construct

and close ESM as well as providing data against which to validate the models. The

study of both LPT and ESM is therefore of great benefit for the multiphase flow research

community.

2.3 Models for the dynamics of a turbulent fluid

Both LPT and ESM require a description of the turbulent flow field in which the

particles are dispersing. LPT requires information concerning the instantaneous values

of the flow field, whilst ESM only require solutions for the statistics of the turbulent flow
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field. Nevertheless, as already mentioned, LPT studies are useful in order to provide

data against which to validate ESM and will be used in this thesis to that end. In this

section a description of models and equations describing the dynamics of a turbulent

fluid will be considered.

2.3.1 Navier-Stokes and DNS

Even though turbulence appears to be a random process, it is not intrinsically random

(in contrast to systems described by quantum mechanics) and is therefore described

using deterministic mechanics. Under the continuum hypothesis, Newtons 2nd law of

motion may be used in conjunction with the continuity equation to derive a set of

equations governing the dynamics of an incompressible, Newtonian and isothermal fluid

∂

∂xi
ui =0 (2.1)

ρf
(
∂

∂t
ui +

∂

∂xj
ujui

)

=− ∂

∂xi
pf + µf ∂

∂xj

∂

∂xj
ui + ρfF b

i (2.2)

where u(x, t) is the fluid velocity, ρf is the fluid material density, pf (x, t) is the pressure

acting in the fluid, µf is the fluid dynamic viscosity and F b are the body forces acting

on the fluid (e.g. gravity). Equation (2.1) specifies that the flow field is incompress-

ible and is a degenerate form of the fluid-mass continuity equation for constant density

flows. Equation (2.2) is the Navier-Stokes (NS) equation for an incompressible, New-

tonian, isothermal fluid. The solutions to equations (2.1) and (2.2) form the basis of

the description of the dynamics of the flow field through which particles disperse in a

multiphase flow. If there is a momentum coupling between the fluid and particle phases,

an additional forcing term is added to equation (2.2) (although for very dense particle

loadings it is perhaps necessary to modify the viscosity of the fluid µf since the effective

viscosity of the fluid-particle mixture will differ from the pure fluid viscosity). Whilst it

is generally believed that the NS equation exactly describes turbulence (when the con-

tinuum hypothesis is applicable), unfortunately it is yet to be proved that solutions to

the NS equation always exist in three dimensions, or that the solutions do not contain

singularity. Generic, analytic three dimensional solutions to the NS equation are at the

present time unavailable, and therefore alternative numerical solution procedures must

be adopted.

To attempt to solve the NS equation numerically direct numerical simulations (DNS)

are used. In DNS, the NS equation is solved numerically (by finite difference, finite

volume or spectral methods) on a grid sufficiently fine so that the Kolmogorov length
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scales are resolved, and with a sufficiently small time step so that the Kolmogorov

temporal scales are also resolved. DNS was first used by Orszag and Patterson [10] for

a simulation of homogeneous isotropic turbulence. The first DNS of a wall bounded

flow was by Kim et.al. [11] in which a DNS of a fully developed turbulent channel

flow was performed, from which important statistics were obtained and compared with

experimental data. Since these pioneering works DNS has been used extensively and

has proved to be a very powerful tool for fundamental turbulence research. DNS, along

with experiments, has been successfully used to discover certain coherent structures in

turbulent wall-bounded flows, such as turbulent streaks, tubes, sheets, horseshoe and

various other types of turbulent structures [12–19]. Recently Wu et.al. [20] used DNS to

study a developing turbulent boundary layer and found for the first time using DNS that

solutions to the NS equation predict a dominance of hairpin vortices for such a turbulent

flow, something only before seen in experiments. However, DNS is computationally very

expensive both in terms of computational memory and computational time (see [21] for

a discussion on the computational costs of DNS), and simulations of the type of flows

that are found in industry and the environment, where the Reynolds number is very

high and the geometry is often complex, are still far from possible.

2.3.2 Models

While equations (2.1) and (2.2) describe the true deterministic physics of classical

(incompressible, Newtonian and isothermal) fluids in motion, the difficulty in solving

them (using DNS) for turbulent flows has prompted studies into the use of models to

generate turbulent-like flow fields.

One such model is large eddy simulation (LES), which was first proposed by Smagorin-

sky [22]. In LES a filtered version of the NS equation is solved numerically. The tur-

bulence energy spectrum is ‘cut off’ at a particular wave number and flow scales up to

this wave number are resolved in the simulation, whilst flow scales with wave number

larger than the cut off wave number are modelled by some form of subgrid scale model

(e.g. dynamic Smagorinsky model [23]). The idea behind LES is that in some cases

only the largest scales of the turbulence are of importantance, and that the small scale

dynamics may be suitably represented using a model. Depending on the type of flow,

LES can be significantly less expensive than DNS. For wall bounded flows, in which the

turbulence is much more complicated than unbounded flows, the minimum wave cut

off number required in order for the LES to be sufficiently accurate is such that LES

is almost as expensive as DNS (e.g. [24]). There are also several fundamental issues

with LES concerning its fundamental conceptualisation, and the effect of the filtering

on the turbulent fields produced by LES that are yet to be resolved and quantified [25].
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In addition, in [26] it was shown that LES can produce inaccurate results for particle

dispersion in wall-bounded flows, and in [27] it was shown that LES cannot properly

capture the clustering of inertial particles in homogeneous, isotropic turbulence.

In some instances only averaged properties of the turbulent field are required. To

obtain equations describing the mean properties of a turbulent velocity field, the NS

equation is ‘Reynolds averaged’ by splitting up the fluid velocity into a mean com-

ponent 〈u〉 and a fluctuating component u′ (with u = 〈u〉 + u′). The equation that

results from this averaging procedure is known as the Reynolds averaged Navier-Stokes

(RANS) equation, and it contains an additional unknown term, the Reynolds stress

tensor (essentially 〈u′u′〉). Different models are available for the Reynolds stress tensor,

from more basic k − ǫ models [28] to the more advanced Reynolds stress models [29].

With a model for the Reynolds stress tensor, solutions for the mean fluid velocity field

may be obtained by solving the RANS equations.

Whilst LES and RANS are explicitly based on the NS equation itself, alternative

‘stochastic models’ (i.e. not based on the deterministic NS equation) have also been

presented in the literature as models which generate turbulent-like flows. One such

stochastic model, often referred to as a ‘synthetic turbulence model’, is kinematic simu-

lation (KS). KS was first introduced by Kraichnan [30] and has since been developed and

used in numerous papers for a variety of different types of turbulent flows (e.g. [31–38]).

In KS an Eulerian flow field is generated by the linear superposition of many random

Fourier modes, producing a Gaussian (though not necessarily restricted to Gaussian)

flow field correlated in space and time. One of the great advantages of KS is that it

can be used to generate turbulent-like flow fields with energy spectrum’s containing

large scale separations (i.e. large Reynolds number flows, which at present would be

unfeasible to generate with DNS). This makes KS very useful for studying particle pair

dispersion, for example. Certainly KS does not truly capture the complex physics of

a turbulent flow. In particular, the sweeping effect of the small scales by the largest

scales which occurs in real turbulence is not captured in KS since, in KS, the Fourier

modes which are superimposed are independent of one another. However KS does con-

tain sufficient qualitative features of a turbulent flow to make it a useful research tool,

particularly for studying particle dispersion in turbulent flows.

Another stochastic modelling approach that has been developed to simulate turbulent-

like flows is through the use of Langevin equations. Rather than providing a model for

the turbulent field, Langevin equations are used to define the turbulent fluid velocity

along a particle trajectory in a stochastic Lagrangian manner. Langevin based models

have been developed in many studies (e.g. [21,39–49]) and have been shown to reproduce

DNS statistics well, making them a useful research tool.

Langevin models, along with KS, have the great advantage of being computationally
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‘cheap’ compared to DNS (or LES), and therefore they provide a very efficient means

of testing models for particle dispersion in turbulent flows, models which can later be

validated against DNS and/or experimental data.

2.4 Models for Inertial Particle Dynamics

In order to simulate or model how an inertial particle moves within a turbulent flow

field, the particle equation of motion must be specified. Applying Newtons 2nd law for

translational motion due to gravity and the aerodynamic fluid force acting on a particle

of constant mass yields the following equation of motion

mp d

dt
vpi (t) =m

pgi +

∫

S

σijnjdS (2.3)

where mp is the particle mass, vp(t) is the particle velocity, g is the gravitational ac-

celeration, σ is the fluid stress tensor, n is the unit normal vector and the integral in

equation (2.3) is over the entire surface of the particle. The fluid stress tensor for a

Newtonian fluid is

σij = −pfδij + µf

[
∂ui
∂xj

+
∂uj
∂xi

]

(2.4)

where δij is the Kronecker delta. In principle, equation (2.3) may be solved numeri-

cally for a turbulent flow in a LPT simulation, with the fluid velocity required in σ

prescribed by the NS equation. Such numerical simulations are referred to as Fully

Resolved Simulations (FRS) since they fully resolve the fluid stresses acting on the par-

ticle surface. In several studies various numerical strategies have been implemented in

order to perform FRS for finite size inertial particles dispersing in a laminar flow field

(e.g. [50–55]). However, due to the very high computational cost, use of FRS for particle

dispersion in turbulent flows is somewhat limited at present, usually with no more than

1000 particles being tracked in a low Reynolds number turbulent flow (e.g. [56–58]).

In general, it would be desirable to use FRS since the finite size of the particle can

be important, and may cause modification to the local turbulent flow structure which

may either augment or attenuate the local turbulence (experimental investigations show

that small particles tend to attenuate the fluid turbulence whilst large particles tend to

augment it [59, 60]). However, the computational expense of FRS, even for relatively

simple turbulent flows, is so high that it is unfeasible for studying anything of any real

industrial or environmental relevance.
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An alternative procedure is to approximate the particle as being a ‘point particle’,

that is, rather than taking into account the finite size of the particle and integrating the

fluid stress acting on it over its entire surface, the assumption is made that the particle

is small compared to the smallest scales over which the fluid velocity field varies (i.e. the

local Kolmogorov spatial scales). Then only the fluid force acting at a point is required,

rather than needing to integrate the fluid stress over the entire particle surface. With

the additional assumptions that the particle is rigid, spherical and that the slip velocity

between the particle and the local fluid is small (i.e. small particle Reynolds number,

Rep ≪ 1, such that the flow ‘around’ the particle may be considered as unsteady Stokes

flow) a formal equation of motion may be derived. Under these assumptions, the

equation of motion for an inertial particle moving in a fluid is (e.g. [61–65])

mp d

dt
vpi =

1

2
ρfCDAp|upi − vpi | (u

p
i − vpi ) +

(
mp − ρfVp

)
gi + ρfVp D

Dt
upi

+
ρfVp

2

(
D

Dt
upi −

d

dt
vpi

)

+
3

2
d2
√

πρfµf





t∫

0

D
Dtu

p
i − d

dtv
p
i√

t− t′
dt′ +

upi (0)− vpi (0)√
t





(2.5)

where xp(t) is the particle position, CD is the particle drag coefficient, Ap is the particle

cross sectional area, up = u(xp(t), t) is the fluid velocity at the particle position, Vp is the

particle volume and d is the particle diameter. The material derivative in equation (2.5)

is the fluid acceleration at the instantaneous particle position (not along the particle

trajectory), that is

D

Dt
upi =

∂

∂t
upi + upj

∂

∂xj
upi (2.6)

The first term on the RHS of equation (2.5) is the aerodynamic drag force. The nature of

the drag coefficient CD, and therefore the drag force, is in general a complicated function

of many different parameters, such as the particle shape, the particle orientation with

respect to the flow, the flow Reynolds number and Mach number. In the regime Rep ≪ 1

the Stokes drag coefficient may be used

CD =
24

Rep
(2.7)

Various empirical forms of CD have been obtained (see [61]) which are valid for Rep > 1,

among these is the widely used formula [66]
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CD =
24

Rep

(
1 + 0.15Re0.687p

)
(2.8)

which is considered to be valid up to Rep ≈ 800. CD is also affected when the particle is

moving near a boundary, such as a wall. Recent research has shown that the drag force

on a particle is significantly higher when the particle is very close to a wall boundary

as compared to when it is far from any boundaries [67].

The second term on the RHS of equation (2.5) is the ‘effective buoyancy’ force,

which is the buoyancy force acting on the particle subtracted from the weight of the

particle. The third term on the RHS of equation (2.5) is the force on the particle arising

from viscous stresses and pressure gradients in the fluid. The fourth term on the RHS

of equation (2.5) is the added mass force. The added mass force relates to the force

required to accelerate the surrounding fluid. The fifth term on the RHS of equation

(2.5) is the Basset history force. This term describes the effect of the delay in boundary

layer development surrounding the particle as the relative velocity between the local

fluid and the particle changes with time. For detailed derivation and discussion on the

particle equation of motion see [61–65]. In the cited papers additional terms appear

in the particle equation of motion which include lift forces and terms due to the non-

uniformity of the fluid velocity field (Faxen forces etc).

In this thesis a Stokes drag coefficient will be adopted, and the Basset history term in

equation (2.5) will be ignored. This is a sufficient approximation when ρp ≫ ρf [68].

However it is noted that for ρp → ρf , in which limit the added mass force becomes

important, the Basset history force may be also important. Equation (2.5) may then

be re-arranged to give

d

dt
vpi =

1

τp

(

1 + 1
2
ρf

ρp

) (upi − vpi ) +
2(ρp − ρf )

2ρp + ρf
gi +

3ρf

2ρp + ρf
D

Dt
upi (2.9)

where ρp is the particle material density, and

τp =
ρpd2

18µf
(2.10)

is the particle momentum response time which is the time required for a particle released

from rest to obtain 63% of the fluid free stream velocity [61]. The inverse particle

response time β = 1/τp shall also be used in this thesis. For later use in the PDF kinetic
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equation (see section 4.1), equation (2.9) shall be re-written as

d

dt
vpi = Fi (x

p(t),vp(t), t)
︸ ︷︷ ︸

Mean Force

+ fi (x
p(t), t)

︸ ︷︷ ︸

Fluctuating Force

(2.11)

where the mean aerodynamic force is

Fi (x
p(t),vp(t), t) =

1

τp

(

1 + 1
2
ρf

ρp

) (〈ui〉p − vpi ) +
2(ρp − ρf )

2ρp + ρf
gi +

3ρf

2ρp + ρf

〈 D

Dt
ui

〉p

(2.12)

where 〈u〉p = 〈u〉(xp(t), t),
〈

D
Dtui

〉p

=
〈

D
Dtui

〉

(xp(t), t), and the fluctuating aerodynamic force

is

fi (x
p(t), t) =

1

τp

(

1 + 1
2
ρf

ρp

)up′i +
3ρf

2ρp + ρf

(
D

Dt
upi

)′

(2.13)

where by definition

(
D

Dt
upi

)′

=
D

Dt
upi −

〈 D

Dt
ui

〉p

(2.14)

2.5 Particle-Boundary Interactions

For particle dispersion in pipe and channel flows, it is important to be able to quan-

tify the effect of particle-boundary interactions (which includes both particle-wall and

particle-particle collisions) on the motion of the particles. For rigid particles, there are

essentially three types of interaction; elastic collisions, inelastic collisions and deposi-

tion (or agglomeration in the case of particle-particle collisions). Another crucial factor

is whether or not the particles slide or rotate upon contact with a boundary. Factors

which influence the nature of the particle-boundary interactions include the malleability

of the particle and boundary materials, electrostatic forces and wall roughness.

There are essentially two different approaches to model the effect of the particle-

boundary interactions. The simplest approach is the ‘hard sphere’ approach (e.g. [61,

69]), in which the dynamics of the particle deformation upon impact with the boundary

is not explicitly accounted for. Rather, the particle dynamics pre and post collision are

related by an appropriate coefficient of restitution, in addition to coefficients of friction

if rough boundaries are being considered. A recent hard-sphere model has also been
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developed which takes into account cohesive and adhesive forces for particle interaction

with a boundary [70].

The second approach is the ‘soft sphere’ approach (e.g. [61,71]), in which the particle

deformation during the particle-boundary interaction is modelled and its effect upon

the instantaneous dynamics of the particle is accounted for. The soft sphere approach

is more physically meaningful than the hard sphere approach when the particles of in-

terest are deformable, however its computational expense is significantly greater. There

are additional, more complex models for accounting for particle-boundary interactions,

some of which consider the effect of hydrodynamic interactions (e.g. [72–76]).

If the wall (or boundary surface) is rough this also affects the particle-wall collision,

and indeed affects the overall characteristics of the particle dispersion (e.g. [77]). Some

models have attempted to account for this effect by modelling the particle-wall collision

as a stochastic process, where the rough wall is treated as randomly affecting the particle

motion upon collision with the wall (e.g. [78, 79]).

The models for particle-boundary collisions discussed thus far are strictly speaking

only of use in LPT simulations. However these models can be applied to formulate

boundary conditions for ESM which account for the particle-boundary interactions in

a statistical manner, and these are discussed in chapter 4.

38



Chapter3

Characteristics of Particle Dispersion in

Turbulent Channel Flows

Although the aim of the work presented in this thesis is to describe particle dispersion

in turbulent pipe flows, particle dispersion in turbulent channel flows is qualitatively

very similar. Further, mathematical models are easier to derive and implement for

channel flows than they are for pipe flows. Therefore particle dispersion in turbulent

channel flows will be the focus of attention in this thesis. In this chapter some of the

particularities of this type of multiphase flow will be discussed, and a summary will be

given of the current understanding of particle dispersion in turbulent channel flows.

 

x1

x2
x3

Mean Flow

Lx

Lz

2H

Figure 3.1: Diagram of Channel Flow. The flow is between two flat parallel plates
separated in the wall-normal direction by a distance 2H. x1 is the ‘stream-wise’ direction,
x2 is the ‘wall-normal’ direction, and x3 is the ‘span-wise’ direction (with (x1,x2,x3)≡
(x,y,z)). The mean fluid velocity is in the x1 direction.

Figure 3.1 shows the typical geometry used for numerical studies of turbulent channel

flows. Unlike a ‘true’ enclosed channel flow, the channel flow in numerical simulations

is a flow between two flat parallel plates separated in the wall-normal direction, where
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the mean flow rate is in the stream-wise direction and the flow is made periodic in

the stream-wise and span-wise directions with periodic lengths Lx and Lz respectively.

Channel flow simulation results are usually expressed in ‘wall units’, where the respec-

tive variables are scaled using appropriate combinations of the fluid kinematic viscosity

νf and the wall friction velocity uτ (also in some cases the half channel height H). The

superscript ‘+’ shall be used to indicate that a variable is being expressed in wall units.

Of particular importance are

x+i =xi
uτ
νf

(3.1)

τ+p =τp
u2τ
νf

(3.2)

u+i =
ui
uτ

(3.3)

However, for notational convenience and simplicity the superscript ‘+’ will be omitted

henceforth in this thesis and unless otherwise stated, all results presented in this thesis

will be expressed in terms of wall units.
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Figure 3.2: Diagram showing the mean stream-wise fluid velocity as a function of
distance from the wall.
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Figure 3.3: Plot showing the diagonal components of the fluid velocity Reynolds stress
tensor.

Figures 3.2 and 3.3 show solutions for the mean stream-wise fluid velocity and the di-

agonal components of the fluid velocity Reynolds stress tensor, plotted against distance

from the wall, and are taken from [4] in which a DNS of turbulent channel flow was

performed. The mean velocity profile in a turbulent channel flow can be considered to

be linear in the viscous sublayer (y < 5) and nonlinear everywhere else. The diagonal

components of the fluid velocity Reynolds stress tensor in a turbulent channel flow

are strongly inhomogeneous and anisotropic. To leading order, 〈u′1u′1〉 and 〈u′3u′3〉 are

proportional to y2 whilst 〈u′2u′2〉 is proportional to y4 (e.g. [21]).

The results in figures 3.2 and 3.3 highlight three characteristic features of a turbulent

channel flow which are particularly important for particle dispersion; there is a strong

mean shearing of the fluid velocity field (revealed in the large wall-normal gradients of

the mean stream-wise fluid velocity), the statistics are strongly anisotropic and very

strongly inhomogeneous in the wall-normal direction. Other statistics, not shown here,

reveal the same features; strong anisotropy and very strong inhomogeneity in the wall-

normal direction. However, the turbulence statistics are homogeneous in the stream-

wise and span-wise directions. It can be seen from figures 3.2 and 3.3 that the region of

very strong inhomogeneity and anisotropy is concentrated within the region 0 ≤ y ≤ 100;

this region may be considered to be the turbulent boundary layer of the channel flow

(this is of course not a strict definition of the domain of the turbulent boundary layer

which would properly be defined by a parameter such as the momentum thickness.

However, in this context this rather loose definition of the turbulent boundary layer is

sufficient).

In a turbulent channel flow there are essentially three causes of particle dispersion

(neglecting molecular diffusion); the mean shearing of the fluid, body forces acting on

the particles and the fluid turbulence. Inertial particles initially uniformly distributed

across the channel will disperse because of the mean shear; particles near the center of
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the channel will move with greater mean velocities than those near the wall and so the

particles will disperse non-uniformly across the channel.

Body forces, such as gravity, will cause an initially uniform distribution of particles

to migrate in the direction of the body force. For example, particles dispersed in a

horizontal channel will tend to settle to the bottom of the channel due to gravitational

settling. However the particles will not all simply settle and remain at the bottom of

the channel under gravity; the fluid turbulence suspends particles within the flow field,

and particles which have settled to the bottom of the channel may be resuspended by

the turbulence.

Unlike the effect of the mean shearing of the fluid and body forces, the effect of the

fluid turbulence on the particle dispersion process is complex, and at present, only par-

tially understood. One characteristic feature of a turbulent flow field is that, whether

homogeneous or inhomogeneous, it will demix a suspension of initially uniformly dis-

tributed inertial particles; a feature resulting from the interaction between particles and

turbulent structures in the flow field, with particles tending to accumulate in regions of

high strain and low vorticity (e.g. [80]). Nevertheless, for particle dispersion in a sta-

tistically steady state homogeneous isotropic turbulent flow field the average particle

concentration is necessarily spatially uniform (when there are no body forces acting on

the particles). However, in a turbulent channel flow, even when there are no body forces

acting on the particles, the average particle concentration in the wall-normal direction

may be strongly non-uniform. In particular, it is found that inertial particles accumu-

late in the near-wall regions of the channel [9,81] (the same effect is found in pipe flows,

see [8] for example), and the effect is commonly referred to as ‘turbophoresis’ [82, 83].

From a statistical perspective, turbophoresis describes a particle drift down gra-

dients in the wall-normal particle kinetic stresses, and its strength depends upon the

particle inertia (this strength being zero in the limits τp → 0 and τp → ∞). The kinetic

energy that inertial particles receive in regions of intense turbulence is ‘carried’ by the

particles into regions of lower turbulence intensity, which gives rise to a skewness in

the particle velocities. The particle velocity skewness is directly related to the tur-

bophoretical drift [82,84]. From a dynamic perspective, turbophoresis is understood in

the following way; strongly correlated ‘sweep’ events (fluid downwash towards the wall)

bring particles into the near-wall region, where they accumulate in or below low speed

streaks in the turbulent velocity field [85]. ‘Ejection’ events (fluid upwash away from

the wall) are responsible for transferring particles away from the wall, but they are less

efficient in particle transport than sweep events, and hence the particles accumulate and

remain for a long time in the near-wall region of the flow. For a detailed discussion on

the interaction between turbulent near-wall structures and inertial particle dispersion,

along with its relation to turbophoresis see [85].
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The nature of the particle-wall interaction can strongly affect the near-wall accumu-

lation of inertial particles in a channel flow. Most research has focused on either deposit-

ing particles (e.g. [86, 87]) or perfectly elastic particle-wall collisions (e.g. [2, 9, 81, 84]).

The results show that the near-wall particle accumulation is much greater for elastic

collisions than for depositing particles, since particles which elastically rebound from

the wall tend to (depending on the particle inertia) remain ‘trapped’ near the wall for

long periods of time.

Another feature of particle dispersion in a turbulent channel flow is that the particles

preferentially sample the fluid velocity field (e.g. [2,81,88]). This feature is intrinsically

related to the non-uniform particle concentration, and may be understood to be the

result of the preferential motion of inertial particles in sweep and ejection events (as

argued in [85]) .

up′2

y

Figure 3.4: Average wall-normal fluctuating fluid velocity at the particle position for
different τp values. Symbols: (�) τp = 1.2; (♦) τp = 6.8; (∇) τp = 27.1. Figure taken
from [2] (the additional data in the figure indicated by the broken lines is not relevant
to the present discussion).

Figures 3.4 and 3.5 show results of the average fluctuating wall-normal and stream-wise

fluid velocity at the particle position , respectively, for different particle response times.

The figures are taken from [2] in which a DNS of particle dispersion in a turbulent

channel flow was performed (with dilute particle mass loading, no gravity and elastic

particle-wall collisions). It can be seen from figure 3.4 that up′2 depends strongly upon

both the wall-normal position and τp, taking on values greater than and less than 0 in

different parts of the domain. In the region where up′2 > 0 the particles preferentially
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sample ejection events in the turbulence cycle by which they are transported away from

the wall, whereas in the region where up′2 < 0 the particles preferentially sample sweep

events by which they are transported towards the wall. In the limits τp → 0 and τp → ∞,

up′2 → 0 everywhere (i.e. no preferential sampling). In general, the turbophoretical drift

and the drift arising from the preferential sampling of the fluid velocity field are in

opposition to each other.

up′1

y
Figure 3.5: Average stream-wise fluctuating fluid velocity at the particle position for
different τp values. Symbols: (�) τp = 1.2; (♦) τp = 6.8; (∇) τp = 27.1. Figure taken
from [2] (the additional data in the figure indicated by the broken lines is not relevant
to the present discussion).

It can be seen from figure 3.5 that up′1 also depends strongly upon both the wall-normal

position and τp, taking on values greater than and less than 0 in different parts of the

domain. The negative near-wall values of up′1 confirm that inertial particles tend to

cluster in near-wall stream-wise streaks, structures which have stream-wise velocities

less than the local mean stream-wise velocity. The tendency of inertial particles to

segregate into stream-wise streak structures has been found in other studies also (see,

for example, [89–92]).

Such characteristic features as these (inhomogeneous particle concentrations, prefer-

ential sampling of the turbulent flow field etc) which have been discovered through LPT

and experimental studies must be captured in a statistical manner through whichever

ESM is pursued to model particle dispersion in a turbulent channel flow. In the next

chapter a PDF kinetic equation will be considered which provides a fundamentally

sound way to model particle dispersion in a turbulent channel flow. From this PDF

equation, continuum equations can be derived and it is shown that they capture the

effect of the preferential sampling of the turbulent flow field and predict inhomogeneous

particle concentrations.
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Chapter4

The PDF Kinetic equation and its

associated Continuum Equations

In the previous chapter consideration was given to the motion of inertial particles in

turbulent channel flows and boundary layers. The objective of the work presented in

this thesis is to develop mathematical models to describe the motion of inertial particles

in such flows.

The motion of macroscopic inertial particles in a classical fluid which is turbulent

is entirely deterministic, and is not intrinsically random. Nevertheless, just as with

many thermodynamic and chaotic systems, turbulence appears to be random, due to

the intractability of the precise nature of the initial conditions and the large number of

degrees of freedom. Therefore, just as statistical physics has been successfully used to

describe thermodynamical systems (Boltzmann equation etc), it may also be used to

describe the motion of inertial particles in a turbulent flow.

When developing a PDF (probability density function) equation the first and most

important choice is what variables to retain in the phase-space vector, that is, what

variables should be described by the PDF? For example, in the case of particles dispers-

ing in turbulence the particle position, particle velocity, the fluid velocity at the particle

position, the fluid acceleration at the particle position, the rate of change of the fluid

acceleration at the particle position etc may be all included in the phase-space vector

of the PDF. Any variables which are not retained in the phase-space vector will require

closure in the transport equation for the PDF. The important decision is then to decide

which variables are really of interest, and furthermore, which variables, if not included

in the phase-space vector, can be reliably modelled and closed in the PDF transport

equation. In the case of particle dispersion in turbulent flows two approaches have been

used. The first is to retain only the particle position and velocity in the phase-space

vector in the tradition of the Boltzmann equation. This PDF equation, known as the
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kinetic equation, has been developed in several works [83, 93–96]. The other approach

has been to retain, in addition to the particle position and velocity, the fluid velocity

at the particle position. This approach has been developed extensively in [42, 97].

The pre-defined scope of the research undertaken in this thesis was to consider

developments to the kinetic approach, and so only this form will be considered in this

thesis. However, it is recognised that the higher dimensional PDF equation in [42, 97]

has its own advantages over the kinetic approach and these, along with a discussion on

the issue of which variables to retain in the phase-space vector are considered in detail

in [42].

In this chapter a summary will be given of a PDF (probability density function)

kinetic equation for particle position and velocity in phase-space which has previously

been derived by Reeks [83], Swailes [93], Hyland [94], Zaichik [95] and Pozorski &

Minier [96]. The PDF kinetic equation is similar to the Boltzmann equation, only

that instead of inter-particle collisions causing the dispersion of the particles it is the

turbulence, treat as a stochastic process correlated in space and time which causes the

particles to be dispersed throughout the phase-space.

The derivation of the PDF kinetic equation for particle position and velocity in a

turbulent flow field will be presented in order to highlight subtle but important differ-

ences between the PDF equations presented in the cited works. Then the continuum

equations which are obtained from the PDF kinetic equation are introduced, and a

discussion is given regarding the various terms in them that require closure.

4.1 Derivation of PDF kinetic equation

Begin by defining a Lagrangian PDF for particle position and velocity at time t corre-

sponding to a single realisation of the turbulent flow field and initial conditions xp(0),

vp(0)

P(x,v, t) = δ(xp(t)− x)δ(vp(t)− v) (4.1)

where δ(...) is the Dirac delta function, x and v are the fixed phase-space position and

velocity variables (Eulerian), xp(t) and vp(t) are the particle position and velocity at

time t (Lagrangian). Formal differentiation of equation (4.1) with respect to t yields

∂P
∂t

= − ∂

∂xi
[vpi P]− ∂

∂vi
[(Fi(x

p(t),vp(t), t) + fi(x
p(t), t))P] (4.2)
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where F (xp(t),vp(t), t) and f(xp(t), t) are the mean and fluctuating aerodynamic forces

acting upon the particle (see equation (2.11)). By ensemble averaging equation (4.2)

over all realisations of f and over all initial conditions xp(0), vp(0) a transport equation

for the PDF, p , is obtained for the particle phase-space density at time t

∂p

∂t
= − ∂

∂xi
[vip]−

∂

∂vi
[Fi(x,v, t)p]−

∂

∂vi
〈fi(xp(t), t)P〉 (4.3)

where

p(x,v, t) = 〈P(x,v, t)〉 (4.4)

Equation (4.3) is unclosed since 〈f(xp(t), t)P〉 is unknown. This unknown term, re-

ferred to as the phase-space diffusion current, describes the average effect that the fluid

turbulence has on dispersing the particles throughout the flow field. It is therefore

necessary that this term is closed correctly if the PDF equation is to accurately de-

scribe particle dispersion in a turbulent fluid. Three methods have been used to close

this unknown term; Reeks [83] used the Lagrangian History Direct Interaction (LHDI)

approximation, Swailes [93], Hyland [94] and Zaichik [95] used the Furutsu-Novikov

(FN) correlation splitting technique and Pozorski & Minier used Van Kampen’s (VK)

method [96]. Whilst it is claimed in the literature that each method produces exactly

the same result (e.g. [98]) they do not, and this will be discussed in section 4.2.

The FN technique for closing the phase-space diffusion current is as follows. If f(x, t)

is modelled as a Gaussian stochastic field correlated in both space and time (although

FN can also be used to deal with non Gaussian stochastic fields, see [93]), then using

the FN formula gives the exact result

〈fi(xp(t), t)P〉 =
t∫

0

∫

x′

〈
δP

δfj(x′, t′)dx′dt′
Rji(x

′, t′;x, t)

〉

dx′dt′, 0 ≤ t′ ≤ t (4.5)

where R(x′, t′;x, t) = 〈f(x′, t′)f(x, t)〉 is the Eulerian two-point, two-time correlation tensor

for f , and
δP

δfj(x′, t′)dx′dt′

describes how a perturbation in the flow field at (x′, t′) will affect the phase-space posi-

tion of the particle at time t. Then
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δP
δfj(x′, t′)dx′dt′

= −
(
∂P
∂xk

δxpk(t)

δfj(xp′, t′)dt′
+
∂P
∂vk

δvpk(t)

δfj(xp′, t′)dt′

)

δ(xp′ − x′) (4.6)

where xp′ is the particle position at time t′. Substituting (4.6) into (4.5) gives

〈fi(xp(t), t)P〉 = −
t∫

0

∫

x′

〈(
∂P
∂xk

δxpk(t)

δfj(xp′, t′)dt′
+
∂P
∂vk

δvpk(t)

δfj(xp′, t′)dt′

)

Rji(x
′, t′;x, t)δ(xp′ − x′)

〉

dx′dt′

(4.7)

Since R is also a function of x equation (4.7) may be expressed as

〈fi(xp(t), t)P〉 =
t∫

0

∫

x′

∂

∂xk

〈
δxpk(t)

δfj(xp′, t′)dt′
PRji(x

′, t′;x, t)δ(xp′ − x′)

〉

−
〈

δxpk(t)

δfj(xp′, t′)dt′
P ∂

∂xk
Rji(x

′, t′;x, t)δ(xp′ − x′)

〉

+
∂

∂vk

〈
δvpk(t)

δfj(xp′, t′)dt′
PRji(x

′, t′;x, t)δ(xp′ − x′)

〉

dx′dt′

(4.8)

Now because averaging and integrating processes commute [99], the order of the ensem-

ble averages and spatial integration in equation (4.8) may be reversed so that integration

over all dx′ may be performed. Also, since P(x,v, t) = δ(xp(t) − x)δ(vp(t) − v), the joint

probabilities in equation (4.8) may be re-written in terms of conditional probabilities

to give

〈fi(xp(t), t)P〉 = −
t∫

0

∂

∂xk
p

〈
δxpk(t)

δfj(xp′, t′)dt′
Rji(x

p′, t′;x, t)

〉

x,v

− p

〈
δxpk(t)

δfj(xp′, t′)dt′
∂

∂xk
Rji(x

p′, t′;x, t)

〉

x,v

+
∂

∂vk
p

〈
δvpk(t)

δfj(xp′, t′)dt′
Rji(x

p′, t′;x, t)

〉

x,v

dt′

(4.9)

where the subscripts to the angled brackets indicate conditional ensemble averaging

over all particle trajectories which satisfy xp(t) = x and vp(t) = v. Equation (4.9) is

generally written in terms of three dispersion tensors

〈fi(xp(t), t)P〉 = −
(

∂

∂xk
pλki +

∂

∂vk
pµki − pκi

)

(4.10)
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where the dispersion tensors are given by

λki(x,v, t) =

t∫

0

〈
δxpk(t)

δfj(xp′, t′)dt′
Rji(x

p′, t′;x, t)

〉

x,v

dt′ (4.11)

µki(x,v, t) =

t∫

0

〈
δvpk(t)

δfj(xp′, t′)dt′
Rji(x

p′, t′;x, t)

〉

x,v

dt′ (4.12)

κi(x,v, t) =

t∫

0

〈
δxpk(t)

δfj(xp′, t′)dt′
∂

∂xk
Rji(x

p′, t′;x, t)

〉

x,v

dt′ (4.13)

Therefore the final form of the PDF kinetic equation is

∂p

∂t
= − ∂

∂xi
(vip)−

∂

∂vi
(Fip) +

∂

∂vi

(
∂

∂xk
(λkip) +

∂

∂vk
(µkip)− κip

)

(4.14)

It is important to note that the expression for 〈f(xp(t), t)P〉 in equation (4.10) is not

closed in the proper sense. Rather, equation (4.10) provides a way to relate the unknown

diffusion current to statistics defined in the dispersion tensors which are in principle

easier to close since these statistics are better understood. The dispersion tensors them-

selves require closure since they depend upon the statistics of the flow field evaluated

along stochastic particle trajectories (i.e. they contain xp(t′), xp(t) which are unknown).

In equations (4.11) to (4.13) an expression for the response tensor

Gkj =
δxpk(t)

δfj(xp′, t′)dt′

is needed. The response tensor describes the effect of a perturbation in f at the particle

position at time t′ upon the position of the particle at time t (t′ ≤ t). An evolution

equation for the response tensor is constructed by taking the functional derivative of

the particle equation of motion

d2

dt2
δxpk(t)

δfj(xp′, t′)dt′
=

δ

δfj(xp′, t′)dt′
[Fk(x

p(t),vp(t), t) + fk(x
p(t), t)] (4.15)

Then

d2

dt2
Gkj =

∂Fk

∂vi

d

dt
Gij +

(
∂Fk

∂xi
+
∂fk
∂xi

)

Gij (4.16)
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In [93] and [94] it was assumed that

δfk(x
p, t)

δfj(xp′, t′)dt′
= δ(t− t′)δkj (4.17)

however in general this assumption is incorrect; if a particle experiences a perturbation

at time t′ then since its trajectory has been modified, the fluctuating force f it will

experience at a later time will differ compared to that which it would have experienced

had its trajectory not been perturbed. The correct form of the response tensor evolution

equation is therefore given in equation (4.16). Nevertheless, in previous work (4.17) was

invoked, along with the assumption that F can be approximated as being linear in x

and v. With these assumptions equation (4.16) reduces to a deterministic ordinary

differential equation, whose solution is the Green tensor for the particle equation of

motion. For example, with Stokes drag acting on the particles with a linear mean shear

in the fluid turbulence (γ is the gradient of the mean fluid velocity)

Fk(x
p(t),vp(t), t) = βγδk1δj2x

p
j (t)− βvpk(t) (4.18)

equation (4.16) reduces to (under the aforementioned approximations)

d2

dt2
Gkj + β

d

dt
Gkj − βγδk1δi2Gij = δ(t− t′)δkj (4.19)

where G is the Green tensor for the particle equation of motion (and G is now the

approximation to G). Strictly speaking, equation (4.17) is only true if f(t) or if xp′ = xp.

Since the response tensors will not in general tend to zero for t′ ≪ t, the integrand in the

dispersion tensors (see equations (4.11) to (4.13)) tends to zero for times greater than the

characteristic correlation times in R(xp′, t′;x, t). For large particles (large compared to

the timescale on which the local turbulence fluctuates), it is a reasonable approximation

to say that xp′ ≈ xp for |t′−t| ≤ the local fluid turbulence correlation time scale, in which

case G ≈ G. However for smaller particles this approximation will be less applicable

and in chapter 9 the effect of the approximation G ≈ G upon the dispersion tensors is

examined over a range of particle sizes.

4.2 Alternative PDF equation derivations

In section 4.1, a PDF kinetic equation was derived using the FN technique, consistent

with the derivation presented in [93]. However, there are alternative derivations of
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the PDF kinetic equation in the literature, some using alternative closure methods

for the phase-space diffusion current. Reeks [83] used the Lagrangian History Direct

Interaction (LHDI) approximation, Hyland [94] and Zaichik [95] used the Furutsu-

Novikov (FN) correlation splitting technique and Pozorski & Minier used Van Kampen’s

(VK) method [96]. In this chapter the PDF equations in the cited works are analysed

in order to highlight the fact that they are not the same, even though in the literature

they are claimed to be (e.g. [98]).

4.2.1 Reeks result using LHDI

An important observation is that the dispersion tensors defined in (4.11) to (4.13)

which have been obtained using the FN closure method are not exactly the same as

those obtained by Reeks using LHDI [83]. The difference lies in the form of R(x′, t′;x, t).

In equations (4.11) to (4.13), R(x′, t′;x, t) is given by

Rji(x
′, t′;x, t) = 〈fj(x′, t′)fi(x, t)〉 (4.20)

which is the predefined Eulerian two-point, two-time correlation tensor for f and de-

pends upon all realisations of the flow field f . Reeks, using LHDI, has R(x′, t′;x, t) given

by

Rji(x
′, t′;x, t) = fj(x

′, t′)fi(x, t) (4.21)

These forms of R are intrinsically different, since equation (4.20) is deterministic and

equation (4.21) is stochastic. The difference this makes is that the FN defined dispersion

tensors depend upon the full Eulerian statistics of f whereas the LHDI dispersion

tensors depend upon the statistics of f sampled by the inertial particles. Since inertial

particles preferentially sample turbulent flow fields in turbulent boundary layers the

FN and LHDI defined dispersion tensors, and hence their PDF equations, are therefore

not equivalent.

A fundamental reason why the resulting PDF equations from LHDI and FN are

different (in terms of the way their dispersion tensors are defined) is that in LHDI the

flow field seen by the particles is assumed Gaussian whereas in FN it is the Eulerian

flow field which is assumed to be Gaussian. Inertial particles preferentially sample the

statistics of turbulent flow fields such that even if the Eulerian flow field is Gaussian,

the flow field seen by the particles may be non-Gaussian. Therefore the nature of the

Gaussian assumption in the FN and LHDI formulations is fundamentally different.
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Nevertheless, in the limit τp → ∞ LHDI and FN PDF equations are equivalent, in

which limit both PDF equations reduce to the Fokker-Planck equation.

4.2.2 Zaichik and Hyland result using FN

Hyland [94] and Zaichik [95] use the FN technique to derive the PDF kinetic equation

and yet also obtain a final expression with R(x′, t′;x, t) = f(x′, t′)f(x, t) in the dispersion

tensors, just as Reeks obtained using LHDI. However the analysis in equations (4.5) to

(4.9) in section 4.1 shows quite clearly that using the FN formula, the form of R in the

dispersion tensors must be that given in equation (4.20).

In [95] (and in later papers such as [100,101], etc) the closure Zaichik (& co-workers)

obtains for the phase-space diffusion current using FN is

〈fi(xp(t), t)P〉 = −τp
(

Λij(x, t)
∂p

∂vj
+Mij(x, t)

∂p

∂xj

)

(4.22)

where τpΛ is claimed to be equivalent to equation (4.12) and τpM equivalent to equation

(4.11). However equation (4.22) is not equivalent to equation (4.10) for two reasons.

First of all, the closed expression for the phase-space diffusion current given in

equation (4.22) does not contain the κ dispersion tensor. The argument given is that

the κ dispersion tensor ‘cancels out’ via

∂

∂xk
pλki − pκi = p

∂

∂xk
λki − pκi + λki

∂

∂xk
p

= λki
∂

∂xk
p, with κi =

∂

∂xk
λki

(4.23)

However

∂

∂xk
λki − κi =

t∫

0

∫

x′

Rji(x
′, t′;x, t)

[

∂

∂xk

〈
δxpk(t)

δfj(xp′, t′)dt′
δ (xp′ − x′)

〉

x,v

]

dx′dt′

6= 0 except in the limits τp → 0, τp → ∞

(4.24)

Of particular importance is the fact that by assuming κi = ∂kλki a term in the particle

momentum equation is removed, a term which is not zero for inertial particles (see

section 4.3.3).

Secondly, in [95] a PDF equation for particle position, velocity and temperature

is derived. Therefore the PDF at time t corresponding to a single realisation of the

turbulent field and a single realisation of xp(0), vp(0), θp(0) is defined in [95] to be
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P = δ(xp(t)− x)δ(vp(t)− v)δ(θp(t)− θ) (4.25)

where θp(t) is the particle temperature at time t, θ is a temperature phase-space variable,

and the PDF obtained by averaging over all realisations of the turbulent field and over

all initial conditions is p = 〈P〉. In view of the form of equation (4.25), the dispersion

tensors in equation (4.22) ought to be functions of x,v,θ, t, yet they are not. The reason

for this is believed to be as follows; in [95] the form of the FN formula quoted is (see

equation (5) in the paper quoted)

〈fi(xp(t), t)P〉 =
t∫

0

∫

x′

〈
δP(x, t)

δfj(x′, t′)dx′dt′
Rji(x

′, t′;x, t)

〉

dx′dt′, t′ ≤ t (4.26)

which is incorrect in view of the form of equation (4.25). The correct form of the FN

formula would have been

〈fi(xp(t), t)P〉 =
t∫

0

∫

x′

〈
δP(x,v,θ, t)

δfj(x′, t′)dx′dt′
Rji(x

′, t′;x, t)

〉

dx′dt′, t′ ≤ t (4.27)

However because Zaichik uses equation (4.26) the dispersion tensors become functions

of x, t only.

Finally, in [94] Hyland makes an approximation which results in the trajectories

xp(t) in the dispersion tensors becoming deterministic (i.e. not depending upon f ; see

page 6182 in [94]). This approximation is said to be invoked in order to be able to

evaluate the spatial integral in the FN expression (i.e. the step going from equation

(4.8) to (4.9)). This is unnecessary since the spatial integration may be performed by

the process described in section 4.1. The trajectories in the dispersion tensors defined

by FN (equations (4.11) to (4.13)) are stochastic, not deterministic, and are defined by

the full flow field, i.e. by
d2

dt2
xpi (t) =

d

dt
vpi (t) = Fi + fi

Furthermore, it is claimed in [94] that the trajectories in the LHDI dispersion tensors

are also deterministic, being based on the particle equation of motion in the absence

of f . This is not the case; the trajectories in the dispersion tensors defined by Reeks

using LHDI are also stochastic.
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4.2.3 Pozorski & Minier result using VK

In Pozorski & Minier [96] a PDF kinetic equation was derived using the Van Kampen

(VK) method (e.g. [102,103]). It was recognised in [98] that the original result obtained

by Pozorski & Minier in [96] was incorrect and in [98] the correct solution using VK

to derive the PDF equation was given (the authors of [98] affirm that their corrected

result was verified as being so by correspondence with Pozorski). Therefore it is the

result given in [98] which will be considered.

Once again, in [96] and [98] it is claimed that the result obtained using VK is

identical to that obtained by Reeks using LHDI, however this is not the case. First of

all, in [98] the PDF equation is written as (some of the notation used in [98] is changed

in what follows to make it consistent with the notation used in this thesis)

∂

∂t
p = A0p+ α

〈

A1P
〉

(4.28)

where P = δ(xp(t) − x)δ(vp(t) − v), p = 〈P〉, α represents the level of fluctuations and

A0(x,v, t) and A1(x,v, t) are operators defined as

A0(x,v, t) =− ∂

∂xi
[vi·]−

∂

∂vi
[Fi·] (4.29)

αA1(x,v, t) =− ∂

∂vi
[fi·] (4.30)

such that

A0(x,v, t)p =− ∂

∂xi
[vip]−

∂

∂vi
[Fip] (4.31)

α
〈

A1(x,v, t)P
〉

=− ∂

∂vi

〈

fiP
〉

(4.32)

The VK method can then be used to close the term α
〈

A1(x,v, t)P
〉

. The VK closure

given in [98] is said to be appropriate for ατc ≪ 1, where τc is the correlation time

for A1, and it would therefore appear that the VK result is not exact, but is only an

approximation valid for ατc ≪ 1 (and it is not clear that such a condition is satisfied

for a turbulent boundary layer). Secondly it is stated that the VK result used to close

α
〈

A1(x,v, t)P
〉

is exact when A1 is Gaussian [98] (although it would seem to be only

exact in the limit ατc ≪ 1).

Here then are two fundamental differences between the VK result and either the FN

or LHDI result. First of all, the FN and LHDI results are exact when f is Gaussian (or
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more precisely, FN is exact when the field f is Gaussian, and LHDI is exact when f seen

by the particles is Gaussian) whereas the VK result appears to be an approximation,

valid only if ατc ≪ 1.

Secondly a Gaussian assumption for the operator A1 is incompatible with the the

nature of the Gaussian assumption in either FN or LHDI. In FN it is the Eulerian

flow field f which is assumed Gaussian, whereas in LHDI it is f seen by the particles

which is assumed Gaussian. The VK assumption that the operator A1 is Gaussian is

incompatible with either the FN or LHDI Gaussian assumptions.

Now in equation (4.121) in [98], the integrand (from which their dispersion tensors

eventually arise) contains correlations of f evaluated along trajectories defined by

d2

dt2
X p

i (t) =
d

dt
Vp
i (t) = Fi(X

p(t),Vp(t), t) (4.33)

so that the integrand in equation (4.121) in [98] contains f(X p(t′), t′|x,v, t), that is,

f evaluated at time t′ along deterministic particle trajectories (defined by equation

(4.33)) which arrive at phase-space position x,v at time t. At the end of their VK

closure analysis the dispersion tensors they obtain (see equation (4.125) in [98]) contain

f(X p(t′), t′|x,v, t)1. Therefore the VK result cannot be consistent with the LHDI result

since the LHDI result contains f(xp(t′), t′|x,v, t), that is, f evaluated along stochastic

trajectories defined by

d2

dt2
xpi (t) =

d

dt
vpi (t) = Fi(x

p(t),vp(t), t) + fi(x
p(t), t) (4.34)

which arrive at phase-space position x,v at time t. The VK result expressed in equation

(4.125) in [98] can be manipulated (using simple product rule) to yield three dispersion

tensors which are superficially similar to the LHDI forms for λ,µ and κ, however they

are not the same for the reasons just presented.

Therefore, a striking difference between the VK and LHDI (and also FN) closures is

that the VK dispersion tensors are closed, whereas the LHDI and FN dispersion tensors

involve non-local correlations of f evaluated along stochastic particle trajectories and

therefore require closure.

It has therefore been demonstrated that the FN, LHDI and VK closures offered for the

1Note that due to a lack of notational clarity it is not quite clear whether the dispersion tensors
they obtain (see equation (4.125) in [98]) actually contain f(xp(t′), t′|x,v, t) or f(X p(t′), t′|x,v, t).
However, if one follows through their analysis starting from equation (4.121) in [98] to their final
answer in equation (4.125), it is clear that their dispersion tensors ought to contain f(X p(t′), t′|x,v, t)
not f(xp(t′), t′|x,v, t).
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PDF kinetic equation in the literature are not equivalent, but differ in some fundamental

aspects. The PDF equation given in section 4.1, consistent with the derivation in [93]

will be used in this thesis since it is known to be exact for Gaussian flow fields, and

in addition, since, as demonstrated in appendix C this PDF kinetic equation can be

proven to be free from any spurious drifts, whereas such proofs for the LHDI and VK

results have not been offered and it is unclear whether or not they contain spurious

drift.

4.3 Continuum Equations

The continuum equations for particles dispersed in a turbulent flow are given by the

velocity moments of the PDF kinetic equation [104]. The advantage of constructing the

continuum equations in this manner is that since the PDF equation has been derived

directly from the particle equation of motion, all of the physics consistent with the un-

derlying particle equation of motion will be incorporated into the continuum equations,

rather than having to intuitively ‘guess’ what terms should be present in the continuum

equations.

Integrating the PDF equation (equation (4.14)) over v yields the particle continuity

equation

∂

∂t
ρ+

∂

∂xi
(ρvi) = 0 (4.35)

where the particle concentration (or number density) is defined as the integral of the

Lagrangian PDF p (x,v, t)

ρ(x, t) =

∫

v

p (x,v, t) dv (4.36)

and

vi(x, t) =
1

ρ (x, t)

∫

v

vip (x,v, t) dv (4.37)

is the ith component of the density weighted mean particle velocity. Multiplying the

PDF equation by v and integrating over v yields the particle momentum equation
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ρ

(
∂

∂t
vi + vk

∂

∂xk
vi

)

= − ∂

∂xk

[
ρ(ckci + λki)

]
+ ρ(F i + κi) (4.38)

where ci = vi − vi is the fluctuating component of the particle velocity and

ckci(x, t) =
1

ρ (x, t)

∫

v

ckcip (x,v, t) dv (4.39)

is the ki component of the density weighted particle Reynolds stress tensor. Similarly

λki(x, t) =
1

ρ (x, t)

∫

v

λkip (x,v, t) dv (4.40)

µki(x, t) =
1

ρ (x, t)

∫

v

µkip (x,v, t) dv (4.41)

κi(x, t) =
1

ρ (x, t)

∫

v

κip (x,v, t) dv (4.42)

are the velocity averaged forms of the particle dispersion tensors, and

F i(x, t) =
1

ρ (x, t)

∫

v

Fip (x,v, t) dv (4.43)

is the ith component of the density weighted mean force acting on the particle. Mul-

tiplying the PDF equation by vv and integrating over v yields the particle Reynolds

stress equation

ρ

(
∂

∂t
cicj + vk

∂

∂xk
cicj

)

= − ∂

∂xk
(ρcicjck) + ρ(Sij + Sji)

Sij = −(cick + λik)
∂

∂xk
vj + ci(Fj + κj) + µij −

1

ρ

∂

∂xk
(ρλkicj)

(4.44)

where

cicjck(x, t) =
1

ρ (x, t)

∫

v

cicjckp (x,v, t) dv (4.45)

is the ijk component of the density weighted particle Reynolds stress flux tensor.
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4.3.1 Closure Approximations in the Continuum Equations

Chapman-Enskog approximation

The PDF equation yields an infinite set of coupled moment equations and therefore

at some level the system must be closed in order to obtain a finite, tractable set of

continuum equations which can be used to model particle dispersion in a turbulent flow

field. The set of continuum equations is usually closed at the second order level by

applying the Chapman-Enskog closure approximation [101,104]

cicjck = −τp
3

(
(
cicn + λin

) ∂

∂xn
cjck +

(
cjcn + λjn

) ∂

∂xn
cick +

(
ckcn + λkn

) ∂

∂xn
cjci

)

(4.46)

The Chapman-Enskog approximation assumes that the fourth order correlations of the

fluctuating particle velocity may be approximated as quasi-Gaussian, such that

cncicjck ≈ cnci cjck + cncj cick + cnck cicj (4.47)

For particle dispersion in a turbulent boundary layer it is known that the particle

velocity PDF’s are far from Gaussian, and as such the use of a Chapman-Enskog ap-

proximation is perhaps questionable. Wang et.al. [105] tested a Chapman-Enskog type

approximation against large eddy simulation (LES) of particle dispersion in a turbu-

lent channel flow. They found that the Chapman-Enskog approximation agreed in a

qualitative sense with the LES data, but there was some quantitative disagreement.

Velocity Independence of the Particle Dispersion Tensors

In the particle Reynolds stress equation (equation (4.44)) a closure is required for cκ

and λc. By definition, κ and λ are velocity dependent (see equations (4.11) and (4.13))

and therefore cκ and λc are not zero in general. Consider the form of λ given in equa-

tion (4.48) in which the unknown correlation tensor is 〈R(xp′, t′;x, t)〉
x,v. This is the

correlation tensor of the fluctuating flow field seen by inertial particles which arrive at

phase-space position x,v at time t in the flow field. Particles which move toward and

arrive at x at t with high velocities will have seen a faster rate of decorrelation in the

flow field than particles which move toward and arrive at x at t with small velocities.

Since the correlations of the flow field seen by particles are highly dependent upon the

particle velocities, cκ and λc are never zero except in the limit τp → ∞. However, for

want of a better approximation/model, cκ and λc are usually set to zero.
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The local homogeneous approximation for the dispersion tensors

With the Green tensor approximation for the response tensor, the dispersion tensors

(equations (4.11) to (4.13)) become

λki(x,v, t) =

t∫

0

Gkj(t; t
′)
〈

Rji(x
p′, t′;x, t)

〉

x,v
dt′ (4.48)

µki(x,v, t) =

t∫

0

Ġkj(t; t
′)
〈

Rji(x
p′, t′;x, t)

〉

x,v
dt′ (4.49)

κi(x,v, t) =

t∫

0

Gkj(t; t
′)
〈 ∂

∂xk
Rji(x

p′, t′;x, t)
〉

x,v
dt′ (4.50)

For the continuum equations the velocity averaged forms of the dispersion tensors are

required (see section 4.3)

λki(x, t) =

t∫

0

Gkj(t; t
′)
〈

Rji(x
p′, t′;x, t)

〉

x
dt′ (4.51)

µki(x, t) =

t∫

0

Ġkj(t; t
′)
〈

Rji(x
p′, t′;x, t)

〉

x
dt′ (4.52)

κi(x, t) =

t∫

0

Gkj(t; t
′)
〈 ∂

∂xk
Rji(x

p′, t′;x, t)
〉

x
dt′ (4.53)

In order to close the conditional averages in equations (4.51) and (4.52) a locally homo-

geneous approximation (LHA) is generally used, in addition to the assumption that the

averages are statistically stationary (e.g. [49, 100, 106]). Then the conditional averages

in equations (4.51) and (4.52) take the form

〈

Rji(x
p(s), s;x, 0)

〉

x
≈ 〈fj(x)fi(x)〉 exp

(

s

τLp
ji (x, τp)

)

(4.54)

where no summation of indices is intended and s = t′ − t ≤ 0. The timescale τLp
ji (x, τp)

is the Lagrangian timescale of f seen by particles with response time τp whose trajec-

tories converge (backward in time dispersion) to x at time s = 0. A model for this

timescale is then required, and this is usually done by either approximating it by the

fluid Lagrangian timescale or by a local homogeneous model (such as given in [107,108]).
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Inserting (4.54) into (4.51) and (4.52) gives

λki(x, s) =

0∫

s

Gkj(s1)〈fj(x)fi(x)〉 exp
(

s1

τLp
ji (x, τp)

)

ds1 (4.55)

µki(x, s) =

0∫

s

Ġkj(s1)〈fj(x)fi(x)〉 exp
(

s1

τLp
ji (x, τp)

)

ds1 (4.56)

Since the integrand in (4.55) and (4.56) tends to zero for |s| ≫ τLp
ji (x, τp), the lower

integral limit may be set to −∞. Then the asymptotic forms of the dispersion tensors

may be derived for Stokes drag forcing [109]

λki(x) =
β2
(

τLp
ki

)2

1 + βτLp
ki




〈u′k(x)u′i(x)〉+ δk1

βγ
(

τLp
ki

)2

1 + βτLp
ki

〈u′2(x)u′i(x)〉




 (4.57)

µki(x) =
λki(x)

τLp
ki (x, τp)

(4.58)

(no summation is implied in (4.57) and (4.58)). In order to approximate κ(x) the

‘passive scalar approximation’ (PSA) may be invoked

κi(x) =
∂

∂xk
λki(x) (4.59)

which is obtained by considering the necessary form of the particle momentum equation

in the limit τp → 0 [110].

4.3.2 Boundary Conditions for the Continuum Equations

In general, in order to solve the continuum equations both initial conditions and bound-

ary conditions are required. The initial conditions are easily specified, and depend upon

the particular problem being solved for. Specifying the boundary conditions for the con-

tinuum equations is however more problematic. For the case of particle dispersion in a

turbulent channel flow, Alipchenkov et.al. [111] and Zaichik [112] used an approximate

solution to the PDF equation to derive the following boundary conditions
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∣
∣
∣
∣
wall
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(
1− χe1
1 + χe1

− 1− χ

1 + χ

)(
2

π
c2c2

) 1

2

v1

∣
∣
∣
∣
∣
wall

(4.64)

where the subscripts 1, 2, 3 represent the stream-wise, wall-normal and span-wise direc-

tions of the channel respectively, χ is the probability of the particle rebounding after

the wall collisions (χ = 0 for a perfectly absorbing wall, and χ = 1 if particle deposition is

absent), ei is the particle coefficient of restitution for momentum loss in the ith direction

due to collision with the wall. The boundary conditions given in equations (4.60) to

(4.64) were derived using perturbation techinques to solve a reduced form of the PDF

equation (one in which the fluid forcing on the particle was assumed to be δ correlated)

in the near wall region assuming a near-Gaussian PDF solution. It is therefore possible

that these boundary value solutions will not be quantitatively accurate, and they need

to be tested against particle tracking data. In other works (e.g. [113, 114]) boundary

conditions for particles which collide with smooth walls have also been developed, and

in [115] boundary conditions accounting for wall roughness are presented.

In each of the cited works, significant simplifications are made regarding the form

of the particle velocity PDF near the wall, and in general the simplifictions made are

probably quite unrealistic. However, boundary conditions for the PDF kinetic equation

are much simpler to specify and therefore one way to derive boundary conditions for the

continuum equations is to derive them from solutions to the PDF kinetic equation at

the boundaries. That is, rather than deriving boundary conditions for the continuum

equations by making approximations to the particle velocity PDF at the wall, one can

solve the PDF equation directly (numerically, in the case of turbulent boundary layers)

and then simply obtain the required continuum equation boundary conditions from the

computed PDF itself. Work has been done on numerical solutions to PDF equations

(e.g. [116, 117]) such that this method of deriving the continuum equation boundary

conditions is possible.
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4.3.3 Do the continuum equations describe the characteristics

of particle dispersion in turbulent boundary layers?

In chapter 3 the characteristics of particle dispersion in turbulent channel flows (in

particular, in the boundary layer) were considered and three important features were

noted; (i) particles tend to accumulate in the near wall region, (ii) particles experience

a turbophoretic drift, and (iii) inertial particle preferentially sample the turbulent flow

field. The particle momentum equation (equation (4.38)) will now be examined in order

to highlight that the PDF derived continuum equations do, to an extent, describe such

characteristics in a statistical manner.

In steady state the particle momentum equation can be written as

ρvk
∂

∂xk
vi = −(ckci + λki)

∂

∂xk
ρ+ ρ

(

κi −
∂

∂xk
λki

)

− ρ
∂

∂xk
ckci − ρF i (4.65)

With Stokes drag forcing on the particles F = β (u− v). For a turbulent boundary layer,

the fluid turbulence is only inhomogeneous in the wall-normal direction. Considering

only transport in the wall-normal direction, equation (4.65) then becomes

τpρv2
∂

∂x2
v2 = −τp(c2c2 + λ22)

∂

∂x2
ρ+ τpρ

(

κ2 −
∂

∂x2
λ22

)

− τpρ
∂

∂x2
c2c2 − ρv2 (4.66)

From the particle continuity equation (equation (4.35)) it is found that for statistically

steady state particle dispersion in a turbulent boundary layer with elastic particle-

wall collisions, the mean wall-normal particle velocity must be zero. In this case, the

wall-normal particle momentum equation is

0 = −τp(c2c2 + λ22)
∂

∂x2
ρ+ τpρ

(

κ2 −
∂

∂x2
λ22

)

− τpρ
∂

∂x2
c2c2 (4.67)

The first term on the RHS of equation (4.67) is the flux due to gradient diffusion,

from which it can be seen that the physical interpretation of λ is that of a particle

diffusion tensor, and the total particle diffusion coefficient in the wall-normal direction

is τp(c2c2+λ22). That the diffusion term is simply gradient diffusion results from the fact

that the fluid turbulence has been assumed Gaussian in the formulation of the PDF

kinetic equation. Had a non-Gaussian flow field been used in the construction of the

PDF equation then the diffusive flux would contain terms with higher order derivatives

of the particle concentration and additional diffusion tensors [93,118]. It is worthwhile

mentioning that this is one of the strengths of the PDF derived continuum equations
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in that they offer a generalised particle diffusion coefficient in the momentum equation

which is valid over the whole particle size range 0 ≤ τp ≤ ∞. This is in contrast to

other models, constructed in a more ad-hoc manner, and in which the particle diffusion

coefficient is simply approximated by the local fluid diffusivity (e.g. [119]). The local

fluid diffusion coefficient is not in general a good approximation for the particle diffusion

coefficient since it does not capture either the effects of particle inertia or the influence

of turbulence inhomogeneity on the dispersion process, and such an approximation has

been shown to lead to erroneous results (see e.g. [49]).

The second term on the RHS of equation (4.67) represents the flux due to the

fluid turbulence inhomogeneity. Finally, the third term on the RHS of equation (4.67)

represents the flux due to the gradients in the wall-normal particle kinetic stresses; this

is the turbophoretic drift [120].

Equation (4.67) shows that the particle concentration is governed by the balance be-

tween the diffusion and drift mechanisms, and in general equation (4.67) yields inhomo-

geneous solutions for ρ. Clearly the continuum equations account for the turbophoretic

drift via the term

τpρ
∂

∂x2
c2c2

but the PDF method also accounts for the effect of the preferential sampling of the flow

field by the inertial particles. The phase-space diffusion current, derived in section 4.1

using the Furutsu-Novikov closure method provides an exact closure (when the Eulerian

turbulent flow field is Gaussian) for the flux arising from the preferential sampling of

the turbulent field. The diffusion current is given by

〈fi(xp(t), t)P〉 = p
〈

fi(x
p(t), t)

〉

x,v
= −

(
∂

∂xk
pλki +

∂

∂vk
pµki − pκi

)

(4.68)

(4.69)

The flux arising from the preferential sampling of the turbulent flow field is then given

by

∫

v

p
〈

fi(x
p(t), t)

〉

x,v
dv = ρ

〈

fi(x
p(t), t)

〉

x
=−

∫

v

(
∂

∂xk
pλki +

∂

∂vk
pµki − pκi

)

dv

= −λki
∂

∂xk
ρ

︸ ︷︷ ︸

Diffusive

+ ρ
(

κi −
∂

∂xk
λki

)

︸ ︷︷ ︸

Drift

(4.70)

terms which may be readily identified in equation (4.67). Although the dispersion

tensors describe the average effect of the preferential sampling of the turbulent flow
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field, they themselves depend upon the instantaneous preferential sampling of the flow

field through the form of the response tensor G. As described in section 4.1, the evolution

equation for the response tensor is

d2

dt2
Gkj =

∂Fk

∂vi

d

dt
Gij +

(
∂Fk

∂xi
+
∂fk
∂xi

)

Gij (4.71)

For Stokes drag f = βu′ and therefore the contribution to the evolution of the response

tensor from the stochastic field is given by (for Stokes drag)

∂fk
∂xi

Gij = β
∂u′k
∂xi

Gij = β








1

2

(
∂u′k
∂xi

+
∂u′i
∂xk

)

︸ ︷︷ ︸

Strain

+
1

2

(
∂u′k
∂xi

− ∂u′i
∂xk

)

︸ ︷︷ ︸

Rotation







Gij (4.72)

Given that RHS of equation (4.72) is evaluated along inertial particle trajectories in

the evolution equation for the response tensor it shows that the dispersion tensors, via

the response tensor G depend upon the tendency of inertial particles to cluster in high

strain, low rotation regions of the instantaneous turbulent flow field.

Therefore the PDF derived continuum equations are able to predict inhomogeneous

particle concentrations since they capture both the effect of turbophoretic drift and pref-

erential sampling of the turbulent flow field in a statistical manner. Of course whether

or not the continuum equations are able to make quantitatively accurate predictions

for particle concentrations in turbulent boundary layers, as compared to experimental

or DNS data is a matter for investigation.

It is worth noting again that the PDF method (which, using FN is exact for a

Gaussian flow field) predicts that the effect of the preferential sampling of the flow field

is both diffusive and convective (see equation (4.70)). In many continuum models it is

assumed to be simply diffusive. An investigation into the importance of the convective

term in equation (4.70) is investigated later in this thesis.

4.4 Conclusions

In this chapter a summary of the PDF kinetic equation for particle position and veloc-

ity has been presented, along with its associated continuum equations which form an

infinite set of coupled partial differential equations which require closure. A discussion

has then been given regarding the various terms within the continuum equations that

require closure.

The PDF kinetic approach provides a rigorous and fundamentally sound way to
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construct continuum equations since the PDF equation itself is derived directly from

the particle equation of motion, meaning that the continuum equations will contain

all of the physics consistent with the underlying particle equation of motion. The

only real concern with the PDF method for modelling particle dispersion in turbulent

boundary layers is that it assumes that the underlying fluid turbulence is Gaussian,

when yet boundary layer turbulence is certainly non-Gaussian (see for example figure

4 in [41] for plots of the skewness and flatness of the fluid velocity field in a turbulent

boundary layer). For example, the turbulent velocity field in a boundary layer is quite

non-Gaussian; the velocity PDF’s are asymmetric and have extended tails, which is

related to the intermittent nature of turbulence. The intermittent nature of turbulence,

manifest in burst events, for example, must have an effect on the overall transport of

the particles, and this is not captured when a Gaussian velocity field is assumed. Whilst

the PDF kinetic equation could in principle be extended to describe non-Gaussian flow

fields (see [93]) the resulting PDF equation would no longer be exact since the phase-

space diffusion current for a non-Gaussian f cannot be closed exactly (in addition to

the fact that the PDF equation for a non-Gaussian flow field would be significantly

more complex than for a Gaussian field).
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Chapter5

Particle Dispersion in a 1D

Inhomogeneous Flow: Testing the

Continuum Equations

In the previous chapter a summary of the derivation of a PDF kinetic equation for parti-

cle dispersion in a turbulent fluid was considered, along with the continuum equations

that are derived from from this equation. Various closure approximations were also

considered which are used to obtain a set of closed continuum equations for modelling

the statistics of inertial particle dispersion in turbulent flows. In obtaining a closed set

of continuum equations the following closure approximations were made

1. The fluctuating aerodynamic force field in which the particles are dispersed is

assumed to be Gaussian

2. The particle dispersion tensors are approximated as being locally homogeneous

3. The particle dispersion tensors are approximated as being velocity independent

4. The Chapman-Enskog approximation can be used to approximate ccc

Incorporating these closure approximations, in several papers the PDF kinetic equation

and its resulting continuum equations have been tested against particle tracking data of

particle dispersion in homogeneous isotropic flow fields, simple shear flows and rotating

flows (e.g. [94, 106, 121]). In [122] analytic solutions to the PDF kinetic equation were

obtained for particle dispersion in simple shear flows (both fully developed and transient

cases) and were tested against equivalent LES data. The results showed that the PDF

equation predictions were in excellent agreement with the particle tracking data. These

studies show that the PDF method can be a powerful mathematical model for accurately
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predicting the statistics of particle dispersion in certain turbulent flows. However, in

the cited papers, the nature of the turbulent flow fields in which the particles were

dispersing are such that the aforementioned closure approximations adopted in the

continuum equations (and the underlying PDF equation) are probably reasonable. For

particle dispersion in a turbulent boundary layer these closure approximations are more

questionable.

In [100] the PDF-derived continuum equations were tested against data obtained

from particle tracking in a DNS of turbulent channel flow (the DNS data was taken

from [81]). The results showed reasonable agreement for the particle velocity statistics

over the particle sizes considered, however the particle concentration predictions from

the continuum equations were in considerable error (the logarithmic scale of the concen-

tration plots in [100] (see Fig.1 in the cited paper) suppress the differences somewhat).

The same trend can also be seen in [101].

Therefore, motivated by the apparent model deficiencies, this chapter presents a

detailed investigation into the performance of the continuum equation solutions when

compared to equivalent particle tracking data for particle dispersion in a turbulent

boundary layer. This provides not only a test of the performance of the continuum

equation solutions themselves, but also a way to identify which of the closure approxi-

mations invoked in the continuum equations are responsible for any prediction errors.

5.1 Particle Tracking

As a simple test case particles were tracked in a simplified (1D) model of a “turbulent

boundary layer”, the configuration illustrated in figure 5.1

Wall

Upper Boundary

x2

Figure 5.1: Diagram of 1D domain in which particles were tracked. Upper boundary is
at x2 = 120 and the wall is located at x2 = 0.

Particles were introduced into the domain at time t = 0 with a uniform random distri-

bution. Particles collided elastically with the wall when xp2(t) = xmin
2 , where xmin

2 is the

particle radius (in wall units), defined by
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xmin
2 =

√

9τpρf

2ρp
(5.1)

where, as in [85], ρf/ρp was chosen to be 1/770. When the particles crossed the upper

boundary they were elastically reflected back into the domain. The particle dispersion

statistics were computed only in the the range xmin
2 ≤ x2 ≤ xmax

2 (where xmax
2 = 100)

so that the statistics were not affected by the upper boundary. With the particles

prescribed as being much heavier than the carrier fluid the only relevant force acting

on the particles is a drag force (gravity was also neglected so that the influence of

the turbulence inhomogeneity on the continuum equations could be considered without

its effect being somewhat ‘masked’ by an additional effect of gravity). The particle

equation of motion is then given by

d

dt
xp2(t) =v

p
2(t) (5.2)

d

dt
vp2(t) =

1

τp
(up2(t)− vp2(t)) (5.3)

where xp2 is the wall-normal particle position, vp2 is the wall-normal particle velocity, τp is

the particle momentum response time and up2 is the wall-normal component of the fluid

velocity at the particle position (the mean fluid velocity in the wall-normal direction

is zero so that up′2 = up2). In order to simulate the fluid velocity at the particle position

a modified Langevin equation was used. The use of Langevin equations to model the

fluid velocity seen by an inertial particle in a turbulent channel flow/boundary layer is

well established (e.g. [41–49]). Originally in this test case the Langevin equation given

in [41, 43–45, 49] was used. However it was found that when tracking inertial particles

using this Langevin equation up2 6→ 0 as τp → ∞. In [48] the drift term appropriate for

finite inertia particles was developed which satisfies the necessary physical criteria that

up2 → 0 as τp → ∞, in addition to the fully mixed fluid particle limit up2 → 0 as τp → 0,

and this modified drift term was used in this test case1. For particle dispersion in the

wall-normal direction the Langevin equation chosen is

1It was later discovered that the same deficiencies in standard Langevin models for particle dis-
persion in inhomogeneous flows were noted and considered in [123]. In particular, in [123] it was
shown that the Langevin models presented in [42,97] do not correctly predict the statistics of the fluid
velocity at the particle position in the limit τp → ∞. Furthermore, it is mentioned in [123] that the
modification they make to the standard Langevin models in order to properly account for the limit
τp → ∞ is similar to the modifications suggested in [48].

68



Particle Dispersion in a 1D Inhomogeneous Flow: Testing the Continuum Equations

dU2(t) =− U2

τLp
dt+

( 1

1 + St

)dσ2
dx2

dt+

√

2

τLp
dW2 (5.4)

where U2 = up2/σ2, σ2 = σ2(x
p
2(t)) is the wall-normal fluid velocity r.m.s., τLp = τLp(xp2(t))

is the timescale of the fluid velocity correlations seen by the particles, St = τp/τ
Lp is

the particle Stokes number and dW2 is a Wiener process, with mean equal to zero and

variance dt. (Note that the Langevin equation in (5.4) which is in terms of the fluid

velocity scaled by the local fluid velocity r.m.s. is a particular choice of model, whilst

in other works, such as in [42], the Langevin equation is written for the actual fluid

velocity seen by the particle, and these models may not be exactly equivalent).

Particles were then tracked by solving equations (5.2) and (5.3) in conjunction with

equation (5.4) using an explicit second order Adams-Bashforth scheme. For numerical

stability the time step δt in the numerical simulations was defined so that τp/δt ≥ 10

(e.g. [9]). A range of particle sizes were considered and for each size O(104) particles

were tracked over a long period of time and the required statistics were computed.

The spatial domain was divided into bins with a Chebyshev distribution (for fine bin

resolution near the wall). The results shown in section 5.4 are those recorded once the

system had reached a statistically steady state.

5.2 Continuum Equations in 1D

In a statistically steady state, 1D wall-normal particle dispersion in a turbulent bound-

ary layer the particle continuity equation becomes (see equation (4.35))

d

dx2
ρv2 = 0 (5.5)

With elastic particle wall collisions v2 = 0 at the wall, and therefore equation (5.5)

implies the solution v2(x2) = 0 throughout the entire domain. Therefore from equation

(4.38) the required form of the particle momentum equation is

0 = − d

dx2

[
ρ
(
c2c2 + λ22

)]
+ ρκ2 (5.6)

and the required form of the particle Reynolds stress equation is
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0 = − d

dx2
ρc2c2c2 + ρ (2µ22 − 2βc2c2) (5.7)

Using the Chapman-Enskog closure approximation (see chapter 4) for c2c2c2, and com-

bining equations (5.6) and (5.7) an ordinary differential equation for the particle kinetic

stress is obtained

(
c2c2 + λ22

) d2

dx22
c2c2 + κ2

d

dx2
c2c2 + 2βµ22 − 2β2c2c2 = 0 (5.8)

and a solution for the particle concentration from the momentum equation [49]

ρ(x2) = ρ(xmin
2 )

(
c2c2(x

min
2 ) + λ22(x

min
2 )

c2c2(x2) + λ22(x2)

)

exp






x2∫

xmin
2

κ2(z)

c2c2(z) + λ22(z)
dz




 (5.9)

The LHA (local homogeneous approximation) forms of λ22 and µ22 and the PSA (pas-

sive scalar approximation) form of κ2 were used (see chapter 4). In 1D, for particles

experiencing only a Stokes drag force the dispersion tensors are

λ22(x2) =
σ2
2β

2
(
τLp
)2

1 + βτLp
(5.10)

µ22(x2) =
λ22(x2)

τLp
(5.11)

κ2(x2) =
d

dx2
λ22(x2) (5.12)

Equation (5.8) is solved numerically first, and the solution obtained for c2c2 is used

in equation (5.9) to compute the solution for ρ. In order to solve equation (5.8) the

boundary conditions c2c2(x
min
2 ) and c2c2(x

max
2 ) are required. The aim here is to assess the

accuracy of the solutions to the continuum equations (with the closure approximations

used). To avoid complications in this assesment introduced by further approximations

associated with the specification of boundary conditions, c2c2(x
min
2 ) and c2c2(x

max
2 ) are

taken from the particle tracking data (as was done in [49]). Since ρ(x2) is a PDF it must

satisfy

xmax
2∫

xmin
2

ρ dx2 = 1 (5.13)
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Therefore the boundary condition ρ(xmin
2 ) required in equation (5.9) is given by

ρ(xmin
2 ) =






xmax
2∫

xmin
2

(
c2c2(x

min
2 ) + λ22(x

min
2 )

c2c2(x2) + λ22(x2)

)

exp






x2∫

xmin
2

κ2(z)

c2c2(z) + λ22(z)
dz




 dx2






−1

(5.14)

Equation (5.8) was solved numerically using the MATLAB function bvp4c (an adaptive

finite difference solver) and equation (5.9) was integrated numerically.

5.3 Fluid Turbulence Statistics

Input data for σ2 and τLp are required as input into both equation (5.4) and the particle

dispersion tensors in equations (5.10) to (5.12). Accurate specification of these inputs

is not needed since what is important is how well the continuum equations and the

particle tracking data compare, given the same fluid turbulence statistics.

Strictly speaking the Lagrangian timescale in the dispersion tensors (equations

(5.10) to (5.12)) and the timescale in the Langevin equation are not the same; properly

defined, the timescale in the dispersion tensors is defined backwards in time, whilst the

timescale in the Langevin equation is defined forwards in time, and for particle dis-

persion in a turbulent boundary layer these timescales are not the same. Nevertheless

since there is no model available to distinguish between forward and backward in time

timescales they will be approximated as being the same. Data for σ2 and τLp are taken

from the curve fits given in [3], with τLp specified by the fluid Lagrangian timescale τL.
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1

σ2
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Figure 5.2: Plot of σ2(x2) using the function given in [3].
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Figure 5.3: Plot of τL(x2) using the function given in [3].

5.4 Results

In this section the results of the comparison between the particle tracking data and the

continuum equation solutions are presented. Figure 5.4 shows the comparison between

the particle tracking data (×), the continuum solution (-) and the local homogeneous

approximation (- -) for c2c2, where the local approximation for c2c2 is given by c2c2 ≈
µ22/β. Figure 5.5 shows the comparison between the particle tracking data and the

continuum solution for the particle concentration ρ(x2), which have been plotted against

each other as a ratio for added clarity in their comparison.
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Figure 5.4: Comparison between particle tracking data (×), continuum equation solu-
tions (-) and the local homogeneous approximation (–) for c2c2.
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Figure 5.5: Plots of the ratio of the continuum solution for the particle concentration
(ρCE) against the particle concentration data obtained in the PT simulation (ρPT ).
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5.5 Discussion of Results

The comparison of the results from particle tracking and the continuum equations are

shown in section 5.4. All variables are expressed in wall units (usually denoted by a

superscript ‘+’ but omitted here for ease of reading). The results are for four different

response times; τp = 20, 50, 80 and 110 which cover a greater range than that investigated

in [49].

In the closure of the continuum equations (using Furutsu-Novikov (FN) derived

PDF equation) there are essentially four different approximations made

1. The fluctuating aerodynamic force field in which the particles are dispersed is

assumed to be Gaussian

2. The particle dispersion tensors are approximated as being locally homogeneous

3. The particle dispersion tensors are approximated as being velocity independent

4. The Chapman-Enskog approximation can be used to approximate ccc

which shall be referred to as approximations 1,2,3 and 4 hereafter in this chapter. The

validity of these approximations may now be considered in light of the results in section

5.4.

Though the random term dW2 in the Langevin equation (see equation (5.4)) is Gaus-

sian, this does not necessarily imply that the fluid velocity generated by the Langevin

equation is Guassian for inhomogeneous flows, as noted in [42]. Furthermore, even if

the Langevin equation did produce Gaussian fluid velocities, this is still not strictly

consistent with the the approximation made in the FN derived PDF equation, which

approximates the velocity field as Gaussian. However, the effects of this discrepancy is

expected to be small relative to the effects of approximations 2-4 and will therefore be

neglected.

The results for c2c2 are shown in figure 5.4. For τp = 20, 50 and 80 it can be seen that

the continuum solutions are in excellent agreement with the PT data whilst there is

some discrepancy for τp = 110, and also that the the error in the local approximation

for c2c2 increases with τp within the range of particle sizes considered. Whilst the CE

solutions for c2c2 for τp = 20, 50 and 80 are in excellent agreement with the PT data,

for the same particle sizes the results in figure 5.5 show that the continuum solution

for the concentration exhibit significant errors. For these particle sizes approximations

3 and 4 cannot be invoked as the causes of the errors in the continuum solutions for

the concentration. Approximations 3 and 4 refer to closure approximations made in

the particle stress equation and do not affect the concentration solutions except by
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their influence on c2c2. However it is evident from figure 5.4 these approximations

have had little effect on the stress equation since the continuum predictions are in

excellent agreement with the PT data for c2c2 for these particle sizes. Therefore the

only remaining source of error in the continuum solution for ρ is approximation 2 since

the momentum equation (from which the concentration solution is found) depends only

upon the kinetic stresses and the dispersion tensors. It is recalled from chapter 4 that

approximation 2 not only consists in making local approximations to λ22 and µ22 but

also in applying a passive scalar approximation to κ2. That is, it is assumed that in the

momentum equation

κ2 −
d

dx2
λ22 = 0, for all τp (5.15)

whereas this is only strictly true in the limits τp → 0 and τp → ∞. The removal of

this drift in the particle momentum equation will undoubtedly have an effect on the

concentration solutions. Unfortunately, since in this PT simulation the fluid velocity

is supplied by a Lagrangian Langevin equation, rather than by an Eulerian flow field,

there is no reliable way to measure the drift

κ2 −
d

dx2
λ22

from the PT data.

It is possible, however, to compute λ22 and µ22 from the PT data, with two pre-

cautionary notes. Again, since fluid velocity is supplied by a Lagrangian Langevin

equation, rather than by an Eulerian flow field it is not possible to compute the particle

response tensor G (see chapter 4) nor is it possible to measure the dispersion tensors

in the manner defined by the FN formulation (i.e. measures of the correlation of the

Eulerian flow field along particle trajectories). Nevertheless, it is possible to compute

the dispersion tensors as defined by Reeks using LHDI [83], which in this 1D flow would

be given by

λ22(x2) =β
2

0∫

−∞

G22(s)
〈

up2(0)u
p
2(s)

〉

x2

ds (5.16)

µ22(x2) =β
2

0∫

−∞

Ġ22(s)
〈

up2(0)u
p
2(s)

〉

x2

ds (5.17)

where s = t′ − t ≤ 0 and
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G22(s) =τp(1− exp[βs]) (5.18)

Ġ22(s) = exp[βs] (5.19)

and the autocovariances in equations (5.16) and (5.17) are defined backwards in time

(as implied in equations (5.16) and (5.17) since s ≤ 0), such that the fluid velocities are

evaluated along trajectories which arrive at x2 at s = 0 and which were dispersed relative

to one another at a time in the past s. The dispersion tensors defined in equations (5.16)

and (5.17) were computed in the PT simulation for each particle size and the results

are shown in figures 5.6 and 5.7
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Figure 5.6: Plots of λ22 as obtained from the PT simulation using equation (5.16) and
as given by LHA (equation (5.10)).
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Figure 5.7: Plots of µ22 as obtained from the PT simulation using equation (5.17) and
as given by LHA (equation (5.11)).
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The results show very clearly that λ22 is very strongly affected by the inhomogeneity

in the fluid turbulence whilst µ22 is not. These findings are in accord with that found

in [49], and following that paper the explanation for why this is so is as follows. Consider

figure 5.8
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Figure 5.8: Plots to demonstrate how G22(s) and Ġ22(s) weight the contributions of the
autocovariance of the fluid velocity differently in λ22 and µ22.

The autocovariance in figure 5.8 is represented by a simple decaying exponential func-

tion, and it, G22(s) and Ġ22(s) have all been scaled to give a maximum value of 1 so that

they can be clearly compared (since it is their form, not their value which is important

in this discussion). As the figure demonstrates, whilst G22(s) increases backward in

time, Ġ22(s) decays backwards in time. Therefore, in the dispersion tensors (equations

(5.16) and (5.17)) since λ22 contains G22(s) and µ22 contains Ġ22(s), values of the autoco-

variance for large s will be weighted much more heavily in λ22 than in µ22. Furthermore

values of the autocovariance for small s will be weighted more heavily in µ22 than in λ22.

Given that the particle trajectories along which the fluid velocity autocovariances are

evaluated become increasingly dispersed with increasing |s| (i.e. so that
〈

up2(0)u
p
2(s)

〉

x2

becomes increasingly non-local) this explains why λ22 is sensitive to the non-locality of

the dispersion process whilst µ22 is not.

In order to test the hypothesis that the strong inhomogeneity of the fluid turbulence

is the cause of the significant difference between λ22 computed in the PT simulation,

and λ22 given by the local approximation, a simulation was performed for a much larger

particle. The dispersion tensors for large particles (i.e. large Stokes number) should

be much less sensitive to the fluid turbulence inhomogeneity since the characteristic

distances that large particles move within the time for which the fluid is correlated are

sufficiently small so that they see a turbulence which is approximately homogeneous.

Figure 5.9 shows the results for τp = 500
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Figure 5.9: Plots of λ22 and µ22 as obtained from the PT simulation using equations
(5.17) and as given by LHA.

The results in figure 5.9 would indicate that this hypothesis is indeed correct; even

though there is still some discrepancy between the PT data and the LHA forms of the

dispersion tensors, the difference, especially for λ22, has been significantly reduced and

would suggest that the LHA becomes more exact as τp → ∞. (With τp = 500 this gives

a Stokes number St = τp/τL ≈ 10 near the edge of the boundary layer, which is not too

large and explains why there is still some discrepancy for the LHA form of λ22 near the

edge of the boundary layer. Near the wall, for example, for x2 ≤ 40, St > 20 and in this

region the LHA for λ22 is in excellent agreement with the PT data).

There are two interesting features of the results in figure 5.6 that require explanation.

First of all, for τp = 20, λ22 < 0 near the wall. It is not immediately clear why this should

be so, as it indicates that the autocovariances of the fluid velocity seen by the particles

in this near wall region contain negative ‘loops’. Upon examination of the PT data,

it is seen that the fluid velocity autocovariances measured in the PT simulation along

particle paths, that is
〈

up2(0)u
p
2(s)

〉

x2

do indeed feature negative loops for x2 in the near wall region, as shown in figure 5.10
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Figure 5.10: Plot of the fluid velocity autocovariance evaluated along particle trajecto-
ries for τp = 20 at x2 = 16

Although the negative loops are not very large, the way that the autocovariances are

weighted in λ22 by G22(s) mean that they can have a significant effect. The negative

loops must be due to the particle-wall collisions and the effect that this has on the

directionality of the fluid velocities the particles sample. For example, it is well known

that inertial particles preferentially sample turbulent velocities in turbulent boundary

layers. The mean of the fluid velocities sampled at the particle position when xp2(t) = x2,

for τp = 20 and τp = 50 are shown in figure 5.11
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Figure 5.11: Plots of up2, the mean of the fluid velocities sampled at the particle position
when xp2(t) = x2, obtained from the PT simulation.

The location of the peak value of up2 for τp = 20 corresponds very closely with the largest

negative value of λ22. In addition, the peak value of up2 for τp = 50 is much smaller than

for τp = 20, and correspondingly, the largest negative value of λ22 for τp = 50 is much
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smaller than that for τp = 20. Both suggest that the the preferential sampling of the

flow field in the near wall region is in some sense connected with the negative values of

λ22. If this is indeed the case, then the negative values of λ22 in the near wall region are

a feature of the dispersion tensors defined by Reeks using LHDI and this feature would

not be found with the FN defined dispersion tensors. The fluid velocity correlations in

the FN dispersion tensors are defined in terms of Eulerian correlations of the flow field

measured along particle paths. Being Eulerian, these correlations are based upon all

realisations of the flow field, and do not contain any information regarding preferential

sampling.

The second interesting feature of the results in figure 5.6 is that the LHA forms

of the dispersion tensors are always greater in value than those computed in the PT

simulation. Since the dispersion process even in this simple 1D flow is complex, it is

not easy to ascertain why this should be. However there are two possible explanations.

First of all, the PT results indicate that the particle velocities are negatively skewed

throughout the boundary layer. A negatively skewed velocity PDF means that there

is a greater probability of finding a particle moving away from the wall than there is

towards the wall. Recalling that in the dispersion tensors the trajectories along which

the velocity correlations are evaluated are backward in time, this means that there is

a greater probability of particles moving towards x2 from xp2(s) ≤ x2 than there is from

xp2(s) ≥ x2. Consequently the fluid statistics will be sampled asymmetrically with respect

to x2, with a bias towards values sampled at xp2(s) ≤ x2. From figures 5.2 and 5.3 it can

be seen that in the region x2 ≤ 40 the fluid statistics have positive gradients. Therefore,

in this region the particles will preferentially sample values of σ2 and τL less than at

x2. In the region 40 ≤ x2 ≤ 100, σ2 is approximately constant, but τL still has large

positive gradients. Therefore again, the particles will preferentially sample values of τL

less than at x2. This would to an extent explain why the LHA to the dispersion tensors

are too large, since they do not account for the asymmetric sampling of the flow field

in inhomogeneous turbulence.

The second explanation is as follows. The upper boundary of the domain imposes

the constraint that xp2(t) ≤ 120 (recalling that the particles collided with the upper

boundary at x2 = 120 not at xmax
2 ). For x2 ≥ 50 the fluid velocity r.m.s. is approximately

homogeneous whereas the fluid integral timescale is strongly inhomogeneous with a

positive gradient (see figures 5.2 and 5.3). Therefore, for x2 near to the upper boundary,

there is the constraint that

τL(x
p
2(s)) ≤ τL(x2)

Consequently in this region, the correlations evaluated along the particle trajectories

will have shorter correlation times than those based on a local approximation which use
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τL(x2). This would then lead to an over prediction of the values of the dispersion tensors

using a local approximation, and this is what the results indicate. Furthermore, since in

this region the particle velocities are relatively large (compared to those in the region

x2 ≤ 20 for example where the inhomogeneity is strongest) the distances they move

within the time for which they see a correlated fluid velocity along their trajectory may

be large. Therefore in this region the amount by which τL(x
p
2(s)) deviates from τL(x2) may

be significant, and this again would explain the large error in the local approximations

to the dispersion tensors.

In higher dimensions (i.e. 2D or 3D) it may not be the case that a local approx-

imation leads to an over prediction of the dispersion tensors since in that case the

anisotropy of the one and two point statistics (e.g. different length scales in different

directions) will affect the dispersion tensors also.

In [49] Skartlien fitted curves to the PT data for the dispersion tensors and then used

these in the continuum equations to see how the concentration solutions predicted would

be improved with correct specification of the dispersion tensors. This improved the

continuum predictions for the concentration. However the passive scalar approximation

for κ2 was still invoked in this test. It is anticipated that with κ2 correctly specified, the

continuum equation prediction for the concentration would be improved even further.

Finally, a comment on the use of the Langevin equation. In [85] it is argued that

the effects of the preferential sampling of the turbulent flow field and the mechanism

of turbophoresis are to be understood dynamically in terms of the interaction between

inertial particles and coherent structures (e.g. sweeps and ejections) in the turbulent

velocity field in the boundary layer. However, the results presented in this chapter

make this conclusion questionable. Both turbophoresis and preferential sampling of

the fluid velocities (see figure 5.11) were found in the simulations presented in this

chapter where a Langevin equation was used to describe the fluid velocity at the particle

position. However the Langevin equation used here contains no structure and therefore

contains no information at all about sweeps and ejections (which are non-Gaussian

events, characterised by different timescales and different intensities). Therefore it is

clear that particle interactions with turbulent coherent structures cannot explain, or at

least fully explain, the dynamical phenomena responsible for preferential sampling and

turbophoresis.

A statistical-physical argument for the origin of turbophoresis and preferential sam-

pling is as follows. Turbophoresis occurs because inertial particles are not in equilibrium

with the fluid turbulence, therefore the energy they receive from the turbulence in highly

energetic regions is transported by the particles into regions where the turbulence inten-

sity is less. Turbophoresis depends both upon τp and the gradients in the particle kinetic

stresses c2c2. In the near wall region where the turbophoretical drift is towards the wall,
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only strongly positive values of the fluid velocity are able to give the particles sufficient

energy to overcome the wall-ward turbophoretic drift and hence move away from the

wall. Therefore in the near wall region the inertial particles preferentially sample values

of the fluid velocity greater than the mean value of the field (i.e. up2 > 〈u2〉 = 0). This

explanation agrees with what is observed in figures (5.4) and (5.11).

5.6 Conclusions

In this chapter the PDF derived continuum equations were tested against equivalent PT

data. The results showed that for τp = 20, 50 and 80 the kinetic stress predictions were in

excellent agreement with the PT data whilst the concentration solution predictions were

in significant error. The local approximations to the dispersion tensors were identified

as the source of the error in the concentration solution predictions. In particular λ22 is

very sensitive to the strongly inhomogeneous nature of the turbulence in a boundary

layer, and this finding is in agreement with [49]. In order to improve the continuum

equation predictions for the concentration solutions it is necessary to develop non-local

closure models for the dispersion tensors which take into account the inhomogeneous

nature of the fluid turbulence and also the effect of the particle-wall collisions on the

correlations of the flow field along the particle trajectories. Furthermore, it is necessary

to develop new closure models for the dispersion tensors in order to circumvent the

introduction of the passive scalar approximation, since this approximation removes a

drift mechanism in the particle momentum equation which is surely a source of the

error in the concentration solutions from the continuum equations.

In the following chapters new non-local closure models for the particle dispersion

are developed in order to improve upon the standard local approximations which have

been shown in this chapter to be a source of error in the momentum equation, leading

to poor particle concentration predictions.
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Chapter6

Particle Dispersion Tensors in

Boundary Layer Turbulence

In the previous chapter it was shown that for particle dispersion in a turbulent bound-

ary layer, local approximations for the particle dispersion tensors can be in significant

error. In this chapter a discussion is given concerning the nature of the particle dis-

persion tensors in boundary layer turbulence, in particular highlighting the deficiencies

of local approximations, which will then serve as the basis upon which to consider the

formulation of a new ‘non-local’ closure model for the dispersion tensors.

The definition of the velocity averaged particle dispersion tensors (with the Green tensor

approximation for the response tensor), which are found in the continuum equations

are (see chapter 4)

λki(x, t) =

t∫

0

Gkj(t; t
′)
〈

Rji(x
p′, t′;x, t)

〉

x
dt′ (6.1)

µki(x, t) =

t∫

0

Ġkj(t; t
′)
〈

Rji(x
p′, t′;x, t)

〉

x
dt′ (6.2)

κi(x, t) =

t∫

0

Gkj(t; t
′)

〈
∂

∂xk
Rji(x

p′, t′;x, t)

〉

x

dt′ (6.3)

The intrinsic non-locality of the dispersion tensors is bound up in the conditional aver-

ages they contain, that is, within

〈

Rji(x
p′, t′;x, t)

〉

x
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and
〈

∂

∂xk
Rji(x

p′, t′;x, t)

〉

x

Consider figure 6.1
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Figure 6.1: Diagram to illustrate the meaning of the conditional averages in the dis-
persion tensors. The lines with arrows represent different particle trajectories, xp(t′),
which are coincident with x at time t′ = t.

Figure 6.1 illustrates different particle trajectories arriving at position x at time t.

Because the turbulent flow field is modelled as being stochastic, the particle trajectories

are also stochastic, and therefore as the particles move through the flow field and

approach x at time t they each sample differing values of R along their trajectories.

The average of the values of R sampled along the particle trajectories is the meaning

of the conditional average
〈

Rji(x
p′, t′;x, t)

〉

x

and similarly for
〈

∂

∂xk
Rji(x

p′, t′;x, t)

〉

x

Clearly then, if the turbulence properties vary along the particle trajectory then this

will affect the conditional averages, and this is the case for particle dispersion in a

turbulent boundary layer where the turbulence is strongly inhomogeneous. In light of

the results presented in the previous chapter it is clear that new ‘non-local’ models

must be developed for the dispersion tensors which account for the inhomogeneity of

the turbulence seen by the particles as they disperse through the boundary layer.

Furthermore, a new closure model for the dispersion tensors is required in order to
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correctly close κ. In the particle momentum equation there is a flux

ρ

(

κi −
∂

∂xk
λki

)

which represents a flux due to the fluid turbulence inhomogeneities. Under the passive

scalar approximation this flux is zero for all particle sizes. However, in reality this

flux term is not zero for inertial particle dispersion in inhomogeneous turbulence, and

therefore a new closure is also required in order to correctly close κ.

In equations (6.1),(6.2),(6.3) the terms requiring closure are given by

〈

Rji(x
p′, t′;x, t)

〉

x
=

∫

x′

Rji(x
′, t′;x, t)ρ (x′, t′|x, t) dx′ (6.4)

〈 ∂

∂xk
Rji(x

p′, t′;x, t)
〉

x
=

∫

x′

[
∂

∂xk
Rji(x

′, t′;x, t)

]

ρ (x′, t′|x, t) dx′ (6.5)

where ρ (x′, t′|x, t) is the PDF for particle positions at time t′ for all particle trajectories

which arrive at x at time t

ρ (x′, t′|x, t) =
〈

δ(xp(t′)− x′)
〉

x
(6.6)

Since it is statistically steady state systems that are of interest in the present work,

equations (6.4) and (6.5) may be re-expressed as

〈

Rji(x
p(s), s;x, 0)

〉

x
=

∫

x′

Rji(x
′, s;x, 0)ρ (x′, s|x) dx′ (6.7)

〈 ∂

∂xk
Rji(x

p(s), s;x, 0)
〉

x
=

∫

x′

[
∂

∂xk
Rji(x

′, s;x, 0)

]

ρ (x′, s|x) dx′ (6.8)

where s = t′ − t and

ρ (x′, s|x) =
〈

δ(xp(s)− x′)
〉

x
(6.9)

The intrinsic non-locality within the dispersion tensors therefore depends both upon

the nature of R and ρ (x′, s|x), each of which shall now be discussed.
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6.1 Characteristics of R in a turbulent boundary

layer

In a turbulent channel flow, and in particular, in the turbulent boundary layer, the

turbulence is very strongly inhomogeneous and anisotropic, and this is captured within

R. To simplify the present discussion only a Stokes drag force acting upon the particle

will be considered here, for which

Rji(x
′, s;x, 0) = β2

〈

u′j(x
′, s)u′i(x, 0)

〉

(6.10)

First, consider the Reynolds stress tensor

〈

u′j(x2, 0)u
′
i(x2, 0)

〉

= 〈u′ju′i〉

in a turbulent channel flow, as shown in figure (6.2)
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Figure 6.2: Plot showing the diagonal components of the fluid velocity Reynolds stress
tensor, data taken from [4].

Figure 6.2 shows that the turbulence in a channel flow is very strongly inhomogeneous

and anisotropic, and the effect that this has is that as particles disperse they move

through regions in which the turbulence intensity may vary significantly along their

trajectories. Clearly this will affect the dispersion tensors. Secondly, consider the two-

point covariances of the field u′ shown in figures 6.3 and 6.4
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Figure 6.3: Plots of spatial covariances in a turbulent boundary layer at x2 = 59.5 (left
plot) and x2 = 5.34 (right plot) wall units. Plots show spatial decorrelation in the
homogeneous stream-wise direction. Data taken from [4].
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Figure 6.4: Plots of spatial covariances in a turbulent boundary layer at x2 = 59.5 (left
plot) and x2 = 5.34 (right plot) wall units. Plots show spatial decorrelation in the
homogeneous span-wise direction. Data taken from [4].

Figures 6.3 and 6.4 show that in addition to the Reynolds stresses being very strongly

inhomogeneous and anisotropic, the two-point correlations of the turbulent velocity

field are also strongly anisotropic and inhomogeneous. That is, the turbulent velocity

field decorrelates in the stream-wise and span-wise directions differently and exhibits a

wall-normal location (x2) dependence. In addition, as shown in figure 6.5, the turbulent

velocity field in a boundary layer may also feature negatively correlated regions
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Figure 6.5: Plot of spatial covariance in a turbulent boundary layer at x2 = 29.64 wall
units. Plot shows spatial decorrelation in the homogeneous span-wise direction. Data
taken from [4]

The characteristics illustrated in figures 6.2 - 6.5 of the velocity field in a turbulent

boundary layer (strong inhomogeneity, anisotropy and negatively correlated regions) all

affect the particle dispersion tensors since they show that along particle trajectories the

properties of the turbulence (e.g. the turbulence intensity) may vary significantly, and

also that the decorrelation of the flow field experienced by the particles strongly depends

upon the particular direction of the motion of the particle (since, for example, the spatial

covariances of the flow field differ significantly for stream-wise and wall-normal spatial

separations). Such properties of the turbulent velocity field in a boundary layer make

the dispersion tensors (via their conditional averages) intrinsically non-local.

6.2 Non-local nature of ρ (x′, s|x)
Not only do the characteristics of the turbulence described by R make the dispersion

tensors intrinsically non-local, but so also do the characteristics of ρ (x′, s|x) since this

describes the nature of the particle dispersion process in the turbulent flow field. To

simplify the present discussion, dispersion in the wall-normal direction (1D) will be

considered in order to consider the effect of turbulence inhomogeneity on ρ (x′, s|x).
Then, 3D dispersion will be considered in order to highlight the effect of the turbulence

anisotropy.

In the wall-normal direction of a channel flow the motion of a particle (subject only

to Stokes drag and gravity, for simplicity) may be determined by solutions constructed

using Green tensors as (the construction of this solution is discussed in detail in chapter

7)
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xp2(s) = x2 +
g2
β

[s+G22(s)]−G22(s)v
p
2(0)− β

0∫

s

G22(s− s1)u
′
2(x

p(s1), s1)ds1 (6.11)

where s ≤ 0, x2 is the wall-normal position of the particle at s = 0 and G22 is the

wall-normal component of the Green tensor for the particle equation of motion

G22(s) = τp (1− exp[βs]) (6.12)

Using equation (6.11) the statistical properties of ρ (x′2, s|x2) may be considered. The

mean of ρ (x′2, s|x2) is given by

〈

xp2(s)
〉

x2

= x2 +
g2
β

[s+G22(s)]−G22(s)
〈

vp2(0)
〉

x2

− β

0∫

s

G22(s− s1)
〈

u′2(x
p(s1), s1)

〉

x2

ds1

(6.13)

Note that in equation (6.13)
〈

vp2(0)
〉

x2

= v2(x2) which is zero for statistically steady state

particle dispersion with elastic particle-wall collisions. The term

〈

u′2(x
p(s1), s1)

〉

x2

is strongly non-local and is the mean of the wall-normal fluctuating fluid velocities

sampled at the particle positions at time s1 for particle trajectories satisfying x
p
2(0) = x2.

It is known that for particle dispersion in turbulent channel flows

〈

u′2(x
p(0), 0)

〉

x2

6= 0

in general, and the strongly inhomogeneous nature of the turbulent flow field in a chan-

nel flow is such that
〈

u′2(x
p(s1), s1)

〉

x2

is almost certainly also non-zero. Therefore, even

without gravity, the mean of ρ (x′2, s|x2) as defined by equation (6.13) will be time de-

pendent for particle dispersion in a turbulent channel flow.

The second central moment of ρ (x′2, s|x2) is given by
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〈

x̃p2(s)x̃
p
2(s)

〉

x2

=G22(s)
〈

vp′2 (0)vp′2 (0)
〉

x2

G22(s)

+ 2βG22(s)

0∫

s

G22(s− s1)
〈

vp′2 (0)u′2(x
p(s1), s1)

〉

x2

ds1

+ β2

0∫

s

0∫

s

G22(s− s1)
〈

u′2(x
p(s1), s1)u

′
2(x

p(s2), s2)
〉

x2

G22(s− s2)ds1ds2

− β2

0∫

s

0∫

s

G22(s− s1)
〈

u′2(x
p(s1), s1)

〉

x2

〈

u′2(x
p(s2), s2)

〉

x2

G22(s− s2)ds1ds2

(6.14)

where

x̃p2(s) = xp2(s)−
〈

xp2(s)
〉

x2

(6.15)
〈

vp′2 (0)vp′2 (0)
〉

x2

= c2c2(x2) (6.16)

and the non-local nature of the second central moment is in the fluctuating particle-fluid

velocity autocovariance
〈

vp′2 (0)u′2(x
p(s1), s1)

〉

x2

the fluid velocity autocovariance

〈

u′2(x
p(s1), s1)u

′
2(x

p(s2), s2)
〉

x2

and again in
〈

u′2(x
p(s1), s1)

〉

x2

Higher order moments of ρ (x′2, s|x2) can be constructed in the same manner and include

higher order non-local correlations between the particle and fluid velocities. Of partic-

ular importance is that the first term in the third central moment of ρ (x′2, s|x2) is given
by

G22(s)G22(s)G22(s)
〈

vp′2 (0)vp′2 (0)vp′2 (0)
〉

x2

= G22(s)G22(s)G22(s)c2c2c2(x2)

For s < 0 this term is non-zero in general for particle dispersion in a turbulent bound-

ary layer, and therefore ρ (x′2, s|x2) is a skewed PDF. Considering equations (6.4) and

(6.5), if ρ (x′2, s|x2) is skewed, then the particles will sample the values of Rji(x
′
2, s; x2)

asymmetrically with respect to x2 and hence this will also affect the particle dispersion

tensors.
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In addition to the effect of the fluid turbulence inhomogeneity in the wall-normal

direction, the anisotropy of the turbulence also affects ρ (x′, s|x) and hence also the way

the particles sample the correlations of the turbulence. For example, suppose that the

spatial correlations in Rji(x
′, s;x, 0) decay at equal rates in all directions, then it is clear

that if the covariance of ρ (x′, s|x) increases more rapidly in the x1 direction than in the

x2 then the rate of decorrelation of the flow field seen by the particles will be more rapid

in the x1 direction than in the x2.

6.3 Particle-wall collisions

Another factor which affects the dispersion tensors in a boundary layer is the effect of

the particle-wall collisions.

 

vp1(ta)

vp2(ta)

vp2(tb)

vp1(tb)

Figure 6.6: Trajectory of particle (ta < tb) which has collided with the wall of a
pipe/channel.

Figure 6.6 shows the trajectory of a particle which collides with the wall. Consider the

spatial correlations of the fluid velocity field that the particle will see as it moves from

its wall-normal position at time ta, x
p
2(ta) = x2, towards the wall and then rebounds back.

Figure 6.7 shows a function representing the assumed form of the two-point covariance

of the wall-normal fluid velocities in a turbulent boundary layer (scaled to a maximum

value of 1)
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〈u′2(x′2, 0)u′2(x2, 0)〉

Figure 6.7: Plot of an assumed form for two-point covariance of the wall-normal fluid
velocities in a boundary layer at x2 = 10 (minimum x′2 value is xmin

2 , the point at which
the particle makes contact with the wall).

Now if the particle in figure 6.6 is at x2 = 10 at time ta and begins to move towards the

wall, then according to figure 6.7 the particle will begin to see a spatial decorrelation

of the fluid velocity field in the wall-normal direction. However upon rebounding back

from the wall its wall-normal position will approach x2 = 10 once again, and hence the

particle will see a velocity field which is ‘re-correlating’ with itself (spatially). This

‘re-correlation’ effect will affect the particle dispersion tensors.

The effect of the particle-wall collisions is described by the distribution of particle

positions in the wall-normal direction ρ (x′2, s|x2). Due to the constraint imposed by the

wall xp2 ≥ xmin
2 , where xmin

2 is the location of the wall, then ρ (x′2, s|x2) becomes increasingly

asymmetric for x2 → xmin
2 .

6.4 Summary

The particle dispersion tensors λ, µ and κ (under the Green tensor approximation)

depend upon the non-local correlation tensors

〈

Rji(x
p(s), s;x, 0)

〉

x

and
〈 ∂

∂xk
Rji(x

p(s), s;x, 0)
〉

x
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both of which require closure. In chapter 5 it was demonstrated that local approxi-

mations to such correlation tensors are insufficient for particles dispersing in turbulent

boundary layers, except in the limit of very large particles. In this chapter the charac-

teristics of inertial particle dispersion in turbulent boundary layers have been considered

in order to highlight the features which make the dispersion tensors non-local in such

a flow.

In summary, the non-local affects on the particle dispersion tensors can be identified

and associated with

• The strongly inhomogeneous and anisotropic nature of the one-point and two-

point statistics of the fluid turbulence described in R(x′, s;x, 0)

• The non-local effect of the turbulence on ρ (x′, s|x) and the the skewness and

anisotropic dispersion of the particles described by ρ (x′, s|x)

• The particle-wall collisions

In the next chapter a new non-local closure model for the particle dispersion tensors is

developed which attempts to take into account these effects.
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Chapter7

Closure Model for Particle Dispersion

Tensors

In this chapter a new non-local closure model is presented which attempts to take

into account the effect of the inhomogeneity and anisotropy of the turbulence, as well

as accounting for the effect of particle wall collisions for particles dispersing under a

Stokes drag force (and in the next chapter the closure model is extended to account for

added mass and gravitational forcing in addition to Stokes drag forcing acting on the

particles).

The correlations that require closure in the dispersion tensors are given by

〈

Rji(x
p(s), s;x, 0)

〉

x
=

∫

x′

Rji(x
′, s;x, 0)ρ (x′, s|x) dx′ (7.1)

〈 ∂

∂xk
Rji(x

p(s), s;x, 0)
〉

x
=

∫

x′

[
∂

∂xk
Rji(x

′, s;x, 0)

]

ρ (x′, s|x) dx′ (7.2)

For Stokes drag forcing on the particles, the correlations of the fluctuating force field

acting on the particles are given by

Rji(x
′, s;x, 0) =β2

〈

u′j(x
′, s)u′i(x, 0)

〉

(7.3)

∂

∂xk
Rji(x

′, s;x, 0) =β2 ∂

∂xk

〈

u′j(x
′, s)u′i(x, 0)

〉

(7.4)

The tensor
〈

u′j(x
′, s)u′i(x, 0)

〉

is the Eulerian 2-point, 2-time correlation tensor for the fluctuating fluid velocity field,

some of the properties of which were discussed in the previous chapter. This fluid
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statistic is assumed to be known and is an input to the closure model, and may be

obtained either by a DNS, LES or experimental data1. Therefore the closure problem

is related to developing a model for ρ (x′, s|x).
There are then three issues to be considered in the formulation of a closure model

for ρ (x′, s|x); (i) how can the effect of the particle-wall collisions be accounted for, (ii)

what type of PDF should be used to model ρ (x′, s|x) and (iii) how can the moments of

the PDF be modelled? These are now considered.

7.1 Accounting for the effect of the particle wall-

collisions

As discussed in section 6.3, the particle-wall collisions will affect the values of R(x′, s;x, 0)

sampled by the particles in the near wall region and it is therefore important to take

this effect into account. The most obvious way to account for the effect would be to

account for individual particle-wall collisions in the construction of the moments for

ρ (x′, s|x). However, this is far from straightforward. Instead in this thesis where the

focus is on elastic particle-wall collisions, a more elegant approach is possible. The

particle-wall collisions only affect the particle motion in the wall-normal direction and

it is therefore only necessary to consider the effect of the collisions upon ρ (x′2, s|x2).

 

xmin
2

−xmin
2

x2

x1

Figure 7.1: Plot to illustrate the line of symmetry approach. The thick black lines
represent particle trajectories which collide with the wall.

1Note that this statistic can only strictly be considered as input data for a one-way coupled particle-
turbulence system. For a two-way coupled system, these correlations would depend upon the particle
dispersion itself.
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Consider figure 7.1 which illustrates two particle trajectories, one dispersing in the

region x2 ≥ xmin
2 and the other in the region x2 ≤ −xmin

2 . The particle dynamics are

symmetric with respect to the line x2 = 0 and the dynamics in both regions are described

by the following system of particle equations of motion

d2

dt2
xpi =







Fi(x
p(t),vp(t), t) + fi(x

p(t), t) for x2 ≥ xmin
2

JijFj(J · xp(t),J · vp(t), t) + Jijfj(J · xp(t), t) for x2 ≤ −xmin
2

(7.5)

where

Jij =








1 0 0

0 −1 0

0 0 1








(7.6)

Then for elastic particle-wall collisions, rather than constraining the particle motion to

the domain x2 ≥ xmin
2 and reflecting the particle back into the domain upon collision with

the wall, it is equivalent to define the particle motion over the whole domain x2 ≥ xmin
2

& x2 ≤ −xmin
2 but now with the particle equation of motion defined by equation (7.5).

Trajectories in this symmetry-line model then generate the required trajectories of the

original reflecting wall system through the mapping (xp1, x
p
2, x

p
3) → (xp1, |xp2|, xp3).

Given that the statistics of f , defined by R(x′, s;x, 0) will be symmetric with respect

to the line x2 = 0, and that the particle motion is defined only for x2 ≥ xmin
2 & x2 ≤ −xmin

2 ,

then for this symmetry-line model the integral over x′2 in equation (7.1) is replaced by

〈

Rji(x
p
2(s), s; x2, 0)

〉

x2

=

+xmax
2∫

+xmin
2

Rji(x
′
2, s; x2, 0)ρ (x

′
2, s|x2) dx′2

+

−xmin
2∫

−xmax
2

Rji(x
′
2 + 2|x′2|, s; x2, 0)ρ

(
2xmin

2 + x′2, s|x2
)
dx′2

(7.7)

and similarly for equation (7.2). The advantage of this line of symmetry model is that

it is no longer necessary to consider particle collisions at xmin
2 since the effect of the

elastically rebounded particle trajectories on
〈

Rji(x
p
2(s), s; x2, 0)

〉

x2

is captured within the

integral
−xmin

2∫

−xmax
2

Rji(x
′
2 + 2|x′2|, s; x2, 0)ρ

(
2xmin

2 + x′2, s|x2
)
dx′2
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7.2 Type of PDF for ρ (x′, s|x)
As discussed in section 6.2, as s increases the conditional PDF for particle dispersion

in a turbulent boundary layer ρ (x′, s|x) is undoubtedly skewed, due to the skewness of

the particle velocity distributions and the inhomogeneous nature of the underlying fluid

turbulence. Further, the intermittent nature of turbulence is such that one would also

expect the distribution ρ (x′, s|x) to have extended tails (at least for small to medium

particles). A modelling limitation is that it is difficult to construct a closed form

expression for the undoubtedly complex form that ρ (x′, s|x) takes in a real turbulent

boundary layer. However it is only the form of ρ (x′, s|x) within the time for which

the fluid is correlated that is important, and within these times it is possible that a

simple Gaussian distribution may be an adequate approximation. Therefore as a first

approximation, a Gaussian distribution will be used to model ρ (x′, s|x), specifically

ρ (x′, s|x) ≈ 1

(2π)3/2|Σij |1/2
exp

[

−1

2
(x′i −Mi)Σ

−1
ij (x′j −Mj)

]

(7.8)

where Σ−1
ij is the ij component of the inverted tensor Σ−1 and

Mi =
〈

xpi (s)
〉

x
(7.9)

Σij =
〈

x̃pi (s)x̃
p
j (s)

〉

x
(7.10)

It should be noted that it would also be possible to use more appropriate PDF’s for

ρ (x′, s|x) should a Gaussian prove to be inadequate. For example, skew-normal distribu-

tions [124], epsilon-skew-normal distributions [125] along with skew-t and various other

types of distributions [126] could be used to model ρ (x′, s|x) as a skewed PDF which is

perhaps more realistic than a Gaussian.

7.3 Modelling the moments of ρ (x′, s|x)
With a Gaussian PDF as an initial approximation to ρ (x′, s|x) it is necessary to be able

to model the mean of the distribution

Mi =
〈

xpi (s)
〉

x

and the second central moment

Σij =
〈

x̃pi (s)x̃
p
j (s)

〉

x
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For particles dispersing only under the influence of a Stokes drag force the particle

equation of motion is

d2

dt2
xpi + β

d

dt
xpi =β〈ui〉p + βup′i (7.11)

The particle trajectories described by ρ (x′, s|x) are defined backwards in time, and the

backwards in time motion is described by

d2

ds2
xpi − β

d

ds
xpi =− β〈ui〉p − βup′i (7.12)

where s = t′ − t ≤ 0. Since the trajectories in the moments are to be subject to the end

condition xp(0) = x, then if the mean shear of the fluid is assumed to be locally linear

(i.e. linear about x) then the mean force on the particle may be written as

β〈ui〉p = β〈ui〉(xp2(s)) = βδi1 [γ(x2) (x
p
2(s)− x2) + 〈ui(x2)〉] (7.13)

where γ(x2) is the mean shear at x2

γ(x2) =
∂

∂x2
〈u1(x2)〉 (7.14)

The assumption that the mean shear of the fluid velocity field may be considered

as locally linear in a turbulent boundary layer is of course a strong assumption, but

it is neccesaary in order to construct fully analytic models for the moments of the

distribution ρ (x′, s|x), and it is a fully analytic closure model which is desired in the

present work2. Strictly speaking, the locally linear assumption is only true in the

viscous sublayer of the boundary layer (x2 < 5) in which the mean fluid velocity may

be to a very high degree of accuracy considered linear in x2. Away from the viscous

sublayer, the mean fluid velocity varies nonlinearly with x2, and as such the locally

linear assumption is only strictly appropriate for infinitesimal displacements about x2

(i.e. |xp2(s) − x2| ≪ 1). However, away from the viscous sublayer, in the time for which

the velocity field is correlated |xp2(s)− x2| is expected to be sufficiently large so that the

2Note that the present closure modelling framework is not limited to this locally linear assumption;
it is only a necessary assumption of one wishes to derive a fully analytical model for ρ (x′, s|x). To
account for a nonlinear dependence of 〈u1〉 on x2 it would be necessary to numerically compute the
variation of 〈u1〉 along particle paths (which are themselves unknown, but could be approximated),
leading to a semi-analytical closure model.
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particles see a nonlinear variation of the mean fluid velocity along their trajectories.

However two things should be noted. First of all, the locally linear assumption is

valid within the viscous sublayer, and it is within the viscous sublayer that the large

particle concentrations are found for particle dispersion in a turbulent boundary layer.

Therefore, in this critical region, the locally linear assumption is valid and therefore

does not compromise the model. Secondly, the locally linear assumption will only affect

the particle dispersion in the x1 direction, since in a fully developed turbulent boundary

layer a mean velocity for the fluid only exists in this direction. Furthermore, since the

fluid and particle statistics are homogeneous in the x1 direction for a fully developed

turbulent boundary layer, errors in the stream wise particle motion introduced by the

locally linear assumption will not affect the statistics of the wall-normal particle motion.

In accounting for the non-locality of the dispersion process it is the dispersion in the

wall-normal direction which is the most important, since only in this direction are the

flow statistics inhomogeneous, and only in this direction do the particle-wall collisions

influence the system. Therefore, errors introduced by the locally linear assumption

may be considered of secondary importance, since it does not affect the dominant

contribution to the non-locality of the system.

Using equation (7.13) the particle equation of motion may be written as

d2

ds2
xpi − β

d

ds
xpi + βγ(x2)δi1x

p
2 =βδi1 [γ(x2)x2 − 〈ui(x2)〉]− βup′i (7.15)

Equation (7.15) may be solved by the use of a Green tensor defined by

d2

ds2
Gij − β

d

ds
Gij + βγ(x2)δi1G2j =δijδ(s− s1) (7.16)

and the solution to equation (7.15) with ‘initial’ condition xp(0) = x is then given by

xpi (s) = xi −Gij(s)v
p
j (0) + β

0∫

s

Gij(s− s1)
[
γ(x2)δj1x2 − δj1〈uj(x2)〉 − u′j(x

p(s1), s1)
]
ds1 (7.17)

The mean of ρ (x′, s|x) can now be constructed from equation (7.17)

〈

xpi (s)
〉

x
= xi −Gij(s)

〈

vpj (0)
〉

x
+ β

0∫

s

Gij(s− s1)
[

γ(x2)δj1x2 − δj1〈uj(x2)〉 −
〈

u′j(x
p(s1), s1)

〉

x

]

ds1

(7.18)
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The mean particle velocity
〈

vpj (0)
〉

x
= vj(x)

is zero in the span-wise direction, and is zero in the wall-normal direction for elastic

particle-wall collisions when the system is in a statistically steady state. However the

mean stream-wise particle velocity is unknown. It is possible to construct an approx-

imation for v1 through local approximations to the particle stream-wise momentum

equation. However this equation would need to be solved numerically and this addi-

tional complexity is undesirable. Therefore as an initial approximation take v1 ≈ 〈u1〉.
This is of course simply an approximation, and whilst valid for small particles, it be-

comes less valid for particles of appreciable inertia, especially near the wall since inertial

particle, unlike fluid particles, do not have zero stream-wise velocity at the wall (i.e.

they are not subject to the ‘no-slip’ criteria). However, since the fluid and particle

statistics are homogeneous in the x1 direction for a fully developed turbulent bound-

ary layer, errors in the stream wise particle motion introduced by the approximation

v1 ≈ 〈u1〉 will not affect the statistics of the wall-normal particle motion. In accounting

for the non-locality of the dispersion process it is the dispersion in the wall-normal

direction which is the most important, since only in this direction are the flow statistics

inhomogeneous, and only in this direction do the particle-wall collisions influence the

system. Therefore, errors introduced by the approximation v1 ≈ 〈u1〉 may be consid-

ered of secondary importance, since it does not affect the dominant contribution to the

non-locality of the system.

The second unknown term in equation (7.18) is

〈

u′j(x
p(s1), s1)

〉

x

which is the mean of the values of the fluctuating fluid velocity sampled at particle

positions at time s1 for particle trajectories which satisfy xp(0) = x. This strongly non-

local term is non zero even for fluid tracers in a turbulent boundary layer (except for

s1 = s = 0) due to the inhomogeneity of the flow. It is even more complex for inertial

particle dispersion in a turbulent boundary layer since they preferentially sample the

turbulent flow field. A possible approximation would be

〈

u′j(x
p(s1), s1)

〉

x
≈
〈

u′j(x
p(0), 0)

〉

x
(7.19)

However the resulting term
〈

u′j(x
p(0), 0)

〉

x
is also unknown (for Stokes drag it is of course

essentially this term which the dispersion tensors model in the particle momentum

equation). The following approximation is therefore made for this unknown term
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〈

u′j(x
p(0), 0)

〉

x
≈
〈

u′j(x, 0)
〉

= 0 (7.20)

though it is appreciated that it may be an important term to include. The components

of the closure model for
〈

xp(s)
〉

x
are then given by

〈

xp1(s)
〉

x
=x1 − [γ(x2)x2 − 〈u1(x2)〉] s−G11(s)

(

v1(x2) + γ(x2)x2 − 〈u1(x2)〉
)

(7.21)
〈

xp2(s)
〉

x
=x2 (7.22)

〈

xp3(s)
〉

x
=x3 (7.23)

From equation (7.17) the second central moment of ρ (x′, s|x) can be expressed as

〈

x̃pi (s)x̃
p
k(s)

〉

x
=Gij(s)

〈

vp′j (0)vp′m(0)
〉

x
Gkm(s)

+ βGij(s)

0∫

s

Gkm(s− s1)
〈

vp′j (0)u′m(xp(s1), s1)
〉

x
ds1

+ βGkm(s)

0∫

s

Gij(s− s1)
〈

u′j(x
p(s1), s1)v

p′
m(0)

〉

x
ds1

+ β2

0∫

s

0∫

s

Gij(s− s1)
〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
Gkm(s− s2)ds1ds2

(7.24)

where

x̃p(s) = xp(s)−
〈

xp(s)
〉

x

with
〈

xp(s)
〉

x
given by equations (7.21) to (7.23). The first unknown term in equation

(7.24) is
〈

vp′j (0)vp′m(0)
〉

x
= cjcm(x)

which is the particle Reynolds stress tensor. This is approximated using a local approx-

imation

cjcm(x) =
1

2β

(
µjm(x) + µmj(x)

)
(7.25)

where for a simple linear shear flow with
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∂

∂xj
〈ui〉 = γδi1δj2 (7.26)

the local approximation to µ is given by [127]

µjm(x) =
β2τLp

1 + βτLp

(

〈u′ju′m〉+ δj1
βγτLp

1 + βτLp
〈u′2u′m〉

)

(7.27)

where 〈u′u′〉 is the fluid velocity Reynolds stress tensor at x and τLp(x, τp) is the timescale

of the fluid velocity correlations seen by inertial particles of response time τp which arrive

at x (the specification of this timescale will be considered later).

A local approximation is invoked for the particle-fluid autocovariance in equa-

tion (7.24)

〈

vp′j (0)u′m(xp(s1), s1)
〉

x
≈
〈

vp′j (0)u′m(xp(0), 0)
〉

x
Ψ(s1, τ

Lp) (7.28)

where Ψ(s1, τ
Lp) is the particle-fluid velocity autocorrelation with timescale τLp (strictly

speaking, this timescale should differ from the the fluid velocity timescale seen by the

particles; here they have been approximated as being equal). The form of the model

chosen for Ψ is a matter of choice (i.e. simple exponential decay, bi-exponential etc)

however it should be noted that the form of Ψ used to derive µ in equation (7.27) was

Ψ(s, τLp) = exp
[ s

τLp

]

, s ≤ 0 (7.29)

Should a different form of Ψ be chosen, then for consistency, the local solution for µ

should be re-derived. The particle-fluid velocity correlation tensor in equation (7.28)

may be approximated by [127]

〈

vp′j (0)u′m(xp(0), 0)
〉

x
=
µjn(x)

β

(

δnm − τLp ∂vn
∂xm

)

(7.30)

with µ given by equation (7.27). Finally in equation (7.24) the fluid velocity autoco-

variance along the particle trajectory is approximated by
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〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
≈
〈

u′j(x
p(0), 0)u′m(xp(0), 0)

〉

x
Ψ(s1 − s2, τ

Lp) ≈ 〈u′ju′m〉Ψ(s1 − s2, τ
Lp)

(7.31)

In equations (7.27), (7.29) and (7.31) an approximation for τLp(x, τp) is required. This

timescale is the same timescale that would be used to construct local approximations

to the dispersion tensors and is unknown. One strategy would be

τLp(x, τp) ≈ 0 (7.32)

which is equivalent to assuming that the fluctuating fluid velocity is constant along

the particle trajectory. In [108] this approximation was used to develop a model for

timescales of the turbulence seen by particles for particle dispersion in a homogeneous

isotropic turbulent flow field, and comparisons with equivalent PT simulations showed

that this level of approximation was adequate. However the fluid velocity along a

particle trajectory in a turbulent flow field is far from constant and more appropriate

approximations for τLp than that given in equation (7.32) may be specified. Two further

approximations are possible. The simplest would be

τLp(x, τp) ≈ τL(x) (7.33)

that is, to approximate τLp by the fluid velocity Lagrangian integral timescale τL. This

is more appropriate than equation (7.32) since it captures the fact that the particles

see a fluctuating flow field which decorrelates along its trajectory. However, it does not

take into account the effect of the particle inertia which dictates that in the absence

of any body forces acting on the particle τLp varies between the fluid Lagrangian and

Eulerian (one-point) integral timescales, being equal to the fluid Lagrangian integral

timescale τL for τp → 0 and equal to the Eulerian integral timescale τE for τp → ∞. A

more appropriate approximation for τL, and the one which is used in the closure model,

is to use the function given by Wang & Stock [107]

τLp ≈ τE − τE − τL
(1 + StE)0.4(1+0.01St)

(7.34)

where
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StE =
τp
τE

(7.35)

Equation (7.34) was obtained by fitting a curve to data obtained for τLp form particle

dispersion in a homogeneous, isotropic KS flow field with

τL
τE

= 1− 0.644 (7.36)

Using equation (7.34) to approximate τLp is more appropriate than either equation

(7.32) or (7.33) since it captures both the fact that the fluid velocity along the trajectory

varies and the dependence on the particle Stokes number of the decorrellation of the

fluid velocity along the particle trajectory. Using the function in equation (7.34) for τLp

is however still an approximation since τLp is supposed to describe the timescale of the

fluid velocity along the particle trajectory in an inhomogeneous, anisotropic flow field,

whereas equation (7.34) is for homogeneous, isotropic turbulence. Nevertheless, even

with τLp approximated using equation (7.34) (or even (7.32) or (7.33)) which is only

strictly appropriate for homogeneous, isotropic turbulence, this does not imply that the

timescale that could be recovered from the closure model for

〈

R(xp(s), s;x, 0)
〉

x

is also homogeneous and isotropic. Regardless of the approximation for τLp in the closure

model, the effect of the turbulence inhomogeneity and anisotropy will still, to some

degree, be captured by the closure model (the effect of the quality of the approximation

for τLp on the performance of the new closure model is assessed in section 7.4.5).

With all the unknown terms in equation (7.24) now specified, this equation can be

evaluated analytically as shown in appendix A. Therefore an analytic closure model

for ρ(x′, s|x) has been constructed, and it may be used to construct new closures for the

dispersion tensors, the performance of which shall now be tested.

7.4 Testing the Closure Model

Ideally, to test the closure model it is necessary to compute the particle dispersion

tensors in a DNS PT simulation (or experiment) and compare this data against the

closure model predictions. However, computing the dispersion tensors in a DNS of

turbulent channel flow would be extremely computationally expensive, and in addition,

the data for R required for the closure model would have to be obtained numerically
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and curves fitted to the data. Therefore it is sensible to first test the closure model in a

simpler test case in which the computation of the dispersion tensors via PT is simpler,

and in which R can be specified analytically. This removes any source of error from

curve fitting data for R (obtained experimentally or by DNS), meaning that the quality

of the closure model predictions will depend solely upon the accuracy of the closure

model for ρ (x′, s|x).
Therefore a new flow field model was developed, based on KS, which produces an

inhomogeneous, anisotropic flow field. The flow field provides a simplified system which

resembles qualitatively a turbulent boundary layer (to an extent) in which the under-

lying inhomogeneity and anisotropy of the fluid flow field makes the particle dispersion

process intrinsically non-local, and therefore serves as a meaningful initial test case for

testing the new closure model for the dispersion tensors.

7.4.1 Inhomogeneous, anisotropic KS flow field

Kinematic Simulations (KS) (see chapter 2) provide a way to to construct turbulent-like

flow fields through the linear superposition of many random Fourier modes and have

been used extensively in the literature (e.g. [31, 32, 34–38]). Whilst possessing some

shortcomings in representing real turbulent fields (e.g. KS does not account for the

sweeping of the small scales by the large energy containing scales) KS is nevertheless

able to represent sufficient features of a turbulent flow to make it a useful tool, especially

for studying particle dispersion (e.g. [33]). However nearly all KS models available in

the literature are constrained to homogeneous, isotropic flow fields and in the context of

testing the closure model presented in this chapter a KS model for a turbulent boundary

layer is required, which is both strongly inhomogeneous and anisotropic.

Recently in [38] a new KS model for turbulent channel flow was presented. However

this model does not appear to yield simple analytic expressions for the two-point, two-

time velocity correlation tensor, and this is required for the present test case. Therefore

a new KS model was developed which produces a flow field which is both strongly inho-

mogeneous and anisotropic. The challenge was to construct a flow field which possessed

the following features; (i) was inhomogeneous only in the wall-normal direction, (ii) was

anisotropic, (iii) was statistically stationary and (iv) was incompressible. In order to

produce such a flow field, begin by defining a 2D fluctuating flow field by

u′i(x, t) =

(
∂ψ

∂x2
,− ∂ψ

∂x1

)

(7.37)

which produces a fluctuating fluid velocity field u′(x, t) which is incompressible. The
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flow field is then given by u(x, t) = 〈u(x, t)〉+u′(x, t). In order to produce a flow field which

is inhomogeneous only in the x2 direction and has a zero mean wall-normal velocity take

〈ui(x, t)〉 = (〈u1(x2, t)〉, 0) (7.38)

which again yields a field u(x, t) which is incompressible. The stream function ψ is taken

in the form

ψ(x, t) =
Sf√
N

+N∑

n=−N

zn(x2)(k1n + k2n) exp[i(kn · x+ ωnt)] (7.39)

where Sf is a scaling factor (used to scale the values of the Reynolds stresses, specified

later), and

zn(x2) =
A(x2)

2
(ζn − iξn) (7.40)

where A(x2) is a ‘profiling function’, ζn and ξn are stochastic variables, kn are the wave

numbers of the modes in the flow field and ωn are the frequencies associated with the

modes. ζn, ξn and ωn are generated from zero mean Gaussian distributions. The way

in which the wave numbers kn are generated determines the resulting energy spectrum.

The simplest way is to generate them from a zero mean Gaussian distribution, and

this leads to a Kraichnan energy spectrum containing no inertial subrange [108]. More

sophisticated methods are available, one of which captures the sweeping of the small

scales by the large energy containing scales, and the other which allows an inertial

subrange to be included in the KS flow field, usually with a Von Karman energy spec-

trum [31]. With a view to constructing relatively simple analytical expressions for the

Eulerian two-point, two-time correlation tensor for the velocity field, the wave numbers

were generated using a zero mean Gaussian distribution with isotropic covariance.

The 2D (fluctuating) flow field is therefore given by

u′1(x, t) =
Sf√
N

+N∑

n=−N

(
dzn
dx2

(k1n + k2n) + izn(k1n + k2n)k2n

)

exp[i(kn · x+ ωnt)] (7.41)

u′2(x, t) =− Sf√
N

+N∑

n=−N

izn(k1n + k2n)k1n exp[i(kn · x+ ωnt)] (7.42)

Provided A(0) = 0 and A′(0) = 0 , the fluid velocity field satisfies the no slip and im-
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permeability conditions at the wall (where x2 = 0). To ensure ψ is real it is required

that ζ−n = −ζn, ξ−n = ξn, k−n = −kn and ω−n = −ωn (in which case ζ0 = 0, k0 = (0, 0) and

ω0 = 0). With these definitions

〈znzm〉 = A2(x2)

4
[〈ζnζm〉 − 〈ξnξm〉]

= −A
2(x2)

2
σ2
z (for m = −n; 〈znzm〉 = 0 if m 6= −n)

(7.43)

and

〈kinkjm〉 =







σ2
k (for m = n, i = j)

−σ2
k (for m = −n, i = j)

0 (for m 6= n,m 6= −n, or i 6= j)

(7.44)

where σ2
z is the variance of ζ and ξ, and σ2

k is the variance of k.

Mean velocity

With kn and zn mutually independent, since 〈ζn〉 = 〈ξn〉 = 0, 〈zn(x, x2)〉 = 0 (and also

〈z′n(x, x2)〉 = 0) the mean fluid velocity vector is (in light of equation (7.38))

〈ui(x, t)〉 = 〈〈ui(x, t)〉+ u′i(x, t)〉 = (〈u1(x2, t)〉, 0) (7.45)

Reynolds Stress

The fluid Reynolds stresses are

〈u′1u′1〉 = 2S2
fσ

2
zσ

2
k

[
(A′(x2))

2 + 2(A(x2))
2σ2

k

]
(7.46)

〈u′1u′2〉 = 〈u′2u′1〉 = −2S2
fσ

2
zσ

4
k(A(x2))

2 (7.47)

〈u′2u′2〉 = 4S2
fσ

2
zσ

4
k(A(x2))

2 (7.48)

The scaling parameter Sf is then chosen so as to appropriately scale the values of the

Reynolds stresses (i.e. so that the Reynolds stress values are comparable with that in

a channel flow, for example).

Eulerian two-point, two-time velocity correlations
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The two-point, two-time velocity correlation tensor for this KS field is given by

〈

u′i(x
′, s)u′j(x, 0)

〉

=
〈

u′i(r1, x
′
2, s)u

′
j(0, x2, 0)

〉

= Fij exp

[

−1

2
σ2
k(r

2
1 + r22)

]

exp

[

−1

2
σ2
ws

2

]

(7.49)

where r = x′ − x and

F11 =S2
fA

′(x′2)A
′(x2)σ

2
zσ

2
k

[
2(1− r1r2σ

2
k)− (r21 + r22)σ

2
k)
]

− S2
fA

′(x′2)A(x2)σ
2
zσ

4
k

[
r2(1− r21σ

2
k) + 2r1(1− r22σ

2
k) + r2(3− r22σ

2
k)
]

+ S2
fA(x

′
2)A

′(x2)σ
2
zσ

4
k

[
r2(1− r21σ

2
k) + 2r1(1− r22σ

2
k) + r2(3− r22σ

2
k)
]

+ S2
fA(x

′
2)A(x2)σ

2
zσ

4
k

[
3 + (1− r21σ

2
k)(1− r22σ

2
k)− 2r1r2σ

2
k(3− r22σ

2
k)− r22σ

2
k(6− r22σ

2
k)
]

F12 =S2
fA

′(x′2)A(x2)σ
2
zσ

4
k

[
r1(3− r21σ

2
k) + 2r2(1− r21σ

2
k) + r1(1− r22σ

2
k)
]

+ S2
fA(x

′
2)A(x2)σ

2
zσ

4
k

[
r1r2σ

2
k(6− (r21 + r22)σ

2
k)− 2(1− r21σ

2
k)(1− r22σ

2
k)
]

F21 =− S2
fA

′(x2)A(x
′
2)σ

2
zσ

4
k

[
r1(3− r21σ

2
k) + 2r2(1− r21σ

2
k) + r1(1− r22σ

2
k)
]

+ S2
fA(x

′
2)A(x2)σ

2
zσ

4
k

[
r1r2σ

2
k(6− (r21 + r22)σ

2
k)− 2(1− r21σ

2
k)(1− r22σ

2
k)
]

F22 =S2
fA(x

′
2)A(x2)σ

2
zσ

4
k

[
3 + (1− r21σ

2
k)(1− r22σ

2
k)− 2r1r2σ

2
k(3− r21σ

2
k)− r21σ

2
k(6− r21σ

2
k)
]

(7.50)

Input Parameters

The input parameters for the flow field are A(x2) , Sf , σz, σk and σw . In the present work

the choice of these input parameters is not too critical since the objective is to test the

performance of the new closure model for the particle dispersion tensors and compare

the predictions to equivalent particle tracking data computed in this KS flow field.

Nevertheless, it is desirable that the flow field should be to some extent qualitatively

representative of a turbulent boundary layer. To this end the following were chosen

110



Closure Model for Particle Dispersion Tensors

A(x2) =
(

1− exp
(

− (K1x2)
2
))

exp (−K2x2) (7.51)

K1 =0.04 (7.52)

K2 =0.003 (7.53)

σz =1 (7.54)

σk =0.1 (7.55)

σw =0.1 (7.56)

Sf =

√

1.5

4σ2
zσ

4
k

(7.57)

This choice of parameters produces fluid Reynolds stresses as shown in figure 7.2

0 20 40 60 80 100

−0.5

0

0.5

1

 

 

 〈u′1u′1〉
〈u′1u′2〉
〈u′2u′2〉

x2

Figure 7.2: Reynolds stresses produced by the KS flow field with parameters specified
by equations (7.51) to (7.57).

Figure 7.2 shows that this choice of the parameters produces a wall-normal Reynolds

stress component 〈u′2u′2〉 which qualitatively and quantitatively resembles that found in

a turbulent boundary layer (see figure (6.2)) as does the negatively valued shear stress

〈u′1u′2〉. With σw = 0.1 the Eulerian integral timescale is given by

τE =

√
π

2

1

σw
≈ 12 (7.58)

This value falls within the range of the stream-wise and wall-normal Eulerian integral

timescales found in DNS of turbulent channel flow (see [43], in which it can also be

seen that the Eulerian integral timescales in a turbulent boundary layer are only weakly

inhomogeneous). In the closure model the fluid velocity Lagrangian integral timescale is
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required as input data. A homogeneous value for the fluid velocity Lagrangian timescale

was computed by tracking fluid particles in this KS flow field with the homogeneous

setting A(x2) = 1, and its ratio to the Eulerian integral timescale was computed and

found to be

τL
τE

= 0.382 (7.59)

which is close the the ratio in the Wang & Stock simulations (see equation (7.36)).

Therefore equation (7.36) provides an appropriate timescale with which to construct

LHA dispersion tensors which can be compared against both the PT data and the new

closure model predictions to assess the performance of the new closure model compared

to a LHA (but using the ratio τL/τE = 0.382 in equation (7.36) instead of the Wang &

Stock value of τL/τE = 0.356 to be precise for this flow field).

Making the flow field seen by suspended particles periodic

For turbulent channel flows, the flow field in the homogeneous stream-wise direction is

usually made periodic over a length L. It is not clear how the Eulerian flow field defined

in equations (7.41) and (7.42) could be made strictly periodic in the homogeneous x1

direction. However the following method can be used when using this KS flow field for

PT simulations. Define a ‘box’ in which the particles are dispersing to have a ‘stream-

wise’ domain 0 ≤ x1 ≤ L. Then define a ‘simulated particle stream-wise position’ (SPSP)

to be

χp(t) = xp1(t) +NLL (7.60)

where xp1(t) is the actual stream-wise particle position, and NL is a number to record

the number of times the particle has ‘looped through’ the domain. For example, if the

particle position is in the region L < xp1(t) < 2L then NL = −1 etc. Then the particle

statistics are recorded (i.e. the number density etc) based on χp(t), not xp1(t). However,

the fluid velocity at the particle position is evaluated using the actual particle position,

not the SPSP, i.e. using u(xp1(t), x
p
2(t), t) not u(χp(t), xp2(t), t). This makes the flow field seen

by particles periodic over the length L and is equivalent to tracking particles through a

box which is periodic over the length L in the x1 direction in which particles would be

periodically re-introduced into the box once they have reached the edges of the domain.

Note that the periodicity does not affect the correlations which will be computed in
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the flow field against which the closure model will be tested, namely the computation

of
〈

Rji(x
p(s), s;x, 0)

〉

x

and
〈 ∂

∂xk
Rji(x

p(s), s;x, 0)
〉

x

since these will be recorded along the actual particle trajectories not the periodic tra-

jectories (i.e. using xp1(t), x
p
2(t) not χ

p(t), xp2(t)).

7.4.2 Particle Tracking

Particles subject to the equation of motion

d2

dt2
xpi (t) =

d

dt
vpi (t) = β (ui(x

p(t), t)− vpi (t)) (7.61)

were tracked through the flow field described in section 7.4.1 but with mean fluid

velocity 〈u〉 = 0. 104 particles were tracked in the domain 0 ≤ x2 ≤ 200, 0 ≤ x1 ≤ L = 100

(L = 100 is sufficiently large for the periodic boundary condition effects to be considered

negligible, L = 100 being several times larger than the integral length scale in the x1

direction). The particles collided elastically with the wall when xp2(t) = xmin
2 with

xmin
2 =

√

9τpρf

2ρp
(7.62)

with ρf/ρp = 1/770 [85]. The particle equation of motion was solved using a second-

order Adams-Bashforth scheme with a time step δt = 0.05 (wall units). This time

step ensured that τp/δt ≥ 80 for all particle sizes considered, which was considered

sufficiently small to ensure numerical stability and accuracy (e.g. [9]). The particles

were tracked until their statistics had reached a statistically steady state (determined

in this context by monitoring the time evolution of ρ(x, t) and v(x, t) as recorded in the

PT simulation) and then the necessary statistics were recorded. Since the KS flow field

is only inhomogeneous in the x2 direction the required statistics are (rp1(s) = xp1(s)− x1)

〈

Rji(r
p
1(s), x

p
2(s), s; 0, x2, 0)

〉

x2

and
〈 ∂

∂xk
Rji(r

p
1(s), x

p
2(s), s; 0, x2, 0)

〉

x2

where for Stokes drag
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Rji(r1, x
′
2, s; 0, x2) = β2

〈

u′j(r1, x
′
2, s)u

′
i(0, x2, 0)

〉

(7.63)

(the two-point, two-time velocity correlation tensor for this KS field is given by equation

(7.49)) and these statistics were computed in the PT simulation from which the dis-

persion tensors could be evaluated using equations (6.1) to (6.3), with the appropriate

Green tensor given by

Gij(s) =δijτp(1− exp[βs]), s ≤ 0 (7.64)

Ġij =δij exp[βs], s ≤ 0 (7.65)

The dispersion tensors computed from this particle tracking simulation will be denoted

by the superscript ‘PT’ in the results section.

7.4.3 Closure Model Prediction

The closure model described in section 7 is used to construct a model for the statistics

〈

Rji(x
p(s), s;x, 0)

〉

x

and
〈 ∂

∂xk
Rji(x

p(s), s;x, 0)
〉

x

Recalling that the KS flow field is inhomogeneous in only the x2 direction these statistics

can be expressed as
〈

Rji(r
p
1(s), x

p
2(s), s; 0, x2, 0)

〉

x2

and
〈 ∂

∂xk
Rji(r

p
1(s), x

p
2(s), s; 0, x2, 0)

〉

x2

where rp1(s) = xp1(s) − x1. Therefore the required form of the spatial distribution is

(r1 = x′1 − x1)

ρ(r1, x
′
2, s|x2)

Note that, since the flow field has zero mean velocity
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rp1(s) = xp1(s)− x1

= x̃p1(s) +
〈

xp1(s)
〉

x2

− x1

= x̃p1(s)

(7.66)

and therefore

〈

rp1(s)
〉

x2

= 0 (7.67)

For the KS flow field outlined in section 7.4.1 the correct form of the autocorrelation is

Ψ(s, σLp) = exp

[

−1

2
σ2
Lps

2

]

(7.68)

where

σLp =

√
π

2

1

τLp
(7.69)

with τLp approximated using equation (7.34). For an autocorrelation of the form given

in equation (7.68) (and with zero mean fluid velocity) the local form of µ required in

the closure model for ρ(r1, x′2, s|x2) is given by

µL
ij(x2) = β2

〈

u′iu
′
j

〉
√

π

2σ2
Lp

exp

[

β2

2σ2
Lp

](

1− erf

[

β√
2σLp

])

(7.70)

For later use, note that the corresponding local approximation for λ is

λ
L

ij(x2) = β
〈

u′iu
′
j

〉
√

π

2σ2
Lp

(

1− exp

[

β2

2σ2
Lp

](

1− erf

[

β√
2σLp

]))

(7.71)

which have been derived using the appropriate Green tensor for this flow field (equation

(7.65)). The closure model for ρ(r1, x′2, s|x2) can now be constructed for this KS flow

field. The resulting form of the functions describing the closure model for ρ(r1, x′2, s|x2)
are given in appendix A. The dispersion tensor predictions constructed using the new

closure model will be denoted by the superscript ‘CM’ in the results section.

The only remaining issue is with regard to the integrals that must be evaluated (see
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section 7.1), which in their 2D form are

〈

Rji(r
p
1 , x

p
2(s), s; 0, x2, 0)

〉

x2

=

+xmax
2∫

+xmin
2

rmax
1∫

rmin
1

Rji(r1, x
′
2, s; 0, x2, 0)ρ (r1, x

′
2, s|x2) dr1dx′2

+

−xmin
2∫

−xmax
2

rmax
1∫

rmin
1

Rji(r1, x
′
2 + 2x′2, s; 0, x2, 0)ρ

(
r1, 2x

min
2 + x′2, s|x2

)
dr1dx

′
2

(7.72)

〈 ∂

∂xk
Rji(r

p
1 , x

p
2(s), s; 0, x2, 0)

〉

x2

=

+xmax
2∫

+xmin
2

rmax
1∫

rmin
1

[
∂

∂xk
Rji(r1, x

′
2, s; 0, x2, 0)

]

ρ (r1, x
′
2, s|x2) dr1dx′2

+

−xmin
2∫

−xmax
2

rmax
1∫

rmin
1

[
∂

∂xk
Rji(r1, x

′
2 + 2x′2, s; 0, x2, 0)

]

ρ
(
r1, 2x

min
2 + x′2, s|x2

)
dr1dx

′
2

(7.73)

For this KS flow field the integrals in equation (7.72) and (7.73) may be evaluated

analytically (albeit a rather lengthy process). However in general, especially if R was

specified by non-trivial curve fits to DNS data, analytic integration would be unfeasi-

ble. Nevertheless, the integration may be performed easily using a simple numerical

technique. In appendix B a brief note on the numerical computation of these integrals

is given.

It is worth noting that the numerical evaluation of equations (7.72) and (7.73)

is not, computationally, very demanding. Each of the results presented in the next

section for the closure model predictions of the dispersion tensors took less than 50

seconds to produce for each particle size considered. Therefore it is clear that having

to numerically integrate equations (7.72) and (7.73) in order to produce the closure

models for the dispersion tensors does not make the new closure model cumbersome.

Of course it would be desirable to produce analytic expressions for the dispersion

tensors using the new closure model. It is not the closure model for ρ(x′, s|x) which

makes this difficult, but the fact that the form of R in a real turbulent boundary layer

would likely contain non-trivial functions.
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7.4.4 Results

In this section the results for λ, µ and κ as computed from the PT simulation and as

predicted by both the new non-local closure model and the traditional local approx-

imation are presented. The results obtained from the PT simulation are denoted by

the superscript PT, the predictions from the new closure model are denoted by the

superscript CM and the predictions from the local approximation are denoted by the

superscript L.
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Figure 7.3: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of λ for StE = 0.3.
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Figure 7.4: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of µ for StE = 0.3.
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Figure 7.5: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of λ for StE = 0.8.

119



Closure Model for Particle Dispersion Tensors

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

StE =0.8

x2

 

 

µCM
11

µL
11

µPT
11

(a)

0 20 40 60 80 100

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

StE =0.8

x2

 

 

µCM
12

µL
12

µPT
12

(b)

0 20 40 60 80 100

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

StE =0.8

x2

 

 

µCM
21

µL
21

µPT
21

(c)

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

StE =0.8

x2

 

 

µCM
22

µL
22

µPT
22

(d)

Figure 7.6: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of µ for StE = 0.8.
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Figure 7.7: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of λ for StE = 3.
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Figure 7.8: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of µ for StE = 3.
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Figure 7.9: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of λ for StE = 8.
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Figure 7.10: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of µ for StE = 8.
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Figure 7.11: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of λ for StE = 64.
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Figure 7.12: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of µ for StE = 64.
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Figure 7.13: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for κ.
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7.4.5 Discussion

In section 7.4.4 results from particle tracking data (PT), the new closure model (CM)

and the local approximation (L) for λ, µ and κ are shown for a range of particle sizes.

In the system studied there are essentially three features which make the particle

dispersion tensors non local; (i) the inhomogeneity and anisotropy of the fluid one-point

statistics, (ii) the inhomogeneity and anisotropy of the fluid two-point statistics and (iii)

the effect of the particle-wall collisions. In the region x2 ≤ 30 the fluid Reynolds stresses

are strongly non-uniform and nearer to the wall the particle-wall collisions influence the

dispersion tensors. It can be seen from the results that across the range of particle sizes

tested the new closure model predictions are in excellent agreement with the PT data

in this region, and are a significant improvement on the local approximations. The

closure model therefore captures very well the non-local influence of the turbulence

inhomogeneity and the effect of the particle-wall collisions.

One of the approximations made in the construction of the closure model is that the

distribution ρ(x′, s|x) can be closely modelled using a Gaussian distribution. Even in this

KS flow field, where the carrier phase velocities are Gaussian, ρ(x′, s|x) is non-Gaussian

since the particle velocity distributions are strongly skewed. However the results show

that in the present test case the assumption of a Gaussian PDF for ρ(x′, s|x) is sufficient.

Of course in a real turbulent boundary layer the flow field is non-Gaussian, being both

skewed and having extended non-Gaussian tails, owing to the intermittency of the fluid

turbulence. Therefore it is still possible that a Guassian PDF approximation for ρ(x′, s|x)
may be insufficient for closing the dispersion tensors in a real turbulent boundary layer,

and this is something which must be investigated in future work. Nevertheless, as

discussed in section 7 it is possible to construct non-Gaussian closures for ρ(x′, s|x) by
using alternative closed PDF’s such as skew-normal distributions [124], epsilon-skew-

normal distributions [125] or skew-t distributions etc [126].

Figure 7.13 also shows that the new closure prediction for κ is in very good agreement

with the PT data, both of which are significantly different from the passive scalar

approximation (except for very large particles). This is important since now the drift

term

κi −
∂

∂xj
λji

in the particle momentum equation can be modelled, whereas under the passive scalar

approximation this drift term is incorrectly zero for inertial particles of all sizes. It

should be noted that in figure 7.13 κPSA is the passive scalar approximation derived

from the local form of λ
L
, that is
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κPSA
2 =

∂

∂x2
λ
L

22 (7.74)

The drift term and the closure model prediction of it will be discussed in greater detail

in chapter 9.

Note that, in agreement with the results presented in chapter 5 and in [49], the

results in section 7.4.4 show that λ more sensitive to the non-local behavior of the

system than µ. In the limit of very large particles the new closure model predictions

should tend to the local approximations and be equal as τp → ∞. The results in figures

7.11, 7.12 and 7.13 for StE = 64 show that this is indeed the case; the new closure model

predictions for the dispersion tensors tend to the local approximations in the limit of

very large particles.

The results also show that the local approximation is still in error in the region

x2 ≥ 40 (except for StE = 64) in which the non-uniformity of the fluid Reynolds stresses

is not as strong in this region as in 0 ≤ x2 ≤ 30 (see figure 7.2) and in which there is

likely no influence of the particle wall collisions. It may therefore be expected that

the dispersion tensors are not so sensitive to the non-locality of system in this region,

in contrast to what the results show. This can be understood by the fact that in the

region x2 ≥ 40 the particles are moving with greater velocities than in the region x2 ≤ 30.

Having greater velocities, the characteristic distances the particles will move within the

time for which the fluid is correlated are larger in the region x2 ≥ 40 than in the region

x2 ≤ 30. Therefore, in the region x2 ≥ 40 the particles still ‘see’ an appreciable variation

in the fluid Reynolds stresses along their trajectories since they move relatively large

distances within the time for which the fluid is correlated.

Furthermore, for small spatial separations the two-point statistics of this flow field

are approximately isotropic, however for increasing spatial separations the two-point

statistics begin to behave anisotropically (a feature of real boundary layers which affects

the dispersion tensors, as noted in chapter 6). Consider figure 7.14
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Figure 7.14: Plot of the two-point correlations in the KS flow field with separation r1

for fixed x2 = 80.

Figure 7.14 shows a plot of the two-point statistics in the KS flow field with separation

r1 for fixed x2 = 80. The plot only shows their behavior in the region 0 ≤ r1 ≤ 6 in

order to highlight their behavior at smaller separations. As figure 7.14 shows, for small

separations the two-point statistics in the x1 and x2 directions are approximately equal,

such that for rp1(s) ≈ 0 the particles see an approximately isotropic flow. However with

increasing r1 the two-point statistics become increasingly anisotropic. Particles moving

larger distances in the time for which the fluid is correlated will therefore see significant

anisotropy in the two-point statistics of the flow field. The local approximation does

not account for the anisotropy of the two-point statistics of the flow field, and this also

explains why the local approximation is still in significant error in the region x2 ≥ 40

(even though the one-point statistics of the flow field in this region are only weakly

non-uniform, relative to x2 ≤ 30 say), since in this region the particle velocities are

relatively large and so the particles travel distances sufficiently large in the time for

which the fluid is correlated such that they see significant anisotropy in the two-point

statistics of the flow.

Finally, it is recalled that in the construction of the closure model (specifically in the

construction of the moments of ρ(x′, s|x), see section 7.3) that besides the single-phase

fluid statistics (which are assumed to be fully known) the only other input required

in the new closure model is an approximation to τLp, which is the timescale of the

fluid velocities seen by the inertial particles. In the closure model this timescale is

approximated using the Wang & Stock function (see equation (7.34)) since this is the
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simplest model which captures the inertial effects of the particles on the timescale.

The only other simple alternative (besides setting τLp = 0) would be to approximate

this timescale by τL, the fluid Lagrangian integral timescale (as discussed in section

7.3). In order to assess the sensitivity of the new closure model to the accuracy of the

specification of τLp, the closure model and local approximations to the dispersion tensors

were once again tested against the particle tracking data, but this time making the

approximation τLp ≈ τL in both the new closure model and in the local approximations

to the dispersion tensors. The results are shown for StE = 0.8, 3
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Figure 7.15: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of λ for StE = 0.8, using the approxi-
mation τLp ≈ τL.
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Figure 7.16: Comparison between particle tracking data (PT), closure model (CM)
and the local approximation (L) for the components of µ for StE = 0.8, using the
approximation τLp ≈ τL.
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Figure 7.17: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of λ for StE = 3, using the approximation
τLp ≈ τL.
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Figure 7.18: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for the components of µ for StE = 3, using the approximation
τLp ≈ τL.
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Figure 7.19: Comparison between particle tracking data (PT), closure model (CM) and
the local approximation (L) for κ, using the approximation τLp ≈ τL.

The results in figures 7.15-7.19 demonstrate the effect of using the approximation τLp ≈
τL in both the new closure model and local approximations for the dispersion tensors.

Upon comparison with the results in section 7.4.4 (in which τLp was approximated using

equation (7.34)) it can be clearly seen that, as expected, both the new closure model and

the local approximations perform worse with τLp ≈ τL rather than with τLp approximated

using equation (7.34). However with τLp ≈ τL the new closure model predictions are

still in reasonable agreement with the PT data, whereas the local approximations with

τLp ≈ τL are in severe error. The finding being that the new non-local closure model

for the dispersion tensors is much less sensitive to the approximation used for τLp than

the local approximations to the dispersion tensors are. The reason for this is that even

with τLp ≈ τL the non-local closure model still accounts for some of the inertial effects

of the particle dispersion in ρ(x′, s|x), since the closure model for ρ(x′, s|x) described in

section 7.3 depends upon the particle Reynolds stresses and the Green tensors for the

particle equation of motion. By contrast, in a local approximation to the dispersion

tensors τLp is the only component of the closure which describes the effect of particle

inertia on the correlations of the velocity field experienced by the particles, such that

when τLp ≈ τL the correlation timescales in the local approximations to the dispersion

tensors no longer contain any dependence upon the particle inertia at all.

In the absence of body forces acting on the particles (so that the crossing trajectory

effect induced by gravity, for example, is absent), the degree to which τLp differs from

τL is strongly dependent upon the ratio of the fluid Eulerian and Lagrangian integral

timescales, i.e. τL/τE. Whenever this ratio is approximately equal to unity, the inertial

effects of the particles (in the absence of body forces) on the correlations of the flow

field they encounter will not be be significant, such that τLp ≈ τL. In the KS flow field
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used in this test case, τL/τE = 0.382, such that the inertial effects of the particles on

τLp will be quite strong, and this explains why in figures 7.15-7.19 the approximation

τLp ≈ τL in the closure model was shown to lead to errors (especially for the local

approximation). Nevertheless, this is not an artifact of the KS flow field used in the

test case. In [128] the Lagrangian and Eulerian integral timescales were computed in

a DNS of turbulent channel flow. Their results showed that the ratio τL/τE deviates

very strongly from unity across the boundary layer, except for a small region close to

the wall, and in fact the deviation of this ratio from unity is stronger in their DNS

turbulent boundary layer than in the KS flow field used in this chapter. Consequently,

in a real turbulent boundary layer, the inertial (and implicitly therefore, the non-local)

effects on the turbulence statistics encountered along particle trajectories will be more

significant in a real turbulent boundary layer than they have been shown to be in the

present KS flow field test case. This further emphasises the need for a closure model

which can both account for the inertial and non-local effects of the dispersion process

on the dispersion tensors, such as has been developed in this chapter.

7.4.6 Conclusions

In this chapter a new non-local closure model for the particle dispersion tensors has

been developed. It takes into account the effect of the turbulence inhomogeneity and

anisotropy, as well as particle-wall collisions for particles dispersing under a Stokes drag

force. Upon comparison with both equivalent PT data for the dispersion tensors and

the local approximations it has been shown that whilst the local approximations can

be in significant error, the new closure model predictions are in excellent agreement

with the PT data. In addition, the new closure model provides a way to model κ which

avoids the use of the passive scalar approximation. The natural step forward would be

to test the closure model against PT in DNS of a turbulent channel flow. However such

a test case would be very time consuming, and time constraints put this beyond the

scope of work presented in this thesis. Such a test case is left to future work.

It is also important to try and extend the closure model to include forces in addition

to Stokes drag acting on the particles. In the next chapter the closure modelling is

extended to attempt to account for added mass and gravitational forcing acting on the

particles in addition to Stokes drag.
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Chapter8

The PDF Kinetic Framework Including

Added Mass Forcing

Most of the work carried out on the PDF kinetic equation and its associated contin-

uum equations has been restricted to Stokes drag forcing acting on the particles, with

the possible addition of gravity. Whilst the formulation of the PDF and continuum

equations in chapter 4 was for a general force F + f acting on the particle, which could

include drag, added mass, lift forces etc, additional consideration is required. For ex-

ample, with added mass, Stokes drag and gravity the particle equation of motion is (see

chapter 2)

d2

dt2
xpi + β̃

d

dt
xpi =β̃〈ui〉p + β̃up′i + α

(〈

D

Dt
ui

〉p

+

(
D

Dt
upi

)′
)

+ θgi (8.1)

where

β̃ =
1

τp

(

1 + 1
2
ρf

ρp

) (8.2)

α =
3ρf

2ρp + ρf
(8.3)

θ =
2(ρp − ρf )

2ρp + ρf
(8.4)

In the PDF kinetic equation corresponding to equation (8.1) the phase-space diffusion

current would be given by (see chapter 4)
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p
〈

fi(x
p(t), t)

〉

x,v
= βp

〈

u′i(x
p(t), t)

〉

x,v
+ αp

〈(
D

Dt
ui(x

p(t), t)

)′
〉

x,v

(8.5)

where

(
D

Dt
ui(x

p(t), t)

)′

=

(
D

Dt
upi

)′

=
D

Dt
ui(x

p(t), t)−
〈

D

Dt
ui(x

p(t), t)

〉

=
∂

∂t
up′i +

∂

∂xj

[
〈uj〉pup′i + up′j 〈ui〉p + up′j u

p′
i − 〈u′ju′i〉p

]

(8.6)

Now following the analysis in chapter 4 this phase-space diffusion current may be closed

using FN by making the approximation that f is Gaussian. However in doing so there

arises something of an inconsistency. If u′ is Gaussian then it is apparent from equation

(8.6) that
(
D

Dt
u

)′

is not Gaussian. Given the kinematic relationship between the acceleration and the

velocity fields then it would be inconsistent to assume that both the fluid velocity and

fluid acceleration fields are Gaussian. Nevertheless in [110] and [101] a PDF equation

accounting for added mass was developed and in those works a Gaussian approximation

was applied to both the fluid velocity and acceleration fields. In [110] the continuum

equations derived from this PDF model were tested against experimental data for par-

ticle dispersion in the core of a turbulent channel flow (not the boundary layer) and

the continuum equations were found to yield good predictions. In [101] the continuum

equations derived from the new PDF model (i.e. containing added mass forcing) were

tested against DNS data of a turbulent channel flow. The results showed reasonable

agreement between the model predictions and the DNS data for the particle velocity

statistics, however the continuum solutions for the particle concentration were in error.

With added mass forcing acting on the particles in addition to Stokes drag it is

expected that the non-local nature of the particle dispersion tensors will become even

more apparent since the additional added mass force will increase the dispersion rate.

Also, for example in [110], it was shown that with added mass and Stokes drag forcing

acting on the particles the particle Reynolds stresses could exceed those of the fluid.

This will mean that the particles will travel characteristically greater distances within

the time for which the fluid is correlated than they would have if added mass forcing

was absent (in which case the particle Reynolds stresses are always less than that of

the fluid, except very close to the wall). This again will make the dispersion tensors

more sensitive to the non-local nature of the dispersion process.
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Therefore, once again, non-local closures for the particle dispersion tensors are re-

quired, only now these closures must account for Stokes drag and added mass forcing,

with gravity included also for generality. Once again, in the dispersion tensors the

terms requiring closure are

〈

Rji(x
p(s), s;x, 0)

〉

x
=

∫

x′

Rji(x
′, s;x, 0)ρ (x′, s|x) dx′ (8.7)

〈 ∂

∂xk
Rji(x

p(s), s;x, 0)
〉

x
=

∫

x′

[
∂

∂xk
Rji(x

′, s;x, 0)

]

ρ (x′, s|x) dx′ (8.8)

however with Stokes drag and added mass forcing the two-point, two-time correlation

tensor R is given by

Rji(x, s;x, 0) =β̃
2
〈

u′j(x
′, s)u′i(x, 0)

〉

+ αβ̃

〈(
D

Dt
uj(x

′, s)

)′

u′i(x, 0)

〉

+ αβ̃

〈

u′j(x
′, s)

(
D

Dt
ui(x, 0)

)′
〉

+ α2

〈(
D

Dt
uj(x

′, s)

)′(
D

Dt
ui(x, 0)

)′
〉

(8.9)

Given the form of the fluctuating acceleration in equation (8.6) the corresponding corre-

lations in equation (8.9) involving the acceleration will be quite involved, and certainly

obtaining such correlations from DNS, for example, would be cumbersome. However,

since the acceleration field fluctuates on a faster timescale than the velocity field, it is

hypothesised that within the time for which the acceleration field is correlated (with

itself and with the velocity field) the particles move sufficiently small distances such

that the acceleration contribution to the dispersion tensors may be well approximated

by a local closure. That is, if, for example, λ is separated into four contributions (i.e.

related to the four contributions to R in equation (8.9)) as

λ = λ
dd

+ λ
ad

+ λ
da

+ λ
aa

where the superscripts d and a denote contributions due to drag and added mass cor-

relations, then the hypothesis made is that

λ = λ
dd

︸︷︷︸

Non-local

+ λ
ad

︸︷︷︸

≈ local

+ λ
da

︸︷︷︸

≈ local

+ λ
aa

︸︷︷︸

≈ local
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and similarly for µ and κ. Indeed, if the contributions λ
ad

and λ
da

are approximately

locally homogeneous, then their wall-normal contributions (the important components

since the wall-normal components of the dispersion tensors control the particle concen-

tration) will cancel out [110] leaving

λ22 ≈ λ
dd

22
︸︷︷︸

Non-local

+ λ
aa

22
︸︷︷︸

≈ local

Of course this hypothesis must be tested, but this is left to future work. For the present,

the important issue is how well the non-local closure modelling can predict λ
dd
, µdd and

κdd when the forcing on the particles includes Stokes drag, added mass and gravity, since

these contributions to the dispersion tensors will be most sensitive to the non-locality

of the dispersion process.

In order to close λ
dd
, µdd and κdd the following must be closed

〈

Rdd
ji (x

p(s), s;x, 0)
〉

x
=β̃2

∫

x′

〈

u′j(x
′, s)u′i(x, 0)

〉

ρ (x′, s|x) dx′ (8.10)

〈 ∂

∂xk
Rdd

ji (x
p(s), s;x, 0)

〉

x
=β̃2

∫

x′

[
∂

∂xk

〈

u′j(x
′, s)u′i(x, 0)

〉]

ρ (x′, s|x) dx′ (8.11)

where now ρ (x′, s|x) is for particles dispersing under Stokes drag, added mass and grav-

itational forcing. The particle-wall collisions in this closure model are handled in the

same was as described in chapter 7. In the next section the closure model for ρ (x′, s|x)
accounting for particles dispersing under such forcing is presented.

8.1 Closure Model for the Particle Dispersion Ten-

sors

In chapter 7 a new non-local closure model was developed for the particle dispersion

tensors, which attempts to take into account the effects of the turbulence inhomogeneity

and anisotropy, and the effect of the particle-wall collisions on the dispersion tensors

for particles dispersing under Stokes drag forcing. It was demonstrated that the new

closure model predictions are in excellent agreement with equivalent PT data for the

dispersion tensors. In this section the closure model will be further developed to account

for particles dispersing under the influence of Stokes drag, added mass and gravitational

forcing.

The particle equation of motion required is given in equation (8.1). The particle

trajectories described by ρ (x′, s|x) are defined backwards in time, and the backwards in
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time motion is described by

d2

ds2
xpi − β̃

d

ds
xpi =− β̃〈ui〉p − β̃up′i − α

(〈

D

Ds
ui

〉p

+

(
D

Ds
upi

)′
)

− θgi (8.12)

where s = t′ − t ≤ 0. The mean component of the fluid acceleration is (for steady state

turbulent channel flow)

〈

D

Ds
ui

〉p

=

〈

∂

∂s
ui

〉p

+

〈

∂

∂xj
ujui

〉p

=
∂

∂x2
〈u′2u′i〉p

(8.13)

As in the initial closure model (see chapter 7), since the trajectories in ρ(x′, s|x) are

to be subject to the end condition xp(0) = x, then if the mean shear of the fluid is

approximated as locally linear (i.e. linear about x), the mean fluid velocity may be

written as

〈ui〉p = 〈ui〉(xp2(s)) = γ(x2)δi1 (x
p
2(s)− x2) + 〈ui(x2)〉 (8.14)

where γ(x2) is the mean fluid velocity gradient. The applicability of a locally linear mean

shear approximation for dispersion in a turbulent boundary layer, and its implications

for the closure model have been discussed in chapter 7. In addition, the gradient of the

fluid Reynolds stresses will also be assumed to be locally linear, so that

〈

D

Ds
ui

〉p

=

〈

D

Ds
ui

〉

(xp2(s)) = Γi(x2) (x
p
2(s)− x2) +

〈

D

Ds
ui

〉

(x2)

= Γi(x2) (x
p
2(s)− x2) +

∂

∂x2
〈u′2u′i〉(x2)

(8.15)

where

Γi(x2) =
∂2

∂x22
〈u′2u′i〉(x2) (8.16)

Unlike the mean shear, the gradients of the fluid Reynolds stresses affect the particle

dispersion in all directions, and therefore the implications or erroneous approximations

for the gradients of the fluid Reynolds stresses have a greater effect on the validity of

the model for ρ(x′, s|x) than those made for the mean shear (see discussion in chap-
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ter 7). Here a locally linear approximation has been made for the gradient of the

fluid Reynolds stresses, and once again, this approximation is made in order that a

fully analytic closure model for ρ(x′, s|x) may be constructed1. In the closure model,

as seen from equation (8.13) it is not the full tensor but only the wall-normal gradi-

ents of the components 〈u′2u′i〉 which require approximation. The wall-normal gradients

of these componenets are, to leading order, proportional to x22 for i = 1, 3 and x32 for

i = 2 (e.g. [21]). Consequently, the locally linear approximation for the gradient of the

fluid Reynolds stress tensor expressed in equation (8.15) can only be strictly considered

appropriate for |xp2(s) − x2| ≪ 1. In the very near wall region (i.e. within the viscous

sublayer) the particle displacements within the time for which the fluid is correlated are

relatively small since the fluid and particle velocities in that region are small. Therefore,

in the viscous sublayer it is possible that the locally linear approximation for the gradi-

ent of the fluid Reynolds stress is appropriate. However further away from the wall the

particle displacements in the time for which the fluid is correlated will undoubtedly be

large enough for the particles to see a nonlinear variation in the gradient of the fluid ve-

locity Reynolds stresses along their trajectories. Nevertheless, motivated by the desire

for a fully analytic closure model, as a first approximation, the locally linear approx-

imation for the gradients of the fluid velocity Reynolds stress tensor will be adopted.

If this proves to seriously compromise the closure model for ρ(x′, s|x) (determined by

comparison of the closure model with numerical simulations), a semi-analytic closure

model could be constructed for ρ(x′, s|x) which would take into account nonlinearities

in gradients of the fluid velocity Reynolds stress tensor along the particle paths (as

discussed in chapter 7 in the context of accounting for nonlinear variation in the mean

fluid velocity along particle trajectories).

Using the locally linear approximation expressed in equation (8.15), equation (8.12)

may then be written as

d2

ds2
xpi − β̃

d

ds
xpi +

[

β̃γ(x2)δi1 + αΓi(x2)
]

xp2 = β̃ [γ(x2)δi1x2 − 〈ui(x2)〉]

+ α

[

Γi(x2)x2 −
∂

∂x2
〈u′2u′i〉(x2)

]

− β̃up′i − α

(
D

Ds
upi

)′

− θgi

(8.17)

Equation (8.17) may be solved by the use of a Green tensor defined by

1Again this is not a limitation of the modelling framework here presented, but as discussed in
chapter 7 it is possible to account for nonlinear variation in the fluid statistics along the particle paths,
but this would lead to a semi-analytical closure model

142



The PDF Kinetic Framework Including Added Mass Forcing

d2

ds2
Gij − β̃

d

ds
Gij +

[

β̃γ(x2)δi1 + αΓi(x2)
]

G2j = δijδ(s− s1) (8.18)

and the solution to equation (8.17) with initial condition xp(0) = x is then given by

xpi (s) = xi −Gij(s)v
p
j (0) + β̃

0∫

s

Gij(s− s1)
[
γ(x2)δj1δm2xm − 〈uj(x2)〉 − u′j(x

p(s1), s1)
]
ds1

+ α

0∫

s

Gij(s− s1)

[

Γj(x2)δm2xm − ∂

∂x2
〈u′2u′j〉(x2)−

(
D

Ds1
upj

)′
]

ds1

−
0∫

s

Gij(s− s1)θgjds1

(8.19)

The mean of ρ (x′, s|x) can now be constructed from equation (8.19)

〈

xpi (s)
〉

x
=xi −Gij(s)

〈

vpj (0)
〉

x

+ β̃

0∫

s

Gij(s− s1)
[

γ(x2)δj1δm2xm − 〈uj(x2)〉 −
〈

u′j(x
p(s1), s1)

〉

x

]

ds1

+ α

0∫

s

Gij(s− s1)

[

Γj(x2)δm2xm − ∂

∂x2
〈u′2u′j〉(x2)−

〈(
D

Ds1
uj(x

p(s1), s1)

)′
〉

x

]

ds1

−
0∫

s

Gij(s− s1)θgjds1

(8.20)

The treatment of the mean particle velocities and the closure of

〈

u′j(x
p(s1), s1)

〉

x

have been discussed in section 7.3 with the simplest approximation being

〈

u′j(x
p(s1), s1)

〉

x
≈
〈

u′j(x
p(0), 0)

〉

x
≈
〈

u′j(x, 0)
〉

= 0 (8.21)
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The new drift term due to added mass requiring closure is

〈(
D

Ds1
uj(x

p(s1), s1)

)′
〉

x

which is given by (for steady state channel flow)

〈(
D

Ds1
uj(x

p(s1), s1)

)′
〉

x

=

〈

∂

∂s1
up′j + 〈uk〉p

∂

∂xk
up′j + up′k

∂

∂xk
〈uj〉p +

∂

∂xk
up′k u

p′
j − ∂

∂xk
〈u′ku′j〉p

〉

x

(8.22)

This is the average value of the fluctuating fluid accelerations measured at time s1

along particle paths which satisfy xp(0) = x. In a turbulent boundary layer this strongly

non-local drift is non-zero even for fluid tracers (except at s1 = s = 0) owing to the

inhomogeneity of the turbulence, and its complexity is enhanced for inertial particles

since they preferentially sample the turbulent flow field in a boundary layer. It is zero

only in the limit τp → ∞. However there is no simple way to approximate the terms in

equation (8.22), and therefore as a first approximation this drift is set to zero

〈(
D

Ds1
uj(x

p(s1), s1)

)′
〉

x

≈ 0 (8.23)

The implications of this approximation may be assessed when the closure model is

tested against equivalent particle tracking data. The components of
〈

xp(s)
〉

x
are then

given by

〈

xp1(s)
〉

x
=x1 −G11(s)v1(x2) + C11(s)

[

β̃γ(x2)x2 − β̃〈u1(x2)〉+ αΓ1(x2)x2 − α
∂

∂x2
〈u′2u′1〉(x2)

]

+ C12(s)

[

αΓ2(x2)x2 − α
∂

∂x2
〈u′2u′2〉(x2)− θg2

]

(8.24)
〈

xp2(s)
〉

x
=x2 + C22(s)

[

αΓ2(x2)x2 − α
∂

∂x2
〈u′2u′2〉(x2)− θg2

]

(8.25)

〈

xp3(s)
〉

x
=x3 + C33(s)

[

αΓ3(x2)x2 − α
∂

∂x2
〈u′2u′3〉(x2)

]

(8.26)

where
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G11(s) =G33(s) =
1

β̃

(

1− exp[β̃s]
)

(8.27)

G12(s) =
b1

β̃b2b3

(

exp[−b5s]− exp[−b4s]− b3

(

1− exp[β̃s]
))

(8.28)

G22(s) =
1

β̃b3
(exp[−b5s]− exp[−b4s]) (8.29)

and

C11(s) =

0∫

s

G11(s− s1)ds1 =− 1

β̃
[s+G11(s)] (8.30)

C12(s) =

0∫

s

G12(s− s1)ds1 =
b1

β̃b2b3

[
1

b5

(
e−b5s − 1

)
+

1

b4

(
1− e−b4s

)
+ b3 (s+G11(s))

]

(8.31)

C22(s) =

0∫

s

G22(s− s1)ds1 =
1

β̃b3

[
1

b4

(
1− e−b4s

)
− 1

b5

(
1− e−b5s

)
]

(8.32)

C33(s) =

0∫

s

G33(s− s1)ds1 =C11(s) (8.33)

b1 =β̃γ + αΓ1 (8.34)

b2 =αΓ2 (8.35)

b3 =

√

1 +

(
4α

β̃

)2

Γ2 (8.36)

b4 =− β̃

2
(1 + b3) (8.37)

b5 =− β̃

2
(1− b3) (8.38)

Since Γ will be negative for certain regions in a turbulent boundary layer, it is therefore

possible that b3 can take on complex values. This result is unfortunately unavoidable,

and to avoid its unphysical implications the approximation b3 ≈ 1 shall be henceforth

adopted. With a Gaussian PDF for ρ(x′, s|x) (see chapter 7) the only other moment

required is the second central moment, which is constructed from equation (8.19)
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〈

x̃pi (s)x̃
p
k(s)

〉

x
=Gij(s)

〈

vp′j (0)vp′m(0)
〉

x
Gkm(s)

+ β̃Gij(s)

0∫

s

Gkm(s− s1)
〈

vp′j (0)u′m(xp(s1), s1)
〉

x
ds1

+ β̃Gkm(s)

0∫

s

Gij(s− s1)
〈

u′j(x
p(s1), s1)v

p′
m(0)

〉

x
ds1

+ αGij(s)

0∫

s

Gkm(s− s1)

〈

vp′j (0)

(
D

Ds1
um(xp(s1), s1)

)′
〉

x

ds1

+ αGkm(s)

0∫

s

Gij(s− s1)

〈(
D

Ds1
uj(x

p(s1), s1)

)′

vp′m(0)

〉

x

ds1

+ αβ̃

0∫

s

0∫

s

Gij(s− s1)

〈

u′j(x
p(s1), s1)

(
D

Ds2
um(xp(s2), s2)

)′
〉

x

Gkm(s− s2)ds1ds2

+ αβ̃

0∫

s

0∫

s

Gij(s− s1)

〈(
D

Ds1
uj(x

p(s1), s1)

)′

u′m(xp(s2), s2)

〉

x

Gkm(s− s2)ds1ds2

+ (β̃)2
0∫

s

0∫

s

Gij(s− s1)
〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
Gkm(s− s2)ds1ds2

+ α2

0∫

s

0∫

s

Gij(s− s1)

〈(
D

Ds1
uj(x

p(s1), s1)

)′(
D

Ds2
um(xp(s2), s2)

)′
〉

x

Gkm(s− s2)ds1ds2

(8.39)

with

x̃p(s) = xp(s)−
〈

xp(s)
〉

x

The treatment of the terms
〈

vp′j (0)vp′m(0)
〉

x

〈

vp′j (0)u′m(xp(s1), s1)
〉

x

and
〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x

has been discussed in chapter 7 and will not be repeated here, except to say that in

the present closure model the approximations should account for the effects of added

mass and gravity in addition to drag. That is, since these terms are closed using a local

approximation to µ (see chapter 7), the local approximation to µ must now include

the effects of added mass and gravity, and the required form is found in [110]. The
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additional terms requiring closure are those involving the fluctuating fluid acceleration.

Since the fluid velocity and fluid acceleration are kinematically related to one another

it is possible to exploit this fact in order to relate the new unknown terms involving

the fluctuating fluid acceleration to those involving the the fluctuating fluid velocity

(e.g. [129]). Consider the autocovariance

〈

vp′j (0)u′m(xp(s1), s1)
〉

x

Differentiating this with respect to s1 gives (noting that the conditionality is not a

function of either s or s1)

d

ds1

〈

vp′j (0)u′m(xp(s1), s1)
〉

x
=
〈

vp′j (0)
d

ds1
u′m(xp(s1), s1)

〉

x
(8.40)

Unfortunately

〈

vp′j (0)
d

ds1
u′m(xp(s1), s1)

〉

x
6=
〈

vp′j (0)

(
D

Ds1
um(xp(s1), s1)

)′
〉

x

(8.41)

Indeed
(

D

Ds1
um

)′

=
D

Ds1
um −

〈

D

Ds1
um

〉

so, for turbulent channel flow,

(
D

Ds1
um(xp(s1), s1)

)′

=
∂

∂s1
up′m + up′2

∂

∂x2
〈um〉p + up′n

∂

∂xn
up′m − ∂

∂x2
〈u′2u′m〉p (8.42)

Whereas, in contrast,

d

ds1
u′m(xp(s1), s1) =

∂

∂s1
up′m + vpn(s1)

∂

∂xn
up′m (8.43)

Equations (8.42) and (8.43) are only equal in the limit τp → 0 in homogeneous turbulence

with zero mean velocity. As a first step equations (8.42) and (8.43) will be assumed

equal in the closure model so that the additional unknown autocovariances in equation

(8.39) involving the fluctuating fluid acceleration can be approximately related to those

involving the fluctuating fluid velocity as
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〈

vp′j (0)

(
D

Ds1
um(xp(s1), s1)

)′
〉

x

≈ d

ds1

〈

vp′j (0)u′m(xp(s1), s1)
〉

x
(8.44)

〈(
D

Ds1
uj(x

p(s1), s1)

)′

vp′i (0)

〉

x

≈ d

ds1

〈

u′j(x
p(s1), s1)v

p′
i (0)

〉

x
(8.45)

〈

u′j(x
p(s1), s1)

(
D

Ds2
um(xp(s2), s2)

)′
〉

x

≈ d

ds2

〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
(8.46)

〈(
D

Ds1
uj(x

p(s1), s1)

)′

u′m(xp(s2), s2)

〉

x

≈ d

ds1

〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
(8.47)

〈(
D

Ds1
uj(x

p(s1), s1)

)′(
D

Ds2
um(xp(s2), s2)

)′
〉

x

≈ d

ds1

d

ds2

〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x

(8.48)

For future work it is noted that it is possible to account for the difference between

equations (8.42) and (8.43) so that the autocovariances involving the fluctuating fluid

acceleration could be modelled using equation (8.40) with some additional terms. For

example, consider the autocovariances

〈

vp′j (0)

(
D

Ds1
um(xp(s1), s1)

)′
〉

x

=

〈

vp′j (0)
∂

∂s1
u′m(xp(s1), s1)

〉

x

+

〈

vp′j (0)u′2(x
p(s1), s1)

∂

∂x2
〈um〉(xp(s1), s1)

〉

x

+

〈

vp′j (0)u′n(x
p(s1), s1)

∂

∂xn
u′m(xp(s1), s1)

〉

x

−
〈

vp′j (0)
∂

∂x2
〈u′2u′m〉(xp(s1), s1)

〉

x

(8.49)

〈

vp′j (0)
d

ds1
u′m(xp(s1), s1)

〉

x
=

〈

vp′j (0)
∂

∂s1
u′m(xp(s1), s1)

〉

x

+

〈

vp′j (0)vpn(s1)
∂

∂xn
u′m(xp(s1), s1)

〉

x

(8.50)

Now consider the terms that differ between equations (8.49) and (8.50). Under the

locally linear approximations used in the closure model for the mean fluid velocity and

the gradient of the fluid Reynolds stresses (see equations (8.14) and (8.15))
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〈

vp′j (0)u′2(x
p(s1), s1)

∂

∂x2
〈um〉(xp(s1), s1)

〉

x

=

〈

vp′j (0)u′2(x
p(s1), s1)

〉

x

γ(x2)δm1 (8.51)

〈

vp′j (0)
∂

∂x2
〈u′2u′m〉(xp(s1), s1)

〉

x

=

〈

vp′j (0)

〉

x

Γm(x2) = 0 (8.52)

The only remaining discrepancy between equations (8.49) and (8.50) to be dealt with

is that

〈

vp′j (0)vpn(s1)
∂

∂xn
u′m(xp(s1), s1)

〉

x

6=
〈

vp′j (0)u′n(x
p(s1), s1)

∂

∂xn
u′m(xp(s1), s1)

〉

x

(8.53)

the source of the discrepancy being that vpn(s1) 6= u′n(x
p(s1), s1). Suppose that the ap-

proximation vp′n (s1) ≈ u′n(x
p(s1), s1) can be made (of course this is only strictly valid for

τp → 0) then the remaining source of discrepancy is

〈

vp′j (0)vn(x
p(s1), s1)

∂

∂xn
u′m(xp(s1), s1)

〉

x

For statistically stationary turbulent channel flow, with elastic particle-wall collisions

this reduces to 〈

vp′j (0)v1(x
p(s1), s1)

∂

∂x1
u′m(xp(s1), s1)

〉

x

If the approximation is then made that v1(x
p(s1), s1) ≈ v1(x

p(0), 0) = v1(x2) then

〈

vp′j (0)v1(x
p(s1), s1)

∂

∂x1
u′m(xp(s1), s1)

〉

x

≈
〈

vp′j (0)v1(x2)
∂

∂x1
u′m(xp(s1), s1)

〉

x

= v1(x2)

〈

∂

∂x1
vp′j (0)u′m(xp(s1), s1)

〉

x

≈ v1(x2)
∂

∂x1

〈

vp′j (0)u′m(xp(s1), s1)

〉

x

= 0

(8.54)

Therefore rather than using the approximation

〈

vp′j (0)

(
D

Ds1
um(xp(s1), s1)

)′
〉

x

≈ d

ds1

〈

vp′j (0)u′m(xp(s1), s1)
〉

x

a better approximation is
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〈

vp′j (0)

(
D

Ds1
um(xp(s1), s1)

)′
〉

x

≈ d

ds1

〈

vp′j (0)u′m(xp(s1), s1)
〉

x
+
〈

vp′j (0)u′2(x
p(s1), s1)

〉

x
γ(x2)δm1

(8.55)

where the closure of
〈

vp′(0)u′(xp(s1), s1)
〉

x
has been discussed in chapter 7. Similar ideas

can be used to close terms in equation (8.39) involving a single acceleration term, such

as 〈

u′j(x
p(s1), s1)

(
D

Ds2
um(xp(s2), s2)

)′
〉

x

however similar approximation methodologies for the fluctuating acceleration autoco-

variance 〈(
D

Ds1
uj(x

p(s1), s1)

)′(
D

Ds2
um(xp(s2), s2)

)′
〉

x

are more complex. Therefore, more comprehensive approximations such as in equation

(8.55) are left to future work. Testing the closure model against simulation data will

reveal whether more comprehensive approximations such as in equation (8.55) are re-

quired (although for testing against the KS flow field described in chapter 7 there would

be no difference if 〈u〉 = 0).

It is also noted that under the local approximation for
〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x

used in the closure model (see chapter 7)

d

ds2

〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
+

d

ds1

〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
= 0 (8.56)

With these approximations equation (8.39) simplifies to

〈

x̃pi (s)x̃
p
k(s)

〉

x
=Gij(s)

〈

vp′j (0)vp′m(0)
〉

x
Gmk(s)

+Gij(s)

0∫

s

Gmk(s− s1)

[

β̃ + α
d

ds1

]〈

vp′j (0)u′m(xp(s1), s1)
〉

x
ds1

+Gkm(s)

0∫

s

Gmj(s− s1)

[

β̃ + α
d

ds1

]〈

u′j(x
p(s1), s1)v

p′
i (0)

〉

x
ds1

+

0∫

s

0∫

s

Gij(s− s1)

[

(β̃)2 + α2 d

ds1

d

ds2

]〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
Gmk(s− s2)ds1ds2

(8.57)
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where

[

β̃ + α
d

ds1

]〈

vp′j (0)u′m(xp(s1), s1)
〉

x
= β̃

〈

vp′j (0)u′m(xp(s1), s1)
〉

x
+ α

d

ds1

〈

vp′j (0)u′m(xp(s1), s1)
〉

x

etc. As discussed in chapter 7 the approximations to

〈

vp′j (0)u′m(xp(s1), s1)
〉

x

and
〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x

involve an unknown timescale τLp, which is the timescale of the fluid velocities seen

by the inertial particles. In the present closure model the approximation used for this

timescale should depend not only on drag but also the added mass and gravitational

forces acting on the particles. However in the absence of any simple alternative, τLp

will still be approximated by the Wang & Stock curve fit function (see equation (7.34))

which only accounts for drag forcing, and does not take into account added mass or

gravitational forcing on the particles. Nevertheless, as is clear from equations (8.20)

and (8.39), the closure model accounts for drag, added mass and gravitational forcing,

such that the correlation times in

〈

Rji(x
p(s), s;x, 0)

〉

x

as predicted by the closure model will depend not only upon drag but also added

mass and gravity, regardless of the approximation used for τLp (although of course the

approximation used for τLp will quantitatively affect the predictions from the closure

model).

The form chosen for the autocorrelations in the local approximations to

〈

vp′j (0)u′m(xp(s1), s1)
〉

x

and
〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x

(see chapter 7) will depend upon the nature of the flow field (this is discussed in ap-

pendix A). Then with the form of the autocorrelations chosen, equation (8.57) may be

solved analytically as discussed in appendix A, and therefore an analytical model for

ρ (x′, s|x) accounting for Stokes drag, added mass and gravity has been produced. In the

absence of gravity and in the limit ρp ≫ ρf the closure model presented in this chapter

reduces to that presented in chapter 7, which describes the closure for heavy particles
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dispersing under a Stokes drag force.

Time constrainsts place the testing of the closure model presented in this chapter

against equivalent PT data beyond the scope of the present work; but this test must

be done in future work. However, it is nevertheless interesting to see how the closures

presented in this chapter compare to the alternative local closures, and also to compare

the results with those in chapter 7 to see what effect the additional added mass force

has.

8.2 Model Results

The closure model presented in the previous section will now be compared to the alter-

native local approximations, and comparison will also be made to the results in chapter

7 in order to consider the effect of the additional added mass forcing on the dispersion

tensors.

The closure model is once again tested for particles dispersing in the KS flow field

presented in chapter 7 (the details of this test case is the same as that presented in

section 7.4.3 (except that now the models account for added mass) and will therefore not

be repeated here). In order to see the effect of the added mass force and for comparison

with the results in chapter 7 gravity is absent in these initial results. Furthermore, the

results in this section are for a fixed value of StE = 3 and varying values of the ratio

ρp/ρf in order to asses the effect of the added mass force contribution over a range of

particle to fluid material density ratios. The final expressions for the closure model for

ρ(x′, s|x) and the local approximations to the dispersion tensors are given in appendix

A.

The results in this section are for λ
dd
, µdd and κdd (see beginning of chapter 8).

However, for notational convenience, the superscripts ‘dd’ shall be dropped henceforth

in this chapter. The superscript ‘CM’ shall be used to denote the predictions given by

the non-local closure model presented in section 8.1, whilst the superscript ‘L’ shall be

used to denote the local approximation predictions.

Note that, as usual, the particles collide with the wall when their wall-normal posi-

tion is one particle radius from the wall, where the particle radius is

xmin
2 =

√

9τpρf

2ρp
(8.58)

Therefore since the ratio ρp/ρf is varied in the results that follow, xmin
2 also varies (quite

significantly).
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Figure 8.1: Comparison between closure model (CM) and the local approximation (L)
for the components of λ for StE = 3, ρp/ρf = 0.5.
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Figure 8.2: Comparison between closure model (CM) and the local approximation (L)
for the components of µ for StE = 3, ρp/ρf = 0.5.
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Figure 8.3: Comparison between closure model (CM) and the local approximation (L)
for the components of λ for StE = 3, ρp/ρf = 1.
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Figure 8.4: Comparison between closure model (CM) and the local approximation (L)
for the components of µ for StE = 3, ρp/ρf = 1.
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Figure 8.5: Comparison between closure model (CM) and the local approximation (L)
for the components of λ for StE = 3, ρp/ρf = 5.
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Figure 8.6: Comparison between closure model (CM) and the local approximation (L)
for the components of µ for StE = 3, ρp/ρf = 5.
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Figure 8.7: Comparison between closure model (CM) and the local approximation (L)
for the components of λ for StE = 3, ρp/ρf = 500.
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Figure 8.8: Comparison between closure model (CM) and the local approximation (L)
for the components of µ for StE = 3, ρp/ρf = 500.
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Figure 8.9: Comparison between closure model (CM) and the passive scalar approxi-
mation (PSA) for κ for StE = 3 and differing values of ρp/ρf .
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8.3 Discussion

In section 8.2 results are shown comparing the predictions of the non-local closure

model presented in section 8.1 and the local approximations to the dispersion tensors,

for particles dispersing under Stokes drag and added mass forcing. In the absence of

particle tracking data, it is not possible to determine how well the new non-local closure

model performs when compared with the ‘real answer’ (i.e. the equivalent PT data).

However, comments can be made regarding differences between the non-local model

and local predictions, and their dependence upon ρp/ρf .

First of all, it can be seen from figures 8.7-8.9 that for ρp/ρf = 500 the results are

identical to those in section 7.4.4 for StE = 3, showing that the closure model in section

8.1 correctly reduces to that in chapter 7 in the limit ρp/ρf → ∞ (i.e. when the added

mass forcing contribution vanishes). The same figures also show that in the absence of

added mass (or at least when it is very small) the errors in the local approximations,

compared to the non-local model, are mainly quantitative in nature (the same is seen for

the other results in section 7.4.4 corresponding to different StE). In contrast, when the

added mass force becomes important, such as for ρp/ρf = 0.5, 1 in figures 8.1-8.4, there is

an appreciable qualitative difference between the non-local and local predictions, such

that the wall-normal gradients of the predicted dispersion tensors differ considerably.

This is important, since, for example, the wall normal gradients of λ22 contribute to the

particle diffusion coefficient in the particle momentum equation (see chapter 4). The

qualitative difference is most likely due to the fact that for ρp/ρf = 0.5, 1 the added mass

force is very significant and therefore the rate of the dispersion of the particles, relative

to their rate of dispersion under only Stokes drag forcing, is enhanced. The increase

in the rate of dispersion will make the dispersion tensors more non-local, such that the

effect of the highly non-uniform spatial variation in the fluid turbulence properties along

the particle paths will become more important. It can also be seen in those same figures

that, for the same reasons, the differences between the non-local and local predictions

of µ for ρp/ρf = 0.5, 1 are also now increased, whereas in chapter 7 when only drag force

was acting on the particles the differences between the non-local and local predictions

of µ were not too great across the range of StE considered.

The results also show that for ρp/ρf = 0.5, 1 the local predictions are greater in

magnitude than the non-local predictions, whilst for ρp/ρf = 5, 500 the local predictions

are smaller in magnitude than the non-local predictions. An interesting question is why

this transition occurs? One reason is as follows. In the local approximations, the rate

of decorrelation of the turbulence along the particle trajectory is given entirely by the

timescale τLp, and as discussed in section 8.1 the model used for this does not account

for the dispersion due to added mass (only that due to the drag force). In contrast, in
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the closure model presented in section 8.1 the decorrelation of the turbulence along the

particle trajectory is governed by the model for ρ(x′, s|x), which does account for the

dispersion due to the added mass force. With the addition of an added mass force the

particles will disperse at a greater rate than they would have if they were only dispersing

under a drag force, and in the KS flow field this would lead to a faster decorrelation

of the turbulence along the particle trajectory. Therefore, when the added mass force

begins to dominate the particle dispersion (i.e. for smaller values of ρp/ρf) the increased

rate of decorrelation of the turbulence along the particle trajectory is captured by the

non-local closure model, but not by the local approximation. This leads to the local

approximations to the dispersion tensors being greater in magnitude than the non-local

predictions.

8.4 Conclusions

In this chapter a non-local closure model for the particle dispersion tensors has been

developed for particles dispersing under Stokes drag, added mass and gravitational

forcing.

Due to time constraints, it was not possible to test the closure model against PT

data, however the non-local model predictions were compared against the local predic-

tions. The comparison showed that for small ρp/ρf when the added mass force becomes

important, the difference between the local and non-local predictions can be both qual-

itatively and quantitatively significant, and that the added mass force can enhance the

non-locality of the system due to the enhanced rate of particle dispersion in produces.

In future work the new non-local closure model must be tested against PT data to see

how accurate its predictions are.
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Chapter9

The Implications of a Green Tensor

Approximation For The Response

Tensor

In this chapter the implications of approximating the response tensor in the dispersion

tensors by a Green tensor will be discussed, and the implications for the closure models

presented in chapters 7 and 8 will be considered.

9.1 Green Tensor Approximation

The response tensor (RT) in the dispersion tensors (see chapter 4) is governed by

an evolution equation which is constructed by taking the functional derivative of the

particle equation of motion

d2

dt2
δxpk(t)

δfj(xp′, t′)dt′
=

δ

δfj(xp′, t′)dt′
[Fk(x

p(t),vp(t), t) + fk(x
p(t), t)] (9.1)

where

Gkj =
δxpk(t)

δfj(xp′, t′)dt′

is the RT describing the effect of a perturbation of the field f at the particle position

at time t′ upon the the particle position at a later time t.

Then

d2

dt2
Gkj =

∂Fk

∂vi

d

dt
Gij +

∂Fk

∂xi
Gij +

δfk(x
p, t)

δfj(xp′, t′)dt′
(9.2)
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The tensor
δfk(x

p, t)

δfj(xp′, t′)dt′

describes the effect of a perturbation in the field f at the particle position at time t′

upon the force f that the particle will experience at a later time t. Two approximations

are then made in order to reduce equation (9.2) into an equation whose solution is a

Green tensor (GT) for the particle equation of motion. The first is that F is assumed

to be linear in x and v. The second is the approximation

δfk(x
p, t)

δfj(xp′, t′)dt′
≈ δkjδ(t

′ − t) (9.3)

This approximation is exact if f is only a function of t, or equivalently if xp′ = xp (as

would be the case for τp → ∞). These two approximations lead to significant simpli-

fication, since the RT then becomes deterministic, moreover, and becomes a GT for

the particle equation of motion (i.e. G → G). However it is important to consider

what effect this approximation has on the dispersion tensors and consequently on the

continuum equations.

In the particle momentum equation the term associated with the preferential sam-

pling of the flow field f is given by

ρ
〈

fi(x
p(t), t)

〉

x
= −λki

∂

∂xk
ρ+ ρ

[

κi −
∂

∂xk
λki

]

(9.4)

For a system of initially uniformly distributed fluid particles in an incompressible tur-

bulent channel flow, the LHS of equation (9.4) should be zero (i.e. when xp(t) are tra-

jectories of fluid particles) since such fluid particles must remain uniformly distributed

for all times and since and therefore not preferentially sample the flow field. Clearly the

first term on the RHS of equation (9.4) is zero in this limiting case since the concentra-

tion ρ is spatially uniform. It is therefore necessary that the second term on the RHS

of equation (9.4) should also be zero for this system. In appendix C it is shown that,

with the full RT in the dispersion tensors, the RHS. of equation (9.4) is identically zero

for fully mixed fluid particles, and hence that the underlying PDF equation does not

exhibit any features of spurious drift1. However, with a Green tensor approximation

(GTA) for the RT this is not the case. With this approximation the expressions for the

1Fluid particles which are initially uniformly distributed in an incompressible, inhomogeneous tur-
bulent flow field should remain uniformly distributed for all times. Any model which fails to satisfy this
criteria is said to possess ‘spurious drift’. In the continuum equations, spurious drift arises when the

model for
〈

f(xp(t), t)
〉

x
, given by the dispersion tensors, does not approach zero in the limit τp → 0.
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tensors λ and κ are

λki(x, t) =

t∫

0

Gkj(t; t
′)
〈

Rji(x
p′, t′;x, t)

〉

x
dt′ (9.5)

κi(x, t) =

t∫

0

Gkj(t; t
′)

〈
∂

∂xk
Rji(x

p′, t′;x, t)

〉

x

dt′ (9.6)

It is these forms in the wall-normal direction which is important, since these components

contribute to the concentration profiles via the momentum (in a turbulent boundary

layer), and therefore determine whether or not the continuum equations are free from

spurious drift. In the limit of fluid particles the wall-normal components of λ and κ

reduce to the forms (with the GTA)

λ
f

22(x, t) =

t∫

0

〈

Rf
22(x

f ′, t′;x, t)
〉

x
dt′ (9.7)

κf2 (x, t) =

t∫

0

〈
∂

∂x2
Rf

22(x
f ′, t′;x, t)

〉

x

dt′ (9.8)

where

Rf
ji(x

′, t′;x, t) =
〈

u′j(x
′, t′)u′i(x, t)

〉

(9.9)

and the trajectories in equations (9.7) and (9.8) are governed by

d

dt
xfi (t) = ui(x

f (t), t) (9.10)

Therefore, under the GTA, and in the limit of fluid particles the wall-normal drift term

is given by

κf2 (x, t)−
∂

∂x2
λ
f

22(x, t) =

t∫

0

[〈
∂

∂x2
Rf

22(x
p′, t′;x, t)

〉

x

− ∂

∂xk

〈

Rf
22(x

p′, t′;x, t)
〉

x

]

dt′

= −
t∫

0

∫

x′

Rf
22(x

′, t′;x, t)
∂

∂x2
ρf (x′, t′|x, t)dx′dt′

(9.11)

where
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ρf (x′, t′|x, t) =
〈

δ(xf (t′)− x′)
〉

x
(9.12)

For the case of fluid particle dispersion in turbulent boundary layers, the RHS of equa-

tion (9.11) will not be zero in general, and therefore it is evident that the GTA intro-

duces a spurious drift into the momentum equation. This spurious drift arises because

of the fact that the GTA does not account for the fact that in the PDF model parti-

cle dispersion is governed by a differentiable, inhomogeneous stochastic field. Since the

closure models for the dispersion tensors presented in chapters 7 and 8 have invoked the

use of the GTA, this means that the new closure models for the dispersion tensors can

give rise to spurious drift effects in the corresponding continuum equations involving

these.

The analysis in appendix C which shows that equation (9.4) is zero for fluid particles

(when the true RT is used) relies upon the observation that the RT is precisely the

inverse of the Jacobian. That is, with the Jacobian defined by

Jij(t
′|x, t) = ∂

∂xj
xfi (t

′|x, t) (9.13)

where xf (t′|x, t) is the position of a fluid particle at time t′ which is at x at time t, and

with a RT Gf (t′, t,x) which is the RT for a fluid particle at time t′ which is at x at time

t then

Gf
ij(t

′, t,x) =
[

Jij(t
′|x, t)

]−1

Any model for Gf (t′, t,x) which is not precisely equal to the inverse of the Jacobian will

necessarily result in the introduction of a spurious drift into the continuum equations.

Therefore since it is not possible to model the RT exactly (some level of closure approx-

imation would always have to be invoked in modelling the RT; this is unavoidable) it

is not strictly possible to avoid the introduction of a spurious drift into the continuum

equations (except by artificially invoking the passive scalar approximation for κ) .

However, the models presented in this thesis are aimed towards modelling the dis-

persion of inertial particles, not fluid particles, therefore it is important to consider

whether or not this ‘spurious drift’ affects the quality of the closure models for inertial

particles. It may be that the GTA has little effect on the dispersion tensors for the

particle sizes that are of interest. Therefore, in the next section the dispersion tensors

are computed in PT simulations with both the true RT included and also with the GT

included, and the results are compared over the range of particle sizes for which the

closure model was tested in chapter 7.
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9.2 PT simulation test case

Even though as discussed in section 9.1 the introduction of a GTA for the RT introduces

a spurious drift into the continuum equations via the dispersion tensors, the purpose of

the continuum equations in the context of this thesis is for modelling inertial particle

dispersion, not dispersion of fluid particles. Therefore, the important question to answer

is whether or not the GTA significantly affects the dispersion tensors in the case of

inertial particles. That is, whilst the true drift

κi(x, t)−
∂

∂xk
λki(x, t)

is not equal to zero for inertial particles (except in the limit τp → ∞); how much of

the drift predicted when using a GTA is ‘real’ and how much of it is an artificial drift?

The simplest way to assess this is to compute the dispersion tensors in a PT simulation

in two ways; first with the RT and second with the GT. Comparing the results will

show how much, if at all, the GTA affects the dispersion tensors in the case of inertial

particle dispersion.

In this study attention is confined to the case of particles dispersing under only

a Stokes drag force. Furthermore, PT is performed using the KS flow field described

in chapter 7 (since, besides other benefits such as computational efficiency, that flow

field yields analytic solutions for the Eulerian two-point, two-time correlation tensor

required in the dispersion tensors). The approximation free dispersion tensors, that is

those with the RT, will be denoted by the superscript ‘G’, and are given by

λ
G

ki(x, t) =

t∫

0

〈

Gkj(t; t
′)Rji(x

p′, t′;x, t)
〉

x
dt′ (9.14)

µG
ki(x, t) =

t∫

0

〈

Ġkj(t; t
′)Rji(x

p′, t′;x, t)
〉

x
dt′ (9.15)

κGi (x, t) =

t∫

0

〈

Gkj(t; t
′)
∂

∂xk
Rji(x

p′, t′;x, t)

〉

x

dt′ (9.16)

The Eulerian two-point, two-time correlation tensor for f required is

Rji(x
′, t′;x, t) = β2

〈

u′j(x
′, t′)u′i(x, t)

〉

(9.17)

For Stokes drag forcing acting on the particles the evolution equation for the RT in the

KS flow field is
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d2

dt2
Gkj = −β d

dt
Gkj + β

∂u′k
∂xi

Gij (9.18)

with end conditions G(t; t) = 0 and Ġ(t; t) = I. Solving equation (9.18) amounts to a

backward in time problem (since in the integrand of the dispersion tensors it is the

variation of G with t′ that is required given its state at time t, and t′ ≤ t). In order to

solve equation (9.18) as an initial value problem the substitution s = t′ − t ≤ 0 is made

and then equation (9.18) is replaced with

d2

ds2
Gkj = β

d

ds
Gkj − β

∂u′k
∂xi

Gij (9.19)

which describes the evolution of G going ‘backward in time’. This equation, with the

‘initial’ conditions G(s = 0) = 0 and Ġ(s = 0) = I was solved using a third-order Runge-

Kutta scheme which was found to be sufficiently accurate.

In addition, since the 2D KS flow field is statistically stationary and inhomogeneous

only in the wall-normal direction, the forms of the dispersion tensors required are

λ
G

ki(x2) =β
2

0∫

−∞

〈

Gkj(s)Rji(x
p
1(s)− x1, x

p
2(s), s; 0, x2, 0)

〉

x2

ds (9.20)

µG
ki(x2) =β

2

0∫

−∞

〈

Ġkj(s)Rji(x
p
1(s)− x1, x

p
2(s), s; 0, x2, 0)

〉

x2

ds (9.21)

κGi (x2) =β
2

0∫

−∞

〈

G2j(s)
∂

∂x2
Rji(x

p
1(s)− x1, x

p
2(s), s; 0, x2, 0)

〉

x2

ds (9.22)

where s ≤ 0 and xp(0) = x.

The dispersion tensors computed using the GTA are denoted by the superscript ‘G’

and are given by

λ
G

ki(x2) =β
2

0∫

−∞

Gkj(s)
〈

Rji(x
p
1(s)− x1, x

p
2(s), s; 0, x2, 0)

〉

x2

ds (9.23)

µG
ki(x2) =β

2

0∫

−∞

Ġkj(s)
〈

Rji(x
p
1(s)− x1, x

p
2(s), s; 0, x2, 0)

〉

x2

ds (9.24)

κGi (x2) =β
2

0∫

−∞

G2j(s)
〈 ∂

∂x2
Rji(x

p
1(s)− x1, x

p
2(s), s; 0, x2, 0)

〉

x2

ds (9.25)
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where for the flow field in question (with 〈u〉 = 0) and for Stokes drag

Gkj(s) =δkjτp (1− exp[βs]) , s ≤ 0 (9.26)

Ġkj(s) =δkj exp[βs], s ≤ 0 (9.27)

The details of the particle tracking simulation are the same as those in chapter 7. The

dispersion tensors are computed for the lower range of particle Stokes numbers that the

closure model was tested for in chapter 7 (i.e. 0.3 ≤ StE ≤ 3) since G → G for increasing

StE.
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9.3 Results

In this section the results of the test case described in section 9.2 are presented. The

dispersion tensors containing the RT are denoted by the superscript G (solid black lines

in the plots), whilst those containing the GT are denoted by the superscript G (×
symbol in the plots). Note that the data obtained involving G can be seen to be less

noisy than that involving G; this is simply due to the fact that G is stochastic whilst G

is deterministic and hence the data involving G contains an additional source of ‘noise’.
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Figure 9.1: Comparison between λ
G
and λ

G
for StE = 0.3.
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Figure 9.2: Comparison between µG and µG for StE = 0.3.
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for StE = 0.8.
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Figure 9.4: Comparison between µG and µG for StE = 0.8.
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and λ
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for StE = 3.
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Figure 9.6: Comparison between µG and µG for StE = 3.
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Figure 9.7: Comparison between κG and κG.
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9.4 Discussion

For inertial particles the drift term

κ2 −
∂

∂x2
λ22

is not zero, but in the limit of fluid particles this drift term should vanish, otherwise the

continuum equations contain a spurious drift. In appendix C it is demonstrated that the

dispersion tensors, containing the full RT, do not contain any spurious drift. However,

in section 9.1 it was demonstrated that the GTA for the RT introduces a spurious drift

into the continuum equations. Therefore, it is important to examine whether or not

this spurious drift has any effect on modelling inertial particle dispersion. That is to

say, if a GT is used in the dispersion tensors for describing inertial particle dispersion,

how much of the drift

κ2 −
∂

∂x2
λ22

predicted is artificial (i.e. produced by errors in the use of the GTA), and how much

of it is real. Comparing the dispersion tensors containing the GT and those containing

the true RT will demonstrate if the GTA introduces an appreciable artificial drift in

the case of inertial particle dispersion.

The results showing the comparisons between the dispersion tensors containing the

GT and RT are shown in section 9.3. The results indicate that over the range of StE

examined (which covers small to medium sized particles), the error introduced by the

GTA is negligible. In fact only the results for StE = 0.3 show any noticeable difference.

This is as expected since the approximation G ≈ G becomes increasingly invalid as the

particle size decreases. Figure 9.7 shows that for StE = 0.3 there is a slight difference

between the peak values of κG2 and κG2 , a difference which can only be attributed to the

effect of the GTA. However, again, the difference is negligible.

Also for StE = 0.3, figure 9.2 shows a small but noticeable difference between µG and

µG, the difference for each component almost always being |µG | ≥ |µG|. Recalling that µ

is a stress source for the particles, the reason for |µG | ≥ |µG| can be understood by the

fact that µG accounts for the stochasticity of the underlying field f in G, whereas µG

does not, since G is deterministic and does not account for f . Therefore the inclusion

of the stochasticity of the underlying field f in G leads to an additional stress which is

captured in µG and not in µG, leading to |µG | ≥ |µG|. However the effect of the GTA on

µ has no bearing on the issue of spurious drift (although this result is noted for future

work since it suggests that the GTA would lead to small errors in the particle Reynolds

stress equation via errors in µG).

It would be interesting to perform the test case presented in the previous sections
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for successively smaller StE in order to find out to what limit the GTA can be applied

without having any appreciable effect on the dispersion tensors. This is left to future

work. Nevertheless, given that the results in section 9.3 demonstrate that the GTA

has negligible effect on the dispersion tensors over the range of StE tested, the closure

models developed in this thesis, which assume the GTA, will therefore provide accurate

models for the true dispersion tensors (i.e. those containing the RT) over the range

0.3 ≤ StE ≤ ∞.

Finally, a comment about possible future work concerning the modelling of the RT.

It is somewhat unfortunate that closure approximations applied to the RT may result

in the introduction of a spurious drift into the continuum equations, via the dispersion

tensors. Nevertheless, even though it may not be possible to eradicate spurious drift

entirely, it may certainly be reduced by developing approximations for G which are more

appropriate than the GTA. For example, consider the unclosed form of λ

λki(x, t) =

t∫

0

∫

x′

〈

Gkjδ (x
p′ − x′)

〉

x
Rji(x

′, t′;x, t) dx′dt′ (9.28)

The modelling procedure for the joint distribution

〈

Gkjδ (x
p′ − x′)

〉

x

is not straightforward by any means, however it may be re-written in terms of condi-

tional probabilities so that

λki(x, t) =

t∫

0

∫

x′

〈

Gkj

〉

x′,x

〈

δ (xp′ − x′)
〉

x
Rji(x

′, t′;x, t) dx′dt′ (9.29)

The closure models presented in chapters 7 and 8 could then be used once again to

close
〈

δ (xp′ − x′)
〉

x
. The difficulty in closing

〈

Gkj

〉

x′,x
would be in constructing a model

for

δfk(x
p(t), t)

δfj(xp(t′), t′)dt′
=

(
∂

∂xm
fk(x

p(t), t)

)

Gmj (9.30)

or more specifically, the difficult lies in modelling

∂

∂xm
fk(x

p(t), t)
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The difficult is two-fold; first, a stochastic description for the gradients of f is required,

and secondly, models for the stochastic trajectories xp(t) along which the gradients of f

are evaluated, are also required. The statistics of the model for the gradients of f must

account for its inhomogeneous nature since local approximations to it would essentially

result in the same deficiencies as the GTA.

A further difficulty is that in closing

〈

Gkj

〉

x′,x

the particle trajectories contained in G which would need to be modelled would have

to be subject to the dual conditionality xp(t′) = x′ & xp(t) = x. It may be possible to

develop models that satisfy this based on the idea of Brownian bridges.

Clearly then, developing closure models which account for the effect of the stochastic

field f on G is a significant challenge, and would be necessary if one wished to use the

PDF derived continuum equations for modelling the dispersion of very small particles

(StE → 0). However, the results in this chapter show that for modelling the dispersion

of inertial particles, even relatively small particles, the effect of the GTA is negligible,

making the GT a sufficient level of approximation to the RT in this case.

9.5 Conclusions

In this chapter the effects of approximating the RT by a GT in the dispersion tensors

has been examined. It has been demonstrated that whilst the GTA is invalid in the

limit of fluid particles, it presents a good approximation for inertial particle dispersion,

at least over the range of StE examined in this chapter.

The closure models for the dispersion tensors presented in chapters 7 and 8 rely on

the GTA, and therefore the test case in this chapter provides important confirmation

that such an approximation is sufficient for modelling inertial particle dispersion.
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Chapter10

Conclusions and Future Work

As described in chapters 1 and 2, the aim of the research conducted and presented in

this thesis was to develop mathematical models to describe the dispersion of inertial

particles in turbulent pipe flows, such as encountered in various flow assurance problems

in the oil industry. Specifically, the aim was to improve the modelling capabilities for

inertial particle dispersion in turbulent boundary layers, where the particle dispersion

process is complex and far from understood.

In chapter 4 a PDF kinetic equation was introduced which describes the temporal

evolution of the PDF for particle position and velocity in phase-space, from which con-

tinuum equations are constructed whose solutions are the moments of the PDF itself

(particle concentration, mean particle velocity, particle Reynolds stresses etc). The

PDF equation provides a theoretically robust way to construct continuum equations

which can be used to reliably model the dispersion of inertial particles in turbulent

boundary layers since the PDF equation is derived directly from the underlying par-

ticle equation of motion. In the same chapter, various terms requiring closure in the

continuum equations were discussed and presented, which included the closure of the

Reynolds stress flux tensor ccc and the closure of the particle dispersion tensors λ, µ

and κ. The Reynolds stress flux tensor is closed using a Chapman-Enskog type closure,

whilst the particle dispersion tensors are closed using a local homogeneous approxima-

tion.

In addition it was highlighted that the continuum equations include the correct phys-

ical features for describing particle dispersion in turbulent boundary layers, especially

a general, exact (when the turbulence is assumed to be Gaussian) closure for the flux

associated with the preferential sampling of the turbulent force field; a term difficult

to model and yet of critical importance for accurately predicting particle concentration

solutions in turbulent boundary layers.

In chapter 5 the continuum equations were tested against particle tracking data in
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a simplified system intended to represent particle dispersion in a turbulent boundary

layer. It was found that whilst the continuum solutions for the particle kinetic stresses

were in general in very good agreement with the particle tracking data, the continuum

solutions for the particle concentration were in significant error. The local approxima-

tions to the particle dispersion tensors in the continuum equations were identified as the

source of error in the continuum solutions for the particle concentration. By comparing

the local forms of the dispersion tensors to the dispersion tensors as computed from

the particle tracking simulation, it was seen that the local approximations, especially

that for λ, could be in significant error for small to medium sized particles (whereas the

local approximation becomes valid in the limit of very large particles). It was therefore

highlighted that new non-local closure models for the particle dispersion tensors must

be developed in order to improve the prediction capabilities of the continuum equations.

In chapter 6 the features of particle dispersion in turbulent boundary layers which

make the dispersion tensors intrinsically non-local were identified and discussed. Based

upon these observations, in chapter 7 a new non-local closure model for the particle

dispersion tensors was derived which is appropriate for particles dispersing under Stokes

drag forcing. The new closure model was then tested against equivalent particle tracking

data. The results showed that the new non-local closure model predictions were in

excellent agreement with the particle tracking data, whereas by contrast, the traditional

local approximations were shown again to be in significant error, in agreement with the

results found in chapter 5.

With a view to applying the continuum equations to systems where the particle

to fluid material density is comparable, the closure model presented in chapter 7 was

then extended in chapter 8 to account for added mass forcing and gravity acting on

the particles, in addition to Stokes drag. The modelling procedure was presented and

various terms requiring approximation in the closure model were considered. Due to

time constraints, testing the closure model against simulation data was beyond the scope

of the present work, and such testing is left to future work. However the closure model

predictions were compared against the alternative local approximations for a fixed value

of StE and varying values of ρp/ρf . It was shown that in the limit ρp/ρf → ∞ the model

correctly reduces to that presented in chapter 7 where only Stokes drag forcing was

acting on the particles. However, for small values of ρp/ρf , the local approximation was

both qualitatively and quantitatively different to the non-local closure model prediction,

whereas under drag force only the difference is mainly quantitative. The reason is that

with the added mass force, in addition to the drag force, the rate of particle dispersion

is increased and therefore the non-locality of the system is more pronounced.

The increase in accuracy obtained by the new closure modelling for the dispersion

tensors comes at a cost, and that of additional complexity. Rather than the dispersion
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tensors being defined by simple analytic functions as they are under a local approxi-

mation, the new closure modelling requires the dispersion tensors to be computed (at

least partially) numerically. Of course analytic solutions obtained using the non-local

closure would be desirable, but this is not feasible. Furthermore, given the complexity

of the non-local nature of the particle dispersion process in a turbulent boundary layer

it is unreasonable to expect that accurate closure solutions to such a problem should

be simple. However it was highlighted that the numerical procedure for computing the

dispersion tensors using the new closure model is very simple and fast and is therefore

not cumbersome.

It is at this point that it is worth considering whether or not the kinetic form of

the PDF equation is the most appropriate for particle dispersion in turbulent boundary

layers. As discussed in chapter 4, when developing PDF equations, one has to make

the choice as to which variables to retain in the phase-space vector. In the current

context, the two approaches most commonly used are the kinetic approach, where only

the particle position and velocity are retained in the phase-space vector (e.g. [93]), and

the higher dimensional approach where, in addition to particle position and velocity,

the fluid velocity at the particle position is retained in the phase-space vector (e.g. [42],

sometimes referred to as a ‘GLM’ (Generalised Langevin Model) approach). The pre-

defined scope of the research undertaken in this thesis was to consider developments to

the kinetic approach, and so only this form has been considered in this thesis.

The choice of a kinetic approach leads to a need for closure of the density weighted

average of the flucutating fluid velocity (more generally the stochastic force f , but here

only Stokes drag is discussed for simplicity) at the particle phase-space position. As

demonstrated in this thesis, this term is highly non-local and is therefore difficult to close

completely for inertial particle dispersion in turbulent boundary layers. Furthermore,

for reasons discussed in chapter 4, it is necessary to assume that the fluctuating fluid

velocity field is Gaussian in order to develop closure for the PDF kinetic equation

(using FN), and boundary layer turbulence, even at the large scales of the flow, is

non-Gaussian. On the other hand, as discussed in [42], some of these difficulties could

have been avoided somewhat by the choice of a GLM PDF equation. In the GLM

PDF equation, closure is no longer required for the fluid velocity but rather for the

fluid acceleration at the particle phase-space position. This can be closed through the

use of Langevin equations, and in inhomogeneous turbulence these models lead to non-

Gaussian fluid velocities at the particle position. Closure of the fluid accelerations at the

particle position are much easier than those of the fluid velocity since, as they fluctuate

on a faster timescale, they are much less sensitive to the non-local nature of the particle

dispersion process in a turbulent boundary layer. It should be noted that the GLM
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model does require a timescale1for the fluid velocities seen by the inertial particles.

Strictly speaking, in boundary layer dispersion, this timescale should capture inertial,

crossing trajectory and non-local effects. However recent work (e.g. [123]) has shown

that with an appropriate Langevin equation, the GLM model predictions are in very

good agreement with DNS data of inertial particle dispersion in a turbulent channel flow,

even when a local timescale is used in the GLM model. It may therefore be considered

that the GLM PDF equation is more applicable to boundary layer dispersion than the

kinetic appproach simply because the terms requiring closure in the GLM model are

easier to close than those in the kinetic approach in a reliable and robust way (see [42]

for an extended discussion on the GLM and kinetic approaches and their respective

advantages/disadvantages).

Finally in chapter 9 the implications of approximating the response tensor (which

features in the particle dispersion tensors) by a Green tensor was examined. It was

demonstrated that the Green tensor approximation introduces a spurious drift into the

continuum equations via the particle dispersion tensors. Based upon observations of

the proof presented in appendix C, it was concluded that avoiding the introduction of a

spurious drift into the continuum equations is very difficult since producing an accurate

model for the response tensor for particle dispersion in a turbulent boundary layer is

complicated (an accurate model for the response tensor would be required in order for

the continuum equations to be free of spurious drift). However, given that the models

in this thesis are intended to model the dispersion of inertial particles, not fluid parti-

cles, an investigation was carried out to see how the Green tensor approximation affects

the dispersion tensors for inertial particles. The dispersion tensors were computed for

small to medium sized particles in a particle tracking simulation in two ways; (i) using

the true response tensor and (ii) using the Green tensor approximation, and the results

were then compared. The results showed that over the range of particle sizes consid-

ered the errors introduced by the Green tensor approximation are completely negligible.

In conclusion, the work presented in this thesis has achieved the objectives outlined in

chapters 1 and 2 in that it provides developments to the applicability of a closed set of

continuum equations, derived from the PDF kinetic equation, for modelling the disper-

sion of inertial particle dispersion in turbulent pipe flows, specifically in the boundary

layer. However, whilst the work in this thesis provides developments towards this ul-

timate modelling goal, there is still some work to be done before the PDF derived

1For dispersion in homogeneous turbulence, the timescale in the Langevin equation can be shown to
be the Lagrangian integral timescale for the fluid. In inhomogeneous turbulence, such a direct relation
cannot be made. However in the GLM model the Langevin equation timescale is invariably set equal
to the Lagrangian integral timescale of the fluid (either for fluid particles or that of the fluid velocities
seen by inertial particles).
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continuum equations can be reliably used to predict the dispersion of inertial parti-

cles in turbulent boundary layers. Such future work shall now be considered; first

considering future work related to the modelling developed in this thesis (i.e. closure

modelling for the dispersion tensors), and secondly, more general future work related

to the PDF/continuum equations. Within each subgroup, the items are placed in the

perceived order of importance.

10.1 Future work concerning closure models for par-

ticle dispersion tensors

10.1.1 Testing the Dispersion Tensor Closure Models against

DNS data

Whilst the closure models in chapter 7 performed very well when compared to the PT

data, the PT data against which they were compared was computed in a Gaussian,

inhomogeneous, anisotropic flow field. Given that the flow field was Gaussian, then the

Gaussian approximation made in the closure model for ρ(x′, s|x) may have been quite

reasonable (although still approximate since the skewed particle velocity distributions

obtained from the PT data imply that ρ(x′, s|x) was in reality non-Gaussian, even in the

KS flow field). However real boundary layer turbulence is non-Gaussian, and therefore

the Gaussian approximation to ρ(x′, s|x) in the closure model may result in the new

closure models for the dispersion tensors not performing so well when compared to

PT data obtained using DNS of particle dispersion in a turbulent channel flow (or

experiment). Therefore future would should involve testing the new closure models

against data obtained from DNS.

10.1.2 Particle-Wall Collisions in the Dispersion Tensor Clo-

sure Models

The non-local closure models presented in chapters 7 and 8 assume that the particle-

wall collisions are perfectly elastic. In real particle laden flows, this may not be a

suitable assumption since particles may either collide inelastically or else deposit on

the wall. In order to account for inelastic particle-wall collisions (of which deposition

is a special case) two modifications would be required in the closure model. First of all

the symmetry-line model (see section 7.1) would need to be modified to account for the

fact that there would be an energy loss for the particles upon collision with the wall.

However the more complicated issue would be the specification of the approximations
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for v2(x2) and cc in the moments of the closure model for ρ(x′, s|x). It may still be possible

to approximate cc by a local approximation, as was done in chapter 7. However, for

inelastic particle-wall collisions v2(x2) is no longer zero and would therefore require a

model. It could in principle be approximated through local approximations to the

wall-normal particle momentum and continuity equations, however the difficulty would

then be that a boundary condition for v2(x2) would be required, and this in itself is

far from trivial. An initial approximation would be to set v2(x2) = 0 and account for

the inelastic collisions only through the modified symmetry-line model, modified for

inelastic collisions.

10.2 Future work concerning the PDF/continuum

equations

10.2.1 The Limitations of the Gaussian approximation for f

in the PDF Kinetic Equation

The only real concern with the PDF kinetic framework is that it assumes that the

stochastic force field f(x, t) may be approximated as being Gaussian. For dispersion

in homogeneous, isotropic turbulence a Gaussian approximation for f is reasonable,

especially for drag forcing since the velocity field at the large scales is near Gaussian

in such turbulence. However in a boundary layer, the turbulence is non-Gaussian even

at the large scales of the turbulence. It would be important therefore in future work to

assess the limitations of the Gaussian approximation for f in the PDF kinetic equation.

Regardless of how good the closure modelling made in the continuum equations is,

ultimately the continuum equations derived from the PDF kinetic equation will never

give solutions which are in perfect agreement with data obtained from particle tracking

in either DNS or experiment of a turbulent boundary layer. The reason being that real

boundary layer turbulence is non-Gaussian and this has an effect on the transport of

the particles, an effect which is not captured in the current PDF model. An interesting

and insightful way to assess the limitations of the Gaussian assumption in the PDF

equation would be as follows

• The unknown/unclosed terms in the continuum equations (up to the particle

Reynolds stress equation) are the phase-space dispersion tensors λ(x,v, t), µ(x,v, t)

and κ(x,v, t) (and their velocity averaged forms which can be found from these),

the Reynolds stress flux tensor ccc and the boundary conditions for the particle

Reynolds stress tensor cc. Each of these unknown terms could be computed from

particle tracking in a DNS of particle laden turbulent channel flow.
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• Then the DNS data for these unknown terms can be fed into the continuum

equations which could then be solved, obtaining solutions for the particle concen-

tration ρ, the particle mean velocity v and the particle Reynolds stress tensor cc

which can then be compared to the equivalent DNS particle tracking data.

• Any discrepancy between the continuum solutions and the DNS data can then be

only due to the Gaussian assumption for f in the underlying PDF equation1.

This test case would certainly be very computational demanding, however it would

be important to do since it would highlight how much of a limitation the Gaussian

assumption for f in the PDF equation is to accurately modelling particle dispersion in

turbulent boundary layers.

10.2.2 Boundary Conditions and Chapman-Enskog closure in

the Continuum Equations

Future work should also address the specification of boundary conditions for the con-

tinuum equations and improvements to the Chapman-Enskog closure approximation

for ccc required to close the particle Reynolds stress equation. As discussed in chapter

4, there are existing models available to specify boundary conditions for the contin-

uum equations, however the most fruitful approach would be to specify them through

solutions to the PDF kinetic equation itself. By doing so one does not need to as-

sume a Gaussian distribution for the particle velocities at the wall (a Gaussian PDF

is assumed at the wall in most boundary condition models) and therefore likely im-

proving the accuracy and generality of the boundary conditions derived. In addition

future work should involve the development of more appropriate closures for ccc than

the Chapman-Enskog approximation. It is recalled that the Chapman-Enskog closure

assumes that the fourth order moment cccc is Gaussian and can therefore be directly

related to the second order moment cc. This is the shortcoming of the approximation,

since particle velocity distributions in turbulent boundary layers are in general strongly

non-Gaussian. The challenge then would be to invoke a closure which does not make

assumptions of Gaussianity for cccc, however this would be challenging.

1Actually there would be one minor inconsistency; with the dispersion tensors computed from
the DNS data, then the force field f in the dispersion tensors themselves would be non-Gaussian, and
would depend upon the distributions of f in the actual DNS turbulent field. However this is something
of a secondary effect; the main implication of the Gaussian assumption in the PDF equation is that
it leads to a simple gradient diffusion term in the particle momentum equation (see chapter 4). This
simple gradient diffusion term would still be present in the continuum equations in this test case and
hence the main effect of the Gaussian assumption could still be assessed.
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AppendixA

Closure Model Integrals

In this appendix the procedure for the analytic solution to the integrals defining the

second central moment in the closure model for ρ (x′, s|x) is outlined. Firstly, the ex-

pression needed for the closure model in chapter 8 is derived since this is the most

difficult. Then, using the same procedure the expression required for the closure model

in chapter 7 is derived.

A.1 Closure Integral for Stokes drag, added mass

and gravity closure model

The integral equation for the covariance in the closure model is given by (see equation

(8.57))

〈

x̃pi (s)x̃
p
k(s)

〉

x
=Gij(s)

〈

vp′j (0)vp′m(0)
〉

x
Gkm(s)

+Gij(s)

0∫

s

Gkm(s− s1)

[

β̃ + α
d

ds1

]〈

vp′j (0)u′m(xp(s1), s1)
〉

x
ds1

+Gkm(s)

0∫

s

Gij(s− s1)

[

β̃ + α
d

ds1

]〈

u′j(x
p(s1), s1)v

p′
m(0)

〉

x
ds1

+

0∫

s

0∫

s

Gij(s− s1)

[

(β̃)2 + α2 d

ds1

d

ds2

]〈

u′j(x
p(s1), s1)u

′
m(xp(s2), s2)

〉

x
Gkm(s− s2)ds1ds2

(A.1)

Under the closure approximations for the autocovariances discussed in chapters 7 and

8, equation (A.1) becomes
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〈

x̃pi (s)x̃
p
k(s)

〉

x
=Gij(s)

1

2β̃

(
µjm + µmj

)
Gkm(s)

+Gij(s)

0∫

s

Gkm(s− s1)

[

β̃ + α
d

ds1

]

Ψ(s1)ds1
µjn

β̃

(

δnm − τLp ∂vn
∂xm

)

+Gkm(s)

0∫

s

Gij(s− s1)

[

β̃ + α
d

ds1

]

Ψ(s1)ds1
µmn

β̃

(

δnj − τLp ∂vn
∂xj

)

+

0∫

s

0∫

s

Gij(s− s1)

[

(β̃)2 + α2 d

ds1

d

ds2

]

〈u′ju′m〉Ψ(s1 − s2)Gkm(s− s2)ds1ds2

(A.2)

The only remaining issue is the choice of the form for Ψ(s1). The usual choice for this

autocorrelation would be

Ψ(s1) = exp
[ s1
τLp

]

, Ψ(s1 − s2) = exp

[
s1 − s2
τLp

]

, s ≤ 0 (A.3)

In the absence of added mass (α → 0) this simple exponential function is in general an

appropriate choice for the autocorrelation. Then since G is a simple combination of

exponential functions, equation (A.2) is relatively straightforward to solve. However,

with added mass it can be seen from equation (A.2) that the derivatives of Ψ become

important. In this case the autocorrelation given in equation (A.3) is not appropriate,

and this may be demonstrated as follows. As discussed in chapter 8 the fluid acceleration

autocovariance may be approximated from the fluid velocity autocovariance as

〈(
D

Ds1
upj (x

p(s1), s1)

)′(
D

Ds2
upm(xp(s2), s2)

)′
〉

x

=
d

ds1

d

ds2
〈u′ju′m〉Ψ(s1 − s2) (A.4)

Using the autocorrelation given in equation (A.3) this gives

〈(
D

Ds1
upj (x

p(s1), s1)

)′(
D

Ds2
upm(xp(s2), s2)

)′
〉

x

= −
(

1

τLp

)2

〈u′ju′m〉Ψ(s1 − s2) (A.5)

The autocovariance for the acceleration given in equation (A.5) cannot be correct since

firstly it predicts a negative trace for the acceleration covariance tensor, and secondly

because it suggests that the timescale of the fluid acceleration fluctuations is the same

as the timescale for the fluid velocity fluctuations. One of reasons for this unphysical
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prediction is that the autocorrelation given in equation (A.3) does not satisfy the nec-

essary physical criteria, namely a zero gradient at the origin when s1 = s2 = 0. One

way around this problem is to define a bi-exponential autocorrelation similar to that

in [129] where in the present context the two timescales could be given by both τLp and

perhaps the fluid velocity Taylor micro-scale in order to satisfy the condition of a zero

gradient at the origin in the autocorrelation when s1 = s2 = 0.

Since the closure model in chapters 7 and 8 was tested against data in the KS field

described in section 7.4.1 then the appropriate choice is

Ψ(s1) = exp

[

−1

2
σ2
Ls

2
1

]

, Ψ(s1 − s2) = exp

[

−1

2
σ2
L (s1 − s2)

2

]

(A.6)

where

σL =

√
π

2

1

τLp
(A.7)

which satisfy the condition of having a zero gradient at the origin when s1 = s2 = 0.

Such a choice of Ψ makes the integration in equation (A.2) much more difficult and

lengthy. However Ψ was chosen to be that given in equation (A.6) for comparison with

data from the KS flow field so as not to introduce any unnecessary sources of error in

the closure model predictions. In general simple exponentials (perhaps bi-exponential)

could be used for Ψ since it is known that against DNS data simple exponentials form

a good approximation to the autocorrelations (except as small times).

It is emphasised therefore that the evaluation of the integrals in equation (A.2) with

Ψ given by simple exponentials are relatively straightforward, and the solutions are far

simpler than the results shown in this appendix which are lengthy because Ψ was given

by the Gaussian form in equation (A.6).

However the integrals in equation (A.2) only need to be evaluated once and then

the analytic closure model for ρ(x′, s|x) is complete. The solutions are given in terms of

simple functions which may then be written in a computer code so that the analytic

expression for ρ(x′, s|x) can be evaluated at each value of s required when performing

the integrals in equations (7.72) and (7.73).

Single Integrals

For the KS flow field the mean fluid (and therefore particle) velocities are zero, and

with Ψ given in equation (A.6) the single integrals in equation (A.2) become
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Gij(s)

0∫

s

Gmk(s− s1)
[

β̃ − ασ2
Ls1

]

exp

[

−1

2
σ2
Ls

2
1

]

ds1
µjm

β̃
(A.8)

Gkm(s)

0∫

s

Gmj(s− s1)
[

β̃ − ασ2
Ls1

]

exp

[

−1

2
σ2
Ls

2
1

]

ds1
µji

β̃
(A.9)

Because the components of the Green tensor G are essentially combinations of expo-

nential functions, it is efficient to solve the integrals in equations (A.8) and (A.9) in a

more generic form

I1(a, b, s) =

0∫

s

[

β̃ − ασ2
Ls1

]

exp[as− bs1] exp

[

−1

2
σ2
Ls

2
1

]

ds1 (A.10)

The particular integral corresponding to the component of the Green tensor in question

may then be found using equation (A.10). For example, suppose for the integral in

equation (A.8) the components required are m = k = 1. Then with

G11(s− s1) =
1

β̃

(

1− exp
[

β̃(s− s1)
])

the solution required is

0∫

s

G11(s− s1)
[

β̃ − ασ2
Ls1

]

exp

[

−1

2
σ2
Ls

2
1

]

ds1 =
1

β̃

(

I1(0, 0, s)− I1(β̃, β̃, s)
)

(A.11)

To solve equation (A.10) the exponentials are first combined giving

I1(a, b, s) = exp

[

as+
b2

2σ2
L

] 0∫

s

[

β̃ − ασ2
Ls1

]

exp

[

−1

2

(

σLs1 +
b

σL

)2
]

ds1

= exp

[

as+
b2

2σ2
L

] 0∫

s

P (s1) exp
[
−(Q(s1))

2
]
ds1

(A.12)

where

P (s1) =β̃ − ασ2
Ls1 (A.13)

Q(s1) =
1√
2

(

σLs1 +
b

σL

)

(A.14)
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The integral in equation (A.12) may be solved using integration by parts, giving

I1(a, b, s)

= exp

[

as+
b2

2σ2
L

] 0∫

s

P (s1) exp
[
−(Q(s1))

2
]
ds1

= exp

[

as+
b2

2σ2
L

] [

P (s1)

∫

exp
[
−(Q(s1))

2
]
ds1

]0

s

− exp

[

as+
b2

2σ2
L

]
dP

ds1

0∫

s

∫

exp
[
−(Q(s1))

2
]
ds1ds1

= exp

[

as+
b2

2σ2
L

] √
π

2

[

P (s1)

(
dQ

ds1

)−1

erf[Q(s1)]−
dP

ds1

(
dQ

ds1

)−2 [

Q(s1)erf[Q(s1)] +
1√
π
exp

[
−(Q(s1))

2
]
]]0

s

(A.15)

Double Integrals

For the KS flow field with Ψ given in equation (A.6) the double integral in equation

(A.2) becomes

0∫

s

0∫

s

Gij(s− s1)
[

β̃2 + α2σ2
L(1− σ2

L(s1 − s2)
2)
]

〈u′ju′m〉 exp
[

−1

2
σ2
L(s1 − s2)

2

]

Gmk(s− s2)ds1ds2

(A.16)

Once again, because the components of the Green tensor G are essentially combinations

of exponential functions, it is efficient to solve the integral in equation (A.16) in a more

generic form

I2(a, b, c, s) =

0∫

s

0∫

s

[

β̃2 + α2σ2
L(1− σ2

L(s1 − s2)
2)
]

exp[as− bs1 − cs2] exp

[

−1

2
σ2
L(s1 − s2)

2

]

ds1ds2

(A.17)

The particular integral corresponding to the components of the Green tensor required

may then be found using equation (A.17). For example, suppose for the integral in

equation (A.16) the components required are i = j = m = k = 1. Then with

G11(s− s1) =
1

β̃

(

1− exp
[

β̃(s− s1)
])

and

G11(s− s2) =
1

β̃

(

1− exp
[

β̃(s− s2)
])
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the solution required is

0∫

s

0∫

s

G11(s− s1)
[

β̃2 + α2σ2
L(1− σ2

L(s1 − s2)
2)
]

〈u′1u′1〉 exp
[

−1

2
σ2
L(s1 − s2)

2

]

G11(s− s2)ds1ds2

=
〈u′1u′1〉
β̃2

(

I2(0, 0, 0, s)− I2(β̃, 0, β̃, s)− I2(β̃, β̃, 0, s) + I2(2β̃, β̃, β̃, s)
)

(A.18)

To solve equation (A.17) the exponentials in it are combined and then separated again

into an exponential which is only a function of s2 and another which is a function of s1

and s2

I2(a, b, c, s) = exp [as]

0∫

s

exp [M(s2)]

0∫

s

L(s1, s2) exp
[
−N(s1, s2)

2
]
ds1ds2 (A.19)

with

M(s2) =
1

2σ2
L

(
b2 − 2(b+ c)σ2

Ls2
)

(A.20)

L(s1, s2) =β̃
2 + α2σ2

L(1− σ2
L(s1 − s2)

2) (A.21)

N(s1, s2) =
1√
2

(

σLs1 −
1

σL
(σ2

Ls2 − b)

)

(A.22)

Since L(s1, s2) is a 2nd order polynomial in s1, to solve the integral over s1 in equation

(A.19) integration by parts must be performed twice. The integral over s1 is given by

0∫

s

L(s1, s2) exp
[
−N(s1, s2)

2
]
ds1 =

[

L

∫

exp[−N2]ds1

]0

s

−
[
∂L

∂s1

∫ ∫

exp[−N2]ds1ds1

]0

s

+

[
∂2L

∂s21

∫ ∫ ∫

exp[−N2]ds1ds1ds1

]0

s

(A.23)

with
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∫

exp[−N2]ds1 =

(
∂N

∂s1

)−1 √
π

2
erf[N ] (A.24)

∫ ∫

exp[−N2]ds1ds1 =

(
∂N

∂s1

)−2 √
π

2

[

Nerf[N ] +
1√
π
exp[−N2]

]

(A.25)

∫ ∫ ∫

exp[−N2]ds1ds1ds1 =

(
∂N

∂s1

)−3 √
π

2

[(
2N2 + 1

4

)

erf[N ] +
N

2
√
π
exp[−N2]

]

(A.26)

The solution to equation (A.23) is therefore given by

0∫

s

L(s1, s2) exp
[
−N(s1, s2)

2
]
ds1 =

[

E(s1, s2)erf[N ] + F (s1, s2) exp[−N2]
]0

s
(A.27)

where

E(s1, s2) =

√
π

2

[

L

(
∂N

∂s1

)−1

−N
∂L

∂s1

(
∂N

∂s1

)−2

+

(
2N2 + 1

4

)
∂2L

∂s21

(
∂N

∂s1

)−3
]

(A.28)

F (s1, s2) =− 1

2

[

∂L

∂s1

(
∂N

∂s1

)−2

− N

2

∂2L

∂s21

(
∂N

∂s1

)−3
]

(A.29)

The solution to equation (A.19) is therefore given by

I2(a, b, c, s) = exp[as]

0∫

s

exp [M(s2)]
[

E(0, s2)erf[N(0, s2)] + F (0, s2) exp
[
−(N(0, s2))

2
] ]

ds2

− exp[as]

0∫

s

exp [M(s2)]
[

E(s, s2)erf[N(s, s2)] + F (s, s2) exp
[
−(N(s, s2))

2
] ]

ds2

(A.30)

To solve equation (A.30), first, the exponentials must be combined and then separated

again into an exponential which is only a function of s1 and another which is a function

of s1 and s2

M(s2)−
[

N(s1, s2)
]2

= C(s1)−
[

D(s1, s2)
]2

(A.31)

with
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C(s1) =
c2

2σ2
L

− (b+ c)s1 (A.32)

D(s1, s2) =− 1√
2

(

σLs2 −
1

σL
(σ2

Ls1 − c)

)

(A.33)

Since F (s1, s2) is linear in s2, the following integral (which features in equation (A.30))

is easily solved (using equation (A.31))

A1(s1, s2) = exp[as]

∫

F exp
[
M −N2

]
ds2 =

√
π

2
exp[as+ C]F

(
∂D

∂s2

)−1

erf[D]

−
√
π

2
exp[as+ C]

∂F

∂s2

(
∂D

∂s2

)−2(

Derf[D] +
1√
π
exp[−D2]

) (A.34)

Now the following integral must be evaluated (which features in equation (A.30))

exp[as]

∫

E exp [M ] erf[N ]ds2 (A.35)

Once again, since E is a 2nd order polynomial in s2, equation (A.35) must be solved

using integration by parts twice

A2(s1, s2) = exp[as]

∫

E exp [M ] erf[N ]ds2 = exp[as]E

∫

exp[M ]erf[N ]ds2

− exp[as]
∂E

∂s2

∫ ∫

exp[M ]erf[N ]ds2ds2

+ exp[as]
∂2E

∂s22

∫ ∫ ∫

exp[M ]erf[N ]ds2ds2ds2

(A.36)

and so the following antiderivatives are required

∫

exp[M ]erf[N ]ds2 =

(
dM

ds2

)−1
[

erf[N ] exp[M ]− ∂N

∂s2

(
∂D

∂s2

)−1

exp[C]erf[D]

]

(A.37)

∫ ∫

exp[M ]erf[N ]ds2ds2 =

(
dM

ds2

)−2 [

erf[N ] exp[M ]− exp[C]erf[D]
]

−
(
dM

ds2

)−1(
∂N

∂s2

)−1

exp[C]

[

Derf[D] +
1√
π
exp[−D2]

] (A.38)
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∫ ∫ ∫

exp[M ]erf[N ]ds2ds2ds2 =

(
dM

ds2

)−3 [

erf[N ] exp[M ]− exp[C]erf[D]
]

−
(
dM

ds2

)−2(
∂D

∂s2

)−1

exp[C]

[

Derf[D] +
1√
π
exp[−D2]

]

− 1

2

(
dM

ds2

)−1(
∂N

∂s2

)−1(
∂D

∂s2

)−1

exp[C]

[(
2D2 + 1

2

)

erf[D] +
D√
π
exp[−D2]

]

(A.39)

For the special case when M = 0 the antiderivatives required in equation (A.36) are

∫

erf[N ]ds2 =

(
∂N

∂s2

)−1 [

Nerf[N ] +
1√
π
exp

[
−N2

]
]

(A.40)

∫ ∫

erf[N ]ds2ds2 =

(
∂N

∂s2

)−2 [(
2N2 + 1

4

)

erf[N ] +
N

2
√
π
exp

[
−N2

]
]

(A.41)

∫ ∫ ∫

erf[N ]ds2ds2ds2 =

(
∂N

∂s2

)−3 [(
2N3 + 3N

12

)

erf[N ] +

(
N2 + 1

6
√
π

)

exp
[
−N2

]
]

(A.42)

The solution to equation (A.17) may now be constructed using the solutions in equation

(A.34) and (A.36) as

I2(a, b, c, s) = A1(s1, s2) +A2(s1, s2)

∣
∣
∣
∣
∣

s1=0

s1=s

∣
∣
∣
∣
∣

s2=0

s2=s

(A.43)

Local form for the dispersion tensors

For the purposes of testing the closure models against particle tracking data obtained

in the KS flow field described in chapter 7, an analytic expression for the local approxi-

mation to µ is required in the closure model, which takes into account Stokes drag and

added mass forcing. The µ dispersion tensor is defined as (for steady state)

µij(x, s) =

0∫

s

Ġik(s1)
〈

Rkj(x
p(s1), s1;x, 0)

〉

x
ds1 (A.44)

For the KS flow field where 〈u〉 = 0, then under a local approximation the assymptotic

form of µ accounting for Stokes drag and added mass becomes (for the KS flow field,

where a Gaussian form for the autocorrelation is required)
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µij(x) =

0∫

−∞

Ġik(s1)
[

β̃2 + α2σ2
Lp(1− σ2

Lps
2
1)
]

〈u′ku′j〉 exp
[

−
σ2
Lps

2
1

2

]

ds1 (A.45)

Since Ġ are essentially linear combinations of exponential functions (see chapter 8, and

also note that since the dispersion being modelled is backwards in time, with s ≤ 0,

Ġ(s) = − d
dsG(s)), it is efficient to solve equation (A.45) in the generic form

M1(a) =

0∫

−∞

exp [as1]
[

β̃2 + α2σ2
Lp(1− σ2

Lps
2
1)
]

exp

[

−
σ2
Lps

2
1

2

]

ds1 (A.46)

The solution to equation (A.46) is

M1(a) =

√

π

2σ2
Lp

[
(

β̃2 − a2α2
)

exp

[

a2

2σ2
Lp

](

1− erf

[

a√
2σLp

])

+

√

2

π
aα2σLp

]

(A.47)

Using equation (A.47) the local form of µ may be constructed, and its components in

2D are

µ11 =

(

〈u′1u′1〉 −
b1
b2
〈u′2u′1〉

)√

π

2σ2
Lp

[

β̃2
(
1− α2

)
exp

[

β̃2

2σ2
Lp

](

1− erf

[

β̃√
2σLp

])

+

√

2

π
β̃α2σLp

]

+
b1b5

β̃b2b3
〈u′2u′1〉

√

π

2σ2
Lp

[
(

β̃2 − b25α
2
)

exp

[

b25
2σ2

Lp

](

1 + erf

[

b5√
2σLp

])

−
√

2

π
b5α

2σLp

]

− b1b4

β̃b2b3
〈u′2u′1〉

√

π

2σ2
Lp

[
(

β̃2 − b24α
2
)

exp

[

b24
2σ2

Lp

](

1 + erf

[

b4√
2σLp

])

−
√

2

π
b4α

2σLp

]

(A.48)

µ12 =

(

〈u′1u′2〉 −
b1
b2
〈u′2u′2〉

)√

π

2σ2
Lp

[

β̃2
(
1− α2

)
exp

[

β̃2

2σ2
Lp

](

1− erf

[

β̃√
2σLp

])

+

√

2

π
β̃α2σLp

]

+
b1b5

β̃b2b3
〈u′2u′2〉

√

π

2σ2
Lp

[
(

β̃2 − b25α
2
)

exp

[

b25
2σ2

Lp

](

1 + erf

[

b5√
2σLp

])

−
√

2

π
b5α

2σLp

]

− b1b4

β̃b2b3
〈u′2u′2〉

√

π

2σ2
Lp

[
(

β̃2 − b24α
2
)

exp

[

b24
2σ2

Lp

](

1 + erf

[

b4√
2σLp

])

−
√

2

π
b4α

2σLp

]

(A.49)
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µ21 =
b5

β̃b3
〈u′2u′1〉

√

π

2σ2
Lp

[
(

β̃2 − b25α
2
)

exp

[

b25
2σ2

Lp

](

1 + erf

[

b5√
2σLp

])

−
√

2

π
b5α

2σLp

]

− b4

β̃b3
〈u′2u′1〉

√

π

2σ2
Lp

[
(

β̃2 − b24α
2
)

exp

[

b24
2σ2

Lp

](

1 + erf

[

b4√
2σLp

])

−
√

2

π
b4α

2σLp

] (A.50)

µ22 =
b5

β̃b3
〈u′2u′2〉

√

π

2σ2
Lp

[
(

β̃2 − b25α
2
)

exp

[

b25
2σ2

Lp

](

1 + erf

[

b5√
2σLp

])

−
√

2

π
b5α

2σLp

]

− b4

β̃b3
〈u′2u′2〉

√

π

2σ2
Lp

[
(

β̃2 − b24α
2
)

exp

[

b24
2σ2

Lp

](

1 + erf

[

b4√
2σLp

])

−
√

2

π
b4α

2σLp

] (A.51)

where b1,b2,b3,b4 and b5 are defined in chapter 8.

In section 8.2 local forms for the drag components of the dispersion tensors λ
dd
, µdd,

κdd are required. The local approximations to these are given by (where the superscript

‘dd’ is dropped and is now replaced by ‘L’, as explained in section 8.2)

λ
L

ij(x2) =

0∫

−∞

Gik(s1)β̃
2
〈

u′ku
′
j

〉

exp

[

−1

2
σ2
Ls

2
1

]

ds1 (A.52)

µL
ij(x2) =

0∫

−∞

Ġik(s1)β̃
2
〈

u′ku
′
j

〉

exp

[

−1

2
σ2
Ls

2
1

]

ds1 (A.53)

κPSA
i (x2) =

∂

∂xj
λ
L

ij (A.54)

where the components of G are given in equations (8.27)-(8.29). For convenience, the

integrals in equations (A.52)-(A.54) were solved numerically in order to obtain the

solutions for the local dispersion tensors.

A.2 Closure Integral for Stokes drag closure model

In the case of the closure model presented in chapter 7, where only Stokes drag forcing

is acting on the particles, the expression for the second central moment for the closure

model for ρ (x′, s|x) is significantly simpler than that containing added mass effects.

Following the solution procedure outlined in the previous section, the solution for the

second central moment of the closure model for Stokes drag, required in the test case

presented in chapter 7 (where 〈u〉 = 0), is
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〈

x̃pi (s)x̃
p
k(s)

〉

x2

=

G2(s)
µik

β

+ 2
µik

β
G

√
π

2σ2
L

[
∆1 −∆3(∆4 −∆5)

]

+
〈u′iu′k〉
β

√
π

2σ2
L

[

2β∆1s+
2
√
2β√
πσL

(∆2 − 1)− 2∆1(1− Ġ) + ∆5(2∆6 +∆3)− 2∆6∆8 −∆3∆4 −∆7(∆5 −∆8)

]

(A.55)

where

∆1 =erf

[

−σ
2
Ls√
2

]

(A.56)

∆2 =exp

[

−σ
2
Ls

2

2

]

(A.57)

∆3 =exp

[
β2

2σ2
L

]

(A.58)

∆4 =erf

[
β − σ2

Ls√
2σL

]

(A.59)

∆5 =erf

[
β√
2σL

]

(A.60)

∆6 =exp

[

β

(

s+
β

2σ2
L

)]

(A.61)

∆7 =exp

[

β

(

2s+
β

2σ2
L

)]

(A.62)

∆8 =erf

[
β + σ2

Ls√
2σL

]

(A.63)

G =τp (1− exp[βs]) (A.64)

Ġ =exp[βs] (A.65)
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AppendixB

Method for Computing the Dispersion

Tensors

Unlike the simple local approximations for λ, µ and κ which may be specified analyti-

cally, approximations to the dispersion tensors obtained using the new non-local closure

model, as presented in chapters 7 and 8, must be obtained numerically (in general).

In this appendix the method to obtain the approximations to λ, µ and κ using the

non-local closure model is outlined.

Inputs

The input data required for the closure model is

• Data for R(x′, s;x, 0)

• Data for the mean fluid velocity 〈u〉

• Data/model for τLp, the timescale of the fluid velocity correlations seen by the

inertial particles

Data for R(x′, s;x, 0) and 〈u〉 are obtained for the flow field in which the particles are

dispersing (in general via either DNS or experimental data). As discussed in chapter

7, τLp is approximated using equation (7.34).

Numerical integration

With the input data specified, λ, µ and κ may be approximated using the non-local

closure model as follows. First, ρ(x′, s|x) is specified using a Gaussian distribution, and

as such the models for the mean and second central moments must be supplied. The

analytic solutions to these moments is given in appendix A. With the closure model for
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Method for Computing the Dispersion Tensors

this distribution specified then the following integrals must be evaluated numerically

(given here in their 2D form)

〈

Rji(r
p
1 , x

p
2(s), s; 0, x2, 0)

〉

x2

=

+xmax
2∫

+xmin
2

rmax
1∫

rmin
1

Rji(r1, x
′
2, s; 0, x2, 0)ρ (r1, x

′
2, s|x2) dr1dx′2

+

−xmin
2∫

−xmax
2

rmax
1∫

rmin
1

Rji(r1, x
′
2 + 2x′2, s; 0, x2, 0)ρ

(
r1, 2x

min
2 + x′2, s|x2

)
dr1dx

′
2

(B.1)

〈 ∂

∂xk
Rji(r

p
1 , x

p
2(s), s; 0, x2, 0)

〉

x2

=

+xmax
2∫

+xmin
2

rmax
1∫

rmin
1

[
∂

∂xk
Rji(r1, x

′
2, s; 0, x2, 0)

]

ρ (r1, x
′
2, s|x2) dr1dx′2

+

−xmin
2∫

−xmax
2

rmax
1∫

rmin
1

[
∂

∂xk
Rji(r1, x

′
2 + 2x′2, s; 0, x2, 0)

]

ρ
(
r1, 2x

min
2 + x′2, s|x2

)
dr1dx

′
2

(B.2)

The x′2 domain in these integrals is determined by the location of the wall (actually one

particle radius), xmin
2 , and the upper bound of the domain, such as the location of the

upper pipe wall. The r1 domain is determined by the integral length scales of the flow

and should be at least as large as the range over which R is spatially correlated in the

r1 direction. The integrals in equations (B.1) and (B.2) are easily solved numerically,

and are solved for each value of s, where the range of s must cover at least the time

span over which R remains temporally correlated.

However the integration of equations (B.1) and (B.2) may be simplified considerably

(in terms of computational expense). For increasing r1 and increasing |x2−x′2| the spatial
distributions in equations (B.1) and (B.2), e.g. ρ (r1, x

′
2, s|x2), decay to zero and there-

fore also do the integrands in equations (B.1) and (B.2). Therefore when computing

equations (B.1) and (B.2) numerically, the domain of the integrals may be reduced to

a domain over which the integrands are non-negligible. It was found that the domain

ranges of the integrals in equations (B.1) and (B.2) may be reduced as

+xmax
2∫

+xmin
2

rmax
1∫

rmin
1

≈
x2+4

√
Σ22(x2,s)∫

x2−4
√

Σ22(x2,s)

r1+4
√

Σ11(x2,s)∫

r1−4
√

Σ11(x2,s)

(where Σ is the covariance tensor for ρ (r1, x′2, s|x2)) with negligible affects to the results.

Then with the integrals in equations (B.1) and (B.2), the solutions are then used to

compute the dispersion tensors via
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λ
CM

ki (x) =

0∫

s

Gkj(s)
〈

Rji(r
p
1 , x

p
2(s), s; 0, x2, 0)

〉

x2

ds (B.3)

µCM
ki (x) =

0∫

s

Ġkj(s)
〈

Rji(r
p
1 , x

p
2(s), s; 0, x2, 0)

〉

x2

ds (B.4)

κCM
i (x) =

0∫

s

Gkj(s)
〈 ∂

∂xk
Rji(r

p
1 , x

p
2(s), s; 0, x2, 0)

〉

x2

ds (B.5)

Equations (B.3)-(B.5) are easily solved numerically, from which the non-local closure

approximations to the dispersion tensors are obtained.
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AppendixC

Spurious Drift in PDF Kinetic

Equations

In this appendix a formal proof is presented which demonstrates that the PDF equation,

and hence its associated continuum equations, are free from any spurious drift.

C.1 Statement of Problem

Consider fluid particle trajectories xf (t) determined by the equation of motion

d

dt
xfi = ui(x

f (t), t) (C.1)

with initial condition xf (0) = x0, where x0 is a random variable with PDF ϕ0(x). Now

define the following PDF’s

̺(x, t) =δ
(
xf (t)− x

)
(C.2)

ϕ(x, t) =
〈

̺(x, t)
〉x0

u

(C.3)

ρ(x, t) =
〈

̺(x, t)
〉

=
〈

ϕ(x, t)
〉u

(C.4)

Here 〈 · 〉x0

u
denotes an ensemble average over all realisations of x0 for a given, single

realisation of the flow field u, and 〈 · 〉u denotes an ensemble average over all u. The

decomposition

〈 · 〉 =
〈

〈 · 〉x0

u

〉u

is used later in the analysis.

From equation (C.2) an evolution equation is obtained
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∂

∂t
̺(x, t) = − ∂

∂xi

[
d

dt
xfi ̺(x, t)

]

= − ∂

∂xi

[
ui(x

f (t), t)̺(x, t)
]

(C.5)

Averaging equation (C.5) over all realisations of x0 (for a single realisation of u) gives

∂

∂t
ϕ(x, t) = − ∂

∂xi
[ui(x, t)ϕ(x, t)] (C.6)

The solution to equation (C.6) with initial condition ϕ(x, 0) = ϕ0(x) can be expressed as

ϕ(x, t) = ϕ0
(

xf (0|x, t)
)

exp



−
t∫

0

∂

∂xi
ui

(

xf (t′|x, t), t′
)

dt′



 (C.7)

where
(

xf (t′|x, t)
)

denotes the fluid particle trajectory xf (t′) which satisfies xf (t) = x.

Now suppose that the fluid particles are uniformly distributed at t = 0. Suppose, further,

that the fluid velocity field is incompressible. Then from equation (C.7)

ϕ(x, t) = ϕ0 for all x, t (C.8)

and hence also

ρ(x, t) = ρ0 = ϕ0 for all x, t (C.9)

that is, the fluid particles remain uniformly distributed (they remain ‘fully mixed’).

Note further then that

〈

̺u′i

〉

=
〈〈

̺u′i

〉x0

u

〉u

=
〈

ϕu′i

〉u

= ρ0
〈

u′i

〉u

= 0 (C.10)

Now consider the PDF equation for ρ(x, t): from equation (C.5)

∂

∂t
ρ(x, t) = − ∂

∂xi
ρ〈ui〉 −

∂

∂xi
ρ
〈

u′i(x
f (t), t)

〉

x
(C.11)

With u′ a Gaussian field, then using FN (Furutsu-Novikov, see chapter 4) the closure

for ρ
〈

u′i(x
f (t), t)

〉

x
is given by the exact result

215



Spurious Drift in PDF Kinetic Equations

ρ
〈

u′i(x
f (t), t)

〉

x
= ρκi −

∂

∂xi
ρλji (C.12)

so that equation (C.11) becomes

∂

∂t
ρ(x, t) = − ∂

∂xi
ρ

(

〈ui〉+ κi −
∂

∂xj
λji

)

+
∂

∂xi

(

λji
∂

∂xj
ρ

)

(C.13)

In order to prove that the PDF kinetic equation does not contain any spurious drift it

must be demonstrated that with ρ(x, 0) = ρ0 (constant) and ∂iui = 0, equation (C.13) has

the solution ρ(x, t) = ρ0 for all x, t. From a physical perspective, since fluid particles, by

definition, do not preferentially sample turbulent flow fields, it must be demonstrated

that the forms of κ and λ given by FN imply that equation (C.12) is identically zero for

an initially uniform distribution of fluid particles in an inhomogeneous incompressible

turbulent flow field. Such a proof reduces to demonstrating that

κi −
∂

∂xj
λji = 0 (C.14)

since then equation (C.13) would reduce to

∂

∂t
ρ(x, t) = − ∂

∂xi
ρ〈ui〉+

∂

∂xi

(

λji
∂

∂xj
ρ

)

(C.15)

which satisfies the required solution ρ(x, t) = ρ0 for all x, t when ρ(x, 0) = ρ0 (constant)

and ∂iui = 0.

C.2 Proof that κi − ∂
∂xj

λji = 0 for fluid particles

For a given realisation of the field u let xf (s|y, t) denote a fluid particle trajecotry xf (s)

satisfying xf (t) = y. For an incompressible flow field this trajectory will be unique.

Now define the Jacobian tensor Jmn(y, t, s) by

Jmn(y, t, s) =
∂

∂yn
xfm(s|y, t) (C.16)

The evolution of J with respect to s is given by
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∂

∂s
Jmn(y, t, s) =

∂

∂xk
um

(

xf (s|y, t), s
)

Jkn(y, t, s) (C.17)

Noting that J(y, t, t) = I (all y, t), the solution to equation (C.17) is

Jmn(y, t, s) =



exp





s∫

t

∂

∂x
u⊤
(

xf (s′|y, t), s′
)

ds′









mn

(C.18)

Therefore the components of J−1(y, t, s) are given by

J−1
mn(y, t, s) =



exp





t∫

s

∂

∂x
u⊤
(

xf (s′|y, t), s′
)

ds′









mn

(C.19)

Now consider the response tensor G(t; t′) appearing the the (FN defined) PDF equation

dispersion tensors: for a given realisation of u and a corresponding trajectory xf then

(for t′ ≤ t)

Gmn(t; t
′) =

δxfm(t)

δun(xf (t′), t′)
(C.20)

Therefore

∂

∂t
Gmn(t; t

′) =
∂

∂xk
um(xf (t), t)Gkn(t; t

′) (C.21)

With the condition G(t; t) = I the solution to equation (C.21) is

Gmn(t; t
′) =



exp





t∫

t′

∂

∂x
u⊤(xf (t′′), t′′)dt′′









mn

(C.22)

If the trajectory xf is given by xf (t′′) = xf (t′′|y, t), then G(t; t′) becomes dependant on y, t

Gmn(t; t
′) =



exp





t∫

t′

∂

∂x
u⊤
(

xf (t′′|y, t), t′′
)

dt′′









mn

= Hmn(y, t, t
′) (C.23)

Comparing equations (C.23) and (C.19) indicates that
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Hmn(y, t, t
′) = J−1

mn(y, t, t
′) (C.24)

Now consider the FN expressions for κ and λ which are

κi(x, t) =

t∫

0

〈

Gjn(t; t
′)
∂

∂xj
Rni(x

f (t′), t′;x, t)

〉

xf=x

dt′ (C.25)

λji(x, t) =

t∫

0

〈

Gjn(t; t
′)Rni(x

f (t′), t′;x, t)

〉

xf=x

dt′ (C.26)

where R is the two-point, two-time correlation tensor for u, that is

Rni(x
′, t′;x, t) =

〈

u′n(x
′, t′)u′i(x, t)

〉

(C.27)

Note that if ∂iui = 0 then

∂

∂x′n
Rni(x

′, t′;x, t) = 0 (C.28)

Then

κi −
∂

∂xj
λji =

t∫

0

〈

Gjn(t; t
′)
∂

∂xj
Rni(x

f (t′), t′;x, t)

〉

xf=x

− ∂

∂xj

〈

Gjn(t; t
′)Rni(x

f (t′), t′;x, t)

〉

xf=x

dt′

(C.29)

In the first term of the integrand in equation (C.29) the differentiation ∂
∂xj

acts only on

the second spatial input of R. In the second term in the integrand the differentiation

is with respect to both this dependence in R and also the conditionality xf (t) = x.

Consequently equation (C.29) can be written

κi −
∂

∂xj
λji = −

t∫

0

∂

∂yj

〈

Gjn(t; t
′)Rni(x

f (t′), t′;x, t)

〉

xf=y

dt′

∣
∣
∣
∣
∣
y=x

(C.30)

where ∂
∂yj

is now used instead of ∂
∂xj

to emphasise that this differentiation is now with

respect to the condition xf = y and not the x dependence in R.
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It follows that a sufficient condition to ensure

κi −
∂

∂xj
λji = 0

is that

∂

∂yj

〈

Gjn(t; t
′)Rni(x

f (t′), t′;x, t)

〉

xf=y

= 0 (C.31)

Decompose the ensemble in equation (C.31) into an average over x0 (for a single reali-

sation of u) averaged over all realisations of u. So that

∂

∂yj

〈

Gjn(t; t
′)Rni(x

f (t′), t′;x, t)

〉

xf=y

=
∂

∂yj

[

1

ρ(y, t)

〈

δ(xf (t)− y)Gjn(t; t
′)Rni(x

f (t′), t′;x, t)

〉]

=
1

ρ(y, t)

〈

∂

∂yj

〈

δ(xf (t)− y)Gjn(t; t
′)Rni(x

f (t′), t′;x, t)

〉x
0

xf=y,u

〉u

(C.32)

For a given realisation of u (and with ∂iui = 0) there is a unique trajectory satisfying

xf (t) = y, namely xf (t′|y, t). The contribution of this trajectory to the inner ensemble in

equation (C.32) is weighted by ϕ0
(

xf (0|y, t)
)

. Also with this trajectory G(t; t′) = H(y, t, t′),

so that equation (C.32) may be written as

∂

∂yj

〈

Gjn(t; t
′)Rni(x

f (t′), t′;x, t)

〉

xf=y

=
1

ρ(y, t)

〈

∂

∂yj

[

ϕ0
(

xf (0|y, t)
)

Hjn(y, t, t
′)Rni(x

f (t′|y, t), t′;x, t)
]〉u

(C.33)

Therefore with ϕ0 = ρ0 constant, it follows that a sufficient condition to ensure

κi −
∂

∂xj
λji = 0

is

∂

∂yj

[

Hjn(y, t, t
′)Rni(x

f (t′|y, t), t′;x, t)
]

= 0 (for all i) (C.34)

The left hand side of equation (C.34) can be written
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[

∂

∂yj
Hjn(y, t, t

′)

]

Rni(x
f (t′|y, t), t′;x, t)

︸ ︷︷ ︸

1

+ Hjn(y, t, t
′)

[

∂

∂yj
Rni(x

f (t′|y, t), t′;x, t)
]

︸ ︷︷ ︸

2

(C.35)

It is therefore sufficient to show that in equation (C.35), 1 and 2 are identically zero.

Consider term 2 in equation (C.35):

Hjn(y, t, t
′)

[

∂

∂yj
Rni(x

f (t′|y, t), t′;x, t)
]

= Hjn(y, t, t
′)
∂

∂yj
xfk(t

′|y, t) ∂

∂x′k
Rni(x

f (t′|y, t), t′;x, t)

= Hjn(y, t, t
′)Jkj(y, t, t

′)
∂

∂x′k
Rni(x

f (t′|y, t), t′;x, t)

= δnk
∂

∂x′k
Rni(x

f (t′|y, t), t′;x, t) (using equation (C.24))

=
∂

∂x′n
Rni(x

f (t′|y, t), t′;x, t) = 0 (using equation (C.28))

(C.36)

It remains, therefore, to show that term 1 in equation (C.35) is identically zero. That

is

∂

∂yj
Hjn(y, t, t

′) = 0 (C.37)

This can be demonstrated using equation (C.24). In 3-dimensions the inverse of J is

given by

J−1 =








+(J22J33 − J23J32)− (J12J33 − J13J32) + (J12J23 − J13J22)

−(J21J33 − J23J31) + (J11J33 − J13J31)− (J11J23 − J13J21)

+(J21J32 − J22J31)− (J11J32 − J12J31) + (J11J22 − J12J21)








(C.38)

So

∂

∂yj
Hj1(y, t, t

′) = +
∂

∂y1
(J22J33 − J23J32)−

∂

∂y2
(J21J33 − J23J31) +

∂

∂y3
(J21J32 − J22J31) (C.39)

∂

∂yj
Hj2(y, t, t

′) =− ∂

∂y1
(J12J33 − J13J32) +

∂

∂y2
(J11J33 − J13J31)−

∂

∂y3
(J11J32 − J12J31) (C.40)

∂

∂yj
Hj3(y, t, t

′) = +
∂

∂y1
(J12J23 − J13J22)−

∂

∂y2
(J11J23 − J13J21) +

∂

∂y3
(J11J22 − J12J21) (C.41)
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It is easy to verify that each of these components ∂
∂yj

Hjn is identically zero using the

fact that ∂
∂yi

Jkj =
∂

∂yj
Jki.

This, therefore, presents proof that the PDF equation does not contain spurious

drift.
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