NUREG/CR-6465

Development of Tools for Safety
Analysis of Control Software
in Advanced Reactors

Manuscript Completed: March 1996
Date Published: April 1996

Prepared by
S. Guarro, M. Yau, M. Motamed

ASCA, Inc.
2250 East Imperial Highway, Suite 200
El Segundo, CA 90245-3547

L. Beltracchi, NRC Project Manager

Prepared for

Division of Systems Technology

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NRC Job Code W6157

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED /%/

MASTER







DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




ABSTRACT

Software based control systems have gained a pervasive presence in a wide variety of applications, including nuclear
power plant control and protection systems which are within the oversight and licensing responsibility of the U.S.
Nuclear Regulatory Commission. While the cost effectiveness and flexibility of software based plant process control is
widely recognized, it is very difficult to achieve and prove high levels of demonstrated dependability and safety
assurance for the functions performed by process control software, due to the very flexibility and potential complexity of
the software itself.

The development of tools to model, analyze and test software design and implementations in the context of the
system that the software is designed to control can greatly assist the task of providing higher levels of assurance than
those obtainable by software testing alone. This report presents and discusses the development of the Dynamic
Flowgraph Methodology (DFM) and its application in the dependability and assurance analysis of software-based
control systems. The features of the methodology and full-scale examples of application to both generic process and
nuclear power plant control systems are presented and discussed in detail. The features of a workstation software
tool developed to assist users in the application of DFM are also described.

iii




. ¢ TN TmeT .
N N




TABLE OF CONTENTS

ABSTRACT iii
LIST OF FIGURES ix
L ST ) E T A B L e VU xi
EXECUTIVE SUMMARY Xiii
ACKNOWLEDGMENTS..... . xxvii
LIST OF ACRONYMS......ovirrvinsssseniessasssnsesssnsesisenes XXix
1 INTRODUCTION 1
1.1 Issues Associated with the Use of Digital Control Systems. 1

1.2 Current Practices in Ensuring Safety of Digital Control Systems. 2

1.3 Objectives Pursued in the Development of DFM 3

2 THE DYNAMIC FLOWGRAPH METHODOLOGY (DFM) ...cvvevvvernrerintrensseiesssnssssesesnessssenesnes 5
2.1 Overview 0f DFM.....cooesrernnnncsnnsesisisssesnnens 5

2.2 Framework for Madel Construction (Step 1)... 6

2.2.1 DFM Modeling Elements 7

2.2.1.1 Process Variable Nodes 7

2.2.1.2 Causality Edges....ccccorvuruence 8

2.2.1.3 Transfer Boxes and Associated Decision Tables 8

2.2.14 Condition Edges........... 9

2.2.1.5 Condition Nodes 9

2.2.1.6 Transition Boxes and Associated Decision Tables. 10

2.2.2 Model Construction and Integration......... 10

2.3 Framework for Model Analysis (StEP 2) ..o ececerrereeerssirencssisnrnecemsisiesssssssencossinssssonssssesnesssones 10
2.3.1 Introduction to Fault Trees and Cut Sets 10

2.3.2 Multi-Valued Logic Trees and Prime Implicants. 11

2.3.3 Model Analysis ProCedUIE ....ccouvremirerursirirrcsenmiriiniiiscsnsinsinnese s sassssssensssenes 13

2.3.3.1 Timed Fault Tree (TFT) Construcnon 13

2.3.3.2 Physical Consistency Rules.........occcovvurivrreserirnseesensscscasennce 14

2.3.3.3 Dynamic Consistency Rules. 14

2.3.3.4 Timed Prime Implicant (TPI) Identification 15

2.4 Framework for DFM Analysis-Driven Testing............ 17

2.4.1  OVEIVIEW Of TESHNG..c.cccvrecrrreericerrenresnareseesesnsnasssommussessstsasssressssssosssamsssassssssssssasnnsssnsessssons 17

2.42 DFM Analysis Based TeStiNg.......cccocsrmeevsurrrcsnsisiscmcsesisusonsnsnsssennee .18

2.4.2.1 Top Event Decomposition Mode (TED-Mode) 19

2.4.2.2 Time Fault Tree Derivation Model (TFTD-Mode) 19

2.5 Example of DFM Modeling and Analysis.........cccomsesiereesnssisiicsisiscsnssssnsmsesescsmessessssssssssssassssonens 20

2.5.1 System Description 20

2.5.2 Example of DFM Model Construction 21

2.5.3 Example of DFM Model Analysis. 24

3 DFM SOFTWARE TOOLSET 29
3.1 Development of the DFM Software Toolset... 29

3.1.1 Development of the Model Editor.. 29

3.1.2 Development of the Model Analyzer. 30

3.2 Functionality of the DFM Software Toolset 31

3.2,1 Functionality of the Model Editor 31

3.2.1.1 Graphic Model Building Environment 31

3.2.1.2 Database Structure 33

3.2.2 Functionality of the Model Analyzer.. 34

3.2.2.1 User Interface Resources 34

3.2.2.2 The Analysis Engine 36

4  INTERIM TEST CASE reeessseetnarasasaaressassasesiens 37
4,1 ITC System Description... 37




4.1.1 Pump 38
4,12 Pipes c 38
4.1.3 Control Valves. veeenseseressressuresess 39
4.14 Stop Valves ' 39
4.1.5 Water TanK.....cccoeeveeriosiosssrenssnsrisierisrsssaseosessessansssestosssnassessassasnas 39
4.1.6 Digital Controller 39

4.2 ITC System SIMUILION......ccvuiurmninerereneiiresresssssssrssssississssisssassnssssssesasesusssussssisssssssssessssessssnsess 40
42,1 Pump 41
422 Pipes 42
423 Control Valves 42
424 Stop Valves......cvnniirinnecnnnns 42
4.2.5 Digital Controller..... OOEIDCEIPCEAACACECARROCDARADCCGRK LKA DEOaOEEaDIONTaE 42
4.2.6 Simulation Code AIZOMIMS......ccciiieinisiririsennsiiisiisssssssrnensrssssssssssssssssssssssssssssssssssssssassossoss 43

4.3 DFM Model 0f the ITC SYSIEML...cocmieeiiirieniirisiirstisisssesssisssessesssnsrsssssssssssssssnsssostesscsussssssisssssssssssssssssesss 44
4.4 ITC DFM Model Analysis.....cocorivnsesseisisnercsunsnseessoraesuersnnasasnsens 51
4.4.1 Description of the Fault Injected.......cccouvvereererernneecienccnnnnscscnnnee 52
442 Analysis of the System with the Faulted Control Software........coevcvvereeccenscnnseccsiinisncnnn. 54
4.4.2.1 Definition of the Top Event.......ooereenvcrirecennenieene 54

4422 Constraints Imposed on the ANalysiS......cierceeriesisiiernsnsrssrsssissssieiesssneesesassnaens 54

4.4.2.3 Result of the ANALYSiS....cceeiecininimrissnsisrnnnnsissisesnesisnsarsisnsesssnssessennes 55
DEMONSTRATION TEST CASE 57
5.1 Steam Generator SIMulation Package........cceuvvmisnversisnisisessiesnsessisissessassssnssessssesssasssnecnss 57
5.1.1 Steam Generator MOdEL......vverricininiicnniiiiinnnenrentessestesnsssssssnssensssssssesassassanssnsssntans 57
5.1.1.1 Governing EQUations......cccecevereevierererreencecennnns 57

5.1.1.2 Bubble Rise and Condensate Droplet Models...........covermneeirnnerinnniesecensinseesnesesnescssnnes 64

5.1.2 Main Steam System.......ccccecerveeneee S —— w64
5.1.3 Main Feedwater and Auxiliary Feedwater Systems ........................................................................ 64
5.1.4 Steam Generator Level Control SYStEM .. cucciiiiinviirresiiniisniierniseistassssssesesessnessnsssssssssssssssesssnsses 65
5.1.4.1 Overview............. POCICIEIDEEECROACOOICCACK KT CLOCOAECC OO 65

5.1.4.2 Control LOGiC....ccvreerrersisinicsnresseisisussensisininnsesaessnssasnssensas 65

5.1.5 Testing the Steam Generator Simulation Package.....c.ccccoceverurennecse ....06
5.1.5.1  StaAY SHALe.....coeerreeecrrencerecnsreresensessscssesssssseseasssssssssssssssesesssssrssassssssssasssssesssess 66

5.1.5.2 TUIDING THIP.cucuererererneaeneerenecensussssesisrsssasasissssesnssssesesssnsnssssesssssssssssasasessssssussistssassssasisnetss 69

5.1.5.3  Level Sensor FalUre ........ccceveenerennscnnsiiiesniiesiisnsessssessessssssssnssssesssnsssssnssssnsesesssases 72

5.1.5.4 Step POWEr ReQUCHION. ...cuveiriritirireriririterinteietneencsieeeessastsntsesssnssasisasasasisesassssssosssasrnsans 75

5.1.5.5 Ramp Power Reduction OO EOEDOAEOAOECET GO DXL CE0OCE 5

5.2 DFM Model 0f the DTC SYSLEIM .eveueerecccerecsinssesmsestssosisssmsssssessssssssssssassssssessasessssistssstsssassisssssssssssssssassniss 79
5.3 DTC DFM Mo0del ANALYSIS ..ovouemrmreieiiririiiiisnsesissisissssissssssssssssssssssanstsasssssnsesissssssssonsisseseacs .87
5.3.1 The First Faulted-Case ANalysis........ceeerereeemrnrmesssessiscssrecsnssesesesenss 87
5.3.1.1 Description of the Fault Injected........couseeiriusrernsnsernsennasiesissnscsnsnssessonssnsnsaseses 87

5.3.1.2 Analysis of the DTC System with the Software Specification EfTor.........ccccecvceeveuveinscnee 89

5.3.2 The Second Faulted-Case Analysis .- S —— 93
5.3.2.1 Description of the Fault INJECted........coeiimieererrerestnsnressssrsensssssossnssissesensessessasernsenssaes 93

5.3.2.2 Analysis of the DTC System with the Programming Error ..... 94

FINDINGS AND INSIGHTS .. . OO OO OO OO YT, 97
6.1 Objectives and Uses of a DFM ANALYSIS o.cereececeeereenenrrscssasseesstsnsssesssnsssserssssastersssssssssasssasaststssassississases 97
6.1.1 Design Verification of Control SOftWare........ccvueereeiiescinmsesisiseusesccnssusnnissinssssensisssssnsasesssossossaes 97

6.2 Applicability of DFM to Other Types of Systems 99
6.2.1 Feasibility of Applying DFM to Open Loop Control Systems......... 99

6.3 Optimization Of DFM ProCeAUIES........ccovurereereenessissssensssiessstacscasissesessnsessssstassrerssssssssasasnssssssssssssssassasss 100
6.3.1 Modeling Procedures........ccooeevivevemrieneiennesnssisssrsennssnesssssesssesseses 100
6.3.1.1 Modeling Different Types of Control LOZiC........cecereienrnesrnnensmncarerscsccsscsssnsisens 100

6.3.1.2 Modeling Irreversible Control ACHioNS.......cccverversesrivrinicstssnissessacseseacsosaes 102

6.3.2 Analysis Procedures....... 103

vi




6.3.3

7  CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

6.3.2.1 Guideline for Formulation of the Top Event.
6.3.2.2 Classification of Failure Modes
6.3.2.3 Presentation of the Analysis Results

Testing Procedures

6.3.3.1 Module Testing
6.3.3.2 System Testing

vii

103
104
104
105
105
107
109
113







ES.1
ES.2
ES.3
ES4
ES.5
ES.6
2.1
22
23
24
2.5
26
2.7
2.8
29
2.10
2.11
3.1
32
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4,10
4.11
5.1
52
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.1

LIST OF FIGURES

A Simple Digital Control System and its DFM Model.. Xv
ITC Digital Tank Level and Flow Control System......... xvii
DFM Model of the ITC Tank Leyel and Flow Control System.... xviii
DFM Model of the ITC Digital Controller...... Xix
DFM Model of the DTC Steam Generator Level Control System xxii
DFM Model of the DTC Control Software..... xxiii
A Simple Digital Control System and its DFM Model.. 7
The Basic DFM Modeling Elements 8
Example of Timed Fault Tree Construction.... 13
Timed Fault Tree for Very High Tank Pressure. 14
Ilustration of Physical Inconsistency 15
Ilustration of Dynamic Inconsistency 16
Schematic of the Pressure Control System...... 21
Integrated Causality and Time Transition Network 22
DFM Model of the Pressure Tank.... 22
Timed Fault Tree for the Top EventTP=5 @t=0...... 25
Timed Fault Tree for the Top Event TP=1@t=0...... 25
Architecture of the DFM Software Toolset..... 29
Algorithm used in the Analysis Engine 30
Screen Capture of the Model Editor Graphic Model Building Environment............. cucisecisess coctensnnens 31
DFM Maodel of the Pressure Control System Created with the Model Editor 32
Dialog Box for Defining Properties of a Node 32
Dialog Box for Defining Properties of a Transfer Box.. 33
Dialog Box for Defining Properties of a Transition Box 33
User Interface for Defining the Top Event...... 34
User Interface for Defining the Scope of the Analysis... 35
User Interface for Displaying a Summary of the Analysis Results.............. 35
User Interface for Displaying the Prime Implicants....... 36
User Interface for Displaying all the Intermediate Transition Tables 36
ITC Digital Tank Level and Flow Control System......... 38
Pump Characteristics Curve 38
Control Flow ....... 39
Finding the Operating Condition of the System 41
Variation of the Tank Level with Time 45
Variations of the Upstream Flowrate and the Downstream Flowrate with Time....... ccveeivcns cerrvencnnnes 45
Variations of the Control Valve Positions with Time.... . 46
DFM Model of the Tank Level and Flow Control System........... 46
DFM Model of the Digital Controller. 47
Comparison of the Unfaulted Software and the Faulted Software 53
Comparison of the Decision Tables for the Unfaulted Software and the Faulted Sdtware ...... .............. 54
Schematic of the U-tube Steam Generator...... 58
Schematic of the Steam Generator Level Control System 65
Block Diagram of the PID Control Logic. 66
Variation of the Narrow Range SG Level in Steady State 67
Variation of the Steam Flow in Steady State... 67
Variation of the Feed Flow in Steady State..... 68
Variation of the SG Pressure in Steady State... 68
Variation of the Narrow Range SG Level After the Turbine Has Tripped.. 69
Variation of the Steam Flow After the Turbine Has Tripped 70
Variation of the Feed Flow After the Turbine Has Tripped 70
Variation of the Auxiliary Feed Flow After the Turbine Has Tripped 7




5.12  Variation of the SG Pressure After the Turbine Has Tripped....... 71

5.13  Variation of the Narrow Range SG Level After the Level Sensor Has Failed 72
5.14  Variation of the Steam Flow After the Level Sensor Has Failed.. 73
5.15  Variation of the Feed Flow After the Level Sensor Has Failed.... 73
5.16  Variation of the Auxiliary Feed Flow After the Level Sensor Has Failed... 74
5.17  Variation of the SG Pressure After the Level Sensor Has Failed. 74
5.18 Variation of the Narrow Range SG Level During Step Power Reduction... 75
5.19  Variation of the Steam Flow During Step Power Reduction 76
520  Variation of the Feed Flow During Step Power Reduction........... 76
5.21 Variation of the SG Pressure During Step Power Reduction........ 77
522  Variation of the Narrow Range SG Level During Ramp Power Reduction 77
523  Variation of the Steam Flow During Ramp Power Reduction...... 78
524  Variation of the Feed Flow During Ramp Power Reduction 78
525  Variation of the SG Pressure During Ramp Power Reduction..... ...... 79
5.26 DFM Model of the DTC System...... 80
527  DFM Model of the DTC Control Software..... 80
528  Comparison of the Original Specification and the Faulted Specification.... 88
529  Comparison of the Correct Software Module and the Faulted Software Module...... cevcevevinns cervescnnnnns 88
530  Comparison of the Decision Tables for the Unfaulted Software and the Faulted Software....... ....ccoveveees 89
5.31 Sequence of Events for Prime Implicant #1... ......ccoee. coerrirncues courenncns 93
5.32  Comparison of the Original and Faulted Software and the Corresponding Decision Tables ............. 94
5.33  Sequence of Events for Prime Implicant #1... 95
6.1 DFM Model for Verification of the Pressure Control Software.... 98
6.2 State Transition Graph....... 99
6.3 DFM Template for Modeling P Control Logic 101
6.4 DFM Template for Modeling P-I Control Logic............ 101
6.5 DFM Template for Modeling P-D Contral Logic 102
6.6 DFM Template for Modeling P-I-D Control Logic. vt senceseeneans 102
6.7 DFM Template for Modeling Irreversible Control Action v—s ... 103




ES.I
ES.II
ES.II
21

2.11
2.1
2V
2V
2.VI
YA
2. VI
2IX
2.X
2.X1
2.X11
2.XI1I
2.X1V
2XV
2.XVI
2.XVII
2.XVIII
2.XI1X
2.XX
2.XXI
31

3.1I
3.1
4.1

4.11
4.111
4.1V
4V
4.VI
4.VII
4.VIIl
4.IX
4.X
4.X1
4.X11
4.XI1I11
4.X1IV
4.XV
4.XVI
4.XVII
4.XVIII
4.XIX
4.XX
4.XXI
4.XXI1
4.XXIII
4.XXIV

LIST OF TABLES

Prime Implicants for the Top Event *“Tank Pressure Very High”
Description of the Variables in the ITC DFM Model....

Prime Implicant for the “Tank Overflows” Event

Discretization Scheme for the Process Variable Node TP

Decision Table for the Transfer Box T3 in Figure 2.1...

xvi

xxi

Example Dynamic Consistency Rules

Decision Table for Function TOP..... ceeeeeeveuens cevereveerene vonee

Decision Table for TOP After Merging Operation

Irredundant Form of Decision Table for Function TOP.

Decision Table for Function TOP After Consensus

Summary of Control Commands......

Process Variable Nodes

Discretization of E

Discretization of IGF

Discretization of MVO.......

Discretization Of NGF ........ ceecevreernens coreesnnrrvens sesesencneesas sesen

Discretization of OGF

Discretization of SS.

Discretization of SW

Discretization of SWS

Discretization of TP

Discretization of VX

Prime Implicants for the Top Event TP=5@t=0

Prime Implicants for the Top Event TP=1@t=0.

Properties 0f @ NOGE........cc veurrericns ceeieivnee surtenineniens coasionsesenns
Properties of a Transfer Box

Properties of a Transition Box

Control Logic......

Level Set-Points ..

Flowrate Set-Points

Simulation Algorithm.........

Description of the Variables in the DFM Model

Discretization of CHV

Discretization of CVP1, CVP2, CVP1P and CVP2P.....

Discretization of CVS1 and CVS2....
Discretization of DCVP1, DCVP2, LC and QC

Discretization of DELL and DELLP

Discretization of DELQ......
Discretization of DL

Discretization of IL and ILP

Discretization of L, LL, LM, LMP...
Discretization of LS, QS1 and QS2..

Discretization of QD, QDM, QDMP, QDOWN and QOUT

Discretization of QNET .....
Discretization of QIN, QUM, QUMP and QUP

Discretization of VC1, VC2, VC3, VP1, VP2 and VP3,

Discretization of VS1, VS2 and VS3

Decision Table for Transition Box 14.

Decision Table for Transfer Box 20.

The Dynamic Consistency Rules Defined for the Analysis

Prime Implicants for the Event in which the Tank Overflows......

xi

15
16
17
17
17
21
21
23
23
23
23
23
23
23
23
24
24
26
27
32
33
34
40
40
40
43
48
48
49
49
49
49
49
50
50
50
50
50
50
51
51
51
52
53
55
55




5.1 Notations used in the Equations 59

5.1 Subscript Notations used in the Equations....... 59
S.HI Description of the Variables in the DFM Model 82
SIv Discretization of AUXF and AUXFP 82
5V Discretization of DFLOW and DFLOWP....... 83
5.VI Discretization of ERFLOW and ERFLOWP... - 83
5.VII Discretization of FEEDM, FFM and FWF...... 83
5.VIII Discretization of FS, LS and SS . 83
5.IX Discretization of HDP 83
5X Discretization of HG ' 83
5.X1 Discretization of HLO and HLOM... 83
5.XI1 Discretization of IFD 84
5.X1I Discretization of ISG and ISGP 84
5.XIvV Discretization of L, LM, LP and XLEVM....... 84
5XV Discretization of LD 84
5.XVI Discretization of MIN......... 84
5.XVII Discretization of MSIVP.... 84
5.XVIII Discretization of QR . 85
5.XIX Discretization of RTO........ 85
5.XX Discretization of SF and SFP 85
5.XXI Discretization of SFM and STMM... 85
5.XXII Discretization of SGERROR 85
5.XXIII Discretization of SGP and SGPP...... : 85
5.XX1vV Discretization of TFED, VC, VX and VXP....... 85
5. XXV Discretization of TVX 86
5.XXVI Discretization of VS 86
SXXVII Decision Table for Transfer Box 28. 86
5.XXVIII Decision Table for Transfer Box 10. ..... reee mereenearnes 87
S.XXIX The Dynamic Consistency Rules Defined for the Analysis 90
5.XXX Prime Implicants for the Top Event in which the Steam Generator Overflows..... ............. 90
5.XXXI Prime Implicant for the Top Event “SG Level Dropped to 0% Narrow Range™.... ............. 95
6.1 List of Pressure Transition Sequences 98
6.11 Decision Table for the Template shown in Figure 6.7. 103
6.111 Reduced Form of the Prime Implicant for the ITC Analysis............ 105

6.1V Reduced Form of the Prime Implicants for the First DTC Analysis........ coevieveeins vevercvsnnnns 106

xii




EXECUTIVE SUMMARY

The recent years have witnessed an explosive growth in the use of software to control the functions of complex
technological processes and systems. Software-controlled systems can be defined as systems in which the functions
of mechanical and physical devices are controlled and managed by digital processors and computers which, in turn,
execute software routines to implement specific control functions and strategies. Software-controlled systems have
gained a pervasive presence in all types of applications, from the defense and aerospace to the medical,
manufacturing, and energy fields. This report documents the results of a project entitled “Development of Tools for
Safety Analysis of Control Software in Advanced Reactors”, funded by the U.S. Nuclear Regulatory Commission
with the objective of defining and developing a methodology suited to analyze and assess the safety of nuclear power
plant software-based control systems. This objective included also the development of implementation tools, in the
form of a self-contained software package, to facilitate the application of the analytical procedures of the
methodology.

Software based process control has found increased use in the nuclear industry, including in the safety-related areas
that are of most direct concern to the U.S. Nuclear Regulatory Commission. Reactor Protection System (RPS)
algorithms and logic are software-implemented in Combustion Engineering nuclear power plants, as well as in many
of the CANDU Canadian reactors. Current designs for the latest generation of nuclear power plants -- such as the
Westinghouse AP600, the General Electric ABWR and SBWR and the CANDU 3 -- rely on the use of digital
computers and associated software to accomplish a wide variety of process control tasks, such as continuous
regulation of key plant physical parameters, component status monitoring and diagnosis, process/operator interfaces,
and emergency shutdown. The great advantage of the concept of using computers as process controllers is in the
almost unlimited flexibility afforded by the software implementation of system control functions, given the
computational power and speed of the modern microprocessors and computers. As a result, very sophisticated and
complex logic can be executed by relatively inexpensive processors loaded with the appropriate software
instructions. If necessary or desirable, the originally implemented logic can also be modified during the life of the
system by uploading new software instructions, without hardware changeovers.

While the cost-effectiveness and flexibility of the digital process control solution is almost universally accepted and
recognized, it is also increasingly recognized that software flexibility may also result in greater software function

complexity, by which logic errors of design or coding may find their way into a critically important software routine
and cripple the operation of a whole system. The task of providing high assurance of the dependability and safety of
the functions performed by process control software is thus becoming quite difficult to accomplish, due to the very
flexible and complex nature of the software itself. In nuclear applications, the task of software qualification for
safety related systems, which is largely based on testing, is estimated to require a year to complete (Petrella, et al.,

1991).

To reduce the level of effort spent in testing without reducing the level of assurance, many experts have been calling
for more stringent and formal practices to be applied in the process of defining the software specifications for critical
systems (Pamas, et al., 1991). While the enforcement of a more disciplined and structured process of critical
software specification and development is certainly a must, it should also be accompanied by the development and
use of tools to model, analyze and test control system software design specifications and implementations in the
context of the system within which the software is meant to operate. This in fact allows the system designer to
achieve a higher level of assurance that the system and software specifications and realization do not leave the door
open for unanticipated, unwanted and unsafe system behavior, and permit the identification of a reference envelope
of “system safe behavior” against which actual implemented code executions and actual system dynamic behavior
can be tested and verified. The project documented in this report has produced the formulation of a methodology,
called Dynamic Flowgraph Methodology (DFM), and corresponding software tools, which provide the control
software engineer with analytical capability designed specifically to permit the achievement of the objectives just
described. DFM can thus be added to the limited set of analytical tools which are presently available for purposes of
critical software dependability and safety assurance. For a brief review of pre-existing tools and further discussion
on the rationale at the core of the DFM development, the reader is referred to the report introduction contained in
"Chapter 1.

xiii




The principal accomplishment of this research are summarized below. A concise description and discussion of the
technical issues and findings associated with these accomplishments is also provided in the remainder of this
executive summary.

e  The features of the DFM analytical approach have been developed and defined in all necessary detail. The
approach is articulated in two steps, which involve, respectively, system modeling and system assurance
analysis. These steps can be integrated with, and facilitate, the traditional step of system assurance-testing. The
detailed discussion of this part of the work is contained in Chapter 2 of this report.

e An integrated analytical software package, which implements the DFM R‘rocedures and algorithms, has been
developed. This software nins on PC workstations under the Windows™ environment and relies on graphic
models and user interfaces for data input and output, which directly reflect the “directed graph” representation
at the base of DFM. A detailed presentation of the DFM Software Toolset is given in Chapter 3 of this report.

e An “interim test case” (ITC) was developed and used to aid the development and finalization of DFM. The ITC
consisted of a simple fluid storage process controlled by a software logic and its features and functions were
modeled and analyzed with the help of development versions of the DFM technique and sofiware. The
capabilities of the DFM analysis were tested by analyzing both unfaulted and faulted versions of the ITC system
control software and by using DFM to identify the injected faults. The experience gained in the execution of this
test-case analysis was used to identify areas of the DFM technique and tools which needed further development
or improvement. A detailed discussion of the Interim Test Case is presented Chapter 4 of this report.

e A “demonstration test case” (DTC) was developed and used to prove the viability of the DFM methods and
tools, as finalized in a baseline version at the end of the development phase concluded with the ITC exercise.
The DTC consisted of a Pressurized Water Reactor (PWR) steam generator level and main feedwater control
system, which was defined in a software-implemented configuration. For obvious reasons, the DTC was
exercised in a simulated version, which involved the development of full dynamic models of the steam generator
thermal-hydraulic behavior, as well as of the associated control elements and software. The DFM techniques
and tools were successfully applied to the DTC and control software faults injected in the system were correctly
identified. Important insights were collected from this application, which can be advantageously used to provide
guidance for future utilization of the methodology. A detailed discussion of the Demonstration Test Case is
presented Chapter 5 of this report. The insights gained from the DTC (and from the ITC) with respect to the
application of DFM modeling and analysis are discussed in Chapter 6. Chapter 7 contains, in addition,
conclusions and considerations regarding the future direction of DFM application and development.

The Dynamic Flowgraph Methodology (DFM) (Garrett, et al., 1995a, Yau, et al., 1995 and Garrett, et al., 1995b) is
a methodology specifically developed for modeling and analyzing software-controlled systems. DFM is also based
on a systems approach towards this objective, i.e., on the principle that a thorough system assurance analysis can
only be performed effectively if both the software and hardware portions of the system are modeled and analyzed,
with a well integrated understanding and representatlon of the overall system functions and interfaces. The basic
execution of a DFM analysis requires a two-step process, which is also typically associated with certain sofiware test
procedures. The basic two steps are as follows:

Step 1. Build a model of the‘ digital control system for which a safety analysis is required. The model encompasses
both the controlling software and the system being controlled.

Step 2. Using the model constructed in Step 1, systematically identify the modes by which specific system and
process failure states may occur (this part of the process has been fully automated in the DFM Software Toolset
described in Chapter 3). ‘

If DFM-aided system-integration testing is also sought, a third step will be executed:

Xiv




Step 3. Verify by integration testing, based on the results of the DFM analysis, that the digital control system
exhibits the behavior predicted by its DFM model and, if corrections are applied to eliminate software failure modes,
that the corrected digital control system behaves as desired.

A DFM model expresses the logical and dynamic behavior of a generic system. If this system is a digital control
system, both the system being controlled and the controlling software are represented in the DFM model. A DFM
model is a network built by using detailed multi-state representations of the cause-and-effect and time-varying
relationships which exist among the key system and software parameters. The functional mappings for different
combinations of these parameters are presented as decision tables. The decision tables can be constructed from
empirical knowledge of the system, from physical equations which govern the system behavior, or from available
software code and/or pseudo code. Figure ES.1 provides a relatively simple example of DFM model. More
specifically, Figure ES.1b shows the DFM representation of the simple gas storage and pressure control system
represented in Figure ES.1a, This system is a modified version of the system used in NUREG-0492,*“Fault Tree

Handbook” to provide an example of the fault tree analysis technique. For further details on the system represented
here the reader is referred to the description given in Chapter 2.

"G sounce \_/
(2) System (b) DFM Model
Figure ES.1 : A Simple Digital Control System and its DFM Model

The analysis of a DFM system model is conducted by tracing sequences of events deductively through the model
structure, to identify the paths by which combinations of hardware and software conditions can propagate through the
system to produce system events of interest. Deductive DFM analysis shares thus key conceptual features of fault
tree analysis, but DFM uses a multi-valued logic (MVL), rather than binary, representation of system and parameter
conditions. The top event of a DFM analysis can still be expressed in disjunctive form in terms of prime implicants,
which can be considered as the MVL equivalent of the minimal cut sets encountered in binary fault trees. A prime
implicant is a conjunction of primary events which is sufficient to cause the top event and which does not contain any
shorter conjunction of the same events which is also sufficient to cause the top event. The prime implicants are
unique and finite. However, finding them is a more challenging task than finding binary-logic minimal cut sets.
Methods have been developed to obtain system prime implicants from component decision tables for static
representations of systems. In DFM, the procedure for generating prime implicants has been extended to carry out
deductive analysis across time transitions, so that dynamic representations of systems can be analyzed. DFM,
therefore, represents a significant advancement beyond conventional fault tree analysis, as it is capable of producing,
from one network model, MVL and time-dependent prime implicants, called “timed prime implicants” (TPIs), for a

very large number of possible top events. The series of intermediate transition tables generated in the analysis show
the time dependent sequence of events leading from the TPIs to the top event. Table I shows the seven prime
implicants identified by the DFM analytical procedures for the top-event “tank pressure very high” in the system

presented in Figure ES.1. Chapter 2 contains a detailed description of the analytical process and logic operation
algorithms applied to carry out a DFM analysis.

XV

¢
N,

e Cop o= & —pea=—=moe o o



Table ES.I : Prime Implicants for the Top Event “Tank Pressure Very High”

Number 'Prime Implicant

1 Electric switch was normal @ t = -1 AND
*Power was available @ t = -1 AND
Outlet valve was normal @ t = -1 BAND
*No manual valve command @ t = -1 AND
*Sensor failed low @ t = -1 AND
*Tank pressure was high @t =-1

2 Electric switch was normal @ t = -1 AND
*Power was available @ £t = -1 AND
Outlet valve was normal @ t = -1 AND
*Valve closed manually @ t = -1 AND
*Sensor failed low @ t = -1 AND
*Tank pressure was high @t = -1

3 Electric switch was normal @ t = -1 AND
*Power was available @ £t = -1 AND
*Outlet valve failed closed @ t = -1 AND
*Sensor failed low @ t = -1 BAND
*Tank pressure was high @ t = -1

4 *Blectric switch failed closed @ t = -1 AND
*Power was available @ t = -1 BAND
Outlet valve was normal @ t = -1 AND
*No Manual valve command @ t = -1 AND
*Sensor failed low @ t = -1 AND
*Tank pressure was high @t =-1

5 *Electric switch failed closed @ t = -1 AND
*Power was available @ t = -1 AND
Outlet valve was normal @ t = -1 AND
*Valve closed manually @ t = -1 AND
*Tank pressure was high @ t = -1

6 *Electric switch failed closed @ t = -1 AND
*Power was available @ t = -1 AND
*Outlet valve failed closed @ t = -1 AND
*Tank pressure was high @t =-1

7 *Tank pressure was very high @t =-1

The DFM Software Toolset is an integrated set of software tools for implementing the model construction and
analysis procedures of DFM. This software toolset is a Microsoft Windows™ application, and is developed as an
integration of two principal modules: the Model Editor and the Model Analyzer. A detailed discussion of the
features of both modules can be found in Chapter 3.

The DFM Model Editor is a graphical model building tool with which the user can create and edit DFM models. It
converts the graphic representation of the DFM models into a set of data that can be stored in a database, and later
used by the Model Analyzer. The Model Editor consists thus of a graphic model building environment for the user to
create DFM models and a database structure to store information about the model created. The graphic model
building environment provides a toolbox of icons representing DFM modeling elements with which the user can
build a DFM model. The user defines the structure of a DFM model by picking the modeling elements from the icon
menu and placing them on the screen. Dialog boxes are provided for the user to define the attributes of the model.
These model attributes are stored in the form of a“B-trieve” database structure. This database structure consists of
two major classes of data. One class characterizes the graphic attributes of the model, the other class characterizes
the structure attributes of the model. The graphic attributes specify the placement of objects on the screen, while the
structure attributes define the structure of the DFM model so that the Model Analyzer can backtrack the model
correctly through the network and time transitions.




The function of the DFM Model Analyzer is to deductively analyze a DFM model to produce timed event
sequences / fault trees and timed prime implicants for top events defined by the user. The Model Analyzer consists of
the user interfaces and the analysis engine. ‘The analysis engine is the part of the Model Analyzer which performs
the deductive, “backtracking” steps. It carries out the steps of expanding the DFM model decision tables to form
event-sequence intermediate transition tables, applying logic and dynamic consistency rules to remove inconsistent
rows from the intermediate transition tables, simplifying the intermediate transition tables to obtain the “critical
transition table”, and finally applying the logic algorithm which generates the timed prime implicants from the
critical transition table. The user interfaces facilitate the definition of the top events and the consistency rules by the
user, and the display to the user of the intermediate transition tables and the timed prime implicants.

The testing and demonstration of the DFM modeling and analytical approach has been executed by applying the
technique in two realistic test cases, which are referred to as the “Interim Test Case” (ITC) and the
“Demonstration Test Case” (DTC). The DTC, which is discussed in detail in Chapter 5, refers to the analysis of a

-PWR (Pressurized Water Reactor) steam generator level control system, the logic and algorithms of which are
implemented via software. The DFM demonstration task required the development of a detailed thermal hydraulic
simulator of the steam generator portion of the system, which in turn was recognized from the beginning as being a
relatively lengthy and complex task. Thus, a simpler interim test case, i.e. the ITC, was conceived and constructed as
a methodology test and development tool that would not require itself as much effort to construct as the DTC.

The ITC was constructed to represent a realistic system that could conceivably exist and be used in an actual
industrial application. The system was to be defined in such a way as to be easy to model and simulate in terms of its
physical hardware behavior, yet to include a digital control system with logic and functional characteristics of a
relatively high degree of complexity so that it would provide a true test for the DFM application and generate
feedback on how DFM may need modifications and/or improvements. The system is made up of a tank level and
flow control system, as shown in Figure ES.2. The key components and features of this system are summarized
below:

ettt bebebetsbr b urta Digital | _
! g e -] Controller \
L ! Normall AV A

] Opened .

L i"”‘l‘ St e : :
Conrol Flow | D) = T NTTT T =0 8 0 !
Valve  Seasor — P p—— | I ] ]

i 1
1
1

Opened
Vahe (v3)
Normally

Opened
Valve (v2)

Y

Figure ES.2 : ITC Digital Tank Level and Flow Control System

- A water tank, fed by water pump on the inflow pipe and regulated by control and stop valves on the inflow
and outflow pipes.

- A 3-element (level sensor, inflow sensor, outflow sensor) tank flow and level control system, with control
logic implemented in a software-driven controller.

- A tank bypass is allowed for emergency mode of operation (e.g., tank overflow). In this mode, the inflow

and outflow pipes are directly connected and the tank is isolated via the actuation of the three stop valves
located on the inlet and outlet sides of the tank piping.
- Stop-valve actuation and control logic selection implemented within the digital controller software.

As explained in detail in the discussion of DFM features provided in Chapter 2, different levels of detailed
representation can be chosen when executing a DFM application. A more qualitative and high level representation

xvii




may be entirely sufficient for a DFM analysis that is conducted at the system specification level, when only a first-
tier, preliminary definition and knowledge of the system design is available. On the other hand, in the assurance or
safety analysis of a system that is either already operational, or that has at least been defined and designed to its
detailed component level, the key features of the expected cause and effect and dynamic behavior of the system
being modeled need to be known and represented in detail by the analyst, if the DFM analysis of the system is itself
to produce results at a high degree of completeness and fidelity. Because the ITC exercise was intended to test the
more complete set of DFM capabilities, the latter type of DFM modeling and analysis was sought, and a behavior
simulation model of the ITC tank and piping system was developed. This simulation model was used to generate
quantitative information on the static and dynamic' behavior of the system, which in turn were used in the
construction of the DFM model of the system.

The DFM model of the ITC tank level and flow control system is shown in Figure ES.3. The digital controller model
is shown as a black box in this figure, but is expanded in full detail in Figure ES.4. The description of the variables
that appear in the model as DFM “nodes” can be found in Table ES.II. In the ITC DFM Model Analysis, which

was executed to test the capability of DFM in a system and software assurance mode of application, several analyses
were conducted to better understand and refine DFM features. Particularly significant among these was the one
conducted for a situation in which a fault was intentionally injected in the control software. The fault was placed in
the module of the software code which sets the position of the control valves and the stop valves when the measured
water level is above the high-high set-point. Under that condition, the digital controller should normally (i.e., when
no fault is present) close the stop valve v1, open the stop valves v2 and v3, close the upstream control valve to the
minimum position (5%) and open the downstream control valve to the maximum position (100%). The fault has the
effect of closing the downstream control valve to 5%. The reader should note that this branch of the code will not be
executed unless the level is above the high-high set-point. This requires some additional hardware failure to have
also occurred. and makes the discovery of the fault during integrated system test in the actual system unlikely, since
it would be difficult to exercise the actual operational software under such a faulted condition. The fault could of
course be discovered if it existed also in “off-line” copies of the software, and one of these were tested for

compliance with specified behavior.

Figure ES.3 : DFM Model of the ITC Tank Level and Flow Control System

xviii




Digital Control Software

Figure ES.4 : DFM Model of the ITC Digital Controller

The ITC DFM model was constructed without using any prior knowledge of the software error, since the DFM
decision tables are built directly by “testing” the individual modules of the digital control software. The system
failure was defined as the tank “overflowing”. This translated into a definition of the states of the pertinent DFM
nodes as;

{(L=5@t=0) AND(L=5@t=-1) AND(QNET=+1 @t=0) }.

The meaning of the above definition is that the tank level is very high in both the current and the previous time step
and that there is a net inflow of water into the tank. In the course of the various ITC analyses that were carried out, it
was discovered that defining the top event as specifically as possible, such as using a combination of several
conditions across different time steps to describe the tank overflowing, would enable the analysis to be performed
more efficiently. Defining a top event in very precise terms ensures that the DFM Model Analyzer software needs
less computer memory to store the intermediate transition tables developed during the analysis and spends less
computing time tracing events which are irrelevant. As a comparison, when the top event was defined more
simplistically as { L=5 @t =0} (the level is high at the current time step), the Model Analyzer ran out of memory
before the analysis was completed. The care that has to be exercised in a specific and precise definition of the
possible top events of interest is one of the key findings of our test cases and specific discussion of this point can be
found in Chapter 6. Properly defined dynamic consistency rules are also important in constraining the prime
implicant search to the domain of true significance. The dynamic consistency rules for the ITC analysis were mostly
defined to reflect the assumption that if any sensor or valve fails in the system, it is expected to remain in the original
failure state,

The ITC analysis of the injected fault described above was carried out for one step backward in the reference time
frame. A “reduced form” of the prime implicant which was correspondingly identified is shown in Table ES.IIIL.
The software error that causes the tank to overflow is identified via its immediate effect, that is the command issued
to the downstream control valve to its minimum position (software condition), AND the failure of the check valve
(external condition). The reduced form of the prime implicant was obtained by the Model Analyzer from the full
form initially identified, by deleting from the list of conditions in the prime implicant all those conditions which
identify the states of sensors, control valves and stop valves related to the event sequence of interest as being normal,
i.e. none of these components are failed.

Xix




Table ES.II : Description of the Variables in the ITC DFM Model

Variable Description
CHV State of the check valve
CVP1 Position of the upstream control valve cvl
CVPIP Position of the upstream control valve cv1 in the previous cycle
CVP2 Position of the downstream control valve cv2
CVP2P Position of the downstream control valve cv2 in the previous cycle
CVSi1 State of the upstream control valve cv1
Cvs2 State of the downstream control valve cv2
DCVPI1 Change in position of the upstream control valve cvl
DCVP2 Change in position of the downstream control valve cv2
DELL Level error term in the software
DELLP Level error term in the software in the previous cycle
DELQ Downstream flowrate error term in the software
DL Mismatch between upstream flowrate and downstream flowrate
IL Integral control term for level in the software
ILP Integral control term for level in the previous cycle
L Water Level in the Tank
LC Upstream valve position command
LL Software representation of the water level in the tank
LM Measurement of the water level in the tank
LMP Measurement of the water level in the tank in the previous cycle
LS State of the water level sensor
QC Downstream valve position command
QD Downstream flowrate
QDM Measurement of the downstream flowrate
QDMP Measurement of the downstream flowrate in the previous cycle
QDOWN Software representation of the downstream flowrate
QIN Flowrate into the tank through the inlet
ONET Net flowrate into the tank
QOUT Flowrate out of the tank through the outlet
QsSti State of the upstream flowrate sensor
Qs2 State of the downstream flowrate sensor
QU Upstream flowrate
QUM Measurement of the upstream flowrate
QUMP Measurement of the upstream flowrate in the previous cycle
QuUP Software representation of the upstream flowrate
VCl1 Command to stop valve vl
vC2 Command to stop valve v2
VC3 Command to stop valve v3
VP1 Position of stop valve vl
VP2 Position of stop valve v2
VP3 Position of stop valve v3
VSi State of stop valve v1
VSs2 State of stop valve v2
VS3 State of stop valve v3

In general, in a multi-state, non-coherent system representation such as that used in DFM, a parameter state can be
always classified as “faulted” or “normal” only for the model parameters expressly set up to represent hardware
failure / non-failure states. A reduced form of prime implicant can thus be obtained by not including in it the listing
of normal states of this type of parameters. The states of process variables, on the other hand, are not definable a
priori to be always “good” or “bad”, and consequently are always listed even in the reduced prime implicant. This is
because a process parameter state which is “good” in a certain type of situation may become “bad” when the




situation changes. For example, in the prime implicant in Table ES.III, the state of the upstream control valve is
“good” (the valve is trying to reduce the tank inflow to 2 minimum in the presence of a potential overflow situation),
whereas the state of the downstream valve is “bad” (since this valve is trying to reduce outflow). This classification
of good and bad, however, would be completely reversed if we were in an opposite situation in which the tank water
level had fallen below the minimum allowable. In essence, the state of being “commanded to close to its minimum”

cannot be determined for either valve to be good or bad until the context within which this happens has been
identified. This and other key features of multi-state non-coherent logic representation are encountered in the DFM
application examples presented in Chapters 2, 4 and 5, and are further discussed in Chapter 6 (Section 6.3.2.3).

Table ES.III : Prime Implicant for “Tank Overflows” Event

Prime Implicant
1 | check valve failed open @t=20 AND
Upstream control valve commanded to close to its minimum @ £t = -1 AND
Downstream control valve commanded to close to its minimum @ t = -1 AND
Tank level was very high @t = -1

The reader should note that the prime implicant in Table ES.III is not the only cause for the tank to overflow. In fact,
many other prime implicants can lead to the same top event, one of which is, for example, the failure of the level
sensor in the “stuck low” mode. The prime implicant in Table ES.III, however, is the only one containing a software
error as a contributor to producing the top event. The fact that the non-software-related prime implicants were not
produced by the DFM analysis which uncovered this particular time implicant is due to the application of logic rules
in the search which required the DFM Model Analyzer to only look for event sequences that did not correspond to a
specified control system behavior. For the ITC system the system specification requires the downstream valve to be
always commanded open when the tank level is at “high” or “high-high”. The effect of the application of these rules
is to narrow the analysis into searching for a particular class of errors. Appropriate use of the rules allows the analyst
to focus on particular failure paths, if he/she so desires, and to make more efficient use of the computational
resources available for the analysis.

The Demonstration Test Case (DTC) is discussed in detail in Chapter 5 of this report and refers to the analysis of a
Pressurized Water Reactor (PWR) steam generator level control system, the logic and algorithms of which are
implemented via software. The case study called for a detailed analysis of the steam generator digital control
system, which in turn required a detailed understanding of the dynamic behavior of the whole steam generator
system. Thus, the development of a detailed thermal hydraulic simulator of the steam generator portion of the
system was included as part of the task.

The configuration chosen for the dynamic simulation model is that of a vertical U-tube steam generator (SG) typical
of a two loop Combustion Engineering Pressurized Water Reactor (PWR). The simulation model includes the Steam
Generator, the Main Feedwater and Auxiliary Feedwater Systems, the Steam Header, the SG Pressure Control
System, and the SG Level Control System. These systems are modeled in a considerable amount of detail, both from
the thermal-hydraulic point of view (e.g., the SG model includes non-equilibrium conditions and a “level swell”
model) and from the point of view of the equipment included in the simulation (e.g., sensors, actuators, emergency
control devices such as the SG safety valves, etc.). This level of fidelity was sought to generate high quality
information for the generation of the DFM models and the ensuing execution of the DFM analysis. The simulation
model is implemented in a simulation code written in FORTRAN.

The principal purpose of the DTC was to demonstrate the application of DFM in the analysis of a nuclear power
plant digital control system of realistic functionality and complexity. This was accomplished by creating, as part of
the SG system simulation effort outlined above, a digital software version of a Combustion Engineering SG level
control system, based on the actual detailed design of an existing plant analog control system. The function of the
steam generator level control system is to maintain the water level at a pre-defined set-point. The system, in its
simulated representation, consists of sensors, digital/analog (D/A) and analog/digital (A/D) converters, a processor
running the control software and actuators which regulate the position of the main feed valve. The feedback control
algorithm implemented by the software is based on a three element (proportional-integral-derivative, or PID) control

xxi




concept. To ensure that the integrated SG simulator (including all the subsystems identified above) behaves like an
actual steam generator, and thus can be used as a realistic case study for DFM, the simulation code was exercised

under five different scenarios, representing common conditions encountered by an actual steam generator control
system:

1. Steady state

2. Turbine trip

3. Level sensor failure

4. Step power reduction
5. Ramp power reduction

The results of the simulation were fully consistent with the expected behavior of the actual system.

The SG simulator was used to produce “transfer functions” between key system parameters to be included as
“nodes” of the DFM model. In the DFM model, these transfer functions would then be transformed into DFM
decision table mappings, as explained in detail in Chapters 2 and 5. The DFM model of the DTC system is shown in
Figure ES.5. The control software is shown as a black box in this figure, but is expanded in full detail in Figure
ES.6. From the figures the reader can see that the DTC model is relatively complex. For this reason, and in order
not to burden this summary with lengthy explanatory narrative, the reader is referred to Chapter 5, Table 5.11I for the
definition of the variables that appear in the model as DFM “nodes” and Section 5.2 for full details on the
construction and features of the DTC DFM model.

Figure ES.5 : DFM Model of the DTC Steam Generator Level Control System

The demonstration exercise carried out with the DTC followed the same steps as in the earlier analyses carried out on
the ITC model. This time, however, two faulted conditions were analyzed instead on one, after also analyzing many
unfaulted conditions for model validation purposes. The first faulted-case analysis involved a software specification
error, while the second one involved a programming error. In both cases, and just as for the ITC fault-condition
analysis, the DFM models were constructed without using any prior knowledge of the software faults. This was




again possible because the parameter-mapping decision tables were built directly by executing the modules of the
digital control software, by a process similar in execution to“software module testing”. Dynamic consistency rules

and search boundary conditions were defined as appropriate (details are given in Chapter 5), and the DFM models
were analyzed using the Model Analyzer. In the first faulted-case analysis, the software specification error could be
identified in a timed prime implicant for the top event“Steam Generator Overflowing” after backtracking through
the model in one time step. In the second faulted-case analysis, the software programming error could be identified
in a timed prime implicant for the top event “Steam Generator Empty” after backtracking through the model for five
time steps. Because of the relative complexity of these analyses, and the fact that the key features of a typical DFM
backtracking analysis have already been discussed in this executive summary in relation to the ITC, the interested
reader is encouraged to seek in Chapter 5 (Section 5.3) the details concerning the two “faulted-case” analyses of the

DTC model.

Figure ES.6 : DFM Model of the DTC Control Software

In the execution of this research, and especially in the modeling and analysis activities associated with the two test
cases, many important insights were gained in several areas of interest for the future application of the analytical
techniques that we have developed and discussed. With respect to possible expanded objectives and uses of a
DFM analysis, the principal insight is that an extension of the DFM analytical procedures to include inductive (i.e.,
marching forward, rather than backtracking, in time and cause-effect sequences) would be very useful for software
specification and design verification purposes. The development of this analytical capability would make in fact
easier to test specifically for whether the control software and the associated system follow a certain type of desired
behavior which is specified in advance (e.g., whether the system reaches a controlled and stable state starting from
certain specified initial conditions). A possible mode of execution of this type of analysis that can be applied without
changing the current form and features of the DFM models is illustrated with a simple application example in
Chapter 6 (Section 6.1.1).

With respect to the applicability of DFM to other types of systems, i.c. systems other than those containing
software exercising closed-loop continuous control actions, a point of considerable interest for nuclear safety
applications, is whether the DFM technique is well suited for analyzing open loop control systems and software
which implement plant safety and protection logic. Unlike closed-loop control systems that constantly apply
mathematical manipulation of monitored parameters to provide continuous control adjustments, open loop control
systems usually control one-shot, discrete actions associated with pre-defined system conditions which are used as

xxiii




discontinuous trigger-points for the actions. Typical nuclear plant examples of such systems are the safety injection
system and the reactor trip control system. An answer to this question can be given at a broad level by observing that
the basic elements of DFM can be used to model any causality driven behavior. Thus, DFM can be applied to
analyze a broad variety of systems, including open loop control systems, be they implemented in software or not.
Indeed, the choice of closed loop systems as the principal focus of this study was made because, due to their dynamic
characteristics, they are more difficult to analyze from the behavior-assurance point of view than open loop systems.
Open loop protection systems were, to a degree, directly addressed in this study, since the test cases discussed in
Chapters 4 and 5 actually dealt with systems in which open loop logic was intermixed to closed loop feedback
control (e.g., the mode-of-control switch and trip logic included with the control of the water tank system discussed
in Chapter 4). Indeed, two of the three “faulted-software” analyses carried out in the study deal with situations in
which a “discrete software switch” is incorrectly triggered or actuated. The experience of modeling these systems
provides practical evidence, and confidence, that applications of the DFM methodology to the verification and safety
assurance of complex open loop control and safety should not pose any unexpected difficulties. If anything, the
multi-valued and time-dependent logic modeling capability of DFM should provide an advantage over the traditional
binary logic analytical tools presently used, in the modeling and analysis of those open loop control systems that,
because of issues of relative timing of triggers a/o actions or because different actions may be associated with
‘different “trigger-ranges” of a process parameter (or combinations of parameters), present greater complexity. A
discussion of these issues can be found in Section 6.2.1. A further observation which appears relevant is that the
potential DFM capability for inductive analysis, i.e., the analytical mode of application that generates and verifies
forward-transition relations, as briefly presented and discussed in Section 6.1.1, can be used to verify that an open
loop system will do what it is designed to do. That is, an automated inductive analysis of the DFM model of a
reactor trip control system can be used to generate transition relations for all the possible execution paths and check
that the execution sequences are followed exactly as desired and specified.

Insights have also been obtained regarding the possible modes of optimization of the DFM modeling, analysis and
testing procedures. These insights are discussed in Section 6.3 and regard technical issues that are of interest to
users of DFM at the application level.

In the area of modeling, it was observed that DFM “templates” (i.e., standard DFM model mini-modules) can be
applied for certain control and hardware components that appear in systems in a recurring fashion (e.g., the elements
of a PID-logic controller).

In the area of analysis procedures, an important insight was that the top-event of a deductive DFM search can be
more advantageously defined as a combination of parameter conditions (if appropriate to express it in this fashion),
rather than as a condition expressed in term of a single parameter. This in fact may save considerable amounts of
memory and execution time resources to the DFM Model Analyzer software. Another very important insight regards
the way in which the results of a DFM analysis may be presented and interpreted. More specifically, it is important
to note that many software faults are identifiable not directly as basic conditions that are part of a “prime implicant”
logic definition, but only via the observation of the actual sequence and logic path to the top event associated with the
prime implicant itself. This is because, unlike for hardware failure modes, it is impractical to pre-define software
faults as states of independent software parameters. On the contrary, most software faults are represented by
“faulted” cause-effect mappings between software parameter states, which are, when considered by themselves,
neither “good” nor “bad.” This requires the analyst to examine carefully the sequences originated by a prime-
implicant condition, and compare them with a reference model of “good behavior” in order to pinpoint the fault.

In the area of testing procedures the insights regard the relation of “module testing” and “system integration

testing” with the modeling and analysis phases of a DFM application, respectively. More specifically, the equivalent
of software module testing is practically carried out during the construction of the DFM decision tables that provide
the software parameter state mappings needed for the full definition of the“transfer boxes” and “transition boxes”

which appear in the DFM model of a functional software unit. Thus, in a software assurance activity involving the
application of DFM, the process of DFM software model building can cover software module testing activities
without additional effort. In fact, while exercising individual software modules in order to obtain the input - output
parameter mappings needed for the construction of the DFM decision tables, the analyst can also compare these
mappings with the existing module specifications and verify their correspondence to the latter, which is what

Xxiv




“module-testing” essentially consists of. System integration testing, on the other hand, can greatly benefit from the
information provided by the DFM deductive analyses, since these can identify faulted conditions that result from the
combination of both system hardware and software states, as well as from software dynamic conditions that could be
missed in setting up the integration test envelopes that are to be executed in the assurance activity. When the DFM
analysis identifies prime implicants corresponding to these conditions, this information can be used to set up tests
that can reproduce them or simulate them, for both the purpose of confirming their existence and defining more
precisely the corresponding range of system parameter values (in their actual continuous domain, rather than in its
discrete DFM approximation).

In conclusion, at the end of the research and studies documented in this report, the DFM methodology has been
developed to the level of being applicable to software-driven control systems of considerable complexity. This
results both from the successful demonstration of its basic features and capabilities in two realistic, application-scale
test cases and from the development of engineering-workstation software that implements and partially automates the
execution of a desired analysis. Further refinement of the DFM tools will be conditional upon user feedback from
field applications.

XXv

P
-7

oyt




\

V7

@ o o
KRN ]
R PNt

.



ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance provided by the NRC Technical Project Monitor, Mr. Leo
Beltracchi, with suggestions and comments which were very valuable to us towards the successful execution of this
project. We also wish to thank Mr. Robert Brill, Mr. John Gallagher and Mr. Michael Waterman, all with the NRC
Staff and Mr. Jim Lyle of the National Institute of Standards and Technology for feedback and suggestions provided
to us at the mid-term presentation of our project at the NRC offices in April 1995.

xxvii

B




FEETE

AR

e S




ABWR
A/D
AFWS
BDD
D/A
DFM
DTC
FMEA
FTA
GUI
HLO
ILI
ITC
LIS
MEPI
MFWS
MSIV
MVL
PD

Pl

PID
PWR
RPS
RTO
SBWR
SEPI
SG

sV
TED-Mode
TFT
TFTD-Mode
TPIL

LIST OF ACRONYMS

Advanced Boiling Water Reactor
Analog to Digital

Auxiliary Feedwater System
Binary Decision Diagram

Digital to Analog

Dynamic Flowgraph Methodology
Demonstration Test Case

Failure Mode and Effect Analysis
Fault Tree Analysis

Graphic User Interface

High Level Override
Intermediate-Level Implicants
Interim Test Case

Laser Isotope Separation
Multi-Event Prime Implicant
Main Feedwater System

Main Steam Isolation Valve
Multi-valued Logic

Proportional Derivative
Proportional Integral
Proportional, Integral and Derivative
Pressurized Water Reactor
Reactor Protection System
Reactor Trip Override

Small Boiling Water Reactor
Single Event Prime Implicant
Steam Generator

Safety Valve

Top-Event Decomposition Mode
Timed Fault Tree

Timed Fault Tree Derivation Mode
Timed Prime Implicant




3N R e
ST S




1 INTRODUCTION

This report presents a new methodology, the Dynamic Flowgraph Methodology (DFM), and the software tools for
implementing DFM that were developed to address the requirement of tools for safety analysis of digital control
software which will be used in advanced reactors. The methodology and software development was carried out as
the NRC SBIR Phase II project titled “Development of Tools for Safety Analysis of Control Software in Advanced
Reactors”.

The ensuing sections in this chapter present the background that leads to the requirement of tools for safety analysis
of control software and the objectives pursued in the development of DFM. The rest of the report presents the
development of the methodology, the development of the software and the findings and insights gained in the Phase
11 research.

1.1 Issues Associated with the Use of Digital Control Systems

Digital control systems can be defined as systems in which mechanical and physical devices are controlled and
managed by dedicated digital processors and computers. These latter devices, in turn, execute software routines
(often of considerable complexity) to implement specific control functions and strategies. When the computer takes
the form of a microprocessor which is physically associated with the remainder of the system, the term “embedded
system” is also used (although it should be noted that very often the distinction between the term “digital control
system” and the term “embedded system” disappears altogether in the day-to-day technical language usage). Digital
control systems have gained a pervasive presence in all types of applications, from the defense and aerospace to the
medical, manufacturing, and energy fields. The great advantage of using computers as process controllers is in the
almost unlimited flexibility provided by the software implementation of system control functions and by the
computational power and speed of the modern microprocessor devices. As a result, very sophisticated and complex
logic can be executed by relatively inexpensive microprocessors loaded with the appropriate software instructions.
The originally implemented logic can also be modified at any point in the life of the system it is designed to control
by uploading new software instructions.

Software based process control, after a slow start, is finding increased use in the nuclear industry, even in the safety-
related areas that are of most direct concern to a regulatory agency like the U.S. Nuclear Regulatory Commission.
Reactor Protection System (RPS) algorithms and logic are software-implemented in Combustion Engineering nuclear
power plants, as well as in many of the CANDU Canadian reactors. Current designs for the latest generation of
nuclear power plants -- such as the Westinghouse AP600, the General Electric ABWR and SBWR and the CANDU 3
-- and for advanced nuclear enrichment processes -- such as the Laser Isotope Separation (LIS) demonstration plant -
- rely on the use of digital computers and associated software to accomplish a wide variety of process control tasks,
such as continuous regulation of key plant physical parameters, component statiis monitoring and diagnosis,
process/operator interfaces, and emergency shutdown (Parnas, et al., 1991, Taylor and Sun, 1990, Vijuk and Bruschi,
1988, Petrella, et al., 1991 and Rippon, 1990).

While the cost-effectiveness and flexibility of the digital process control solution is almost universally accepted and
recognized, it is also increasingly recognized that the task of providing high assurance of the dependability and safety
of the functions performed by process control software is becoming quite difficult to accomplish, due to the very
complicated and flexible nature of the software itself. In nuclear applications, the task of software qualification for
safety related systems is estimated to require a year to complete (Petrella, et al., 1991). Even with such a level of
effort, all potentially serious errors may not be identified by the current industry practices, based almost entirely on
testing, so that several experts are calling for more stringent practices to be applied in the process of defining the
software specifications for critical systems (Parnas, et al., 1991). The problem is considered serious enough at the
higher levels of U.S. nuclear safety policy making that the Advisory Committee on Reactor Safeguards (ACRS) of
the U.S. Nuclear Regulatory Commission has formed a special subcommittee to understand what the safety policy
implications of this issue may be and what policy making recommendations should, accordingly, be made (Boenhert,
1990).




A sobering reminder of how serious digital process control software problems can be in terms of critical system
safety was given by the incident which occurred at the Canadian Bruce-4 CANDU reactor in January 1990, which
was the result of a programming error in the software used to control a reactor refueling machine (Boenhert, 1990).
Because of this error, the control computer, after suspending execution of the main refueling machine positioning
control subroutine while executing a fault-handling subroutine triggered by a minor fault condition detected
elsewhere during the refueling process, returned to execution in the wrong segment of the main subroutine. Because
of this software error, the refueling machine, which was at the time connected to one of the fuel channels of the
pressure-tube reactor, released its brake and dropped its refueling assembly by about three feet, producing serious
damage to the refueling assembly itself and to the fuel channel, and causing loss of coolant from the fuel channel.

In essence it must be recognized that the flexibility and power of control logic implemented in digital control system
software has a dangerous back-side. Great software complexity means that logic errors of design or coding may find
their way into a critically important software routine and cripple the operation of a whole system. While the
enforcement of a more disciplined and structured process of software specification is certainly a must for safety-
critical systems (Parnas, et al, 1991), this must also be accompanied by the development of tools to model, analyze
and test digital control system software design and implementation in the context of the system within which the
software is meant to operate. This will allow the system designer to achieve a sufficient level of assurance that the
system and software being developed and integrated do not leave the door open for unwanted and unsafe system
behavior, and would permit the identification, at a verified system specification and software specification level, of a
reference envelope of “system safe behavior” against which actual implemented code executions and actual system
dynamic behavior can be tested and verified. Analyzing and predicting digital control system behavior is especially
important in light of the “discontinuous™ nature of software errors, that is, the unforgiving attribute by which very
“low level” software errors, such as the misreading of a single digit in a data structure, may produce large and
catastrophic errors in the computer output used to drive and control the interfacing system hardware. Besides the
nuclear plant incident cited above, far more serious failures in digitally controlled systems, caused by obscure
software errors originating at very low programming or logic design levels, have indeed occurred, with consequences
ranging from the very large financial losses produced by the half-collapse of a continental U.S. telephone network to
lives lost because of the radiation overdoses meted out by the faulty control system of a medical cancer therapy
machine (Neumann, 1985). These very serious occurrences have produced a growing awareness that in today's
digital control systems the issues of reliability and safety for software can no longer be treated as if they played a
secondary role with respect to issues concerning hardware reliability and safety.

1.2 Current Practices in Ensuring Safety of Digital Control Systems

Although the recognition is growing that it would be very desirable, for reliability and safety assurance purposes, to
integrate in one process the modeling and analysis of the hardware and software components of a digital control
system (Guarro, et al., 1990), the current state of the art does not offer practically implementable blueprints for such
an approach. The approaches that have been proposed and/or developed in the past generally follow the philosophy
of separating the hardware and software portions of the assurance analysis. The hardware reliability and safety
analysts evaluate the hardware portion of the problem under the artificial assumption of perfect software behavior.
The software analysts, on the other hand, usually attempt to verify or test the correctness of the logic implemented
and executed by the software against a given set of design specifications, but do not have any means to verify the
adequacy of these specifications against unusual circumstances developing on the hardware side of the overall
system, including hardware fault scenarios and conditions not explicitly envisioned by the software designer.

Currently, digital control system software assurance is not treated much differently from that of any other type of
software for real-time applications (such as communications software). Three principal types of software assurance
philosophies can be recognized in the published literature, which we briefly attempt to describe and discuss below.

Assurance by testing, with or without the aid of reliability growth models is the most common approach. Testing is
often performed by feeding random inputs into the software and observing the produced output to discover incorrect
behavior. Software reliability models have been proposed to aid the testing strategies (Goel, 1985), although the
applicability to software of reliability models extrapolated from the hardware reliability realm is seriously




- questioned, even from within the software reliability research community itself (Littlewood and Miller, 1990).
Software reliability models have not had a great impact so far in reducing the quantity and cost of software testing
necessary to achieve reasonable assurance of correct behavior.

Formal verification is another approach to software assurance that applies logic and mathematical theorems to
prove that certain abstract representations of software, in the form of logic statements and assertions, are consistent
with the specifications expressing the desired sofiware behavior. Recent work has been directed at developing
varieties of this type of technique specifically for the handling of timing and concurrency problems (Narayana and
Aaby, 1988 and Razouk and Gorlick, 1989). The abstract nature of the formalisms adopted in formal verification
make this approach rather difficult to use properly by practitioners with non-specialized mathematical backgrounds.
This practical difficulty is compounded by the growth in complexity and size of the process control software of the
present generation, Finally, the issue of modeling and representation of hardware/software interaction, which we
consider an important open issue in digital control system assurance analysis, does not appear to have surfaced as one
of the current objectives of formal verification research.

The third type of approach to software assurance is one that analyzes the timing and logic characteristics of software
executions by means of discrete state simulation models, such as queue networks and Petri-nets (IEEE Computer
Society, 1985, Morgan and Razouk, 1987, Murata, 1989 and Leveson and Stolzy, 1987). Simulated executions are
analyzed to discover undesirable execution paths. Although this approach can be extended to model combined
hardware/software behavior (since the hardware behavior can in principle be approximated in terms of transitions
within a set of pre-defined discrete states), difficulties arise from the “march-forward” nature (in time and causality)

of this type of analysis, which forces the analyst to assume knowledge of the initial conditions from which a system
simulation can be started. In large systems, many combinations of initial states may exist and the solution space may
become unmanageable. A different approach, which reverses the search logic by using fault trees to trace backward
from undesirable outcomes to possible cause conditions, offers an interesting solution to this problem, but encounters
difficulties due to limitations in its ability to represent dynamic effects, and to the fact that a separate model needs to
be constructed for each software state whose initiating causes are to be identified (Leveson and Harvey, 1983 and
Cha, et al., 1988).

All the methods discussed above have merit, but none direct a special effort toward the philosophy of developing a
“systems approach” to tackle the central issue of integrated hardware-software analysis in digital control system
assurance. Useful elements of this philosophy can be found in Leveson and Harvey, 1983 and Jaffe, et al., 1989. In
Phase I of the research, the authors had outlined an approach embracing this philosophy which combines features of
an existing technique, namely the Logic Flowgraph Methodology (LFM) (Guarro and Okrent, 1984), with discrete
state transition models, thereby solving the problem of providing an inductive (i.e., reverse causality backtracking)
analysis capability while at the same time also providing the ability to keep track of the complex dynamic effects
associated with sequential and time dependent software executions and digital control system behavior. In research
conducted over the past decade, the principal investigator, working in cooperation with a UCLA research team in the
Mechanical, Aerospace and Nuclear Engineering Department, has successfully demonstrated the usefulness of LFM
as a tool for computer-automated failure and diagnostic analysis which shows broader potential applicability and
efficiency than most other approaches that have been proposed for such objectives. As part of the LFM research
effort, models of nuclear power plants and space-systems (Guarro, 1988 and Ting, 1990) have been derived; in
addition, procedures to be applied in an expert system capable of assisting an analyst in the construction of LFM
models have been identified (Guarro, 1987).

1.3 Objectives Pursued in the Development of DFM

The ultimate goal of this research is the development of a modeling environment and analytical framework that will
enable the execution of a practically implementable process of verification and validation for software that is devoted
to critical process control and safety functions. Verification and validation of critical software functions is an issue
of great relevance for the approval and licensing of the new advanced designs that are being proposed for the next
generation of nuclear power plants, as well as for the approval of digital upgrades that are presently being proposed
and implemented in the control systems of existing plants. The principal objectives that were pursued in the Phase II




research are the development a set of implementation tools for this approach which will include application
procedures and guidelines, as well as a self-contained software package embodying these procedures and the
functionality/productivity features needed to make possible and simplify the use of the approach. After such an
approach and associated “application package”.are developed, they would be very useful as a means of assuring the
dependability and safety of nuclear plants and installations with respect to the new set of problems posed by the
extensive use of software in process control and supervision tasks, both in the commercial and government sections
of the U.S. nuclear enterprise. Thus, we expect that the “application package”, implemented as self-contained
software, could be fully commercialized in Phase III.




2 THE DYNAMIC FLOWGRAPH METHODOLOGY (DFM)

This chapter describes, in detail, the formulation of the Dynamic Flowgraph Methodology (DFM) as it was
developed under the Phase II research effort. The discussion begins with a presentation of the methodology's basic
features, and then proceeds to describe the fundamental elements of the DFM modeling framework and how these
modeling elements can be applied in the safety assurance of digital control systems. A tutorial example of DFM
application to a simple control system is given in Section 2.5 to illustrate how the individual modeling and analytical
features of the methodology work together and can be used in an actual task. While more complete and realistic
applications are presented and discussed later in the chapters dedicated to the description of the two “test cases”
that were selected for this project, the example in Section 2.5 is intended specifically for the readers who are not yet
familiar with the DFM methodology and may find it useful to trace the conceptual and practical steps of a typical
DFM analysis without the complication introduced by the larger amounts of detailed information and details
generated in the analysis of more complex systems.

2.1 Overview of DFM

The DFM approach (Garrett, et al., 1995a, Yau, et al, 1995, Garrett, et al., 1995b) is essentially based on
representing the system which is the object of the analysis in a “digraph” (directed graph) model, which is enriched
with the explicit identification of the cause-and-effect and timing correspondences among the significant states of the
parameters that are best suited to describe the system behavior. Once such a model has been produced, automated
deductive or inductive algorithms that are built into the methodology can be applied to it. The deductive procedures
that are discussed later in this chapter are applied to identify how system level states -- which may represent specific
conditions of interest, be they success, anomaly or failure states -- can be produced by any combinations and
sequences of basic component states. Conversely, inductive procedures can be applied to the same model, to
determine how a particular basic component state can produce various possible sequences and system-level states.
Thus, DFM can provide the multi-state and time-dependent equivalent of both fault tree analysis (FTA) and failure
mode and effect analysis (FMEA), with the advantage that, once the DFM model of a system has been developed,
the DFM system model already contains all the information necessary for the automated execution of these analyses
for any system condition of possible interest. This can be compared, for example, with the execution of FTA, in
which each system “top event” requires a separate manual analysis.

It is also worthwhile noting that, although the focus of this study is the application of DFM modeling and analysis to
digital control systems, DFM, as a modeling and analytical tool, is very general in nature and can be applied to any
kind of causality-driven system, whether such a system contains software subsystems or not.

The scope of the work discussed in this report is limited to the development and demonstration of DFM deductive
analysis, as applied to digital control systems assurance. In this context, the application of DFM is typically a two-
step process or, if DFM-aided system-integration testing is also sought, a three-step process, as follows:

Step 1: Build a model of the digital control system for which a safety analysis is required. The model
encompasses both the controlling software and the system being controlled.

Step2: Using the model constructed in Step 1, search for the manner in which specific system and process
failure states may occur as the result of the propagation through the system of perturbations
produced by basic “root cause” events (such as system component faults or manifestations of
process-control logic errors).

Step 3: Verify by integration testing, based on the results of the DFM analysis, that the digital control
system exhibits the behavior predicted by its DFM model and, if corrections are applied to
eliminate software failure modes, that the corrected digital control system behaves as desired (the
latter may require DFM analysis iteration to obtain predictions of corrected software behavior
before the second cycle of testing).




As mentioned above, the first step consists of building a model of the digital control system that encompasses both
the representation of the controlling software and the representation of the physical system being controlled. The
model expresses the principal time dependent aspects of the system behavior and the functional relationships among
the physical and software variables. The second step uses the model developed in the first step to identify logical
combinations of “root cause” events (expressed in terms of hardware and/or software conditions) that cause certain
specific system states of interest for which the analysis has been targeted, and the time sequences according to which
these conditions come about. The system states for which the root causes are sought can be desirable or undesirable,
depending on the objective of the analysis. This is accomplished by backtracking through the DFM model of the
digital control system in a systematic, specified manner (which has been fully automated in the DFM Software
Toolset described in Chapter 3), and by expressing the conditions that cause the system events of interest in the form
of timed prime-implicants and timed fault (or success) trees. It should be noted that once a DFM system model is
constructed, it can be analyzed to produce many timed fauit trees; that is, the same model can be used repeatedly to
check many different system states of interest. The information contained in the fault trees that describe the
hardware and software conditions that can lead to system states of interest can be used to uncover undesirable or
unanticipated sofiware/hardware interactions, thereby allowing improvement of the system design by eliminating
unsafe software-execution paths. This same information can be used in the third step to guide functional and system-
integration testing to focus on particular domains of inputs and system conditions that are identified by the DFM
analysis as potentially leading to undesired system behavior.

A discussion of some of the conceptual underpinning of DFM-assisted testing is given in Section 2.4. It is useful,
however, to note up front that the application of DFM to systems containing software is inherently tied to software
testing and that DFM is intended to assist testing by intermixing the testing steps with analysis steps that allow a
more efficient use of the limited resources available for testing within a specific project. As will become apparent
Tater through the discussion of the test cases in Chapters 4 and 5, a key step in the construction of a detailed DFM
software model involves testing the individual modules of the software. In particular, the specific elements of a
DFM model that describe the behavior of system software modules (these elements in the DFM nomenclature
usually consist of “transfer boxes” and/or “transition boxes”, as described in Sections 2.2.1.3 and 2.2.1.6) can be
defined by test-executing those software modules. Thus, when modeling a system that includes actual software,
“module testing” -- which itself constitutes the basic first step of standard software testing procedures -- becomes an
integral part of the above mentioned first step of DFM application (i.e., the “system modeling” step). After the

second, “system analysis” step is completed, the DFM analysis results provide the information necessary for
integrating these module testing results with the model of the operating environment of the software (i.e., the model
of the “hardware” and “external world interface” portion of the system), so that intelligent boundary conditions are
identified by this analysis to test the integrated system. In fact, testing the software under all possible system
conditions is practically impossible, but testing it only under the standard operating conditions is most likely not
enough to guarantee the reliability and safety of the software. DFM provides thus a way to systematically identify
the boundaries and the exception conditions for which system-level testing is most needed, and where the testing
resources can be best applied. This issue will be further elaborated in the discussion of DFM-driven testing later in
this chapter (Section 2.4) and in Section 6.3.3, which discusses findings and insights derived from the application of
DFM to the two test-cases presented in Chapters 4 and 5.

2.2 Framework for Model Construction (Step 1)

A DFM model expresses the logical and dynamic behavior of a generic system. If this system is a digital control
system, both the physical system controlled by the software and the controlling software itself are represented in the
DFM model. A DFM model is an integration of a “time-transition network”, a “causality network” and a
“conditioning network”, which is built by using detailed multi-state representations of the cause-and-effect and time-
varying relationships that exist among the key system and ‘sofiware parameters. Figure 2.1 shows a simple gas-
storage system with its associated pressure control system, which we can assume for the sake of our discussion to be
implemented by a simple digital control module, although for the introductory nature of the discussion of DFM
features that is sought in this chapter very little would change if we assumed the control system to be implemented
by some sort of hardwired logic functions. Figure 2.1 also shows the DFM model of the integrated system.




Although the nature and features of this system will be discussed in detail in Section 2.5 to illustrate how DFM
modeling and analysis steps can be executed in a typical, though simplified, application, discussing the DFM
modeling concept and building blocks within the context of this simple system should enhance the reader’s
comprehension of DFM. The reader is encouraged to jump ahead to Section 2.5 to gain a better understanding of this
simple system.

MVO OGF
VX
{vs}
NGF =1GF - OGF
PRESSURE
CONTROL Il
LoGic
PRESSURE
TANK
E  sw

INEXHAUSTIBLE

GAS SOURCE U

(a) System (b) DFM Model
Figure 2.1 : A Simple Digital Control System and its DFM Model

The networks mentioned above are constructed from the DFM modeling elements. These modeling elements, as
well as the manner in which they are assembled to form the three networks of a DFM model, are discussed below.

2.2.1 DFM Modeling Elements

A DFM model makes use of certain basic modeling elements to represent the temporal relations and the logical
relations that exist in the system and the associated software. More specifically, a DFM model integrates a “time-
transition network™ which describes the sequence in which software subroutines are executed and control actions are
carried out, a “causality network” that shows the functional relationships among key hardware and sofiware
parameters, and a “conditioning network” which models discrete software behavior due to conditional switching
actions and discontinuous hardware performance due to component failures. The building blocks of these three types
of networks are process variable nodes, condition nodes, causality edges, condition edges, and transfer/transition
boxes and their associated decision tables. These basic modeling elements are shown in Figure 2.2.

2.2.1.1 Process Variable Nodes

Process variable nodes represent physical and software variables that are required to capture the essential functional
behavior, continuous or discrete, of the digital control system. For example, the process variable node TP in Figure
2.1 represents the pressure in the gas tank.

A variable represented by a process variable node is discretized into a number of states. The reason for the
discretization is to simplify the description of the relations between different variables. The choice of the states for a
process variable node is often dictated by the logic of the system. For instance, it is natural to set a state boundary at
a value that acts as a trigger point for a switching action or a value that indicates the system is progressing towards
failure. The number of states for each variable must be chosen on the basis of the balance between the accuracy of
the model and the complexity introduced by higher numbers of variable states.




For example, using the process variable node TP in Figure 2.1 for illustration, this parameter represents the tank
pressure and it can vary from very low to very high. TP is discretized into 5 states, and the discretization scheme of
this process variable node is shown in Table 2.I. This scheme reflects the knowledge that state 1 signifies very low
pressure and the tank is almost empty. State 2, state 3 and state 4 represent low pressure, normal pressure and high
pressure respectively, while state 5 corresponds to dangerously high pressure, which can cause the tank to burst. In
addition, the state boundary between 2 and 3 is set to correspond to the trigger point where gas inflow is activated to
replenish the tank. -Similarly, the boundary between states 3 and 4 corresponds tothe set-point for opening the relief
valve to decrease the pressure in the tank.

. @ Process Variable Node

B Conditioning Node

[ . TransferBox

| Transition Box

— Causality Edge e

oo Conditioning Edge

Figure 2.2 : The Basic DFM Modeling Elements

Table 2.1 : Discretization Scheme fo} the Process Variable Node TP

State Description
1 Tank pressure is very low
2 Tank pressure is low )
.3 Tank pressure is normal ; . ;
4 Tank pressure is high
5 Tank pressure is very high

2.2.1.2 Causality Edges « ‘ ’

Causality edges are used to connect process variable nodes to indicate the existence of a cause-and-effect relationship
between the variables described by the nodes. For example, the causality edges (a), (b) and (c) in Figure 2.1 show
that the value of the process variable NGF (net gas flow into the tank) is directly related to the values of the process
variables IGF (gas inflow into the tank) and OGF (gas outflow through the valve at the top of the tank). The precise
nature of the functional relationship (or the transfer function) is described by a transfer box that is always directly
associated with each causality edge (please see discussion in Section 2.2.1.3 below).

2.2.1.3 Transfer Boxes and Associated Decision Tables
A transfer box represents a transfer function between process variable nodes. The quantification of the transfer
function, i.e., the manner in which the states of the input process variable nodes are correlated with those of the

output process variable nodes, is descnbed by declslon tables assoclated with each transfer box

A decision table is assoclated w1th each transfer box and is used to quantify the relationships between its input and
output process variable nodes. This table is a mapping between the possible combinations of the states of the input




process variable nodes and the possible states of the output process variable nodes. Decision tables are extension of
truth tables in that they allow each variable to be represented by any number of states. These tables have been used
in earlier developments to model components of engineering systems (Salem, et al., 1977; Salem, et al,, 1979;
Henley and Kumamoto, 1992).

Because each transfer box input or output variable is a vector of states, and each combination of input states maps to
a state of each of the output variables, each decision table is actually a multi-dimensional matrix whose dimension is
equal to one plus the number of its inputs. For simplicity and conveniénce of representation, all decision tables can
be reduced to a two-dimensional form. In this simplified form, there will be a column for each input variable and a
column for each output variable of interest. For example, in Figure 2.1, transfer box T3 links the input nodes IGF
and OGF to the output node NGF. IGF is discretized into 2 states (0,1), as is the other input node OGF (0,1), while
the output node NGF is discretized into 3 states (-1,0,+1). Hence in the decision table, there are 3 columns (1 for
each of the two inputs and 1 for the output). The decision table in Table 2.II shows the output states produced from
different combinations of the states of the inputs.

Table 2.1I : Decision Table for the Transfer Box T3 in Figure 2.1

IGF OGF NGF
0 0 0
0 1 -1
1 0 +1
1 1 0

Decision tables can be constructed from empirical knowledge of the system, from physical equations that govern the
system behavior, or from available software code and/or pseudo code. Building decision tables with empirical
knowledge and/or the pseudo code provides a means of modeling the intended behavior of a system, and thus allow
analysis to be performed on the specifications or the design concept, even before the system exists. On the other
hand, using physical equations and running module testing to fill the decision table rows with detailed input/output
state mappings creates a model reflecting the actual behavior of the system, thus enabling the actual system to be
verified. The accuracy of the decision tables is crucial for the analysis because it directly correlates to the fidelity of
the model (its ability to predict system behavior). Hence, to keep decision tables from growing too big, a judicious
selection of the number of states into which each node is discretized should be made, without at the same time losing
too much of the more detailed system-behavior information.

2.2.1.4 Condition Edges

Unlike causality edges, condition edges are mostly used to represent true discrete behavior in the system. They link
parameter nodes to transfer boxes, indicating the possibility of using a different transfer function to map input
variable into output variable states. For example, as shown in Figure 2.1, depending on the value of the parameter
VS (unfaulted/faulted state of the valve), the output OGF (gas outflow through the valve) can be proportional to the
input VX (valve position), or OGF can be stuck at minimum or maximum values regardless of VX.

2.2.1.5 Condition Nodes

Condition nodes, like process variable nodes, represent physical or software parameters. However, condition nodes
are used in DFM to more explicitly identify component failure states, changes of process operation regimes and
modes, and software switching actions. Condition nodes represent variables that can affect the logic superstructure
of the digital control system by modifying the causal relations between the process variable nodes. Condition nodes
that are linked to causality edges and upstream process variable nodes are at the same time process variable nodes as
well as condition nodes, but condition nodes whose states are not determined by other upstream process variable
nodes are treated in DFM as “random variables”, i.e., as variables that can be assumed to be in any of their possible
states. In the latter case, a distribution of “relative frequency” of the associated states could also be assumed, for
purposes of probabilistic quantification. For example, node VS in Figure 2.1 is a condition node that is not affected
by any upstream process, as the failure of the valve is assumed to be a random event and is not explicitly modeled. It

o g = e e+ e - S o ow




should be noted that the effect of a condition node on an output variable is modeled through a decision table, as is the
case for a process variable node. The reason for having the added modeling elements of condition nodes and
condition edges is to offer a clear distinction between continuous and discontinuous behavior in a system.

2.2.1.6 Transition Boxes and Associated Decision Tables

Transition boxes are similar to transfer boxes in that they connect process variable nodes to indicate cause-and-effect
relationships. Condition nodes can be associated with transition boxes to represent discontinuous behavior between
the input and output process variable nodes. Decision tables are again used to describe the relationships between the
input and output process variable nodes. However, transition boxes differ from transfer boxes in the essential aspect
that a time lag or time transition is assumed to occur between the time when the input variable states become true and
the time when the output variable state(s) associated with the inputs is(are) reached. This time delay is a
characteristic of the transition which is being modeled and is treated as an attribute of the transition box. For
example, in Figure 2.1, the transition box TT1 indicates that a new value of TP (an updated value of the tank
pressure) depends on the value of NGF (the net gas flow into the tank) and the old value of TP (the tank pressure at
the previous clock cycle). Transition boxes are routinely used to model the execution of software routines and the
handling of interrupts, which often play an important role in the execution flow of digital control systems software.
They can of course also be used to model hardware time transitions..

2.2.2 Model Construction and Integration -

To construct a DFM model for a digital control system, the first step is to select the physical components and the
software functions that are to be included in the model. Following that, the physical parameters and software
variables that capture the essential behavior of these components and software functions are identified and
represented as process variable nodes. These process variable nodes are then linked together by causality edges
through transfer boxes or transition boxes to form an integrated “causality” and “time-transition” network. Discrete
behaviors such as component failures and logic switching actions are then identified and represented as condition
nodes, which are tied to transfer boxes and transition boxes expressly to show how a “conditioning network” of
discrete actions and events actually interacts with and affects the integrated “causality” and “time-transition”
network. The parameters represented by the process variable nodes and condition nodes are discretized into
meaningful states, and decision tables are constructed to relate these states. The decision tables can be constructed
by empirical lcnowledge of the system, from phy51cal equations that govern the system behavior, or from available
software code and/or pseudo code. The completed DFM model then reflects the essential causal, temporal, and
logical behavior of the digital control system. The example discussed in Section 2.5 will illustrate how these steps
are carried out.

2.3 Framework for Model Analysis (Step 2)

2.3.1 Imtroduction to Fault Trees and Cut Sets

The analysis of a DFM system model constructed according to the rules described above (Step 1) is, in the
applications of interest to this study, conducted by tracing sequences of events backward from effects to causes (i.e.,
“deductively”) through the model structure, to identify the paths and the order by which combinations of hardware
and/or software conditions can propagate through the system to produce system events of interest. This kind of DFM
analysis thus shares many of the conceptual features of fault tree analysis. A fault tree is a graphical model that
represents the combinations of individual component failures which can lead to the occurrence of an overall system
failure (referred to as the top event). In conventional binary fault tree analysis, once a fault tree has been developed,
Boolean algebra can be used to reduce the tree to a logically equivalent rmathematical form in terms of the tree
minimal cut sets. A cut set is defined as a set of events that, if they all occur, will lead to the top event. A minimal
cut set is a cut set that does not contain any other cut set as a subset The remova!l of any event from a minimal cut
set would cause it to no longer be a cut set.

10




To illustrate the above in formal notation, let X,,, be an indicator variable for the top event. An mdlcator variable
can take the value of either 0 or 1 (0 if the top event is false, and 1 if it is true). Similarly, let X be an indicator
variable for the i-th primary event in the j-th minimal cut set. Then the indicator variable for the j-th minimal cut set,
MCS;, is a monomial that can be expressed as the conjunction of the indicator variables of its primary events:

Mcs; =] TxP (Eq. 2.1)

13

where n is the number of primary events in the j-th minimal cut set. The indicator variable for the top event can then
be expressed in disjunctive form as: .

x,=1-]Ja-Mmcs,) (Eq.22)
J=1

A useful property of binary fault trees is that, if the binary variables that appear in them are appropriately defined,
the formula that expresses the top event as a function of the basic events, equation (2.2), shows that when a basic
event variable changes from the value 0 to the value 1 (i.e., in the customary conventions, from the unfaulted to the
faulted state) the top event variable can remain at the value 0 or change from 0 to 1 (if it was at 0 before the basic
event change), or remain at the value 1 (if it was already at 1 before the basic event change), but never go from 1
back to 0. A binary logic tree or function that displays this type of behavior is called a “coherent” binary tree or
function.

2.3.2 Multi-Valued Logic Trees and Prime Implicants

A fundamental limitation to conventional fault tree analysis is that the above method can only be applied to systems
in which the primary events, X9, are binary. Because DFM models represent physical variables (e.g., pressure,
temperature, voltage, etc.), binary logic (in which only two states may be used to characterize each variable space) is,
in general, not sufficient for an adequate representation of the behavior of the system. DFM models thus employ
multi-valued logic (MVL), wherein each variable space may be discretized into an arbitrary number of states. A
DFM fault tree, therefore, would contain non-binary primary events (or certain equivalent binary expressions
containing groups of mutually exclusive binary primary events, which may be defined ad-hoc to signify whether the
assertion that a given multi-valued variable is in any one of its states is true or false). Although a definition of
coherent MVL tree can be given, most MVL trees of practical interest (and their equivalent binary expressions),
including DFM-derived fault trees, are non-coherent. An intuitive, rdther than formal way, of understanding this is
by noting that DFM variable states are not ordered in such a way that higher states always indicate “increasingly-

faulted” conditions and lower states always indicate “increasingly-nominal” conditions. Thus, as a basic variable
changes from a lower to a higher state, the system-state indicator variable of choice for the particular analysis of
interest may be going in the opposite direction, i.e., from a higher to a lower state.

The top event of a MVL fault tree can still be expressed in disjunctive form (the form of a disjunction of
conjunctions of primary events), but the MVL analogue of the minimal cut sets encountered in binary fault trees are
known as prime implicants (Henley and Kumamoto, 1992, Ogunbiyi, 1980, Ogunbiyi and Henley, 1981, Garriba, et
al., 1985 and Shields, et al., 1994). A prime implicant is any monomial (conjunction of primary events) that is
sufficient to cause the top event, but does not contain any shorter conjunction of the same events that is sufficient to
cause the top event. The prime implicants of a function are unique and finite (Quine, 1955); however, finding them
is a more challenging task than finding binary logic minimal cut sets.

DFM uses decision tables to map the combinatorial states of transfer box inputs to their outputs. Decision tables

allow each variable to be represented by any number of states, and they have been applied in fault tree analysis in the
past to model component behavior. Given the state of a transfer box output node, the decision table gives the

11




complete sets of inputs that could have caused it. Since a decision table is, itself, essentially a disjunction of
conjunctions of states, it is possible to generate prime implicants from the table (Henley and Kumamoto, 1992).
Methods have been developed for obtaining system prime implicants from component decision tables (Henley and
Kumamoto, 1992 and Ogunbiyi, 1980). The fundamental approach is to combine the individual component decision
tables into a single critical transition table (Henley and Kumamoto, 1992 and Kumamoto and Henley, 1979), and
performing Quine's consensus operation (a series of absorption and merging operations (Quine, 1955, Quine, 1952
and Mott, 1960)) on the rows of the table to reduce it to the complete set of prime implicants.

When referring to prime implicants in the context of a DFM analysis, another important observation is that the
presence of the time element in the DFM modeling framework introduces the possibility of prime implicants that
would not be possible in ordinary time-invariant logic. In the latter, in fact, a prime implicant of the form:

<variable A =2 AND variable A = 3>

would not be possible, and, if found in the course of a time-invariant analysis, would have to be eliminated by
application of explicit “physical consistency rules”. In the application of DFM to time-dependent systems however,
if.a time-transition has been encountered and the prime implicant is thus “time-stamped” to indicate:

<variable A=2 @timet=T1 AND variable A =3 @ time t =T2>,

then the logical inconsistency no longer exists, and the prime implicant can be considered possible (unless of course
it violates a “dynamic consistency rule”, which still applies in time-dependent logic; please refer to Section 2.3.3.3).
All prime implicants identified in a DFM analysis are conjunctions of primary events with associated time stamps,
and they are simply referred to as “timed prime implicants” (TPI's).

DFM, therefore, represents a significant advancement beyond conventional fault tree analysis. In particular, a
conventional fault-tree produces cut-sets for one, and only one, binary top event, with no associated time dependent
information. The DFM representation is one or two orders of magnitude more powerful, because it produces multi-
valued logic and time-dependent prime implicants for a-very large number of possible top-events.. A DFM top-event
can in fact be chosen to be any state among all the possible states of any of the variables, or even any combination of
states of separate variables. This is in addition to the fact that, once a DFM system model has been constructed, it
can be used repeatedly to investigate many different top events.

The algorithms for the identification of TPI's can produce different types of information, depending on the level of
detail included in the original DFM model. More specifically, if the system is only modeled to the module level, so
that each software subroutine or module is represented in DFM as a relatively high-level “transfer box” between

“global” system-level principal input and output variables, then by definition the top-event prime implicants will only
be expressed in terms of the states of such system-level variables (i.e., not in terms of local software variables that
are “internal” to each software module). Another option in the type of information sought is whether the DFM
backtracking is conducted module by module and component by component, so that, when the process is completed,
information equivalent to an actual “timed fault tree” (TFT) is produced as output of the analysis, along with its
TPI's. It should be noted that, as discussed further in Section 2.3.3.4, the backtracking process is conducted step by
step within the DFM algorithmic procedure and therefore decision-table-format information equivalent in substance
to a TFT is produced as an intermediate result on the way to identifying the top-event TPI's. The TFT, when read
from the basic events to the top, provides the “explanation” and illustration of how, starting from the basic events
contained in the prime implicants at the bottom of the tree, the system evolves through a time-sequence of states
which finally lead to the top-event identified at the top of the tree. Please note that the actual progression of cause
and effect in the process is exactly in reverse order with respect to the order in which the DFM model analysis
unravels the event-sequence, backward in causality and time, from the ultimate system-level effect down to the basic
events that are at its origin.

12




2.3.3 Model Analysis Procedure
2.3.3.1 Timed Fault Tree (TFT) Construction

To obtain a timed fault tree from the system model constructed in Step 1, we first have to identify a particular system
condition of interest (desirable or undesirable). This system condition is usually expressed in terms of the state(s) of
one or more process variable nodes, which are thus taken to be the fault tree “top event(s)”. The DFM model is then
analyzed by backtracking, via a computer-implementable analytical procedure, through the network of nodes, edges
and transfer boxes and through the time transition network which keeps track of timing effects. This “automated
back-tracking procedure” is continued for a few steps back in time, producing along the way the definition of the
TFT associated with the particular top-event of interest, to find the possible “cause(s)” of that top event, that is, all
the combinations of states of .basic system variables which may produce the top event. The order in which the
transfer boxes are visited in reverse is dictated by the logical sequence of these boxes in the DFM model, as well as
by the sequence of transitions (corresponding to the execution order of software modules or physical events
associated with a time delay) in the time-transition network. The information discovered at each step of the
backtracking process is represented in the timed fault tree.

To illustrate the timed fault tree construction process, as it may be implemented in a manual execution, consider the
analysis of the tank pressure control system shown in Figure 2.1, in which a top event has been defined as a situation
in which the pressure in the tank reaches a dangerously high level. This top event is first translated into the state of
the process variable node { TP =5 @ t = 0 } and is shown in Figure 2.3(a). This event is to be expanded by
backtracking through the model. From the DFM model in Figure 2.1, TP at t = 0 is calculated from TP at t = -1 and
NGF at t = -1 through the transfer function associated with the transition box TT1. The decision table for transition
box TT1 is then consulted to identify combinations of TP and NGF at a previous time step that can cause TP = 5 at
the current time step. In this case, the two events {TP=5@t=-1} OR {(TP=4@t=-1) AND(NGF=+1 @t=-

1)} are found to be the causes and they are entered into the fault tree as in Figure 2.3(b). Note that a dotted line
separates the top event and the events at the second level to indicate the presence of a time transition between the
events at the two different levels. Next we backtrack through transfer box T3, in the DFM model in Figure 2.1, to
find the combinations of IGF and OGF which can cause NGF = +1. One combination is identified and is shown in
Figure 2.3(c) as an AND gate joining the particular states of IGF and OGF. Backtracking through the transfer. boxes
T1 and T2 will give us the causes for IGF = 1 and OGF = 0 respectively. The backiracking steps are repeated to
produce the branch shown in Figure 2.4.

TOP | ~—~—~~—-- Zﬁ- ----------
I t=.]

TP=5 Q
TP=5 TP=4| [NGF=+l
TP=5 TP=4| [NGF=+ t S

IGF=1| |OGF=0

@ (b) ©

Figure 2.3 : Example of Timed Fault Tree Construction

13




|sws=o” E=1 I lsw.=1| . }sws=+1” E=1 | ‘ lvs=o||vx=o] Ivs=-1]

B

IMVO=0| Iss=-;| }wvo=-1|

yFigure 2.4 : Timed Fault Tree for Very High Tank Pressure

In many digital control systems, there are feedback or feedforward characteristics. This can cause a node to be
traced back to itself in the fault tree construction. -Consistency rules must be applied when these situations are
encountered. Inconsistent branches are then pruned from the timed fault tree. Two major classes of consistency
rules have been identified, they are “physical” consistency rules and “dynamic” consistency rules.

2.3.3.2 Physical Consistency Rules

Physical consistency rules are applied to eliminate physically impossible conditions from the timed fault trees. An
example of this would be a system parameter taking on two different values at the same time step in the timed fault
tree. This class of consistency rule is similar to the consistency rules applied in conventional static fault tree
analysis. If the same variable appears twice, but in different states, in the same time step and under the same AND
gate, then everything beneath the first AND gate above the second occurrence of the event must be pruned from the
tree due to physical inconsistency. This is illustrated in Figure 2.5(a). If pruning this AND gate causes events above
to become impossible, then these events must be pruned as well. Such is the situation illustrated in Figure 2.5(b).

2.3.3.3 - Dynamic Consistency Rules

+

Dynamic consistency rules, likewise, are applied to'the timed fault trees to eliminate branches which cannot occur
due to constraints on the dynamic behavior of the system under consideration. These rules are developed from the
analyst's knowledge and assumptions about the system's dynamic behavior. Dynamic consistency rules are expressed
in terms of allowable variations of parameter values across different time steps. Table 2.III shows the form of some
possible rules of this type.

Rule type 1 can be a result of the analyst's knowledge about the dynamic constraints of the system. For instance, in
modeling a drain tank system, the level in the tank cannot increase with time as inventory is constantly being used up
and is not being replenished. . Rule type. 1 can also come from modeling assumptions. For example, if the analyst

14




assumes the equipment in the tank system can only fail permanently, then a failed valve cannot return to the normal
state in a later time step.

Table 2.III : Example Dynamic Consistency Rules

Rule Description
1 A parameter cannot change in a certain direction between two time steps
2 A parameter cannot change by more than a certain amount between time steps
3 Several parameters must vary in a specific way between two time steps

I: This event becomes

impossible after the

inconsistent branch
is removed

* ‘ Prune due to inconsistency
in Valve Position

Prune due to inconsistency
in Valve Position

(a) )

Figure 2.5 : Illustration of Physical Inconsistency

Rule types 2 and 3 come from knowledge of the system. For instance, a type 2 rule can state that the position of the
valve cannot vary by more than two states in one time step, as it takes a finite amount of time for the valve to open or
close. An example of a type 3 rule can be the constraint that the valve position and flowrate must vary in a
proportional manner as required by physical law.

Dynamically inconsistent branches are pruned in a way similar to physically inconsistent branches. If a dynamically
inconsistent event occurs in a timed fault tree, the dynamically inconsistent event, including all of the sub-branches
connected to it via the first parent AND gate, must be pruned. This is illustrated in Figure 2.6. As with physical
consistency rules, further pruning may be necessary if eliminated branches cause other events to become impossible.

2.3.3.4 Timed Prime Implicant (TPI) Identification

As discussed above, TPI's may be identified directly from a system DFM model. In the analytical algorithm actually
implemented by the model-analyzer module of the DFM Software Toolset (Section 3.2.2), decision tables
encountered during the backtracking process are expanded and joined, one by one, to form a singlecritical

transition table, which contains directly all of the system parameter states that are produced along the sequence
leading to the top event. As mentioned earlier in Section 2.3.2, the process of expanding and joining the decision
tables in the backtracking process is logically equivalent to generating a timed fault tree, except that the events are
not presented graphically as a tree structure, but in tabular form as intermediate transition tables. The critical
transition table, on the other hand, is logically equivalent to the basic events produced in a timed fault tree. The
reader should note that for a multi-state representation, the basic events identified in a timed fault tree (or the rows in

15




a critical transition table) are the sufficient conditions for the top event. The complete set of unique timed prime
implicants (i.e., the necessary and sufficient conditions) are produced by performingQuine's consensus operation
on the rows of the critical transition table. Quine's consensus operation is a series of absorption and merging
procedures which are performed on the table to reduce it to an irredundant form. For example, consider the decision
table in Table 2.1V, which is the equivalent of a sum-of-products expression for some function, called TOP. The
variables are assumed to be multi-state and their states are:

Ae[-1,0,+1],

Be[N,RF],

Cef-2,-1,0,+1],

De[H,N,L].
(These variables and the corresponding decision table do not necessarily reflect any particular logic, but are merely
intended to illustrate Quine's consensus operation.)

General Dynamic Consistency Rule:
Valve Position cannot change by more
than 2 states in a single time step

TOP

Prune due to dynamic
inconsistency in Valve Position

Figure 2.6 : Illustration of Dynamic Inconsistency

In the application of the consensus operation procedure for Table 2.IV, rows 7 and 9 merge with row 5, yielding a
“don't care” (which is represented by a “-”) in column 1 of row 5 and a new decision table (Table 2.V).

Table 2.IV : Decision Table for Function TOP

ROW A B C D TOP
1 - R -1 N 1
2 0 - +1 H 1
3 - R 0 - 1
4 - - -1 L 1
5 0 R -1 H 1
6 - N. -2 - 1
7 -1 R -1 H 1
8 0 R -2 H 1
9 1 R -1 H 1
10 0 F - H 1

16




Table 2.V : Decision Table for TOP After Merging Operation

ROW - A B C D TOP
1 - R -1 N 1
2 - +1 H 1
3 - R 0 . 1
4 o . -1 L 1
5 - R -1 H 1
6 - N 7 - 1
7 0 R 2 H 1
8 0 F c H 1

Rows 6-8 of Table 2.V can then undergo a reduction operation, yielding a “don't care” in column 2 of row 7. Rows
1,4 and 5 of the table also undergo a reduction-merging operation, yielding Table 2.VI. Table 2.VI contains only

irredundant terms since none of the simplifying operations can be applied to any term in the table.

Table 2.VI : Irredundant Form of Decision Table for Function TOP

ROW A B C D TOP
1 - R -1 - 1
2 0 - +1 H 1
3 R 0 - 1
4 - - -1 L 1
5 - N 2 - 1
6 0 - 2 H 1
7 0 F - H 1

Rows 1-3 and 6 of Table 2.VI yield a consensus term which is given in row 8 of Table 2.VII. Table 2.VII contains
all of the prime implicants of the function since no new consensus terms can be generated from it and none of its

terms can be simplified any further.

Table 2.VII : Decision Table for Function TOP After Consensus

ROW A C D TOP
1 - R -1 - 1
2 - +1 H 1
3 - R 0 - 1
4 - - -1 L 1
5 - N 2 - 1
6 0 - -2 H 1
7 0 F - H 1
8 0 R - H 1

Of course, physical and dynamic consistency rules must still be applied during the construction of the critical
transition table. The only difference is that, instead of applying them to individual events in the timed fault tree, they

are applied to entire rows in the critical transition table,

2.4 Framework for DFM Analysis-Driven Testing

2.4.1 Overview of Testing

Testing is traditionally one of the most important activities carried out to assure that a given design is, in its actual
implementation, complying with certain assigned constraints and specifications, be they in the realm of “peak

17




performance”, safety, or reliability. Testing assures the quality of the final product, validates that the product will
perform as it is designed to do, and provides reasonable assurance that the product will not threaten life or endanger
the user. For systems such as spaceships, aircraft, and nuclear reactors, where failures may threaten life, testing costs
may account for as much as 80% of the total manufacturing cost (Beizer, 1990). This is also true for software
systems, where the dominating cost is often not the cost of design and programming, but the costs associated with
logic and implementation errors: the cost of detecting them, the cost of correcting them, the cost of designing tests
that discover them, and the cost of running those tests (Beizer, 1990).

In traditional “black box” testing, combinations of inputs for the contro! system software are chosen and the software
is executed to produce outputs. These outputs are verified for conformance to specified behavior. However, this
kind of testing is not the “silver bullet” in identifying errors in control system software, since it is limited by several
factors, e.g.:

D it is practically impossible (except for the simpler situations) to identify input sampling patterns
which provide coverage and assurance for all of the execution paths of the control system software;

2) “hidden” errors in the software which only manifest themselves in conjunction with some other
system conditions are very hard to identify.

A major difficulty in functional testing is the selection of inputs. A large set of inputs reflecting normal and
exceptional circumstances are subjected to testing. Exceptional inputs cannot be overlooked as they often are the
inputs that trigger undetected faults in software programs, resulting in system failures. However, there is no
guideline as to how these exceptional inputs can be sampled. Selecting them is largely based on judgment. The
coverage of all possible inputs is both impossible and impractical. It is very likely that some exceptional inputs are
overlooked in testing. When these inputs arise in conjunction with some other unpredictable system conditions,
serious consequences can result. ’

Other than the problem associated with the coverage of inputs in testing, there are also difficulties in assuring the
execution paths of the software. Since the implementation details are not considered in functional testing, it is

possible that expected outputs can be produced via unexpected paths in the software. Even though the behavior of
the software seems correct to the testing team, there exists fundamental errors in the software which cause the

selection of the incorrect path. In addition, the inability to verify the execution paths makes it difficult to trace the
source of errors found. Functional testing indicates the existence of bugs in the software when unexpected outputs
are produced, but it does not tell us how to find them. Locating the source of errors is not an easy task. Different
bugs can have the same manifestations, and one particular bug can have many symptoms. A great number of small

tests must be run in order to locate the bug.

In addition to being unable to verify the execution path of the embedded system software, functional testing is also
ineffective in identifying “hidden” bugs which only manifest themselves together with some other system conditions
(i.e., conditions in the hardware part of the system that interfaces with the software). It is impossible and impractical
to test the software under all conditions. But scenarios can arise where a combination of low probability system
conditions causes the “hidden” bugs to produce failures.

2.4.2 DFM Analysis Based Testing

Performing a preliminary DFM analysis on the system before testing could drive functional testing to focus on a
limited domain of inputs. The objective was to eliminate the need to blindly select inputs to test the software. In a
nutshell, each system state (desirable or undesirable) being investigated via DFM (usually referred to as a top event),
is resolved into the combinations of primary events which can cause it to occur. Each event is described by a range
encompassing the value of a particular variable, either in the physical system or in the software, and the time interval
in which the variable assumes that value. In addition, DFM identifies the paths and the time sequences by which the
top event is produced by these sofiware and physical system conditions. As discussed above in Section 2.3, the
principal result of a DFM analysis, as defined earlier in Section 2.3.3, is the identification of “timed prime

18



implicants” (TPI's). A timed prime implicant is a minimum combination of events which is both necessary and
sufficient to cause the top event.

Several DFM analysis-based software testing strategies have been identified. The two basic modes in which DFM
can be-used to support the development of testing strategies are:

1. Top-Event Decomposition Mode (TED-Mode)
2. Timed Fault Tree Derivation Mode (TFTD-Mode)

2.4.2.1 Top Event Decomposition Mode (TED-Mode)

TED-Mode represents a high level test of the control system. In this mode, individual software modules are treated
as black boxes, and a detailed representation of the input-output relationships that the modules implement is not
sought. This mode may be used, for example, when analyzing a system design at a stage when functional
requirements of the softiware modules have been identified, but have not yet been translated into code. In such a
case, DFM would provide a re-definition, or “decomposition” of a system top event (i.e., the system failure mode to
be avoided) in terms of “intermediate-level implicants” (ILI's) defined as combinations of states of the output
variables of those software modules. Testing can then be broken down to the level of making sure that these
combinations of output variable states cannot be produced by any allowed combination of input variable states. Note
that, in general, the ILI's may also contain the states of certain hardware parameters or components. These hardware
states would then become boundary conditions for the functional testing of the software.

2.4.2.2 Time Fault Tree Derivation Model (TFTD-Mode)

In the Timed Fault Tree Derivation Mode, a detailed DFM analysis produces not only timed prime implicants, but
also the timed fault tree which describes the evolution of the system from these conditions towards the top event.
Testing in this case can be executed to verify that the temporal behavior (evolution) of the system corresponds to
what is expected by the analyst per the DFM model. Because DFM can be employed to produce TPI's for success as
well as failure top events, a TFTD-Mode DFM analysis, followed by testing, can be used to verify that the system
executes according to the expected and desired execution paths. Beyond the testing purposes, the utility of the
TFTD-Mode is that it provides the user with an “explanation” of how the TPI's produce/give rise to the top event.

In addition, the form of the timed prime implicants, whether these consist of software “single event prime

implicants” (SEPISs) or software/hardware “multiple event prime implicants” (MEPIs), can dictate how testing can

best be carried out. Software conditions which are identified as SEPIs point to certain individual software states that
are active without the need for outside “triggers”. These prime implicants can contain normal conditions external to
the software, such as those which are understood and are included within the “design envelope” represented by the

software requirements and specifications. For example, the prime implicant identified in the analysis of the
Demonstration Test Case (which is presented in Section 5.3.2) is a conjunction of software input conditions (the
steam generator level, the steam flow and a variable in the memory) and an external condition (the steam generator
pressure). Since the steam generator pressure is within the range encountered under normal operating conditions, the
prime implicant is hence classified as a SEPI. MEPIs (i.e., multi-event prime implicants consisting of both software
conditions and one or more physical system conditions) indicate system states which can only be caused by the
combination of software conditions and unexpected or unwanted system conditions outside of the sofiware, i.e.,
“external-world” conditions not included in the original “design envelope” of the software. Note that these
conditions may exist concurrently, or they may take place at different times. This is a direct result of the fact that
DFM models explicitly depict the progression, due to physical cause-and-effect, of the system state as it evolves in
time towards failure. Thus, a multi-event prime implicant is essentially a unique combination of events which gives
rise to a system evolution sequence leading to the top event. An example of a MEPI is the prime implicant identified
in the analysis of the Interim Test Case (which is presented in Section 4.4.2). In addition to containing a software
input condition (the tank level) and other normal external conditions (the sensors, the stop valves and the control
valves being normal), this prime implicant also requires the failure of the check valve, and hence is classified as a
MEPI.

19




A basic process of critical software testing based on a TFTD-Mode DFM analysis can be defined as follows:

a) If the DFM analysis identifies any single software implicants for a system state, this would therefore
indicate the existence of fundamental bugs or logic errors in the sofiware. The only remedy would thus be to correct
the software so that these software conditions are made inactive and unreachable. The corrected version of the
software would thus have to be reanalyzed to ensure that the corrections do not bring about new errors.

b) If the DFM analysis identifies a multi-event prime implicant, i.e., one or more of the external-world
conditions associated with the system state history is off-nominal, then one of two subcases may arise:

bl) if the combination of external-world conditions is highly probable, the error-causing software
condition must be removed and the corrected version must be reanalyzed as before.

b2) if the conjunction of external-world and software conditions is not believed to be easily achievable
or likely, functional testing of the software can be performed in the “neighborhood” of these “unlikely”

conditions to determine the actual margin of safety in the system. This means that the inputs selected for
functional testing are concentrated in the ranges specified by the events which form the prime implicant,
and the boundary conditions are constrained to correspond to that implicants state history, resulting in a
much smaller domain of test inputs from which to sample. Testing in the neighborhood of the prime
implicant conditions is stressed because a DFM model and the resulting prime implicants that it produces
can be expected to be only a finite approximation of the actual system. The purpose of “neighborhood

testing” would be to confirm the existence of identified faults and to ensure that “neighboring states” of the

TPI variable states and conditions will not result, themselves, in system failures.

25 Exampie of DFM Modeling and Analysis

In this section, a simple control system is used to illustrate how DFM can be applied to identify the failure modes of
the system. The system selected is a slight modification of the pressure tank example used in Chapter VIII of
NUREG-0492, “Fault Tree Handbook”. The sub-sections that follow will show the reader how a system definition is
translated into a DFM model and how top events can be analyzed to identify the basic failure modes. The reader
should note that this section intends to illustrate the basic concepts of DFM in semi-tutorial fashion, and that DFM is
not limited to analyzing simple systems such as the one used here for this purpose. Chapters 4 and 5 will show how
DFM can be applied to analyze more complicated systems with feedback control loops and software modules defined
in line-code detail.

2.5.1 System Description

The example system consists of an inexhaustible gas source, a pressure tank, a pressure sensor, a pressure controiler,
a pump, an AC power source for operating the pump, an electric switch and an outlet valve. The schematic of this
system is shown in Figure 2.7, and the controller function is to maintain the pressure of the tank at a certain level.
The electric switch and the valve are controlled by the pressure controller, but the command from the controller to
the valve can be overridden by a human operator’s command. The operator’s command is modeled as the node
MVO in Section 2.5.2, and the discretization of the node is shown in Table 2.XII. The controller monitors the
pressure in the tank via signals from the pressure sensor. If the reading is too low, the controller will close the outlet
valve and close the electric switch.” Closing the electric switch will activate the pump to replenish the gas inventory
in the tank. On the other hand, if the pressure reading is too high, the controller will open the electric switch, thus
disabling the pump, and open the ‘outlet valve to vent the gas in the tank, Table 2.VIII summarizes the control
actions that may be undertaken.

20




MVO 1 ocF

VX
{VS}
e : Inflow ffom gas compressor

automatically activated by

PRESSURE (ss) low tank pressure,

CONTROL TP

LoGIC
PRESSURE] Outflow through valve
TANK automatically activated by

high tank pressure or by

manual command.

INEXHAUSTIBLE
GAS SOURCE

Figure 2.7 : Schematic of the Pressure Control System

Table 2.VIII : Summary of Control Commands

Pressure Reading Outlet Valve Command | Electric Switch Command
Too Low Close Close
* Normal Close Open
Too High Open Open

2.5.2 Example of DFM Model Construction

The first step in applying DFM is to construct a model to capture the behavior of the system. To accomplish this, the
components to be modeled are first chosen. In this case, all the components will be included in the DFM model.
Next, parameters that capture the attributes of these components are identified and they become the process variable
nodes (Table 2.1X). These process variable nodes are linked together by causality edges through transfer boxes and
transition boxes to model the cause-and-effect relationships among the parameters (Figure 2.8). For example,
transfer box T1 represents the pump in which the AC power and the switch position will yield the gas inflow into the
tank. On the other hand, transfer boxes T4 and T5 represent the pressure controller where the pressure reading
triggers the outlet valve position and the electric switch position. The reader should note that the pressure tank is
represented by a transition box (TT1) instead of a transfer box because pressure variation is dynamic. The current
pressure depends on the net gas flow into the tank as well as the pressure a split second before.

Table 2.IX : Process Variable Nodes

Parameter Meaning
E AC Power
IGF Gas flow into the tank through the pump
MVO Manual override command to the outlet valve
NGF Net gas flow into the tank
OGF Gas flow out of the tank through the outlet valve
SwW Electric switch position
TP Tank pressure
VX Outlet valve position

21




has]

po]
st}

1 clock cycle

TP.

After the construction of the integrated causality and time transition network, discontinuous behavior such as
component failures are identified and represented in the model as condition nodes and condition edges (Figure 2.9).
In this figure, SS represents the state of the pressure sensor and it has an impact on the controfler action as the
pressure control command is based on the pressure reading, not on the actual tank pressure. Similarly, SWS, the
state of the electric switch can affect the gas flow into the tank, as a stuck open switch will prevent the pump from
working even though power is available. The process variable nodes and the condition nodes are then discretized
into finite number of states, and they are shown in Tables 2.X to 2.XIX. These discretization schemes are also

shown in Figure 2.9 for easy reference.

Figure 2.8 : Integrated Causality and Time Transition Network

Paawwe”

i1

T1 T2 T3 T4 TS T

swsle swlier Vs | vX|OGF IGF OGF|NGF ss| TP | sw MVO] SS| TP VX TP NGF TP+
o - Joll.1°[° o oo 111 el s
o1 o}o 111 0o 1] 2 |1 ' 2lof: w2
1 1 4 -1 -1 0 1 0|+ 0 3 0 4] 0f{3}o0 2 - 2

]’ N d 3 a9 l2

1 - - 0 +1 1 1 110 4 o 411 e
o o - [} 5 0 48611 3 - s
1 - 1 1 ) .1 - 4 al-1o 4 9 13

[} 3 9 4

I N : )| « - |a

- s 1 ]a

i B < « (s

+t)-1-1]11 s - s

Figure 2.9 : DFM Model of the Pressure Tank~

22




Table 2.X : Discretization of E

States Meaning
0 AC power is unavailable
1 AC power is available
Table 2.XI : Discretization of IGF
States Meaning
0 No gas flow into the tank
1 Gas flows into the tank
Table 2.XII : Discretization of MVO
States Meaning
-1 Operator commands valve to close
0 Operator does not override controller command
+1 Operator commands valve to open
Table 2. X111 : Discretization of NGF
States Meaning
-1 Net gas flow out of the tank
0 No net gas flow
+1 Net gas flow into the tank
.Table 2.XIV : Discretization of OGF
States Meaning
0 No gas outflow through the valve
1 Gas flows out through the valve
Table 2.XV : Discretization of SS
States Meaning
-1 Pressure sensor stuck low
0 Pressure sensor is normal
+1 Pressure sensor stuck high
Table 2.XVI ; Discretization of SW
States Meaning
0 Electric switch is opened
1 Electric switch is closed
Table 2.XVII : Discretization of SWS
States Meaning
-1 Electric switch failed opened
0 Electric switch is good
+1 Electric switch failed closed

Decision tables are then constructed from the knowledge of the behavior of this system. These tables are shown in
the model in Figure 2.9. In the construction of the decision tables, it was assumed that gas inflow is possible when
the tank pressure is high and gas outflow is possible when the tank pressure is low. This assumption is reflected in
the decision table for transition box TT1. At this point, the DFM model is completed and can be analyzed to identify

failure modes.

23




Table 2.XVIII : Discretization of TP

States Meaning

1 Tank pressure is very low

2 Tank pressure is low

3 Tank pressure is normal

4 Tank pressure is high

5 Tank pressure is very high

Table 2. XIX : Discretization of VX -

States Meaning

0 Outlet valve is closed

1 Outlet valve is opened

2.5.3 Example of DFM Model Analysis

The DFM model constructed for the pressure control system can be analyzed to generate timed fault trees and timed
prime implicants. The timed prime implicants are the necessary and sufficient conditions for specific failure events,
whereas the timed fault trees show how the necessary and sufficient conditions can cause the failure events, For
example, to analyze how the pressure in the tank becomes dangerously high and causes the tank to rupture, we first
define the top event in terms of the state of the process variable node TP (TP =5 @t =10). The top event is then
backtracked through the DFM model (via the steps discussed in Section 2.3.3) for one time step to generate the timed
fault tree shown in Figure 2.10. The timed prime implicants for this corresponding timed fault tree are listed in
Table 2.XX. Take for example prime implicant #1, the failed sensor gives a low pressure reading which causes the
controller to command the electric switch to close and the outlet valve to close. The absence of manual override
command and the fact that the valve is normal will lead to the closure of the outlet valve. At the same time, with AC
power being available and the electric switch being operational, the closing of the switch will pump more gas into the
tank. With the prior tank pressure being high, the net inflow of gas into the tank will cause the pressure to become
dangerously high. The reader should note that even though a single failure is characterized by prime implicant #1,
the fact that the other key components are normal has to be expressed explicitly in this prime implicants. This is a
feature of multi-state representations of systems. If power had been unavailable, the tank pressure would not have
reach the dangerously high level as the pump could not operate, and thus there would be no net gas flow into or out
of the pressure tank. It is also important to point out that the assumptions made in constructing the DFM model had a
direct impact on the prime implicants identified. In this particular case, if the assumption that gas inflow is possible
at high tank pressure were to be removed, none of the prime implicants shown in Table 2.XX would be identified.

As the DFM model of the pressure control system implicitly contains most, if not all, conceivable behaviors believed
to be exhibited by the system, one single model can be analyzed for as many top events as the analyst desires. The
same model analyzed for the top event TP = 1 @ t = 0 (Tank pressure is low at time 0) produced the timed fault tree
shown in Figure 2.11 and the timed prime implicants listed in Table 2.XXI.

24




t=0

t=-1

=] (71 fere]

EE

a\ m

ILWSI=°IIE=;*IEWI=11 F%‘l Lr%l =)

o] =] froc

Figure 2.10 : Timed Fault Tree for the Top Event TP =5 @t=0

A
IGF=0
m
Fvlq g\ [sws=-1 fws=+|[ E=0 | [vs=o][vx=1 [EI

g prvo=of fss=+] fvo--]

Figure 2.11 : Timed Fault Tree for the Top Event TP = 1 @t=0

25




Table 2.XX : Prime Implicants for the Top Event TP=5 @ t=0

Number Prime Implicant
1 Electric switch was normal
*Power was available
Outlet valve was normal
*No manual valve command
*Sensor failed low
*Tank pressure was high
2 Electric switch was normal
*Power was available
Outlet valve was normal
*Valve closed manually
*Sensor failed low
*Tank pressure was high
3 Electric switch was normal
*Power was available
*Outlet valve failed closed
*Sensor failed low
*Tank pressure was high
4 *Electric switch failed closed
*Power was available
Outlet valve was normal
*No Manual valve command
*Sensor failed low
*Tank pressure was high
5 *Electric switch failed closed
*Power was available
Outlet valve was normal
*Valve closed manually
*Tank pressure was high
6 *Electric switch failed closed
*Power was available
*outlet valve failed closed
*Tank pressure was high
7 *Tank pressure was very high

58

58

Ple P P PO O OOOOOOAABAOAOAOPEOPOODIOOAOOOO®O®O®O®E®
ctfct ot ctfet ot o of et of o o of oot of o of cfjct o of of ot ot rof ot oF T
[}

1
=

It should be noted that the prime implicants shown in Table 2. XX and Table 2.XXI list both “faulted” and “normal”
states of components and parameters. A “reduced” form of prime implicant definition can also be obtained which
does not list states that can be always considered as unconditionally faulted. States that would continue to be listed in
the reduced prime implicant form are marked with an asterisk in the two tables, whereas the states that are not
marked would not be listed. More complete definition and discussion of this topic can be found in Chapter 6
(Section 6.3.2.3), and examples of “reduced prime implicants” are provided there for the test case analyses that are
presented in Chapter 4 and Chapter 5.

26

Y, e, SETAG

RN




Table 2.XXI : Prime Implicants for the Top Event TP=1@t=0

Number Prime Implicant

1 *Power was unavailable @t=-1
Outlet valve was normal @t =-1

*No manual valve command @ t = -1

*Sensor failed high @t =-1

*Tank pressure was low @t -1

2 *Power was unavailable @ t = -1
Outlet valve was normal @t = -1

*Valve opened manually @ets=-1

*Tank pressure was low @t =-1

3 *Power was unavailable @t -1
*Qutlet valve failed opened @t = -1

*Tank pressure was low @t =-1

4 Electric switch was normal @t = -1
Outlet valve was normal @t = -1

*No Manual valve command @t -1

*Sensor failed high @t -1

*Tank pressure was low @t=-1

5 Electric switch was normal @t -1
Outlet valve was normal @t =-1

*Valve opened manually @t -1

*Sensor failed high @ t=-1

*Tank pressure was low @t = -1

6 Electric switch was normal @t = -1
*Outlet valve failed opened @t = -1

*Sensor failed high @ t -1

*Tank pressure was low @t -1

7 *Electric switch failed opened @ t = -1
Outlet valve was normal @t = -1

*No manual valve command @t = -1

*Sensor failed high @t = -1

*Tank pressure was low @t =-1

8 *Electric switch failed opened @ t = -1
Outlet valve was normal @t = -1

*Valve opened manually @ t = -1

*Tank pressure was low et -1

9 *Electric switch failed opened @ t = -1
*0utlet valve failed opened @t = -1

*Tank pressure was low @t -1

10 *Tank pressure was low-low @t =-1

27




T NIRRT
FUple e g
A TSI
IR TESN W,

Paan



3 DFM SOFTWARE TOOLSET

This chapter provides a discussion of the DFM Software Toolset, which is an integrated set of software tools
developed in Phase II of this research project for implementing the model construction and analysis procedures of
DFM. The topics covered include the development of the various modules (Section 3.1), description of the
functionality and the user-interfaces of all the modules within this software toolset (Section 3.2), and the input and
output relating to the analysis of the example discussed in Section 2.5.

The DFM Software Toolset is developed as a Microsoft Windows™ application which can run on Intel processor-
based PCs. The goal of this software application is to assist the analysts to construct DFM models and to analyze the
DFM models to generate prime implicants. This tackles the problem where manual construction of timed fault tree
and generation of prime implicants, without the help of automated tools, is difficult for simple systems, and
practically impossible for complex systems.

3.1 Development of the DFM Software Toolset

The DFM Software Toolset is an integration of two principal modules: the Model Editor and the Model Analyzer
(Figure 3.1). The Model Editor aids analysts in the construction of DFM models for any given system of interest. It
features a relational database, supporting a library of the pre-defined DFM modeling elements, which stores the
information relating to the structure and the display attributes of the DFM model created with the Model Editor. The
Model Analyzer analyzes DFM system models and obtains the prime implicants for any system state of interest
defined by the user. The development and integration of these two principal modules are discussed below.

DFM Model Editor DFM Model Analyzer
Graphic Modeling Environment
ICONS User Specified Top Event
’
D Analysis
Engine
Relational Database Structure ’ ’
Element Type Inputs Outputs
A Jnoge [- ! TBI} DFM Analysis Results

+ Transition Tables

TB}Y| transfer| A ! B! [
¢ Prime Implicants

C |mde jTBI-! |- !

[ [

] 1]

B |mde |- '-! |1BI !
1 1

1

Figure 3.1 : Architecture of the DFM Sofiware Toolset
3.1.1 Development of the Model Editor

The DFM Model Editor is a Windows-based graphical model building tool with which the user can create and edit
DFM models. The user interface resources (windows, menus, dialog boxes, dialog controls, etc.) were created using

29




the GUILD™ GUI-development tool. GUILD is a resource editor that allows the user to visnally design Windows
resources.

The rest of the Model Editor was implemented in C. There are basically four types of C functions that provide the
functionality of the-Model Editor. The “laydown” functions deal with drawing, moving and otherwise visually
manipulating the graphical objects on the Model Editor laydown page. The “callback” functions are the event
handlers that process the mouse messages (button clicks and movements) on the laydown page. The “dialog”

functions deal with the transmission of data from the data structures in memory to the various dialog box displays
(list boxes, edit fields, etc.), and back again. The “load/save” functions handle alf of the tasks related to disk input
and output.

3.1.2 Development of the Model Analyzer

The DFM Model Analyzer is a Windows-based tool with which the user can analyze models created with the DFM
Model Editor. The user interface resources, which include all the dialog boxes for defining top events, displaying
prime implicants and intermediate transition tables, were created using the GUILD™ GUI-development tool. The
analysis engine, which contains all the modules for carrying out different operations on the intermediate transition
tables, was implemented in C. Figure 3.2 shows the algorithm which is implemented in the analysis engine. In
addition, the modules for interfacing with the database and the dialog boxes were also written in C.

START
Time=0
Set the transition No Time > Yes | Critical transition
table equal to the end time of table equals the
top event table analysis 7 transition table
proceed to the erform absorption|
next time step operation on the
critical transition
table
Expand the column ‘
to form a new "
" Perform reduction-
transition table mesging operation
on the critical
transition table
Perform static
consistency check on ¢
the transition table
[Perform consensus
¢ operation on the
critical transition
Perform dynamic table
consistency check on
the transition table
The rows of the
critical transition
Simplify the table are the prime
transition table via implicants
absorption and
reduction-merging

Figure 3.2 : Algorithm used in the Analysis Engine

30




3.2 Functionality of the DFM Software Toolset

The functionality and the user interfaces for the Model Editor and the Model Analyzer are discussed below.
3.2.1 Functionality of the Model Editor

The Model Editor facilitates the construction of DFM models by the analyst and converts the graphic representation
of these models into a set of data that can be stored in a database, and later used by the Model Analyzer. The Model
Editor consists of a graphic model building environment in which the user creates DFM models and a database
structure which stores information about the model created.

3.2.1.1 Graphic Model Building Environment

The graphic model building environment assists the user to construct a DFM model. It provides a toolbox of graphic
icons representing DFM modeling elements with which the user can build a DFM model. A screen capture of this
graphic modeling environment is shown in Figure 3.3. This graphlc model building environment is developed using
a combination of the “C” programming language and the GUILD™ graphic user interface (GUI) development tool.
The user defines the structure of a DFM model by picking the modeling elements from the icon menu and placing
them on the screen. Connections are made by picking the source and the target as well as any intermediate points.
Figure 3.4 shows the DFM model of the tank pressure control system (discussed in Section 2.5) created using the
Model Editor.

odel Edit Mode View Help

K3 ” IETEPh SH 3

Figure 3.3 : Screen Capture of the Model Editor Graphic Model Building Environment

Associated with each modeling element is a dialog box in which the user can define the attributes of that element.
The user accesses the dialog box by double clicking the mouse on top of the graphic icon. Figure 3.5 shows the
dialog box accessed by double clicking on the node TP where the properties of the tank pressure process variable
node can be defined. The properties that need to be defined in that dialog box are summarized and explained in
Table 3.1, Similarly, Figures 3.6 and 3.7 show the dialog boxes for defining the properties of a transfer box and a
transition box respectively, while Tables 3.II and 3.III provide explanations for the properties thus defined. These
dialog boxes are accessed by double clicking on the transfer box T2 and the transition box TT1 respectively.

31




Madel

Edit Mode View Help

DEMO1

2]

Bl
') i
—@-——@«—@T 1 |
I Y |
1GF (iE; i = ' é
N £
IR NI - W BV W

(

SRR VRS o

5

Figure 3.5 : Dialog Box for Defining Properties of a Node

Table 3.1 : Properties of a Node

Properties Meaning
Name The name of the parameter that the node represents
Label The label to be seen on top of the node in the graphic modeling
environment
Description A brief description of what the node represents
Number of States | The number of states into which the node is discretized
State The arrows allow the user to select any possible state
State Name The name of the states
State Description | A brief description of what the state means
Orientation The radio buttons toggle the orientation of the transfer box on the

screen

32




ransfer Box Propertics

sition Box

Figure 3.7 : Dialog Box for Defining Properties of a Transition Box

Table 3.11 : Properties of a Transfer Box

Properties Meaning

Name The name for identifying the transfer box

Decision Table A button for accessing another dialog box to define the decision table
for this transfer box

PVN Inputs List the Process Variable Nodes which are inputs to this transfer box"
through causality edges

CN Inputs List the Condition Nodes which are inputs to this transfer box’
through condition edges'

Both Inputs List the nodes which connect to this transfer box through both
causality edges and condition edges'

Outputs Lists the nodes which are outputs of this transfer box

Orientation The radio buttons toggle the orientation of the transfer box on the
screen

3.2.1.2 Database Structure

These lists are created automatically once the connections are defined.

The database structure is created with a built-in feature of the GUILD™ GUI development tool. The database is in
the form of a “B-trieve” database structure, and is directly accessible by any C code routine. The relational database
structure consists of two major classes of data. One class characterizes the graphic attributes of the model, the other
class characterizes the structure attributes of the model. The graphic attributes define the positions, the sizes and the
orientations of all the nodes and boxes shown on the screen. In addition, these attributes determine how the
connections are to be drawn, i.e., the color, the starting point, the end point and any intermediate points. The graphic
attributes allow the Model Editor to “remember” how to regenerate the picture of the model. On the other hand, the
structure attributes are essential if the model is to be analyzed. They define the structure of the DFM model so that
the Model Analyzer can backtrack the model correctly through all the boxes and time transitions.

33




Table 3.111 : Properties of a Transition Box

Properties Meaning

Name The name for identifying the transition box

Decision Table A button for accessing another dialog box to define the decision table
for this transition box

Time Delay The time delay associated with this transition box

PVN Inputs List the Process Variable Nodes which are inputs to this transition
box' through causality edges

CN Inputs List the Condition Nodes which are inputs to this transition box’
through condition edges'

Both Inputs List the nodes which connect to this transition box through both
causality edges and condition edges'

Outputs Lists the nodes which are outputs of this transition box

Orientation The radio buttons toggle the orientation of the transition box on the
screen

These lists are created automatically once the connections are defined.

3.2.2 Functionality of the Model Analyzer

The function of the Model Analyzer is to backtrack the model to produce time fault trees and timed prime implicants
for top events defined by the user. The Model Analyzer consists of the user interface resources and the analysis
engine.

3.2.2.1 User Interface Resources

The user interfaces provide the environment for defining the goal of and displaying the results of the analysis. . There
are altogether 5 user interfaces for the Model Analyzer; the Top Event Interface, the Analyze Interface, the Display
Result Interface, the Prime Implicants Interface and the Tables Interface.

The Top Event Interface (Figure 3.8) provides the interface for the user to define the top event for an analysis. The
user defines a top event by specifying the states of the nodes and the associated time stamps. The list box on the left
hand side of the dialog box (under the label “Nodes:”) displays all the nodes in the model created using the Model
Editor. The user can pick the node from this list to appear in the top event. The states defined for the node that has
been selected will be shown in the list box in the middle of the dialog box (under the label “States:”) and can be

chosen to appear in the top event. The list box on the right hand side of the dialog box (under the label “Time:”)

allows the user to define a time stamp associated with the top event. After the node; the state and the time are all
defined, the “Select” button can be pressed to add this node state to the top event. This will be summarized in the
box at the bottom of the dialog box. Defining a top event with more than one state of a single node is just a matter of
repeating the above procedure. The top event defined in Figure 3.8 is the one used in the example in Section 2.5.3

(TP=5@t=0).

Define Top Event

Figure 3.8 : User Interface for Defining the Top Event

34




The Analyze Interface (Figure 3.9) provides the interface for the user to specify how the analysis is to be carried out.
The user can specify the number of time steps to be backtracked, as well as define the dynamic consistency rules to
be used in the course of the analysis. The interface also notifies the reader that the decision table will be imported
from a file of which the name is shown. Figure 3.9 defines the analysis that was performed for the example
discussed in Section 2.5.3. The analysis procedure can be initiated by pressing the “Start” button.

DFM Analyzer
File
Number of
Backtracking Steps : E—:l
Import Decision
Tables from :
Import Rules from :

Figure 3.9 : User Interface for Defining the Scope of the Analysis

The Display Results Interface (Figure 3.10) shows the number of prime implicants found in the analysis. The two
button “PI’s” and “Tables” allow the user to access the details regarding the analysis and the prime implicants.
Pressing the “PI’s” button will take the user to the Prime Implicants Interface, whereas pressing the “Tables” button

will take the use to the Tables Interface. Figure 3.10 shows the result that was obtained for the example in Section
2.5.3.

Prime linplicants

There zre 7 prime Implicants

Figure 3.10 : User Interface for Displaying a Summary of the Analysis Results

The Prime Implicants Interface (Figure 3.11) displays the details of the prime implicants found in the analysis as a
Notepad text file. As Notepad is a Windows application, the user gets all the convenience of printing a hardcopy of
the file, cutting and pasting to incorporate the results into another word processing software. The prime implicants
shown in Figure 3.11 are those obtained for the example discussed in Section 2.5.3.

The Tables Interface (Figure 3.12) shows the user how the Model Analyzer obtains the prime implicants as a Write
text file. This file keeps track of all the intermediate transition tables. Like a Notepad file, the results shown can be
printed out or incorporated into another word processing software. The intermediate tables shown in Figure 3.12 are
those obtained for the analysis of the example discussed in Section 2.5.3.

35




=

— Nowpad-PRMEDT . GB

File Edit Search Help

For the top event: @
At time o, TP:hi-hi tank pressure L5 |
[

There are 7 prine implicants i;
Prire Implicant & 1 é’
At time -1, SUS:suwitch is normal AND 5o

At time -1, E:power available AND &

At time -1, US:valve is nornal AND 9

At time -1, HUO:noc manual cornmand AND %

At time -1, SS:sensor failed low AND 2

At time -1, TP:high tank pressure 4

Y

Prime Implicant 8 2 .
At time -1, SUS:switch is normal AND .

At time -1, Ezpower available AND -

at tire -1, US:valve is normal AND ;

At time -1, HUO:valve manually close AND ;

at time -1,  SS:sensor failed low AND i

at time -1, TP:high tank pressure f

: ¥

| Flle Edit Find Characler Paragraph Document Help

Starting System Analysis : 2
0.0 ]
™ | TOP ¢
5 | T B
TETTTETEEETARTRTERRTRRNTY

* Current Time 0.000 * -
bAR A 232422222 22222222 2] .
. A
After top event table expansion: )
2 rows S
1.0 1.0 -

TP NGF | TOP

4 +1 | T

5 -1 T

TETETTEXTTETSTTTRLLTLEY

* Current Time 1.000 ¢
EETTEEETELEEEELETRSENELY

After top event table expansion:
2 rovs
1.0 1.0 1.0
TP IGF OGF | ‘TOP

Figure 3.12 : User Interface for Displaying all the Intermediate Transition Tables
3.2.2.2 The Analysis Engine

The analysis engine is the part of the Model Analyzer which performs the backtracking steps. It carries out the steps
of expanding the decision tables to form the intermediate transition tables, applying physical and dynamic
consistency rules to remove inconsistent rows from the intermediate transition tables, simplifying the intermediate
transition tables to obtain the critical transition table, and finally applying Quine’s consensus theorem to generate the
timed prime implicants.

36




4 INTERIM TEST CASE

The testing and demonstration of the DFM modeling and analytical approach has been executed by applying the
technique in two realistic test cases, which are referred to within our project as the “Interim Test Case” (ITC) and

the “Demonstration Test Case” (DTC). The latter, which is discussed in detail in Chapter 5, refers to the analysis of
a PWR (Pressurized Water Reactor) steam generator level control system, the logic and algorithms of which are
implemented via software. The DFM demonstration task called for a detailed analysis of this steam generator digital
control system and this required the development of a detailed thermal hydraulic simulator of the steam generator
portion of the system, which in turn was recognized from the beginning as being a relatively lengthy and complex
task, Thus, the interim test case was conceived and constructed as a methodology test and demonstration tool that
would not require itself as much effort to construct as the DTC.

The ITC was constructed to be a realistic system, that is a system that could conceivably exist and be used in an
actual industrial application. The system was to be defined in such a way as to be easy to model and simulate in
terms of its physical behavior, so that its simulated representation could be readied quickly for the purpose of
enabling testing of the DFM approach and techniques. At the same time, to provide a true test for the DFM
application and generate feedback on how DFM may need modifications and/or improvements, it was decided that
the system would include a digital control system with logic and functional characteristics of a relatively high degree
of complexity. The resulting ITC, which is described in detail, has been used to interactively test and develop the
basic features and procedures of DFM, that is, to test how well the existing DFM features and procedures worked,
and what extensions or additions might be needed to make DFM more readily usable and useful in more complex
applications.

This chapter is organized into four sections. Section 4.1 (ITC System Description) describes the overall structure of
and the functions carried out by the ITC system, as well as the system components and its control logic. Section 4.2
(ITC System Simulation) discusses how the system has been abstracted, i.e., the modeling assumptions and the
physical laws used for representing the various portions and components of the system. This section also presents
the procedures for simulating the behavior of the system and explains in detail the simulation algorithms employed in
the simulation code which was used to understand the detailed behavior of the system. Section 4.3 (DFM Model of
the ITC System) discusses the DFM model for this system, including the assumptions and the details regarding the
definition of DFM nodes, transfer boxes and transition boxes. Finally, Section 4.4 (ITC DFM Model Analysis)
summarizes some key ITC analyses that were executed, e.g., the top events that were analyzed and the resulting
prime implicants and system sequences.

4.1 ITC System Description

The tank level and flow control system is shown in Figure 4.1. The key features of this system are summarized
below:

- A water tank, fed by water pump on the inflow pipe and regulated by control and stop valves on the inflow<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>