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Background: Carbapenem-resistant K. pneumoniae 2297, isolated from a patient treated 

with tigecycline for pneumonia, developed tigecycline resistance, in contrast to carbape-

nem-resistant isolate 1215, which was collected four months prior to the 2297 isolate. 

Mechanisms underlying tigecycline resistance were elucidated for the clinical isolates.

Methods: The tigecycline minimum inhibitory concentration (MIC) was determined using 

the broth microdilution method, with or without phenylalanine–arginine β-naphthylamide 

(PABN), and whole-genome sequencing was carried out by single-molecule real-time se-

quencing. The expression levels of the genes acrA, oqxA, ramA, rarA, and rpoB were de-

termined by reverse-transcription quantitative PCR. 

Results: Both isolates presented identical antibiograms, except for tigecycline, which 

showed an MIC of 0.5 mg/L in 1215 and 2 mg/L in 2297. The addition of PABN to tigecy-

cline-resistant 2297 caused a four-fold decrease in the tigecycline MIC to 0.5 mg/L, al-

though acrA expression (encoding the AcrAB efflux pump) was upregulated by 2.5 fold 

and ramA expression (encoding the pump activator RamA) was upregulated by 1.4 fold. 

We identified a 6,096-bp fragment insertion flanking direct TATAT repeats that disrupted 

the romA gene located upstream of ramA in the chromosome of K. pneumoniae 2297; 

the insertion led the ramA gene promoter replacement resulting in stronger activation of 

the gene. 

Conclusions: The K. pneumoniae isolate developed tigecycline resistance during tigecy-

cline treatment. It was related to the overexpression of the AcrAB resistance-nodulation-

cell division efflux system due to promoter replacement.
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INTRODUCTION

Klebsiella pneumoniae, a member of the Enterobacteriaceae 

family, causes both hospital- and community-acquired clinical 

infections, such as bloodstream infections and pneumonia, and 

exhibits antimicrobial resistance [1]. Drug treatment options, in-

cluding tigecycline, are severely limited because of global dis-

semination of carbapenemase-producing K. pneumoniae, which 

confers resistance to carbapenems, considered as a last-resort 

treatment for infections [2]. 

Tigecycline is a minocycline-derivative semisynthetic glycylcy-

cline with extended-spectrum anti-gram-negative activity. Tige-

cycline has been introduced for the treatment of community-ac-

quired infections caused by extended-spectrum β-lactamase-
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producing Enterobacteriaceae [3]. Tigecycline can evade tetra-

cycline and minocycline resistance mediated by the production 

Tet-type efflux pumps and TetM-mediated ribosomal protection 

[3]. Tigecycline resistance is mediated by the overproduction of 

resistance-nodulation-cell division (RND) efflux pumps, which 

have been identified in gram-negative bacteria: MexXY in Pseu-

domonas aeruginosa [4], SdeXY in Serratia marcescens [5], 

AcrAB and OqxAB in Enterobacter spp. [6], AcrAB and AcrEF 

in Escherichia coli [7], and AcrAB and OqxAB in K. pneumoniae 

[8]. The production of the AcrAB RND efflux pump in K. pneu-

moniae is locally regulated by the TetR-family transcriptional re-

pressor, AcrR, and globally regulated by the AraC family transcrip-

tional activators RamA, MarA, SoxS, and Rob [9]; the global reg-

ulators are prioritized over the local repressor [9]. Overproduc-

tion of another RND efflux system, OqxAB, is also regulated by 

the local repressor OqxR and the global activators RarA, MarA, 

SoxS, and Rob by overriding local regulation [10]. 

Two K. pneumoniae isolates producing NDM-5 and OXA-181 

that exhibit indistinguishable XbaI-macrorestriction band pat-

terns by pulsed-field gel electrophoresis were isolated within a 

span of four months in April and in August 2014, respectively, 

from epidemiologically unrelated patients hospitalized in a ter-

tiary-care hospital in Korea [11]. The second patient was pre-

scribed tigecycline for pneumonia treatment based on the anti-

microbial susceptibility testing results; however, the causative K. 

pneumoniae isolate acquired tigecycline resistance within a few 

days of treatment, and the patient eventually died. The use of ti-

gecycline to treat carbapenem-resistant K. pneumoniae infec-

tion has been reported to lead to the development of tigecycline 

resistance in accordance with the clinical setting [12]. We report 

a further analysis of the case for in vivo development of tigecy-

cline resistance in those clinical isolates, as well as a putative 

hot spot for genetic recombination events conferring tigecycline 

resistance, based on whole genome comparisons. 

METHODS

Bacterial isolates 
K. pneumoniae 1215 (formerly CC1409-1) and K. pneumoniae 

2297 (formerly CC1410-1) [11] isolates were used for the pres-

ent retrospective study. The bacterial species of both isolates 

was confirmed by matrix-assisted laser desorption ionization 

time-of-flight (MALDI-TOF) mass spectrometry using the MALDI 

Biotyper (Bruker Daltonics, GmbH, Bremen, Germany) and 16S 

rDNA sequencing. This research did not involve human sub-

jects and was exempted from approval by the Ethics Committee 

on Human Research of the Health Ministry in Korea; the study 

design was not reviewed by an Institutional Review Board. 

Multilocus sequence typing (MLST) 
MLST of the K. pneumoniae isolates was performed by PCR 

and sequencing of seven house-keeping genes, namely, gapA, 

infB, mdh, pgi, phoE, rpoB, and tonB [13]. The sequences ob-

tained for both DNA strands were compared with sequences in 

the MLST database (http://bigsdb.web.pasteur.fr/klebsiella).

Susceptibility testing and identification of the carbapenem 
resistance determinants

The minimum inhibitory concentrations (MICs) of aztreonam, 

cefotaxime, ceftazidime, cefoxitin, gentamicin, amikacin, cipro-

floxacin, imipenem, meropenem, colistin, and tigecycline were 

determined by the broth microdilution method using freshly 

prepared cation adjusted Mueller-Hinton broth (CAMHB; Bec-

ton Dickinson, Franklin Lakes, NJ, USA) following the European 

Committee on Antimicrobial Susceptibility Testing (EUCAST) 

guidelines [14]. In addition, 20 mg/L of efflux pump inhibitor 

phenylalanine-arginine β-naphthylamide (PABN; Sigma-Aldrich, 

St. Louis, MO, USA) was added to determine whether the over-

produced efflux pump system affects the tigecycline MIC. Esch-

erichia coli ATCC 25922 and/or Pseudomonas aeruginosa ATCC 

27853 were used for quality control, and the EUCAST break-

points were adopted for clinical categorization [15]. The molec-

ular mechanisms underlying carbapenem resistance were con-

firmed by PCR and sequencing of the blaOXA-48-like, blaIMP, blaVIM, 

blaGES, blaKPC, and blaNDM genes [16]. 

Gene expression measurement 
Total RNA was extracted from bacterial cells in the exponential 

growth phase (at an optical density at 600 nm, ca. 0.8) using 

the RNeasy plus mini kit (Qiagen, Hilden, Germany). The mRNA 

levels of acrA, oqxA, ramA, rarA, and rpoB were quantified us-

ing a LightCycler 480 instrument II (Roche Diagnostics, Basel, 

Switzerland) with the LightCycler RNA amplification kit and SYBR 

Green I (Roche Diagnostics). The following gene-specific prim-

ers were designed and used for amplification: forward 5´-CAG-

GCAGCTTAGCGCTAACA-3´ and reverse 5´-CCTGGATATCGCTA-

CCTTCC-3´ for acrA, forward 5´-TCCAGCGATAATCAGGCGCT-3´ 

and reverse 5´-CAGCGTGGCTTTGAACTCTG-3´ for oqxA, forward 

5´-GCATCAACCGCTGCGTATTG-3´ and reverse 5´-ACGCGGGTA-

AAGGTCTGTTG-3´ for ramA, forward 5´-GGCGCCATCATTCAG-

GATCT-3´ and reverse 5´-AGTCAAAGCCGAGGGCAATC-3´ for 

rarA, and forward 5´-CTTGGTACGACCGTTCACGT-3´ and reverse 
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5´-GCTGAAACTGAACCACCTGG-3´ for rpoB. Amplification con-

ditions consisted of one cycle of 95°C for 30 seconds, followed 

by 45 cycles of 95°C for five seconds, 58°C for 10 seconds, and 

72°C for 20 seconds. The transcript expression levels of acrA, 

oqxA, ramA, and rarA were normalized against that of rpoB. Each 

experiment was performed in duplicate independently. 

Whole-genome sequencing and analysis
The complete genomes of K. pneumoniae 1215 and 2297 were 

sequenced by single-molecule real-time (SMRT) sequencing 

using a PacBio RSII instrument (Pacific Biosciences, Menlo Park, 

CA, USA). Genomic DNA was extracted from the K. pneumoniae 

isolates using the Wizard Genomic DNA Purification kit (Promega, 

Madison, WI, USA). SMRTbell template libraries were subse-

quently prepared, and adapter ligation was performed. PacBio 

SMRT sequencing reads were used for de novo genome assem-

bly with the PacBio SMRT analysis software suite (version 2.3.0). 

The circularized chromosome and plasmids were then polished 

using Quiver. Coding sequences, including tRNAs and rRNAs, 

were annotated using the NCBI Prokaryotic Genome Annotation 

Pipeline (http://www.ncbi.nlm.nih.gov/books/NBK174280). Nu-

cleic acid sequences were compared using the Basic Local Align-

ment Search (BLAST) tool (http://blast.ncbi.nlm.nih.gov) [17], 

and resistance determinants and plasmid incompatibility types 

were determined using ResFinder (https://cge.cbs.dtu.dk/ser-

vices/ResFinder) [18] and PlasmidFinder (https://cge.cbs.dtu.

dk/services/PlasmidFinder) [19], respectively.

GenBank accession numbers
The two genomes were deposited with GenBank under acces-

sion numbers CP024838-CP024840 (K. pneumoniae 1215) 

and CP024834-CP024836 (K. pneumoniae 2297). 

RESULTS 

Characterization of serial K. pneumoniae isolates producing 
both OXA-181 and NDM-5 

The K. pneumoniae 1215 and 2297 isolates were both identi-

fied as sequence type (ST) 147 by MLST. Both isolates exhib-

ited carbapenem resistance conferred by both the blaOXA-181 and 

blaNDM-5 carbapenemase genes, as confirmed by PCR and se-

quencing. The isolates presented identical resistance profiles, 

except for tigecycline (MIC=0.5 mg/L for 1215 and 2 mg/L for 

2297; Table 1). The tigecycline MIC for the quality control strain 

was 0.063 mg/L. The K. pneumoniae 1215 isolate was consid-

ered susceptible to tigecycline, whereas the 2297 isolate was 

considered resistant. Further, the isolates were resistant to az-

treonam, cefotaxime, ceftazidime, cefoxitin, gentamicin, amika-

cin, and ciprofloxacin and susceptible to colistin. 

Genomic profiles of the serial K. pneumoniae isolates
The whole-genome sequencing results showed that the full chro-

mosomes of 1215 and 2297 (6,420,542 and 6,429,958 bp, re-

spectively) shared 99% nucleic acid identity with 100% cover-

age for both sides (Table 2). A 9,416-bp additional segment 

Table 1. Antimicrobial susceptibility of the Klebsiella pneumoniae 

ST147 isolates

MIC* (mg/L) K. pneumoniae 1215 K. pneumoniae 2297

Aztreonam 64 32

Cefotaxime >64 >64

Ceftazidime >64 >64

Cefoxitin >64 >64

Gentamicin >64 32

Amikacin >64 >64

Ciprofloxacin >64 >64

Imipenem 128 64

Meropenem 128 128

Tigecycline 0.5 2

Colistin 1 0.5

*MICs were determined using the broth microdilution method.

Abbreviations: ST, sequence type; MIC, minimum inhibitory concentration. 

Table 2. Comparison between the genomes of K. pneumoniae 

1215 and 2297

K. pneumoniae 1215 K. pneumoniae 2297

Genome coverage 259× 507×

Genes (total) 5,826 5,805

CDS (total) 5,702 5,681

Genes (coding) 5,478 5,472

CDS (coding) 5,478 5,472

Genes (RNA) 124 124

rRNAs (5S, 16S, 23S) 9, 8, 8 9, 8, 8

tRNAs 88 88

PseudoGenes (total) 209 209

Chromosome size (bp) 5,420,542 5,429,958

Plasmid size (bp) 130,922 112,150

96,185 96,185

 72,689 69,628

Abbreviation: CDS, coding sequence.
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found in the chromosome of 2297 comprised either insertion 

sequences or transposable DNA fragments. Two copies of bla-

OXA-181 were identified in each chromosome. The genomes of 

both 1215 and 2297 harbored the following three complete 

plasmids: identical 97,185 bp IncFII plasmids encoding NDM-

5; 130,922 bp (1215) and 112,150 bp (2297) IncFII (pKPX1) 

plasmids, which were identical except for a 16,798-bp insert 

carrying five antimicrobial resistance genes, namely, aadA2, 

aacA4, and rmtF for aminoglycoside resistance, dfrA12 for trim-

ethoprim resistance, and catA2 for chloramphenicol resistance; 

and nearly identical 72,689 bp (K. pneumoniae 1215) and 

69,628 bp (K. pneumoniae 2297) non-incompatibility-typified 

cryptic plasmids. 

Molecular mechanisms underlying tigecycline resistance
The addition of the efflux pump inhibitor PABN led to a four-fold 

decrease in the tigecycline MIC from 2 to 0.5 mg/L for 2297. In 

contrast, no changes in MIC were observed for 1215. These re-

sults indicate that tigecycline resistance in 2297 is associated 

with overproduction of an efflux pump system. 

We measured the expression levels of the acrA and oqrA genes, 

components of the operons encoding the AcrAB and OqrAB ef-

flux systems, respectively, and of the activator-encoding ramA 

and rarA. We observed a 2.5-fold upregulation in acrA expres-

sion, consistent with a 1.4-fold upregulation of ramA expression 

in K. pneumoniae 2297 relative to that in 1215. No differences 

were observed in expression levels for the RND pump oqrA and 

the regulator rarA.

A 6,096-bp insertion flanking direct TATAT repeats was identi-

fied in the genome of K. pneumoniae 2297 that disrupted the 

RomA-coding sequences upstream of the ramA gene (Fig. 1). 

RomA is a repressor of the OmpF outer membrane protein [20], 

and the coding gene is located in the romA-ramA operon. The 

ramA gene has two transcriptional start sites, corresponding to 

the PI promoter upstream of the romA gene controlling romA-

ramA operon transcription and the PII promoter located in the 

open reading frame (ORF) of romA, as evidenced by the pres-

ence of two size transcripts by northern blotting [21]. The origi-

nal PII contains the -35 and -10 consensus sequences TTTATT 

and TATGGG, which are located 197 bp and 169 bp upstream of 

the transcriptional start site, respectively. Insertion of the 6,096-bp 

fragment in the romA ORF in K. pneumoniae 2297 introduced 

a new PII sequence harboring the -35 and -10 consensus se-

quences TTCCAT and GATAAT at the -133-bp and 104-bp re-

gions upstream of the transcriptional start site. 

The acrR gene, encoding a local repressor of AcrAB, was iden-

tical in both chromosomes. Furthermore, we could not identify 

amino acid alterations capable of conferring tigecycline resis-

tance, such as in the tigecycline binding sites in the 16S rRNA 

[22] and ribosomal protein S10 [23]; global regulators RcsC, 

MarA, and SoxA; the ATP-binding cassette (ABC) transporter 

MacAB; or the outer membrane proteins OmpK35 and OmpK36. 

DISCUSSION

We analyzed the mechanism of in vivo tigecycline resistance 

development, mostly through whole genome analysis, highlight-

ing the need for cautious use of tigecycline for patients with in-

fectious diseases. 

Our findings clearly demonstrate that tigecycline resistance 

developed in vivo, and we identified the relevant genetic events. 

Subsequent development of tigecycline resistance in K. pneu-

moniae following tigecycline treatment in patients has been dem-

onstrated in a cohort study involving 260 patients with carbape-

nem-resistant K. pneumoniae bacteriuria [24] and a case-con-

trol study on patients who tested positive for multi-drug resistant 

K. pneumoniae [25]. A significant relationship between tigecy-

cline treatment and resistance development has been observed 

with an odds ratio of 6.13 (95% confidence interval [CI], 1.15– 

48.65) [24] and 6.00 (95% CI, 2.17–16.59) [25]. Tigecycline 

constitutes the final treatment option for pneumonia in patients 

infected by K. pneumoniae 2297 [11]. K. pneumoniae ST147 

isolates are likely to persist in clinical settings by producing mul-

tiple carbapenemases and developing tigecycline resistance via 

genetic recombination during tigecycline treatment. Promoter 

replacement was likely responsible for the activation of the RND 

efflux pump, which in turn conferred tigecycline resistance in K. 

pneumoniae in vivo. 

Our study had several limitations. First, the approach was mostly 

Fig. 1. Schematic representation of the insertion of a 6,096 bp 

DNA fragment disrupting the romA gene in Klebsiella pneumoniae 

2297. Gray boxes indicate identical sequences between K. pneu-

moniae 1215 and 2297. Gene names are indicated above or below 

the open arrows. The direct TATAT repeats are indicated above their 

location.
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observational. The carbapenem-resistant K. pneumoniae 2297 

developed very strong resistance to tigecycline via the loss of 

romA. As colistin is the only useful selection marker in this spe-

cies, a romA-complement plasmid could not be introduced; thus, 

the molecular microbiological proof was limited. Second, an epi-

demiological study of the tigecycline-resistant K. pneumoniae 

isolates was not conducted. The isolation of two carbapenemase 

producers with indistinguishable genomic profiles within four 

months warrants conducting an active surveillance study, espe-

cially as one of the isolates exhibited a broader spectrum of an-

timicrobial resistance. We investigated only the collected bacte-

rial isolates, and the persistence of bacterial isolates in the hos-

pital was not traced sufficiently and comprehensively. 

In conclusion, our findings showed that in vivo development 

of tigecycline resistance was facilitated by the overproduction of 

the efflux pump. These results emphasize the need for careful 

selection of antimicrobial options for infectious diseases. 
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