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Experiments on a circular starting jet generated by a piston–cylinder arrangement, over
a range of Reynolds number from 2600 to 5600, are conducted so as to investigate
the development of the trailing shear layer during the leading vortex ring formation, as
well as the corresponding effects on the pinch-off process. Results obtained by digital
particle image velocimetry (DPIV) show that secondary vortices start to develop in the
trailing jet only after the critical time scale, the ‘formation number’, is achieved. The
subsequent growth of the secondary vortices reduces the vorticity flux being fed into
the leading vortex ring and, as a consequence, constrains the growth of leading vortex
ring with larger circulation. Evolution of perturbation waves into secondary vortices
is found to associate with growth and translation of the leading vortex ring during
the formation process. A dimensionless parameter ‘A’, defined as Γring/(xcore1U), is
therefore proposed to characterize the effect of the leading vortex ring on suppressing
the nonlinear development of instability in the trailing shear layer, i.e. the initial
roll-up of the secondary vortices. In a starting jet, A follows a decreasing trend with
the formation time t∗. A critical value Ac = 1.1 ± 0.1 is identified experimentally,
which physically coincides with the initiation of the first secondary vortex roll-up and,
therefore, indicates the onset of pinch-off process.
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1. Introduction

In general, a starting jet is referred to as the initial development of a jet in which
a column of fluid is issued from a nozzle or an orifice into the quiescent environment.
The dynamics of the leading vortex ring, which is formed by the roll-up of the
separated cylindrical shear layer from the edge of the nozzle or orifice exit (Didden
1979), actually determine the characteristics of the starting jet, such as jet penetration,
ambient fluid entrainment and thrust generation. One of the most important features
about the leading vortex ring formation is its disconnection from the generating jet at
a critical dimensionless time t∗ (t∗ = Ūpt/D, where Ūp is the running average of the
piston velocity and D is the nozzle diameter), because it imposes an upper limit to the
growth of the leading vortex ring. This phenomenon was first observed experimentally
and termed as ‘vortex ring pinch-off’ by Gharib, Rambod & Shariff (1998). They
defined the critical value of the formation time as the ‘formation number’ F, and
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found that its value was in the range of 3.6–4.5 for a variety of jet exit geometries,
Reynolds numbers and velocity programs. Although the formation number is a
relatively universal value for starting jets generated by the piston–cylinder arrangement,
subsequent investigations found that it may vary by some other parameters of the
staring jet, such as velocity profiles at the nozzle exit (Rosenfeld, Rambod & Gharib
1998; Mohseni, Ran & Colonius 2001), external background flow (Dabiri & Gharib
2004; Krueger, Dabiri & Gharib 2006) and temporal-varying exit diameter (Allen
& Naitoh 2005; Dabiri & Gharib 2005). As a consequence, the final state of the
leading vortex ring, such as its dimensionless energy and circulation, also varies
among different starting jet configurations.

Two theoretical explanations have been proposed for the vortex ring pinch-off
observed in starting jets with the piston–cylinder arrangement. Existence of the critical
dimensionless time scale in vortex ring formation was first discussed by Gharib et al.

(1998) in terms of the Kelvin–Benjamin variational principle (Kelvin 1880; Benjamin
1976), which states that a steadily translating vortex ring has maximum energy with
respect to the equivalent rearrangements of its vorticity that maintain the same total
impulse. Accordingly, a forming vortex ring can only accept additional vorticity and
subsequently relax to a new configuration if the impulse-normalized energy of the new
configuration is greater than that of an alternative vortex ring/shear layer configuration
in which the additional vorticity is not accepted by the vortex ring. Therefore, the
pinch-off process can be considered as a relaxation process of the leading vortex
ring to an equilibrium state. In addition to the relaxation explanation, Mohseni et al.

(2001) explained the pinch-off process in terms of the translational dynamics of the
leading vortex ring and its trailing jet. Based on the fact that the growth of the
leading vortex ring is supported by the trailing shear layer, they suggested a kinematic
explanation that the pinch-off occurs when the translational velocity of the leading
vortex ring becomes equal to the local axial velocity of the trailing jet, i.e. the time
when the leading vortex ring starts to translate faster than the trailing jet. Based on the
above two theoretical explanations, several analytical models (Mohseni & Gharib 1998;
Shusser & Gharib 2000; Gao & Yu 2010) have been developed to predict the existence
of the limiting time scale for the vortex ring formation in a starting jet.

These explanations, however, ignore a fundamental feature of the starting jet, i.e. the
development of instability in the trailing shear layer. For a starting jet with large stroke
ratio L/D, it is observed that secondary vortices (or equally termed as trailing vortices
relative to the leading vortex ring) could be formed in the trailing shear layer. Zhao,
Frankel & Mongeau (2000) found by numerical simulation that the Kelvin–Helmholtz-
type vortices formed in the trailing jet would absorb vorticity being fed into the
leading vortex ring. Since the growth of the leading vortex ring is sustained by the
influx of mass, vorticity, momentum and kinetic energy from its trailing shear layer
at a specific rate, the development of trailing jet instability would play a fundamental
role in the vortex ring pinch-off process. A better understanding of the effect of
trailing jet instability in a starting jet might offer a new perspective to explain the
underlying physical mechanism which constrains the growth of the leading vortex ring
in a starting jet.

The studies on the role of the development of the trailing shear layer in a starting
jet are still limited. By examining the effects of Reynolds number and shear layer
thickness, Zhao et al. (2000) found that approximately 20 % variation of the formation
number and vortex ring circulation at different values of Reynolds number and
boundary layer thickness δ∗ should be attributed to the trailing jet instability. The
trailing shear layer is more unstable and susceptible to Kelvin–Helmholtz instability
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Case Maximum piston velocity Umax (m s−1) Reynolds number ReD

C1 0.222 5600
C2 0.160 4100
C3 0.101 2600

TABLE 1. Summary of experimental parameters.

at higher values of Re and smaller values of δ∗. Nevertheless, the development of the
trailing jet instability and the dynamics of secondary vortices during the initial vortex
ring formation and pinch-off process have not been investigated in previous literature.

The present study is intended to elaborate on the effects of trailing jet instability on
the pinch-off process via experiments and theoretical analysis. The experimental set-up
and procedures are briefly described in § 2. This is followed by the discussion on the
development of secondary vortices (i.e. large coherent structures) in the trailing jet, as
well as its effect on the growth of the leading vortex ring in § 3. The characteristics of
the trailing jet instability during the initial vortex ring formation and pinch-off process
are presented and explained in § 4, by considering the influence of the leading vortex
ring. Based on experimental results on the trailing jet development, an alternative
explanation for the pinch-off process is proposed and the physical meaning of the
formation number is interpreted in terms of a new dimensionless parameter in § 5. The
paper ends with brief concluding remarks.

2. Experimental set-up

The experimental set-up is shown schematically in figure 1. Experiments are
conducted in a plexiglas tank with dimensions of 0.5 m × 0.6 m × 1.3 m, which
is filled with tap water and kept at room temperature (20 ◦C). The starting jet is
generated horizontally by a piston–cylinder mechanism. The cylindrical nozzle has an
inner diameter of D = 2.54 cm. The outer wall of the nozzle near the exit is shaped
to form a wedge with a tip angle of 20◦ so as to diminish the influence of the exit
lip thickness on the circulation of the leading vortex ring. The length of the nozzle
is 36 cm and the maximum stroke length of the starting jet in this experiment can
reach Lmax = 36 cm/2.54 cm ≈ 14D, which is sufficiently long to observe the entire
formation and pinch-off process of the leading vortex ring. The velocity history of the
piston is controlled by a solenoid valve (Burkert 6024 in combination with Burkert
8623-2 PI controller) and monitored by an ultrasonic flowmeter (Shenitech STUF-
200F1G), which is connected to a PC via a data acquisition card (NI USB-6251).

A total of 43 runs with different velocity programs and Reynolds numbers have
been conducted, but only results from the three most representative piston velocity
programs, as shown in figure 2, will be discussed in detail in the following sections.
Following Rosenfeld et al. (1998) and Krueger & Gharib (2003), the Reynolds number
for these non-impulsively started velocity programs is defined as

ReD =
UmaxD

ν
, (2.1)

where Umax is the maximum Up(t) achieved during jet ejection. The main flow
conditions are summarized in table 1.

The flow field measurements of the starting jet are obtained by using digital
particle image velocimetry (DPIV). Polyamide seeding particles (PSPs) manufactured
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FIGURE 1. Schematic of the experimental apparatus for starting jet generation with a
piston–cylinder arrangement.
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FIGURE 2. Piston velocity programs for the three cases at different Reynolds number and the
translational velocity of the leading vortex ring in C2.

by Dantec, which have a mean diameter of 50 µm and a density of 1.03 g cm−3, are
chosen as the seeding particles. The particles are illuminated by a dual-cavity pulsed
Nd:YAG laser (NewWave Gemini) with a maximum repetition rate of 15 Hz for each
cavity. The maximum energy level is 120 mJ per pulse and the pulse duration is 10 ns.
The emitted laser is green with a wavelength of 532 nm. A cylindrical lens is used
to form a laser sheet with thickness of 3 mm and divergence angle of 32◦, which
is positioned vertically on the x–r plane. The 12-bit digital camera (HiSense MkII),
to which the AF Micro Nikkor 60 mm lens is attached, is positioned normal to the
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laser sheet plane and records the images of the particle field in the region bounded
by 0 < x/D < 5.5 and −2 < r/D < 2 with a spatial resolution of 1344 × 1024 pixels.
Although the laser could achieve higher frequency, the actual measurements are taken
at the frequency of 5.5 Hz due to the limit of the camera frame rate (maximum
5.6 Hz for the double-frame mode). The standard cross-correlation technique (Willert
& Gharib 1991) is employed to obtain velocity field data from the PIV images. Using
an interrogation area of 32 × 32 pixels and a step size for the moving average of
16 × 16 pixels (50 % window overlap), the processing can construct a flow field
of 83 × 63 velocity vectors. In addition, vorticity fields are computed using finite
differences of the velocity data at eight neighbouring points via a second-order
accurate scheme. The uncertainties in the measured velocity and azimuthal vorticity
results are estimated to be within 1 and 3 %, respectively (Gao et al. 2008).

It is important to note that the size of the seeding particles is chosen carefully
because the accuracy of the velocity field measurement is limited by the ability of
the seeding particles to follow the instantaneous motion of the fluid. Accordingly, a
compromise between: (i) increasing the particle size so as to improve light scattering;
and (ii) reducing the particle size to improve flow tracking is considered. First, for
light scattering requirement, the camera images of seeding particles should have a
diameter of at least 2 pixels, preferably 3 pixels or more. By applying this criterion
to the present experiment in which pixel size of the camera bp is 6.45 µm, it suggests
that a seeding particle image should be at least dimage = 2 × bp = 12.9 µm. On the
image plane, the diameter of the Airy disc encompassing the light scattered by the
seeding particles is given approximately by

dimage ≈

[

d2
p

s2
+

(

2.44

(

1 +
1

s

)

f λ

)2
]1/2

, (2.2)

where dp is the particle diameter, s is the scale factor, f is the f -number of the lens
aperture and λ is the wavelength of laser (Adrian & Westerweel 2010). According
to the conditions of the present experiment (i.e. s = 15.9, f = 8 and λ = 0.532 µm),
it is found that the image of a 50 µm-diameter particle has a diameter of 11.5 µm,
i.e. close to the requirement of 2 pixels. On the other hand, the size of seeding
particles is restricted by its ability to follow the flow closely. For liquid flow, the upper
limit on particle diameter is considerably more lenient than in gas flow, because of
the much smaller density ratio. If ρp/ρf = 1 (ρp and ρf are the density of seeding
particle and fluid, respectively), particles will follow the flow exactly regardless of
the size (Hjelmfelt & Mockros 1966; Mei 1996). However, it is realized that in
strong shear flow the dynamics of small particles are affected by the shear lift force.
Saffman (1965, 1968) showed that the transverse lift force on the particle (Re is small
compared with unity) is approximated by

fL = 6.64µV

(

dp

2

)2
(κ

ν

)1/2

, (2.3)

where V is the instantaneous relative velocity, κ the magnitude of the velocity gradient
and µ and ν dynamic viscosity and kinematic viscosity, respectively. To examine its
influence on the motion of particles, a simple comparison between the lift force and
the quasi-steady viscous force, which contributes to the tracking ability of particles,
has been conducted. The viscous force is given by Stokes’ drag law as

fν = −3πµdpV. (2.4)
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FIGURE 3. Normalized circulation of the total jet and the leading vortex ring as a function of
formation time for the three cases.

It is interesting to note that the ratio |fL|/|fν| is actually independent of the relative

velocity V . According to the conditions of the present experiment (i.e. dp = 50 µm)

and by assuming that maximum velocity gradient is approximately κ ≈ 50 s−1 (similar

to Gharib et al. 1998), the ratio of lift force and viscous drag is |fL|/|fν| ≈ 6 %. This

suggests that the motion caused by the transverse lift force is much smaller than the

viscous resistance. Since Stokes’ drag law gives a conservative estimate of the tracking

ability of particles (Dring 1982), the influence of shear lift force could be even smaller

than the present approximated estimation. Therefore, it can be shown that the neutral

seeding particles of 50 µm mean diameter are capable of following the flow accurately

and can be captured distinctly by the camera in the present experiment.

3. Experimental results and discussion

3.1. Circulation of the leading vortex ring and the formation number

As established by Gharib et al. (1998), determination of the formation number requires

the evaluation of the circulation of the vortex ring after its pinch-off as well as the

total circulation supplied by the jet generator. Before proceeding to further discussion,

values for the formation number are first to be determined for the three cases. The

variation of the total circulation and the vortex ring circulation, normalized by the

maximum piston velocity Umax and nozzle diameter D, against the dimensionless

formation time t∗ is plotted in figure 3. The total circulation is obtained by integrating

the vorticity contained within the lowest detectable contour level, which is determined

to be at 3.0 s−1. Sensitivity analysis has been conducted by selecting different contour

levels at 4.0, 3.0 and 2.0 s−1 as the boundary of the vortex ring. The circulation of the

leading vortex ring is found to be sensitive to the choice of the cut-off level between

4.0 and 3.0 s−1, especially in the time after the leading vortex ring has pinched-off.

Below 2.0 s−1, the noise signal becomes unacceptable. As such, the vorticity contour

level at 3.0 s−1 is chosen for the present experiment.
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Figure 3 shows that the total circulation of the starting jet increases monotonically
against the formation time. The circulation of the leading vortex rings can only be
calculated after the complete separation of their vorticity field from the trailing jet
(t∗ > 7.0). The dimensional circulation of the leading vortex rings after the pinch-off
is found to be at the level of approximately 84, 77 and 61 cm2 s−1 for cases C1, C2
and C3, respectively. As shown by the dashed lines in figure 3, the corresponding
formation numbers are found to be approximately 4.5 ± 0.1 for C1 and C2, and a little
smaller value of 4.2 for C3. These results are in agreement with the formation number
reported by Gharib et al. (1998) for the cases with similar non-impulsive velocity
programs.

3.2. Characteristics of the secondary vortices during the pinch-off

The development of secondary vortices in the trailing jet is examined in terms of
the evolution of the vorticity contours in the flow field, as shown in figure 4 for
C2. In general, as the formation time increases, the leading vortex ring grows in size
and strength by absorbing the fluids and vorticity from the trailing jet, and translates
downstream due to self-induction. At large formation time, secondary vortices, i.e. the
large-scale coherent structures characterized by organized vorticity distribution, are
gradually formed in the trailing shear layer. The vorticity field of the leading vortex
ring remains connected to that of the trailing jet after the formation number, indicating
that the leading vortex ring continues to absorb fluids and gain vorticity from the
generating jet. The pinch-off process completes when the physical separation between
the leading vortex ring and the trailing jet happens at t∗ ≈ 8. This suggests that
the entire pinch-off process requires 3–4 formation time units to complete for C2.
Similar values for the separation time have also been found for C1 (7.5 ± 0.2) and
C3 (8.2 ± 0.2). These results imply that the separation time in a starting jet may be
delayed by lowering the Reynolds number.

From the evolution of the vorticity contours, it is also observed that variation of
the separation time among the three cases is associated with the formation of the
secondary vortices and their interaction with the leading vortex ring. For C2, an
initial concentrated distribution of vorticity, which gradually evolves into the first
trailing vortex (V1), can be distinguished in the trailing jet near the nozzle exit at
t∗ = 4.9, as shown in figure 4(c). As the starting jet continues, the first trailing vortex
shrinks in the radial extent and subsequently accelerates forward through the centre
of the leading vortex ring (see figure 4d). This process in fact is very similar to the
leap-frogging behaviour for two coaxial vortex rings travelling in the same direction
(Maxworthy 1972; Riley & Stevens 1993; Lim 1997). In the present experiments,
however, the first trailing vortex is actually entrained into the leading vortex ring (as
shown by the distorted structure in the vorticity contours of the leading vortex ring in
figure 4e), instead of catching up with the leading vortex ring and then emerging in
front of it like in the leap-frogging process. This is mainly due to the fact that the
first trailing vortex is much weaker, in terms of its size and circulation strength, than
the leading vortex ring. It is noted that, in C2, the first trailing vortex cannot develop
fully into a tight spiral consistent with the formation of a new vortex ring (such as the
second trailing vortex (V2) at t∗ = 8.1) due to the vortex merging. The vortex merging
process between the leading vortex ring and the first trailing vortices has also been
observed by O’Farrell & Dabiri (2010) based on the Lagrangian coherent structures
(LCSs).

As a result of the vortex merging, the circulation of the first trailing vortex is
absorbed by the leading vortex ring. This suggests that vortex merging would serve
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FIGURE 4. For caption see the next page.

to speed up the process of the leading vortex ring accumulating circulation, which,

otherwise, is only transported by the continuous vorticity flux from the trailing shear

layer. As such, the leading vortex ring will gain the maximum circulation and separate

from trailing jet earlier than the cases without vortex merging during the pinch-off

process. Because the trailing vortex ring acts as a large disturbance, the vorticity

distribution within the core of the leading vortex ring would be rearranged towards its

equilibrium state (approximated as the Norbury–Fraenkel family of vortex rings). In

C1, the vortex merging of the leading vortex ring and the first trailing vortex happens
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slightly earlier than in C2. However, the vortex merging is not observed before the end
of the pinch-off process in C3 at lower Reynolds number.

Different behaviour of the vortex merging process for the three cases is actually
associated with the development of secondary vortices at different Reynolds number
and velocity program. The trajectories of the first and second trailing vortices are
plotted in figure 5 for the three cases. The first trailing vortex can firstly be
distinguished by the vorticity contours at formation time t∗ ≈ 4.8 and at the axial
position of x/D ≈ 0.35. Subsequently, trajectories of the trailing vortices for the
three cases show that decreasing the Reynolds number of the starting jet affects
the convection of both the first and second trailing vortices slightly. Because the
trailing vortices translate slower at smaller Reynolds number, the distance between the
leading vortex ring and first trailing vortex becomes greater, as shown in figure 6.
Therefore, the interaction between them, which leads to the vortex merging process,
becomes weaker. It is also shown in figure 5 that the first trailing vortex in C1 and
C2 disappears after t∗ ≈ 6 and 7, respectively, because they have been merged into the
core of the leading vortex ring. For these two cases, the second vortex merging process
(between the new leading vortex ring and the second trailing vortex) happens later at
around t∗ = 8.8 in C1 and t∗ = 10.3 in C2. On the other hand, the first trailing vortex
in C3 develops fully into tight spirals and persists in the trailing jet even after the end
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of the pinch-off process. Results at larger formation time (t∗ > 8) shows that the first
vortex merging in C3 occurs as late as t∗ ≈ 11.

Based on the above discussion, it can be concluded that the secondary vortices
are formed in the trailing jet only after the formation number, and its subsequent
interaction with the leading vortex ring affects the physical separation between the two
parts by means of vortex merging. As the development of the secondary vortices is
dependent on the Reynolds number of the starting jet, a higher Reynolds number leads
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to a faster translation of trailing vortices and stronger vortices interaction, which in
turn accelerates the separation of the leading vortex ring from its trailing jet.

3.3. Vorticity and momentum fluxes

To examine the effect of the initial roll-up and the subsequent development of the
secondary vortices on the pinch-off process, the variation of axial vorticity and
momentum fluxes, which are defined in the ground coordinate system as

dΓ

dt
=

∫ ∞

0

ω(x, r)u(x, r) dr, (3.1a)

and

dM

dt
=

∫ ∞

0

2πρu2(x, r)r dr, (3.1b)

are calculated for C2. The integration is conducted by a fourth-order-accurate
quadrature scheme at every axial position.

Their axial variations during the initial formation stage and pinch-off process are
plotted in figure 7. As shown in figure 7(a), the vorticity flux decreases slightly from
the nozzle exit to a minimum just behind the leading vortex ring before the formation
number (t∗ = 3.1, 4.0), due largely to viscous diffusion. During the pinch-off process
(t∗ = 4.9), the decrease in vorticity flux behind the leading vortex ring becomes more
appreciable. By t∗ = 6.0, the second peak of vorticity flux behind the leading vortex
ring can be identified, corresponding to the roll-up of the first trailing vortex. As
discussed in the previous section, the first trailing vortex will be entrained into the
leading one due to their interaction (see figure 4d). Thus, the second peak in vorticity
flux disappears at t∗ = 7.0 and the minimum point in the vorticity flux is followed
immediately by the second trailing vortex, while the first trailing vortex is being
entrained by the leading vortex ring. When the vortex merging process completes
(t∗ = 8.1), a sharp second peak appears at x/D ≈ 1.5 and the vorticity flux behind
the leading vortex ring almost vanishes, suggesting that the second trailing vortex
is accumulating vorticity around itself. Since no more vorticity will be added into
the leading vortex ring, it has achieved the maximum circulation and its growth has
terminated by the separation time.

The corresponding evolution of the momentum flux is presented in figure 7(b). The
momentum flux in the trailing jet seems almost constant even after the onset of the
pinch-off process (t∗ ≈ 4.9). Comparing with the vorticity flux at this instant, the
effect of the first trailing vortex on the momentum flux is not as significant. However,
at t∗ > 6.0, the momentum flux starts having a minimum point behind the leading
vortex ring, indicating the initial roll-up of the second trailing vortex. By t∗ = 8.1, the
second peak of momentum flux becomes obvious in the trailing jet, which actually
corresponds to the second trailing vortex (as already shown in figure 4). In the models
for the pinch-off process proposed by Shusser & Gharib (2000) and Gao & Yu
(2010), the trailing jet is approximated as a one-dimensional axisymmetric flow with
constant mass and momentum flux. The present experimental result demonstrates that
this approximation should only be applied at the initial vortex ring formation stage
(i.e. t∗ 6 F), and the conservation of momentum fails after the formation of trailing
vortices. In addition, by comparing figure 7(a) with figure 7(b), it is shown that the
vorticity flux is actually more susceptible to the formation and growth of the secondary
vortices than the momentum flux.
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FIGURE 7. Axial variation of the absolute vorticity and momentum fluxes during the pinch-
off process for C2. Arrows with a solid line indicate the boundary between the first trailing
vortex (V1) and the leading vortex ring, and arrows with a dashed line indicate the boundary
between the first (V1) and second (V2) trailing vortices: (a) vorticity flux; and (b) momentum
flux.

Based on the dynamics of the pinch-off process elucidated by Mohseni et al.

(2001), the leading vortex ring is fed by the trailing shear layer at a specific rate,
which actually determines the final state of the leading vortex ring. Owing to the
development of secondary vortices in the trailing jet, the rate at which the vorticity and
momentum are being delivered into the leading vortex ring is affected. By taking into
account the translational velocity of the leading vortex ring, the local effect of trailing
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jet instability on the net vorticity and momentum flux added into the leading vortex

ring is examined. The vorticity and momentum fluxes relative to the translation of the

leading vortex ring are calculated at its boundary with the trailing jet as

dΓ

dt

∣

∣

∣

∣

r

=

∫ r1

0

ω(x, r)[u(x, r) − Utr] dr, (3.2a)

and

dM

dt

∣

∣

∣

∣

r

=

∫ r1

0

2πρu(x, r)[u(x, r) − Utr]r dr, (3.2b)

respectively, where the translational velocity Utr, shown in figure 2, is estimated by

tracking the position of the maximum vorticity in the vortex ring core and r1 is

the radial position where the local axial velocity drops to the translation velocity,

i.e. u = Utr. The boundary of the leading vortex ring is defined as the position

of minimum vorticity flux immediately behind the leading vortex ring as shown

in figure 7(a). It is noted that during the vortex merging process, the boundary is

determined approximately by the shape of the leading vortex ring (at x/D ≈ 1.65 in

figure 4d, for example), so as to exhibit the effect of the sudden increment of vorticity

and momentum by entraining the secondary vortex.

The relative vorticity and momentum fluxes for C2 are plotted against the formation

time in figure 8. Although the general trends for both vorticity and momentum fluxes

are similar, their quantitative behaviours are different. The initial acceleration of the

piston has more appreciable effect on the momentum flux than the vorticity flux. After

the formation number is reached, the vorticity flux starts to decrease gradually up to

t∗ ≈ 6 under the influence of the first trailing vortex, while the momentum flux still

continues to increase albeit with decreasing rate. The sudden jump in the vorticity

flux at t∗ ≈ 7 is attributed to the vortex merging process that takes place between the

leading vortex ring and the first trailing vortex. The momentum flux is only slightly

affected by the merging process, due to the fact that the first trailing vortex is not

fully developed and has little influence on the irrotational flow around itself. When the

vortex merging process completes, the vorticity flux drops sharply to almost zero at

t∗ ≈ 8, corresponding to the end of the pinch-off process. Figure 8 shows further that

there is still momentum (and also kinetic energy) being transported into the leading

vortex ring after the separation time. Hence, one may speculate that the growth of the

leading vortex ring is maintained mainly via the vorticity flux conveyed by the trailing

shear layer, rather than the flux of momentum or kinetic energy. The rapid decrease

in vorticity flux implies that the rotational fluids in the trailing shear layer can no

longer be fed into the core of the leading vortex ring, but rather be accumulated in

a series of forming trailing vortices. The remaining momentum flux after pinch-off

suggests that the irrotational fluids in the potential core of the trailing jet, which carry

linear momentum and kinetic energy only, could still enter the vortex ring bubble, but

staying outside the vortex ring core. Thus, the leading vortex ring ceases to grow and

gradually approaches its equilibrium state. Moreover, the second peak of both fluxes at

t∗ ≈ 10.3 corresponds to the subsequent vortex merging between the pinched-off vortex

ring and the second trailing vortex. The momentum flux into the leading vortex ring

eventually vanishes at t∗ > 11 when the formation of subsequent secondary vortices

becomes dominant in the trailing jet.
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FIGURE 8. Fluxes of momentum and vorticity fed into the leading vortex ring during
its formation and pinch-off process. The cutting level for the calculation of vorticity flux
is 3.0 s−1.

4. The instability of shear layer in the trailing jet

The shear layer is inviscidly unstable to infinitesimal perturbation via the
Kelvin–Helmholtz instability mechanism. It is shown in § 3 that the secondary vortices
are formed in the trailing jet only after the formation number. Their growth somehow
decreases the vorticity flux being fed into the leading vortex ring, leading to the
complete separation between the two parts. Given the temporal sequence between the
formation number and the secondary vortices roll-up, in this section we investigate
the instability characteristics of the trailing shear layer before and during the pinch-off
process in order to find out factors that affect the initial formation of the secondary
vortices.

The initial development of the shear layer downstream of the nozzle edge is
dominated by a linear stability mechanism, owing to the infinitesimal amplitude of
the perturbation in the main flow. The linear stability theory indicates that momentum
thickness of the shear layer is an important parameter to determine the instability
characteristics of an axisymmetric shear layer. The momentum thickness θ is
defined as

θ(x) =

∫ ∞

0

u(x, r)

Uc(x)

(

1 −
u(x, r)

Uc(x)

)

dr, (4.1)

where Uc(x) is the centreline velocity at each axial position x. Figure 9(a–c) present
the momentum thickness of the trailing shear layer as a function of streamwise
coordinate x/D during the vortex ring formation process for the three cases. For
C1 and C2, it can be observed that θ increases rapidly in the streamwise direction
before the formation number. For example, at t∗ = 3.5, θ in C1 increases by as much
as 80 % near the nozzle exit (from x/D = 0.03 to x/D = 0.5). However, at t∗ > 5,
θ only increases slightly or remains constant within the range of 0 < x/D < 0.5.
For a continuous jet at Re ≈ 2.7 × 104, Cohen & Wygnanski (1987) found that,
for x/D 6 0.45, the shear layer is almost parallel and all its velocity profiles are
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FIGURE 9. Axial variation of the momentum thickness at several formation times for: (a) C1;
(b) C2; and (c) C3. (d) The variation of the initial momentum thickness at nozzle exit
(x/D ≈ 0.03) as a function of the formation time.

self-similar, but it spreads rapidly farther downstream (1 6 x/D 6 4). Therefore, the
behaviour of the shear layer after the formation time resembles that of a continuous
jet. It is interesting to note that at t∗ = 4.0 in figure 9(b), the streamwise variation
of momentum thickness exhibits a trend of the transition between the two patterns.
Despite a slight fluctuation, the momentum thickness can be regraded as a constant at
region very close to the nozzle (0 < x/D < 0.2), but it increases at a steeper slope for
x/D > 0.3, i.e. similar to the variation before the formation number. This observation
implies that the change in the spreading pattern of the trailing shear layer around the
critical formation time should have some impact on the development of spatially
growing perturbations in the shear layer, as well as their roll-up into secondary
vortices during the pinch-off. On the other hand, the change in the streamwise increase
of θ becomes less obvious in C3. As shown in figure 9(c), θ still increases at a
gentler slope even when t∗ becomes greater than the formation number. This behaviour
of the shear layer may stem from the more appreciable viscous diffusion effect at
lower Reynolds number. It is also necessary to point out that the reduction of initial
momentum thickness (as shown in figure 9d) is the direct result from the acceleration
of the piston motion, rather than being the generic feature of the starting jet. In
contrast, the initial momentum thickness of the shear layer actually increases as jet
ejection continues, due to the growth of the boundary layer on the inner wall of the
nozzle (Shusser et al. 2002).
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The effect of the momentum thickness on the instability of the axisymmetric

shear layer has been investigated by Michalke (1971), Morris (1976) and Michalke

& Hermann (1982) by means of the inviscid linearized stability theory. It is found that

with increasing θ/R1/2 (R1/2 is the centre of the shear layer where the axial velocity u

drops to a half of the centreline velocity Uc), the axisymmetric shear layer becomes

less unstable, i.e. having smaller maximum amplification rate for the spatially growing

perturbation. Meanwhile, the frequency of the most amplified perturbation wave,

usually referred to as ‘the natural frequency’, shifts towards lower values. In the case

of an unforced jet, such as the present experiment, the initial excitation is introduced

by natural disturbance in the main flow. Only the perturbations at frequency close

to the natural frequency are ‘selected’ to develop into discrete vortices. According to

results shown in figure 9(a–c), the spatially growing perturbation before the formation

number is amplified at a decreasing rate and there is not a consistent natural frequency

to support the selective amplification because the shear layer spreads rapidly while

being convecting downstream. Therefore, the initially infinitesimal perturbation waves

cannot be amplified sufficiently in the shear layer to approach the nonlinear instability

regime, in which discrete vortices could start to roll-up. On the other hand, due

to the almost parallel shear layer after the formation number, perturbations near the

corresponding natural frequency can be amplified and evolve into secondary vortices at

the downstream location. Based on the effect of momentum thickness of a shear layer

on its instability characteristics, the present results suggest that the very slow spread

of the shear layer should be taken as an important factor for the roll-up of secondary

vortices only after the formation number.

Another factor that affects the initial roll-up of secondary vortices is the finite

streamwise dimension of the trailing shear layer. Todde, Spazzini & Sandberg (2009)

indicated that the distance from the exit plane required for the roll-up of the vortices is

influenced by the Reynolds number and the boundary layer thickness at the nozzle exit.

According to their flow visualization results for a continuous jet at Reynolds number

of 2700 (see figure 18 in their paper), the growth of the instability waves is hardly

identified at about x/D < 0.8. For the starting jet in the present study, the length of

the trailing shear layer, which is defined as the distance from the nozzle exit to the

location of minimum vorticity flux immediately behind the leading vortex ring (i.e. the

rear boundary of the leading vortex ring defined in § 3.3), is shown in figure 10. In

general, variations of the length of the trailing jet for the three cases are almost the

same, except that C3 has slightly longer trailing shear layer than the other two cases.

It is also observed that before the formation number the streamwise dimension of the

trailing shear layer is approximately less than 0.8D for C3, and less than 0.7D for C1

and C2. These values of trailing jet length are very close to the distance required for

the initial roll-up of vortices in a continuous jet. Based on the above reasoning, it can

be conjectured that in the initial stage of a starting jet, the perturbations in the trailing

shear layer would be absorbed into the leading vortex ring before it can evolve into a

compact coherent structure. Therefore, the secondary vortices are formed only after the

formation number.

In a starting jet, it is appropriate to relate the change of the instability characteristics

of the trailing shear layer to the influence of the leading vortex ring. First, it is

obvious that the dimension of the trailing shear layer is determined by the streamwise

translation of the leading vortex ring. The perturbation waves can evolve into compact
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FIGURE 10. The streamwise length of the trailing shear layer as a function of the formation
time for the three cases.

secondary vortices only when the leading vortex ring translates further downstream.
Second, the variation of shear layer expansion should be associated with the induced
radial velocity by the leading vortex ring. According to the Biot–Savart law, the
rotational fluid in the leading vortex ring core induces inward radical velocities in
its immediate upstream vicinity. As shown in figure 11(a), at t∗ = 3.1 the trailing
shear layer (at x/D < 0.5) is subjected to the influence of the induced velocity field.
Because the inward radial velocity field pushes the ambient fluids towards the trailing
shear layer, the exchange of momentum between the ejected fluid in the trailing jet
and the ambient fluid with relatively slow velocity are enhanced. As a result, the
velocity profiles in the shear layer spread out radially. Since the magnitude of induced
velocity diminishes as the distance of the leading vortex ring relative to the nozzle
exit increases, its effect on shear layer expansion decreases consequently. By t∗ = 4.9
when the vortex ring core travels downstream to approximately x/D = 1.4, as shown
in figure 11(b), the induced radial velocities become almost negligible (less than 4 %
of the local axial velocity) near the jet exit. Without the expanding effect from the
leading vortex ring, the trailing shear layer will be maintained almost parallel and the
amplification rate of perturbation will not be diminished as they are being convected
downstream.

In short, the leading vortex ring exerts a stabilizing effect on the shear layer
behind it before the formation number, via its induced radial velocities and its axial
translation. As the leading vortex ring travels downstream away from the nozzle
exit, its effect on the trailing shear layer becomes weaker, especially near the nozzle
exit. At the same time, the length of the shear layer keeps increasing, resulting in
the roll-up of the secondary vortices after the formation number. Further growth of
the secondary vortices leads to the decrease in the vorticity flux being fed into the
leading vortex ring and, finally, results in their physical separation. The above analysis,
therefore, suggests that in a starting jet, the development of the instability of the
trailing shear layer should be regarded as a determinant factor that limits the growth of
the leading vortex ring with larger circulation.
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5. Pinch-off criterion in terms of the trailing jet instability

With the understanding of the significant role of the trailing jet instability in the
pinch-off process, we intend to discuss an alternative criterion for the onset of the
pinch-off process in starting jets. It is based on the explanation of the pinch-off
process in terms of the development of trailing jet instability and the interaction
between the leading vortex ring and the secondary vortices.

5.1. The physical process of vortex ring pinch-off

The experimental results suggest that the limiting process of vortex ring formation can
be understood from the perspective of the unstable trailing shear layer development,
i.e. the formation and the subsequent evolution of the secondary vortices. Therefore, it
is important to first discuss the physical implication of the formation number in terms
of the development of the trailing shear layer instability.

The evolution of a starting jet at different stages of the pinch-off process is
illustrated schematically in figure 12. In order to focus on the main physical aspects,
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FIGURE 12. Sketch of the development of infinitesimal perturbations in the trailing shear
layer during the pinch-off process: (a) at the formation number; (b) slightly after the
formation number; (c) during the pinch-off process; and (d) at separation time.

we consider first a pinch-off process without vortex merging, such as C3. Up to the
formation number (figure 12a), the leading vortex ring grows in size and strength via
the continuous vorticity influx from the trailing jet, and at the same time translates
downstream due to self-induction. According to the definition of the formation
number, only the vorticity emanating from the nozzle before this critical time can be
accumulated in the leading vortex ring. Thus, there should be an imaginary boundary
in the trailing shear layer which distinguishes between the fluids issued before and
after the formation number, as indicated by the dashed line in figure 12(b,c). The
natural perturbation in the shear layer emanated before or at the formation number
(in light grey) cannot be amplified enough to roll-up into a vortex due to the induced
velocity field of the leading vortex ring and the short length of the trailing shear
layer. It will instead be entrained by the leading vortex ring during the pinch-off
process (figure 12d). On the other hand, due to the critical change in the instability
characteristics of the trailing shear layer, the perturbation emanated after the formation
number (in darker grey) can be amplified sufficiently to roll-up into a secondary vortex
(figure 12c). As the secondary vortex grows, it continuously absorbs vorticity around
itself, which leads to the complete pinch-off at the separation time (figure 12d).

It is noted that the pinch-off process with vortex merging, such as C1 and C2,
manifests the same dynamic process of instability development as that without vortex
merging, but the shear layer is more unstable (due to a higher Reynolds number, for
example). In these cases, the perturbations emanated just before the formation number
can still roll-up into secondary vortices. However, due to the vortex merging process,
the first secondary vortex cannot develop fully into a tight spiral and persist in the
trailing shear layer during the pinch-off process. Only the secondary vortex that is
formed immediately after the first one can develop fully into a tight spiral in the
trailing shear layer, decreasing the vorticity flux being fed into the leading vortex ring.

The evolution of the secondary vortex that merges with leading vortex ring during
the pinch-off can be regarded as the transitional behaviour between the suppressed
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perturbations issued before the formation number and the fully developed secondary
vortices in the trailing shear layer, as shown in the case without vortex merging. Given
the difference in vorticity increment by the trailing shear layer and by a secondary
vortices, the vortex merging during pinch-off should be a good explanation for the
20 % variations in the leading vortex ring circulation and the formation number at
different Reynolds number and initial shear layer thickness reported by Zhao et al.

(2000).
According to the description of the instability development of the trailing shear

layer, the formation number should correspond to the moment when the perturbations
that can later evolve into the first fully developed secondary vortex is about to be
issued from the nozzle exit. Since this secondary vortex will not be absorbed by the
leading vortex ring during the pinch-off process, its initial form (the corresponding
infinitesimal perturbation) is indicative of a new vortical structure in the trailing jet.
Thus, the physical implication of the formation number is actually consistent with
experimental result of O’Farrell & Dabiri (2010) that the formation number coincides
with the appearance of a new LCS near the nozzle edge.

5.2. A criterion for the formation number

The formation of the leading vortex ring is restricted by the growth of the secondary
vortices in the trailing jet. This suggests an approach to characterize the limiting
process of vortex ring formation by considering the evolution of infinitesimal
perturbations in the trailing shear layer.

As discussed in § 4, the roll-up of the secondary vortices is affected by the induced
velocity field and the downstream translation of the leading vortex ring. Therefore,
parameters related to the trailing shear layer instability could be identified in terms
of these two factors. Theoretically, for incompressible flow, the velocity field u(x)

induced by a specific vorticity distribution ω(x) is expressed as

u(x) =
1

4π

∫

ω(x′) × r

r3
dx′, (5.1)

where r = x − x
′ and r = |r| (Saffman 1995). Equation (5.1) suggests that the induced

radial velocity vi depends on its axial distance to the core region of the leading vortex
ring, and the magnitude and distribution of vorticity in the leading vortex ring. In a
starting jet, however, it is difficult to determine the vorticity distribution of a unsteady
vortex ring analytically during its formation stage. With appropriate simplification, the
details of the vorticity magnitude and distribution in the leading vortex ring can be
accounted for by its integration, i.e. the circulation. Hence, the induced radial velocity
near the nozzle exit is determined by two parameters, namely the axial location of
the vortex ring core xcore and its circulation Γring. For the second factor affecting the
trailing jet instability, the length of the trailing jet ltj is also related to xcore due to their
geometric relation. Finally, it is well known that the instability of the axisymmetric
shear layer is dependent on the strength of the shear layer, i.e. the velocity difference
1U between the jet and ambient fluids. The greater the velocity difference, the more
unstable the shear layer becomes.

Based on these parameters that affect the instability of the trailing shear layer,
dimensional analysis is conducted to determine the dimensionless parameters related to
evolution of perturbation in the trailing shear layer. Its evolution can be characterized
by its final amplification ratio Ra at the end of the pinch-off process, which is regarded
as the ratio of the final amplitude to the initial amplitude of the perturbation. The
variables associated with Ra include the circulation of the leading vortex ring Γring, the
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FIGURE 13. The variation of the parameter A against the formation time for the three cases.
Results of other cases and of Pawlak et al. (2007) are also included.

axial trajectory of its core xcore and the strength of the shear layer 1U (equal to U0

when the jet is issued into a quiescent ambient fluid). Therefore, the expression for the
final amplification ratio Ra can be written as

Ra = f (vi, ltj) = f (Γring, xcore, 1U). (5.2)

Using dimensional analysis, Ra is found only to depend on a single dimensionless
parameter, referred to as A here, i.e.

Ra = f

(

Γring

xcore1U

)

= f (A). (5.3)

This functional relation implies that the amplification of perturbation in the trailing
shear layer is determined only by the value of the dimensionless parameter A.

The variation of the parameter A against the formation time for the three cases is
plotted in figure 13. In the calculation of A, the trajectory and the integration region
for circulation are obtained from a continuous sequence of vorticity contours for the
starting jets. It is noted that for the unsteady vortex ring which is still connected to
the trailing jet, its rear boundary (as defined in § 3.3) is used to distinguish its own
vorticity field from that of the trailing shear layer. The results of Pawlak et al. (2007)
and four other cases of the present experiment with different Reynolds number are also
presented in figure 13 for comparison. Within the accuracy of the experimental data, it
seems that the curves of A for the three cases are almost identical. As the formation
time proceeds, A decreases monotonically. The physical implication of A is that it
represents the capability of the leading vortex ring to suppress the exponential growth
of the perturbation waves in the shear layer to approach the nonlinear development
regime. The greater the value of A is, the less unstable the trailing shear layer
becomes.

According to the interpretation of the formation number in terms of the development
of the trailing shear layer instability, the critical value of A (Ac), corresponding to
issuing the initial perturbation of the first fully developed secondary vortex from the
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nozzle, is estimated by the formation number found in the present experiments. It is

shown in figure 13 that A is approximately equal to 1.1 ± 0.1 for the three cases

at their respective formation number F = 4.2 ∼ 4.5. After the formation number, the

values of A for respective cases drop below the critical value Ac. Noting that the

present preliminary result of the critical value for A could be refined if it can be

derived analytical by means of the hydrodynamic stability analysis and the solution for

the induced velocity of the leading vortex ring. It is an interesting topic for further

study. This quantitative result regarding to the trailing jet instability may suggest a

criterion for determining the formation number in a starting jet, which states that

the leading vortex ring starts to pinch-off when the dimensionless parameter A of

the starting jet decreases to a critical value Ac ≈ 1.1. Moreover, since shear layer is

actually an intrinsic component in many other vortex-shedding configurations, such

as two-dimensional starting flow, vortex shedding in the wake of cylinder or vortex

wake of an oscillating flat plate, one may speculate that the instability criterion for

identify the onset of the pinch-off process can be applied to these vortex-shedding

configurations. But the value of Ac would be subject to varying due to the different

types of the flow.

6. Concluding remarks

Experiments using DPIV have been performed to investigate the effect of the

trailing jet instability on the vortex ring pinch-off in starting jets. It is found that

a series of secondary vortices start to develop only after the formation number is

achieved. Subsequently, the growth of secondary vortices leads to the rapid decrease

in the vorticity flux being fed into the leading vortex ring. When the vorticity flux

vanishes, the leading vortex ring separates completely from the trailing jet, indicating

the end of the pinch-off process. The roll-up and subsequent evolution of secondary

vortices are found to depend on the induced radial velocity and the downstream

translation of the leading vortex ring. According to the results of the linearized

stability analysis for axisymmetric shear layer, the trailing shear layer is more unstable

and has enough length to support the roll-up of secondary vortices after the formation

number. A dimensionless parameter ‘A’, defined as A = Γring/xcore1U, has therefore

been proposed to characterize limiting process of vortex ring formation in terms of the

development of the trailing jet instability. Experimental results show that A decreases

with the formation time. The perturbation that will later develop fully into the first

secondary vortex is issued from the jet exit when a critical value Ac = 1.1 ± 0.1 is

reached, and it also corresponds to the onset of the pinch-off process.

From the experimental results and discussion in this paper, it is suggested that the

formation and evolution of secondary vortices due to the trailing shear layer instability

can be regarded as the underlying physical mechanism which constrains the growth of

the leading vortex ring with larger circulation. The vortex ring pinch-off is actually the

consequence of the decrease in vorticity flux being fed into the leading vortex ring due

to the growth of secondary vortices.
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