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ABSTRACT 

Software based control systems have gained a pervasive presence in a wide variety of applications, including nuclear 
power plant control and protection systems which are within the oversight and licensing responsibility of the U.S. 
Nuclear Regulatory Commission. While the cost effectiveness and flexibility of software based plant process control is 
widely recognized, it is very difficult to achieve and prove high levels of demonstrated dependability and safety 
assurance for the functions performed by process control software, due to the very flexibility and potential complexity of 
the software itself. 

The development of tools to model, analyze and test software design and implementations in the context of the 
system that the software is designed to control can greatly assist the task of providing higher levels of assurance than 
those obtainable by software testing alone. This report presents and discusses the development of the Dynamic 
Flowgraph Methodology (DFM) and its application in the dependability and assurance analysis of software-based 
control systems. The features of the methodology and full-scale examples of application to both generic process and 
nuclear power plant control systems are presented and discussed in detail. The features of a workstation software 
tool developed to assist users in the application of DFM are also described. 
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EXECUTIVE SUMMARY 

The recent years have witnessed an explosive growth in the use of software to control the functions of complex 
technological processes and systems. Software-controlled systems can be defmed as systems in which the functions 
of mechanical and physical devices are controlled and managed by digital processors and computers which, in turn, 
execute sofhvare routines to implement specific control functions and strategies. Software-controlled systems have 
gained a pervasive presence in all types of applications, from the defense and aerospace to the medical, 
manufacturing, and energy fields. This report documents the results of a project entitled “Development of Tools for 
Safety Analysis of Control Software in Advanced Reactors”, funded by the U.S. Nuclear Regulatory Commission 
with the objective of defming and developing a methodology suited to analyze and assess the safety of nuclear power 
plant software-based control systems. This objective included also the development of implementation tools, in the 
form of a self-contained software package, to facilitate the application of the analytical procedures of the 
methodology. 

Software based process control has found increased use in the’nuclear industry, including in the safety-related areas 
that are of most direct concern to the U.S. Nuclear Regulatory Commission. Reactor Protection System (RPS) 
algorithms and logic are software-implemented in Combustion Engineering nuclear power plants, as well as in many 
of the CANDU Canadian reactors. Current designs for the latest generation of nuclear power plants -- such as the 
Westinghouse AP600, the General Electric ABWR and SBWR and the CANDU 3 -- rely on the use of digital 
computers and associated software to accomplish a wide variety of process control tasks, such as continuous 
regulation of key plant physical parameters, component status monitoring and diagnosis, processloperator interfaces, 
and emergency shutdown. The great advantage of the concept of using computers as process controllers is in the 
almost unlimited flexibility afforded by the software implementation of system control functions, given the 
computational power and speed of the modem microprocessors and computers. As a result, very sophisticated and 
complex logic can be executed by relatively inexpensive processors loaded with the appropriate software 
instructions. If necessary or desirable, the originally implemented logic can also be modified during the life of the 
system by uploading new software instructions, without hardware changeovers. 

While the cost-effectiveness and flexibility of the digital process control solution is almost universally accepted and 
recognized, it is also increasingly recognized that software flexibility may also result in greater software function 
complexity, by which logic errors of design or coding may fmd their way into a critically important software routine 
and cripple the operation of a whole system. The task of providing high assurance of the dependability and safety of 
the hnctions performed by process control sohvare is thus becoming quite difficult to accomplish, due to the very 
flexible and complex nature of the software itself. In nuclear applications, the task of software qualification for 
safety related systems, which is largely based on testing, is estimated to require a year to complete (Petrella, et a]., 
1991). 

To reduce the level of effort spent in testing without reducing the level of assurance, m k y  experts have been calling 
for more stringent and formal practices to be applied in the process of defining the software specifications for critical 
systems (Pamas, et al., 1991). While the enforcement of a more disciplined and structured process of critical 
software specification and development is certainly a must, it should also be accompanied by the development and 
use of tools to model, analyze and test control system software design specifications and implementations in the 
context of the system within which the software is meant to operate. This in fact allows the system designer to 
achieve a higher level of assurance that the system and software specifications and realization do not leave the door 
open for unanticipated, unwanted and unsafe system behavior, and permit the identification of a reference envelope 
of “system safe behavior” against which actual implemented code executions and actual system dynamic behavior 
can be tested and verified. The project documented in this report has produced the formulation of a methodology, 
called Dynamic Flowgraph Methodology (DFM), and corresponding software tools, which provide the control 
software engineer with analytical capability designed specifically to permit the achievement of the objectives just 
described. DFM can thus be added to the limited set of analytical tools which are presently available for purposes of 
critical software dependability and safety assurance. For a brief review of pre-existing tools and further discussion 
on the rationale at the core of the DFM development, the reader is referred to the report introduction contained in 

‘Chapter 1. 
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The principal accomplishment of this research are summarized below. A concise description and discussion of the 
technical issues and findings associated with these accomplishments is also provided in the remainder of this 
executive summary. 

0 The features of the DFM analytical approach have been developed and defined in all necessary detail. The 
approach is articulated in two steps, which involve, respectively, system modeling and system assurance 
analysis. These steps can be integrated with, and facilitate, the traditionalstep of system assurance-testing. The 
detailed discussion of this part of the work is contained in Chapter 2 of this report. 

0 An integrated analytical software package, which implements the DFM rocedures and algorithms, has been 
developed. This software fins on PC workstations under the Windows environment and relies on graphic 
models and user interfaces for data input and output, which directly reflect the “directed graph” representation 
at the base of DFM. A detailed presentation of the DFM Software Toolset is given in Chapter 3 of this report. 

Ti 

0 An “interim test case” (ITC) was developed and used to aid the development and finalization of DFM. The ITC 
consisted of a simple fluid storage process controlled by,a software logic and its features and functions were 
modeled and analyzed with the help of development versions of the DFM technique and software. The 
capabilities of the DFM analysis were tested by analyzing both unfaulted and faulted versions of the ITC system 
control software and by using DFM to identify the injected faults. The experience gained in the execution of this 
test-case analysis was used to identify areas of the DFM technique and tools which needed further development 
or improvement. A detailed discussion of h e  Interim Test Case is presented Chapter 4 of this report. 

0 A “demonstration test case” (DTC) was developed and used to prove the viability of the DFM methods and 
tools, as finalized in a baseline version at the end of the development phase concluded with the ITC exercise. 
The DTC consisted of a Pressurized Water Reactor (PWR) steam generator level and main feedwater control 
system, which was defmed in a software-implemented configuration. For obvious reasons, the DTC was 
exercised in a simulated version, which involved the development of fill dynamic models of the steam generator 
thermal-hydraulic behavior, as well as of the associated control elements and software. The DFM techniques 
and tools were successfully applied to the DTC and control software faults injected in the system were correctly 
identified. Important insights were collected from this application, which can be advantageously used to provide 
guidance for future utilization of the methodology. A detailed discussion of the Demonstration Test Case is 
presented Chapter 5 of this report. The insights gained from the DTC (and from the ITC) with respect to the 
application of DFM modeling and analysis are discussed in Chapter 6. Chapter 7 contains, in addition, 
conclusions and considerations regarding the future direction of DFM application and development. 

The Dynamic Flowgraph Methodology (DFM) (Garrett, et al., 1995% Yau, et al:, 1995 and Garrett, et al., 1995b) is 
a methodology specifically developed for modeling and analyzing software-controlled systems. DFM is also based 
on a systems approach towards this objective, i.e., on the principle that a thorough system assurance analysis can 
only be performed effectively if both the software afld hardware portions of the system are modeled and analyzed, 
with a well integrated understanding and representation of the overall system functions and interfaces. The basic 
execution of a DFM analysis requires a two-step process, which is also typically associated with certain software test 
procedures. The basic two steps are as follows: 

Sfep I :  Build a model of the digital control system for which a safety analysis is required. The model encompasses 
both the controlling software and the system being controlled. , 

Sfep2: Using the model constructed in Step 1, systematically identify the modes by which specific system and 
process failure states may occur (this part of the process has been fully automated in the DFM Software Toolset 
described in Chapter 3). 

If DFM-aided system-integration testing is also sought, a third step will be executed 
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Step3: Verify by integration testing, based on the results of the DFM analysis, that the digital control system 
exhibits the behavior predicted by its DFM model and, if corrections are applied to eliminate software failure modes, 
that the corrected digital control system behaves as desired. 

A DFM model expresses the logical and dynamic behavior of a generic system. If this system is a digital control 
system, both the system being controlled and the controlling software are represented in the DFM model. A DFM 
model is a network built by using detailed multi-state representations of the cause-and-effect and time-varying 
relationships which exist among the key system and software parameters. The functional mappings for different 
combinations of these parameters are presented as decision tables. The decision tables can be constructed from 
empirical knowledge of the system, from physical equations which govern the system behavior, or from available 
software code and/or pseudo code. Figure ES.l provides a relatively simple example of DFM model. More 
specifically, Figure ES.lb shows the DFM representation of the simple gas storage and pressure control system 
represented in Figure ES.la. This system is a modified version of the system used in NUREG-0492,“Fault Tree 
Handbook” to provide an example of the fault tree analysis technique. For m e r  details on the system represented 
here the reader is referred to the description given in Chapter 2. 

(a) System (b) DFM Model 
Figure ES. 1 : A Simple Digital Control System and its DFM Model 

The analysis of a DFM system model is conducted by tracing sequences of events deductively through the model 
structure, to identify the paths by which combinations of hardware and software conditions can propagate through the 
system to produce system events of interest. Deductive DFM analysis shares thus key conceptual features of fault 
tree analysis, but DFM uses a multi-valued logic (MVL), rather than binary, representation of system and parameter 
conditions. The top event of a DFM analysis can still be expressed in disjunctive form in terms of prime implicants, 
which can be considered as the MVL equivalent of the minimal cut sers encountered in binary fault trees. A prime 
implicant is a conjunction of primary events which is sufficient to cause the top event and which does not contain any 
shorter conjunction of the same events which is also sufficient to cause the top event. The prime implicants are 
unique and finite. However, finding them is a more challenging task than finding binary-logic minimal cut sets. 
Methods have been developed to obtain system prime implicants fiom component decision tables for static 
representations of systems. In DFM, the procedure for generating prime implicants has been extended to carry out 
deductive analysis across time transitions, so that dynamic representations of systems can be analyzed. DFM, 
therefore, represents a significant advancement beyond conventional fault tree analysis, as it is capable of producing, 
from one network model, MVL and time-dependent prime implicants, called “timed prime impli~ants’~ (TPIs), for a 
very large number of possible top events. The series of intermediate transition tables generated in the analysis show 
the time dependent sequence of events leading from the TPIs to the top event. Table I shows the seven prime 
implicants identified by the DFM analytical procedures for the top-event “tank pressure very high” in the system 
presented in Figure ES.1. Chapter 2 contains a detailed description of the analytical process and logic operation 
algorithms applied to carry out a DFM analysis. 
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Number 
Table ES.1: Prime Implicants for the Top Event “Tank Pressure Very High” 

Electric switch was normal a t = - 1  AND 
Prime Implicant 

3 

4 

5 

*Power was available @ t = - 1  AND 
Outlet valve was normal @ t = - l  AND 
*No manual valve command @ t = - l  AND 
*Sensor failed low a t = - 1  AND 
*Tank pressure was high @ t = - l  
Electric switch was normal @ t = - 1  AND 
*Power was available e t = - 1  AND 
Outlet valve was normal @ t = - 1  AND 
*Valve closed manually a t = - 1  AND 
*Sensor failed low @ t = - 1  AND 
*Tank pressure was high @ t = - l  
Electric switch was normal @ t = - 1  AND 
*Power was available a t = - 1  AND 
*Outlet valve failed closed @ t = - 1  AND 
*Sensor failed low a t = - 1  AND 

*Electric switch failed closed @ t = -1 AND 
*Power was available a t = - 1  AND 
Outlet valve was normal a t = - 1  AND 
*No Manual valve command a t = - 1  AND 
*Sensor failed low @ t = - 1  AND 
*Tank pressure was high @ t = - 1  
*Electric switch failed closed @ t = -1 AND 
*Power was available @ t = - 1  AND 
Outlet valve was normal @ t = - 1  AND 
*Valve closed manually @ t = - 1  AND 
*Tank pressure was high e t = - 1  

*Tank pressure was high a t = - 1  

*Electric switch failed closed @ t = -1 AND 
*Power was available @ t = - 1  AND 
*Outlet valve failed closed @ t = - 1  AND 
*Tank pressure was high @ t = - l  
*Tank pressure was very high @ t = -1 

The DFM Software Toolset is an integrated set of software tools for implementing the model construction and 
analysis procedures of DFM. This software toolset is a Microsoft Windowsm application, and is developed as an 
integration of two principal modules: the Model Editor and the Model Analyzer. A detailed discussion of the 
features of both modules can be found in Chapter 3. 

The DFM Model Editor is a graphical model building tool with which the user can create and edit DFM models. It 
converts the graphic representation of the DFM models into a set of data that can be stored in a database, and later 
used by the Model Analyzer. The Model Editor consists thus of a graphic model building environment for the user to 
create DFM models and a database structure to store information about the model created. The graphic model 
building environment provides a toolbox of. icons representing DFM modeling elements with which the user can 
build a DFM model. The user defines the structure of a DFM model by picking the modeling elements from the icon 
menu and placing them on the screen. Dialog boxes are provided for the user to define the attributes of the model. 
These model attributes are stored in the form of a“B-trieve” database structure. This database structure consists of 
two major classes of data. One class characterizes the graphic attributes of the model, the other class characterizes 
the structure attributes of the model. The graphic attribJtes specify the placement of objects on the screen, while the 
structure attributes define the structure of the DFM moc!el so that the Model Analyzer can backtrack the model 
correctly through the network and time transitions. 
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The function of the DFM Model Analyzer is to deductively analyze a DFM model to produce timed event 
sequences I fault trees and timed prime implicants for top events defined by the user. The Model Analyzer consists of 
the user interfaces and the analysis engine. ’The analysis engine is the part of the Model Analyzer which performs 
the deductive, “backtracking” steps. It carries out the steps of expanding the DFM model decision tables to form 
event-sequence intermediate transition tables, applying logic and dynamic consistency rules to remove inconsistent 
rows from the intermediate transition tables, simplifying the intermediate transition tables to obtain the “critical 
transition table”, and finally applying the logic algorithm which generates the timed prime implicants fiom the 
critical transition table. The user interfaces facilitate the defmition of the top events and the consistency rules by the 
user, and the display to the user of the intermediate transition tables and the timed prime implicants. 

The testing and demonstration of the DFM modeling and analytical approach has been executed by applying the 
technique in two realistic test cases, which are referred to as the “Interim Test Case” (ITC) and the 
“Demonstration Test Case” (DTC). The DTC, which is discussed in detail in Chapter 5, refers to the analysis of a 

’ PWR (Pressurized Water Reactor) steam generator level control system, the logic and algorithms of which are 
implemented via software. The DFM demonstration task required the development of a detailed thermal hydraulic 
simulator of the steam generator portion of the system, which in turn was recognized from the beginning as being a 
relatively lengthy and complex task. Thus, a simpler interim test case, i.e. the ITC, was conceived and constructed as 
a methodology test and development tool that would not require itself as much effort to construct as the DTC. 

The ITC was constructed to represent a realistic system that could conceivably exist and be used in an actual 
industrial application. The system was to be defined in such a way as to be easy to model and simulate in terms of its 
physical hardware behavior, yet to include a digital control system with logic and fhctional characteristics of a 
relatively high degree of complexity so that it would provide a true test for the DFM application and generate 
feedback on how DFM may need modifications and/or improvements. The system is made up of a tank level and 
flow control system, as shown in Figure ES.2. The key components and features of this system are summarized 
below: 

Figure ES.2 : ITC Digital Tank Level and Flow Control System 

A water tank, fed by water pump on the inflow pipe and regulated by control and stop valves on the inflow 
and outflow pipes. 
A 3-element (level sensor, inflow sensor, outflow sensor) tank flow and level control system, with control 
logic implemented in a software-driven controller. 
A tank bypass is allowed for emergency mode of operation (e.g., tank overflow). In this mode, the inflow 
and outflow pipes are directly connected and the tank is isolated via the actuation of the three stop valves 
located on the inlet and outlet sides of the tank piping. 
Stop-valve actuation and control logic selection implemented within the digital controller software. 

As explained in detail in the discussion of DFM features provided in Chapter 2, different levels of detailed 
representation can be chosen when executing a DFM application. A more qualitative and high level representation 
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may be entirely sufficient for a DFM analysis that is conducted at the system specification level, when only a fmt- 
tier, preliminary definition and knowledge of the system design is available. On the other hand, in the assurance or 
safety analysis of a system that is either already operational, or that has at least been. defined and designed to its 
detailed component level, the key features of the expected cause and effect and dynamic behavior of the system 
being modeled need to be known and represented in detail by the analyst, if the DFM analysis of the system is itself 
to produce results at a high degree of completeness and fidelity. Because the ITC exercise was intended to test the 
more complete set of DFM capabilities, the latter type of DFM modeling and analysis was sought, and a behavior 
simulation model of the ITC tank and piping system was developed. This simulation model was used to generate 
quantitative information on the static and dynamic, behavior of the system, which in turn were used in the 
construction of the DFM model of the system. 

The DFM model of the ITC tank level and flow control system is shown in Figure ES.3. The digital controller model 
is shown as a black box in this figure, but is expanded in full detail in Figure ES.4. The description of the variables 
that appear in the model as DFM “nodes” can be found in Table ES.11. In theITC DFM Model Analysis, which 
was executed to test the capability of DFM in a system and software assurance mode of application, several analyses 
were conducted to better understand and refine DFM features. Particularly significant among these was the one 
conducted for a situation in which a fault was intentionally injected in the control software. The fault was placed in 
the module of the software code which sets the position of the control valves and the stop valves when the measured 
water level is above the high-high set-point. Under that condition, the digital controller should normally (i.e., when 
no fault is present) close the stop valve VI, open the stop valves v2 and v3, close the upstream control valve to the 
minimum position (5%) and open the downstream control valve to the maximum position (100%). The fault has the 
effect of closing the downstream control valve to 5%. The reader should note that this branch of the code will not be 
executed unless the level is above the high-high set-point. This requires some additional hardware failure to have 
also occurred. and makes the discovery of the fault during integrated system test in the actual system unlikely, since 
it would be difficult to exercise the actual operational software under such a faulted condition. The fault could of 
course be discovered if it existed also in “off-line” copies of the software, and one of these were tested for 
compliance with specified behavior. 

n 

:igure ES.3 : DFM Model of the ITC Tank Level and Flow Control System 
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Figure ES.4 : DFM Model of the ITC Digital Controller 

The ITC DFM model was constructed without using any prior knowledge of the software error, since the DFM 
decision tables are built directly by “testing” the individual modules of the digital control software. The system 
failure was defmed as the tank “overflowing”. This translated into a defmition of the states of the pertinent DFM 
nodes as: 

{ (L = 5 @ t = 0) AND (L = 5 @ t = -1) AND (QNET = +1@ t = 0) } . 
The meaning of the above definition is that the tank level is very high in both the current and the previous time step 
and that there is a net inflow of water into the tank. In the course of the various ITC analyses that were carried out, it 
was discovered that defming the top event as specifically as possible, such as using a combination of several 
conditions across different time steps to describe the tank overflowing, would enable the analysis to be performed 
more efficiently. Defining a top event in very precise terms ensures that the DFM Model Analyzer software needs 
less computer memory to store the intermediate transition tables developed during the analysis and spends less 
computing time tracing events which are irrelevant. As a comparison, when the top event was defmed more 
simplistically as { L = 5 @ t = 0 } (the level is high at the current time step), the Model Analyzer ran out of memory 
before the analysis was completed. The care that has to be exercised in a specific and precise definition of the 
possible top events of interest is one of the key fmdings of our test cases and specific discussion of this point can be 
found in Chapter 6. Properly defmed dynamic consistency rules are also important in constraining the prime 
implicant search to the domain of true significance. The dynamic consistency rules for the ITC analysis were mostly 
defmed to reflect the assumption that if any sensor or valve fails in the system, it is expected to remain in the original 
failure state. 

The ITC analysis of the injected fault described above was carried out for one step backward in the reference time 
h e .  A “reduced form” of the prime implicant which was correspondingly identified is shown in Table ES.111. 
The software error that causes the tank to overflow is identified via its immediate effect, that is the command issued 
to the downstream control valve to its minimum position (software condition), AND the failure of the check valve 
(external condition). The reduced form of the prime implicant was obtained by the Model Analyzer fiom the fill 
fonn initially identified, by deleting from the list of conditions in the prime implicant all those conditions which 
identify the states of sensors, control valves and stop valves related to the event sequence of interest as being normal, 
i.e. none of these components are failed. 
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Table ES.11: Description of the Variables in the ITC DFM Model 
Variable 

2HV 
YPl  
Y P l P  
2VP2 
WP2P 
2VSl 
2vs2  
X V P l  
DCVP2 
DELL 
DELLP 
DELQ 
DL 
[L 
ILP 
L 
LC 
LL 
LM 
LMP 
LS 
QC 
QD 
QDM 
QDMP 

QW 

QSl 
QS2 
QU 
QUM 
QW 
QUP 
VCl 
v c 2  
vc3 
VP 1 
VP2 
VP3 
vs 1 
v s 2  
v s 3  

QDOWN 

QNET 
QOUT 

Description 
itate of the check valve 
’osition of the upstream control valve cvl 
’osition of the upstream control valve cvl in the previous cycle 
’osition of the downstream control valve cv2 
’osition of the downstream control valve cv2 in the previous cycle 
state of the upstream control valve cv 1 
state of the downstream control valve cv2 
2hange in position of the upstream control valve cvl 
Zhange in position of the downstream control valve cv2 
,eve1 error term in the software 
,eve1 error term in the software in the previous cycle 
lownstream flowrate error term in the software 
Mismatch between upstream flowrate and downstream flowrate 
htegral control term for level in the software 
htegral control term for level in the previous cycle 
Water Level in the Tank 
Jpstream valve position command 
Software representation of the water level in the tank 
Measurement of the water level in the tank 
Measurement of the water level in the tank in the previous cycle 
State of the water level sensor 
Downstream valve position command 
Downstream flowrate 
Measurement of the downstream flowrate 
Measurement of the downstream flowrate in the previous cycle 
Sofnvare representation of the downstream flowrate 
Flowrate into the tank through the inlet 
Net flowrate into the tank 
Flowrate out of the tank through the outlet 
State of the upstream flowrate sensor 
State of the downstream flowrate sensor 
Upstream flowrate 
Measurement of the upstream flowrate 
Measurement of the upstream flowrate in the previous cycle 
Software representation of the upstream flowrate 
Command to stop valve v l  
Command to stop valve v2 
Command to stop valve v3 
Position of stop valve v l  
Position of stop valve v2 
Position of stop valve v3 
State of stop valve v l  
State of stop valve v2 
State of stop valve v3 

In general, in a multi-state, non-coherent system representation such as that used in DFM, a parameter state can be 
always classified as “faulted” or “normal” only for the model parameters expressly set up to represent hardware 
failure / non-failure states. A reduced form of prime implicant can thus be obtained by not including in it the listing 
of normal states of this type of parameters. The states of process variables, on the other hand, are not definable a 
priori to be always “good” or “bad”, and consequently are always listed even in the reduced prime implicant. This is 
because a process parameter state which is “good” in a certain type of situation may become “bad” when the 



situation changes. For example, in the prime implicant in Table ES.111, the state of the upstream control valve is 
“good” (the valve is trying to reduce the tank inflow to a minimum in the presence of a potential overflow situation), 
whereas the state of the downstream valve is “bad” (since this valve is trying to reduce outflow). This classification 
of good and bad, however, would be completely reversed if we were in an opposite situation in which the tank water 
level had fallen below the minimum allowable. In essence, the state of being “commanded to close to its minimurn” 
cannot be determined for either valve to be good or bad until the context within which this happens has been 
identified. This and other key features of multi-state non-coherent logic representation are encountered in the DFM 
application examples presented in Chapters 2 ,4  and 5, and are further discussed in Chapter 6 (Section 6.3.2.3). 

Prime Implicant 

Upstream control valve commanded to close to its minimum @ t = -1 AND 
Downstream control valve commanded to close to its minimum @ t = -1 AND 

1 check valve failed open @ t = O  AND 

Tank level was very high @ t = - l  , 

The reader should note that the prime implicant in Table ES.111 is not the only cause for the tank to overflow. In fact, 
many other prime implicants can lead to the same top event, one of which is, for example, the failure of the level 
sensor in the “stuck low” mode. The prime implicant in Table ES.111, however, is the only one containing a software 
error as a contributor to producing the top event. The fact that the non-software-related prime implicants were not 
produced by the DFM analysis which uncovered this particular time implicant is due to the application of logic rules 
in the search which required the DFM Model Analyzer to only look for event sequences that did not correspond to a 
specified control system behavior. For the ITC system the system specification requires the downstream valve to be 
always commanded open when the tank level is at “high” or “high-high”. The effect of the application of these rules 
is to narrow the analysis into searching for a particular class of errors. Appropriate use of the rules allows the analyst 
to focus on particular failure paths, if he/she so desires, and to make more efficient use of the computational 
resources available for the analysis. 

The Demonstration Test Case (DTC) is discussed in detail in Chapter 5 of this report and refers to the analysis of a 
Pressurized Water Reactor (PWR) steam generator level control system, the logic and algorithms of which are 
implemented via soha re .  The case study called for a detailed analysis of the steam generator digital control 
system, which in turn required a detailed understanding of the dynamic behavior of the whole steam generator 
system. Thus, the development of a detailed thermal hydraulic simulator of the steam generator portion of the 
system was included as part of the task. 

The configuration chosen for the dynamic simulation model is that of a vertical U-tube steam generator (SG) typical 
of a Go loop Combustion Engineering Pressurized Water Reactor (PWR). The simulation model includes the Steam 
Generator, the Main Feedwater and Auxiliary Feedwater Systems, the Steam Header, the SG Pressure Control 
System, and the SG Level Control System. These systems are modeled in a considerable amount of detail, both fiom 
the thermal-hydraulic point of view (e.g., the SG model includes non-equilibrium conditions and a “level swell” 
model) and from the point of view of the equipment included in the simulation (e.g., sensors, actuators, emergency 
control devices such as the SG safety valves, etc.). This level of fidelity was sought to generate high quality 
information for the generation of the DFM models and the ensuing execution of the DFM analysis. The simulation 
model is implemented in a simulation code written in FORTRAN. 

The principal purpose of the DTC was to demonstrate the application of DFM in the analysis of a nuclear power 
plant digital control system of realistic functionality and complexity. This was accomplished by creating, as part of 
the SG system simulation effort outlined above, a digital software version of a Combustion Engineering SG level 
control system, based on the actual detailed design of an existing plant analog control system. The function of the 
steam generator level control system is to maintain the water level at a pre-defined set-point. The system, in its 
simulated representation, consists of sensors, digitalhalog @/A) and analog/digital (AD) converters, a processor 
running the control software and actuators which regulate the position of the main feed valve. The feedback control 
algorithm implemented by the software is based on a three element (proportional-integral-derivative, or PID) control 
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concept. To ensure that the integrated SG simulator (including all the subsystems identified above) behaves like an 
actual steam generator, and thus can be used as a realistic case study for DFM, the simulation code was exercised 
under five different scenarios, represenhg cominon conditions encountered by an actual steam generator control 
system: 

1. Steady state 
2. Turbine trip ’ 

3. Level sensor: failure 
4. Step power reduction 
5. Ramp power reduction 

The results of the simulation were filly consistent with the expected behavior of the actual system. 

The SG simulator was used to produce “transfer functions” between key system parameters to be included as 
“nodes” of the DFM model. In the DFM model, these transfer functions would then be transformed into DFM 
decision table mappings, as explained in detail in Chapters 2 and 5. The DFM model of the DTC system is shown in 
Figure ES.5. The control software is shown as a black box in this figure, but is expanded in full detail in Figure 
ES.6. From the figures the reader can see that the DTC model is relatively complex. For this reason, and in order 
not to burden this summary with lengthy explanatory narrative, the reader is referred to Chapter 5, Table 5.111 for the 
definition of the variables that appear in the model as DFM “nodes” and Section 5.2 for fill details on the 
construction and features of the DTC DFM model. 
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Figure ES.5 : DFM Model of the DTC Steam Generator Level Control System 

The demonstration exercise carried out with the DTC followed the same steps as in the earlier analyses carried out on 
the ITC model. This time, however, two faulted conditions were analyzed instead on one, after also analyzing many 
unfaulted conditions for model validation purposes. The first faulted-case analysis involved a software specification 
error, while the second one involved a programming error. In both cases, and just as for the ITC fault-condition 
analysis, the DFM models were constructed without using any prior knowledge of the software faults. This was 
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again possible because the parameter-mapping decision tables were built directly by executing the modules of the 
digital control software, by a process similar in execution to“software module testing”. Dynamic consistency rules 
and search boundary conditions were defined as appropriate (details are given in Chapter 5) ,  and the DFM models 
were analyzed using the Model Analyzer. In the first faulted-case analysis, the software specification error could be 
identified in a timed prime implicant for the top event “Steam Generator Ovefflowing” after backtracking through 
the model in one time step. In the second faulted-case analysis, the software programming error could be identified 
in a timed prime implicant for the top event “Steam Generator Empty” after backtracking through the model for five 
time steps. Because of the relative complexity of these analyses, and the fact that the key features of a typical DFM 
backtracking analysis have already been discussed in this executive summary in relation to the ITC, the interested 
reader is encouraged to seek in Chapter 5 (Section 5.3) the details concerning the two “faulted-case” analyses of the 
DTC model. 

n 

Figure ES.6 : DFM Model of the DTC Control Software 

In the execution of this research, and especially in the modeling and analysis activities associated with the two test 
cases, many important insights were gained in several areas of interest for the fiture application of the analytical 
techniques that we have developed and discussed. With respect to possible expanded objectives and uses of a 
DFM analysis, the principal insight is that an extension of the DFM analytical procedures to include inductive (Le,, 
marching forward, rather than backtracking, in time and cause-effect sequences) would be very useful for software 
specification and design verification purposes. The development of this analytical capability would make in fact 
easier to test specifically for whether the control software and the associated system follow a certain type of desired 
behavior which is specified in advance (e.g., whether the system reaches a controlled and stable state starting from 
certain specified initial conditions). A possible mode of execution of this type of analysis that can be applied without 
changing the current form and features of the DFM models is illustrated with a simple application example in 
Chapter 6 (Section 6.1.1). 

With respect to the applicability of DFM to other types of systems, i.e. systems other than those containing 
software exercising closed-loop continuous control actions, a point of considerable interest for nuclear safety 
applications, is whether the DFM technique is well suited for analyzing open loop control systems and software 
which implement plant safety and protection logic. Unlike closed-loop control systems that constantly apply 
mathematical manipulation of monitored parameters to provide continuous control adjustments, open loop control 
systems usually control one-shot, discrete actions associated with pre-defmed system conditions which are used as 
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discontinuous trigger-points for the actions. Typical nuclear plant examples of such systems are the safety injection 
system and the reactor trip control system. An answer to this question can be given at a broad level by observing that 
the basic elements of DFM can be used to model any causality driven behavior. Thus, DFM can be applied to 
analyze a broad variety of systems, including open loop control systems, be they implemented in software or not. 
Indeed, the choice of closed loop systems as the principal focus of this study was made because, due to their dynamic 
characteristics, they are more difficult to analyze from the behavior-assurance point of view than open loop systems. 
Open loop protection systems were, to a degree, directly addressed in this study, since the test cases discussed in 
Chapters 4 and 5 actually dealt with systems in which open loop logic was intermixed to closed loop feedback 
control (e.g., the mode-of-control switch and irip logic included with the control of the water tank system discussed 
in Chapter 4). Indeed, two of the three“fau1ted-software” analyses carried out in the study deal with situations in 
which a “discrete software switch” is incorrectly triggered or actuated. The experience of modeling these systems 
provides practical evidence, and confidence, that applications of the DFM methodology to the verification and safety 
assurance of complex open loop control and safety should not pose any unexpected difficulties. If anything, the 
multi-valued and time-dependent logic modeling capability of DFM should provide an advantage over the traditional 
binary logic analytical tools presently used, in the modeling and analysis of those open loop control systems that, 
because of issues of relative timing of triggers d o  actions or because different actions may be associated with 
‘different “trigger-ranges” of a process parameter (or combinations of parameters), present greater complexity. A 
discussion of these issues can be found in Section 6.2.1. A further observation which appears relevant is that the 
potential DFM capability for inductive analysis, Le., the analytical mode of application that generates and verifies 
forward-transition relations, as briefly presented and discussed in Section 6.1.1, can be used to verify that an open 
loop system will do what it is designed to do. That is, an automated inductive analysis of the DFM model of a 
reactor trip control system can be used to generate transition relations for all the possible execution paths and check 
that the execution sequences are followed exactly as desired and specified. 

Insights have also been obtained regarding the possible modes of optimization of the DFM modeling, analysis and 
testing procedures. These insights are discussed in Section 6.3 and regard technical issues that are of interest to 
users of DFM at the application level. 

In the area of modeling, it was observed that DFM “templates” (Le., standard DFM model mini-modules) can be 
applied for certain control and hardware components that appear in systems in a recurring fashion (e.g., the elements 
of a PID-logic controller). 

In the area of analysis procedures, an important insight was that the top-event of a deductive DFM search can be 
more advantageously defined as a combination of parameter conditions (if appropriate to express it in this fashion), 
rather than as a condition expressed in term of a single parameter. This in fact may save considerable amounts of 
memory and execution time resources to the DFM Model Analyzer Software. Another very important insight regards 
the way in which the results of a DFM analysis may be presented and interpreted. More specifically, it is important 
to note that many software faults are identifiable not directly as basic conditions that are part of a “prime implicant” 
logic definition, but only via the observation of the actual sequence and logic path to the top event associated with the 
prime implicant itself. This is because, unlike for hardware failure modes, it is impractical to pre-define software 
faults as states of independent software parameters. On the contrary, most software faults are represented by 
“faulted” cause-effect mappings between software parameter states, which are, when considered by themselves, 
neither “good” nor “bad.” This requires the analyst to examine carefully the sequences originated by a prime- 
implicant condition, and compare them with a reference model of “good behavior” in order to pinpoint the fault. 

In the area of testing procedures the insights regard the relation of “module testing” and “system integration 
testing” with the modeling and analysis phases of a DFM application, respectively. More specifically, the equivalent 
of software module testing is practically carried out during the construction of the DFM decision tables that provide 
the software parameter state mappings needed for the full definition of the“transfer boxes” and “transition boxes” 
which appear in the DFM model of a functional software unit. Thus, in a software assurance activity involving the 
application of DFM, the process of DFM software model building can cover software module testing activities 
without additional effort. In fact, while exercising individual software modules in order to obtain the input - output 
parameter mappings needed for the construction of the DFM decision tables, the analyst can also compare these 
mappings with the existing module specifications and verify their correspondence to the latter, which is what 
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"module-testing" essentially consists of. System integration testing, on the other hand, can greatly benefit from the 
information provided by the DFM deductive analyses, since these can identify faulted conditions that result from the 
combination of both system hardware and software states, as well as fiom software dynamic conditions that could be 
missed in setting up the integration test envelopes that are to be executed in the assurance activity. When the DFM 
analysis identifies prime implicants corresponding to these conditions, this information can be used to set up tests 
that can reproduce them or simulate them, for both the purpose of confirming their existence and defining more 
precisely the corresponding range of system parameter values (in their actual continuous domain, rather than in its 
discrete DFM approximation). 

In conclusion, at the end of the research and studies documented in this report, the DFM methodology has been 
developed to the level of being applicable to software-driven control systems of considerable complexity. This 
results both from the successful demonstration of its basic features and capabilities in two realistic, application-scale 
test cases and from the development of engineering-workstation sohvare that implements and partially automates the 
execution of a desired analysis. Further refinement of the DFM tools will be conditional upon user feedback fiom 
field applications. 
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1 INTRODUCTION 

This report presents a new methodology, the Dynamic Flowgraph Methodology (DFM), and the software tools for 
implementing DFM that were developed to address the requirement of tools for safety analysis of digital control 
software which will be used in advanced reactors. The methodology and software development was carried out as 
the NRC SBIR Phase I1 project titled “Development of Tools for Safety Analysis of Control Software in Advanced 
Reactors”. 

The ensuing sections in this chapter present the background that leads to the requirement of tools for safety analysis 
of control software and the objectives pursued in the development of DFM. The rest of the report presents the 
development of the methodology, the development of the software and the findings and insights gained in the Phase 
XI research. 

1.1 Issues Associated with the Use of Digital Control Systems 

Digital control systems can be defmed as systems in which mechanical and physical devices are controlled and 
managed by dedicated digital processors and computers. These latter devices, in turn, execute software routines 
(often of considerable complexity) to implement specific control functions and strategies. When the computer takes 
the form of a microprocessor which is physically associated with the remainder of the system, the term “embedded 
system” is also used (although it should be noted that very often the distinction between the term “digital control 
system” and the term “embedded system” disappears altogether in the day-to-day technical language usage). Digital 
control systems have gained a pervasive presence in all types of applications, from the defense and aerospace to the 
medical, manufacturing, and energy fields. The great advantage of using computers as process controllers is in the 
almost unlimited flexibility provided by the software implementation of system control functions and by the 
computational power and speed of the modem microprocessor devices. As a result, very sophisticated and complex 
logic can be executed by relatively inexpensive microprocessors loaded with the appropriate software instructions. 
The originally implemented logic can also be modified at any point in the life of the system it is designed to control 
by uploading new software instructions. 

Software based process control, after a slow start, is finding increased use in the nuclear industry, even in the safety- 
related areas that are of most direct concern to a regulatory agency like the U.S. Nuclear Regulatory Commission. 
Reactor Protection System ( U S )  algorithms and logic are software-implemented in Combustion Engineering nuclear 
power plants, as well as in many of the CANDU Canadian reactors. Current designs for the latest generation of 
nuclear power plants -- such as the Westinghouse AP600, the General Electric ABWR and SBWR and the CANDU 3 -- and for advanced nuclear enrichment processes - such as the Laser Isotope Separation (LIS) demonstration plant - - rely on the use of digital computers and associated software to accomplish a wide variety of process control tasks, 
such as continuous regulation of key plant physical parameters, component statis monitoring and diagnosis, 
process/operator interfaces, and emergency shutdown (Parnas, et ai., 1991, Taylor and Sun, 1990, Vijuk and Bruschi, 
1988, Petrella, et al., 1991 and Rippon, 1990). 

While the cost-effectiveness and flexibility of the digital process control solution is almost universally accepted and 
recognized, it is also increasingly recognized that the task of providing high assurance of the dependability and safety 
of the functions performed by process control software is becoming quite difficult to accomplish, due to the very 
complicated and flexible nature of the software itself. In nuclear applications, the task of software qualification for 
safety related systems is estimated to require a year to complete (Petrella, et al., 1991). Even with such a level of 
effort, all potentially serious errors may not be identified by the current industry practices, based almost entirely on 
testing, so that several experts are calling for more stringent practices to be applied in the process of defining the 
software specifications for critical systems (Parnas, et al., 1991). The problem is considered serious enough at the 
higher levels of U.S. nuclear safety policy making that the Advisory Committee on Reactor Safeguards (ACRS) of 
the U.S. Nuclear Regulatory Commission has formed a special subcommittee to understand what the safety policy 
implications of this issue may be and what policy making recommendations should, accordingly, be made (Boenhert, 
1990). 
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A sobering reminder of how serious digital process control software problems can be in terms of critical system 
safety was given by the incident which occurred at the Canadian Bruce4 CANDU reactor in January 1990, which 
was the result of a programming error in the software used to control a reactor refueling machine (Boenhert, 1990). 
Because of this error, the control computer, after suspending execution of the main refueling machine positioning 
control subroutine while executing a fault-handling subroutine triggered by a minor fault condition detected 
elsewhere during the refueling process, returned to execution in the wrong segment of the main subroutine, Because 
of this software error, the refueling machine, which was at the time connected to one of the fuel channels of the 
pressure-tube reactor, released its brake and dropped its refueling assembly by about three feet, producing serious 
damage to the refueling assembly itself and to the fuel channel, and causing loss of coolant from the fuel channel. 

In essence it must be recognized that the flexibility and power of control logic implemented in digital control system 
software has a dangerous back-side. Great software complexity means that logic errors of design or coding may find 
their way into a critically importantesoftware routine and cripple the operation of a whole system. While the 
enforcement of a more disciplined and structured process of software specification is certainly a must for safety- 
critical systems (Pamas, et al, 1991), this must also be accompanied by the development of tools to model, analyze 
and test digital control system software design and implementation in the context of the system within which the 
software is meant to operate. This will allow the system designer to achieve a sufficient level of assurance that the 
system and software being developed and integrated do not leave the door open for unwanted and unsafe system 
behavior, and would permit the identification, at a verified system specification and software specification level, of a 
reference envelope of “system safe behavior” against which actual implemented code executions and actual system 
dynamic behavior can be tested and verified. Analyzing and predicting digital control system behavior is especially 
important in light of the “discontinuous” nature of software errors, that is, the unforgiving attribute by which very 
“low level” software errors, such as the misreading of a single digit in a data structure, may produce large and 
catastrophic errors in the computer output used to drive and control the interfacing system hardware. Besides the 
nuclear plant incident cited above, far more serious failures in digitally controlled systems, caused by obscure 
software errors originating at very low programming or logic design levels, have indeed occurred, with consequences 
ranging from the very large financial losses produced by the half-collapse of a continental U.S. telephone network to 
lives lost because of the radiation overdoses meted out by the faulty control system of a medical cancer therapy 
machine (Neumann, 1985). These very serious occurrences have produced a growing awareness that in today’s 
digital control systems the issues of reliability and safety for software can no longer be treated as if they played a 
secondary role with respect to issues concerning hardware reliability and safety. 

1.2 Current Practices in Ensuring Safety of Digital Control Systems 

Although the recognition is growing that it would be very desirable, for reliability and safety assurance purposes, to 
integrate in one process the modeling and analysis of the hardware and software components of a digital control 
system (Guarro, et al., 1990), the current state of the art does not offer practically implementable blueprints for such 
an approach. The approaches that have been proposed and/or developed in the past generally follow the philosophy 
of separating the hardware and software portions of the assurance analysis. The hardware reliability and safety 
analysts evaluate the hardware portion of the problem under the artificial assumption of perfect software behavior. 
The software analysts, on the other hand, usually attempt to verify or test the correctness of the logic implemented 
and executed by the software against a given set of design specifications, but do not have any means to verify the 
adequacy of these specifications against unusual circumstances developing on the hardware side of the overall 
system, including hardware fault scenarios and conditions not explicitly envisioned by the software designer. 

Currently, digital control system software assurance is not treated much differently from that of any other type of 
software for real-time applications (such as communications software). Three principal types of software assurance 
philosophies can be recognized in the published literature, which we briefly attempt to describe and discuss below. 

Assurance by testing, with or without the aid ofreliability growth models is the most common approach. Testing is 
often performed by feeding random inputs into the software and observing the produced output to discover incorrect 
behavior. Software reliability models have been proposed to aid the testing strategies (Goel, 1985), although the 
applicability to software of reliability models extrapolated from the hardware reliability realm is seriously 
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’ questioned, even from within the software reliability research community itself (Littlewood and Miller, 1990). 
Software reliability models have not had a great impact so far in reducing the quantity and cost of software testing 
necessary to achieve reasonable assurance of correct behavior. 

Formal verification is another approach to software assurance that applies logic and mathematical theorems to 
prove that certain abstract representations of software, in the form of logic statements and assertions, are consistent 
with the specifications expressing the desired software behavior. Recent work has been directed at developing 
varieties of this type of technique specifically for the handling of timing and concurrency problems (Narayana and 
Aaby, 1988 and Razouk and Gorlick, 1989). The abstract nature of the formalisms adopted in formal verification 
make this approach rather difficult to use properly by practitioners with non-specialized mathematical backgrounds. 
This practical difficulty is compounded by the growth in complexity and size of the process control software of the 
present generation. Finally, the issue of modeling and representation of hardware/software interaction, which we 
consider an important open issue in digital control system assurance analysis, does not appear to have surfaced as one 
of the current objectives of formal verification research. 

The third type of approach to software assurance is one that analyzes the timing and logic characteristics of software 
executions by means of discrete state simulation models, such as queue networks and Petri-nets (IEEE Computer 
Society, 1985, Morgan and Razouk, 1987, Murata, 1989 and Leveson and Stolzy, 1987). Simulated executions are 
analyzed to discover undesirable execution paths. Although this approach can be extended to model combined 
hardware/software behavior (since the hardware behavior can in principle be approximated in terms of transitions 
within a set of pre-defmed discrete states), difficulties arise from the “march-fonvard” nature (h time and causality) 
of this type of analysis, which forces the analyst to assume knowledge of the initial conditions from which a system 
simulation can be started. In large systems, many combinations of initial states may exist and the solution space may 
become unmanageable. A different approach, which reverses the search logic by using fault trees to trace backward 
fiom undesirable outcomes to possible cause conditions, offers an interesting solution to this problem, but encounters 
difficulties due to limitations in its ability to represent dynamic effects, and to the fact that a separate model needs to 
be constructed for each software state whose initiating causes are to be identified (Leveson and Harvey, 1983 and 
Cha, et al., 1988). 

All the methods discussed above have merit, but none direct a special effort toward the philosophy of developing a 
“systems approach” to tackle the central issue of integrated hardware-software analysis in digital control system 
assurance. Useful elements of this philosophy can be found in Leveson and Harvey, 1983 and Jaffe, et al., 1989. In 
Phase I of the research, the authors had outlined an approach embracing this philosophy which combines features of 
an existing technique, namely the Logic Flowgraph Methodology (LFM) (Guarro and Okrent, 1984), with discrete 
state transition models, thereby solving the problem of providing an inductive (Le., reverse causality backtracking) 
analysis capability while at the same time also providing the ability to keep track of the complex dynamic effects 
associated with sequential and time dependent software executions and digital control system behavior. In research 
conducted over the past decade, the principal investigator, working in cooperation with a UCLA research team in the 
Mechanical, Aerospace and Nuclear Engineering Department, has successfully demonstrated the usefulness of LFM 
as a tool for computer-automated failure and diagnostic analysis which shows broader potential applicability and 
efficiency than most other approaches that have been proposed for such objectives. As part of the LFM research 
effort, models of nuclear power plants and space-systems (Guarro, 1988 and Tmg, 1990) have been derived; in 
addition, procedures to be applied in an expert system capable of assisting an analyst in the construction of LFM 
models have been identified (Guarro, 1987). 

1.3 Objectives Pursued in the Development of DFM 

The ultimate goal of this research is the development of a modeling environment and analytical framework that will 
enable the execution of a practically implementable process of verification and validation for software that is devoted 
to critical process control and safety functions. Verification and validation of critical software fbnctions is an issue 
of great relevance for the approval and licensing of the new advanced designs that are being proposed for the next 
generation of nuclear power plants, as well as for the approval of digital upgrades that are presently being proposed 
and implemented in the control systems of existing plants. The principal objectives that were pursued in the Phase I1 
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research, are the development a set of implementation tools for this approach which will include application 
procedures and guidelines, as well as a self-contained software package embodying these procedures and the 
fimctionality/productivity features needed to make possible and simplify the use oftthe approach. After such an 
approach and associated “application package”.are developed, they would be very useful as a means of assuring the 
dependability and safety of nuclear plants and installations with respect to the new set of problems posed by the 
extensive use of software in process control and supervision tasks, both in the commercial and government sections 
of the U.S. nuclear enterprise. Thus, we expect that the “application package”, implemented as self-contained 
software, could be fully commercialized in Phase 111. 
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2 THB DYNAMIC FLOWGRAPH METHODOLOGY @FM) 

This chapter describes, in detail, the formulation of the Dynamic Flowgraph Methodology (DFM) as it was 
developed under the Phase I1 research effort. The discussion begins with a presentation of the methodology’s basic 
features, and then proceeds to describe the fundamental elements of the DFM modeling framework and how these 
modeling elements can be applied in the safety assurance of digital control systems. A tutorial example of DFM 
application to a simple control system is given in Section 2.5 to illustrate how the individual modeling and analytical 
features of the methodology work together and can be used in an actual task. While more complete and realistic 
applications are presented and discussed later in the chapters dedicated to the description of the two “test cases” 
that were selected for this project, the example in Section 2.5 is intended specifically for the readers who are not yet 
familiar with the DFM methodology and may find it useful to trace the conceptual and practical steps of a typical 
DFM analysis without the complication introduced by the larger amounts of detailed information and details 
generated in the analysis of more complex systems. 

2.1 Overview of DFM 

The DFM approach (Garrett, et al., 1995% Yau, et al., 1995, Garrett, et al., 1995b) is essentially based on 
representing the system which is the object of the analysis in a “digraph” (directed graph) model, which is enriched 
with the explicit identification of the cause-and-effect and timing correspondences among the significant states of the 
parameters that are best suited to describe the system behavior. Once such a model has been produced, automated 
deductive or inductive algorithms that are built into the methodology can be applied to it. The deductive procedures 
that are discussed later in this chapter are applied to identify how system level states -- which may represent specific 
conditions of interest, be they success, anomaly or failure states -- can be produced by any combinations and 
sequences of basic component states. Conversely, inductive procedures can be applied to the same model, to 
determine how a particular basic component state can produce various possible sequences and system-level states. 
Thus, DFM can provide the multi-state and time-dependent equivalent of both fault tree analysis (FTA) and failure 
mode and effect analysis (FMEA), with the advantage that, once the DFM model of a system has been developed, 
the DFM system model already contains all the information necessary for the automated execution of these analyses 
for any system condition of possible interest. This can be compared, for example, with the execution of FTA, in 
which each system “top event” requires a separate manual analysis. 

It is also worthwhile noting that, although the focus of this study is the application of DFM modeling and analysis to 
digital control systems, DFM, as a modeling and analytical tool, is very general in nature and can be applied to any 
kind of causality-driven system, whether such a system contains software subsystems or not. 

The scope of the work discussed in this report is limited to the development and demonstration of DFM deductive 
analysis, as applied to digital control systems assurance. In this context, the application of DFM is typically a two- 
step process or, if DFM-aided system-integration testing is also sought, a three-step process, as follows: 

Step 1: Build a model of the digital control system for which a safety analysis is required. The model 
encompasses both the controlling software and the system being controlled. 

Step 2: Using the model constructed in Step 1, search for the manner in which specific system and process 
failure states may occur as the result of the propagation through the system of perturbations 
produced by basic “root cause” events (such as system component faults or manifestations of 
process-control logic errors). 

Step 3: Verify by integration testing, based on the results of the DFM analysis, that the digital control 
system exhibits the behavior predicted by its DFM model and, if corrections are applied to 
eliminate software failure modes, that the corrected digital control system behaves as desired (the 
latter may require DFM analysis iteration to obtain predictions of corrected software behavior 
before the second cycle of testing). 

5 



As mentioned above, the first step consists of building a model of the digital control system that encompasses both 
the representation of the controlling software and the representation of the physical system being controlled. The 
model expresses the principal time dependent aspects of the system behavior and the functional relationships among 
the physical and software variables. The second step uses the model developed in the first step to identify logical 
combinations of “root cause” events (expressed in terms of hardware and/or software conditions) that cause certain 
specific system states of interest for which the analysis has been targeted, and the time sequences according to which 
these conditions come about. The system states for which the root causes are sought can be desirable or undesirable, 
depending on the objective of the analysis. This is accomplished by backtracking through the DFM model of the 
digital control system in a systematic, specified manner (which has been fully automated in the DFM Software 
Toolset described in Chapter 3), and by expressing the conditions that cause the system events of interest in the form 
of timed prime-implicants and timed fault (or success) trees. It should be noted that once a DFM system model is 
constructed, it can be analyzed to produce many timed fault trees; that is, the same model can be used repeatedly to 
check many different system states of interest. The information contained in the fault trees that describe the 
hardware and software conditions that can lead to system states of interest can be used to uncover undesirable or 
unanticipated softwarehardware interactions, thereby allowing improvement of the system design by eliminating 
unsafe software-execution paths. This same information can be used in the third step to guide functional and system- 
integration testing to focus on particular domains of inputs and system conditions that are identified by the DFM 
analysis as potentially leading to undesired system behavior. 

A discussion of some of the conceptual underpinning of DFM-assisted testing is given in Section 2.4. It is useful, 
however, to note up fiont that the application of DFM to systems containing software is inherently tied to software 
testing and that DFM is intended to assist testing by intermixing the testing steps with analysis steps that allow a 
more efficient use of the limited resources available for testing within a specific project. As will become apparent 
later through the discussion of the test cases in Chapters 4 and 5, a key step in the construction of a detailed DFM 
software model involves testing the individual modules of the software. In particular, the specific elements of a 
DFM model that describe the behavior of system software modules (these elements in the DFM nomenclature 
usually consist of “transfer boxes” a d o r  “transition boxes”, as described in Sections 2.2:1.3 and 2.2.1.6) can be 
defmed by test-executing those software modules. Thus, when modeling a system that includes actual software, 
“module testing” -- which itself constitutes the basic first step of standard software testing procedures -- becomes an 
integral part of the above mentioned frst  step of DFM application (Le., the “system modelin2 step). After the 
second, “system analysis” step is completed, the DFM analysis results provide the information necessary for 
integrating these module testing results with the model of the operating environment of the s o h a r e  (i.e., the model 
of the “hardware” and “external world interface” portion of the system), so that intelligent boundary conditions are 
identified by this analysis to test the integrated system. In fact, testing the software under all possible system 
conditions is practically impossible, but testing it only under the standard operating conditions is most likely not 
enough to guarantee the reliability and safety of the software. DFM provides thus a way to systematically identify 
the boundaries and the exception conditions for which system-level testing is most needed, and where the testing 
resources can be best applied. This issue will be M h e r  elaborated in the discussion of DFM-driven testing later in 
this chapter (Section 2.4) and in Section 6.3.3, which discusses frndings and insights derived fiom the application of 
DFM to the two test-cases presented in Chapters 4 and 5. 

2.2 Framework for Model Construction (Step 1) 

A’ DFM model expresses the logical and dynamic behavior of a generic system. If this system is a digital control 
system, both the physical system controlled by the software and the controllhg software itself are represented in the 
DFM model. A DFM model is an integration of a “time-transition network”, a “causality network” and a 
“conditioning network”, which is built by uskg detailed multi-state representations of the cause-and-effect and time- 
varying relationships that exist among the key system and‘software parameters. Figure 2.1 shows a simple gas- 
storage system with its associated pressure control system, ;which we2can assume for the sake of our discussion to be 
implemented by a simple digital control module, although‘ for’the introductory nature of the discussion of DFM 
features that is sought in this chapter very little would change if we assumed the control system to be implemented 
by some sort of hardwired logic functions. Figure 2.1 also shows the DFM model of the integrated system. 
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Although the nature and features of this system will be discussed in detail in Section 2.5 to illustrate how DFM 
modeling and analysis steps can be executed in a typical, though simplified, application, discussing the DFM 
modeling concept and building blocks within the context of this simple system should enhance the reader’s 
comprehension of DFM. The reader is encouraged to jump ahead to Section 2.5 to gain a better understanding of this 
simple system. 

(a) System (b) DFM Model 
Figure 2.1 : A Simple Digital Control System and its DFM Model 

The networks mentioned above are constructed from the DFM modeling elements. These modeling elements, as 
well as the manner in which they are assembled to form the three networks of a DFM model, are discussed below. 

2.2.1 DFM Modeling Elements - 

A DFM model makes use of certain basic modeling elements to represent the temporal relations and the logical 
relations that exist in the system and the associated software. More specifically, a DFM model integrates a “time- 
transition network” which describes the sequence in which software subroutines are executed and control actions are 
carried out, a “causality network” that shows the functional relationships among key hardware and software 
parameters, and a “conditioning network” which models discrete software behavior due to conditional switching 
actions and discontinuous hardware performance due to component failures. The building blocks of these three types 
of networks are process variable nodes, condition nodes, causality edges, condition edges, and transfer/transition 
boxes and their associated decision tables. These basic modeling elements are shown in Figure 2.2. 

2.2.1.1 Process Variable Nodes 

Process variable nodes represent physical and software variables that are required to capture the essential functional 
behavior, continuous or discrete, of the digital control system. For example, the process variable node TP in Figure 
2.1 represents the pressure in the gas tank. 

A variable represented by a process variable node is discretized into a number of states. The reason for the 
discretization is to simplify the description of the relations between different variables. The choice of the states for a 
process variable node is often dictated by the logic of the system. For instance, it is natural to set a state boundary at 
a value that acts as a trigger point for a switching action or a value that indicates the system is progressing towards 
failure. The number of states for each variable must be chosen on the basis of the balance between the accuracy of 
the model and the complexity introduced by higher numbers of variable states. 
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For example, using the process variable node TP in Figure 2.1 for illustration, -this parameter represents the tank 
pressure and it can vary fiom very low to very high. TP is discretized into 5 states, and the discretization scheme of 
this process variable node is shown in Table 2.1. This scheme reflects the knowledge that state 1 signifies very low 
pressure and the tank is almost empty. State 2, state 3 and state 4 represent low pressure, normal pressure and high 
pressure respectively, while state 5 corresponds to dangerously high pressure, which can cause the tank'to burst. In 
addition, the state boundary between 2 and 3 is set to correspond to the trigger point where gas inflow is activated to 
replenish the tank. -Similarly, the boundary between states 3 and 4 corresponds to-the set-point for opening the relief 
valve to decrease the pressure in the tank. 

State 
1 
2 

4 3  
4 
5 

@ Process Variable Node 

Description 
Tank pressure is very low 
Tank pressure is low 
Tank pressure is normal 
Tank pressure is high 
Tank pressure is very high 

Conditioning Node :El 
, Transfer~ox 

Transition Box - CausalityEdge ~- - 

- --- w Conditioning Edge 

3gure 2.2 : The Basic DFM Modeling Elements 

I 

2.2.1.2 Causality Edges ' I 

Causality edges are used to connect process variable nodes to indicate the existence of a cause-and-effect re.dtc.mship 
between the variables described by the nodes. For example, the causality edges (a), (b) and (c) in Figure 2.1 show 
that the value of the process variable NGF (net gas flow into the tank) is directly related to the values of the process 
variables IGF (gas inflow into the tank) and OGF (gas outflow through the valve at the top of the tank). The precise 
nature of the functional relationship (or the transfer function) is described by a transfer box that is always directly 
associated with each causality edge (please see discussion in Section 2.2.1.3 below). 

2.2.1.3 Transfer Boxes and Associated Decision Tables 

A transfer box represents a transfer function between process variable nodes. The quantification of the transfer 
function, i.e., the manner in which the states of the input process variable nodes are correlated with those of the 
output process variable nodes, is described by decision tables associated with each transfer box. 

A decision table is associated with each transfer box and is used to quantify the relationships between its input and 
output process variable nodes. This table is a mapping between the possible combinations of the states of the input . 
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process variable nodes and the possible states of the output process variable nodes. Decision tables are extension of 
truth tables in that they allow each variable to be represented by any number of states. These tables have been used 
in e&lier developments to model components of engineering systems (Salem, et al., 1977; Salem, et al., 1979; 
Henley and Kumamoto, 1992). 

Because each transfer box input or output variable is a vector of states, and each combination of input states maps to 
a state of each of the output variables, each decision table is actually a multi-dimensional matrix whose dimension is 
equal to one plus the number of its inputs. For simplicity and convenience of representation, all decision tables can 
be reduced to a two-dimensional form. In this simplified form, there will be a column for each input variable and a 
column for each output variable of interest. For example, in Figure 2.1, transfer box 33 links the input nodes IGF 
and OGF to the output node NGF. IGF is discretized into 2 states (O,l), as is the other input node OGF (OJ), while 
the output node NGF is discretized into 3 states (-l,O,+l). Hence in the decision table, there are 3 columns (1 for 
each of the two inputs and 1 for the output). The decision table in Table 2.11 shows the output states produced from 
different combinations of the states of the inputs. 

Table 2.11 : Decision Table for the Transfer Box T3 in Figure 2.1 
IGF OGF NGF 
0 0 0 
0 1 -1 
1 0 +1 
1 1 0 

Decision tables can be constructed from empirical knowledge of the system, from physical equations that govern the 
system behavior, or from available software code andor pseudo code. Building decision tables with empirical 
knowledge and/or the pseudo code provides a means of modeling the intended behavior of a system, and thus allow 
analysis to be performed on the specifications or the design concept, even before the system exists. On the other 
hand, using physical equations and running module testing to fill the decision table rows with detailed inputloutput 
state mappings creates a model reflecting the actual behavior of the system, thus enabling the actual system to be 
verified. The accuracy of the decision tables is crucial for the analysis because it directly correlates to the fidelity of 
the model (its ability to predict system behavior). Hence, to keep decision tables from growing too big, a judicious 
selection of the number of states into which each node is discretized should be made, without at the same time losing 
too much of the more detailed system-behavior information. 

2.2.1.4 Condition Edges 

Unlike causality edges, condition edges are mostly used to represent true discrete behavior in the system. They link 
parameter nodes to transfer boxes, indicating the possibility of using a different transfer function to map input 
variable into output variable states. For example, as shown in Figure 2.1, depending on the value of the parameter 
VS (unfaultedfaulted state of the valve), the output OGF (gas outflow through the valve) can be proportional to the 
input VX (valve position), or OGF can be stuck at minimum or maximum values regardless of VX. 

2.2.1.5 Condition Nodes 

Condition nodes, like process variable nodes, represent physical or software parameters. However, condition nodes 
are used in DFM to more explicitly identify component failure states, changes of process operation regimes and 
modes, and software switching actions. Condition nodes represent variables that can affect the logic superstructure 
of the digital control system by modifying the causal relations between the process variable nodes. Condition nodes 
that are linked to causality edges and upstream process variable nodes are at the same time process variable nodes as 
well as condition nodes, but condition nodes whose states are not determined by other upstream process variable 
nodes are treated in DFM as “random variables”, Le., as variables that can be assumed to be in any of their possible 
states. In the latter case, a distribution of “relative frequency” of the associated states could also be assumed, for 
purposes of probabilistic quantification. For example, node VS in Figure 2.1 is a condition node that is not affected 
by any upstream process, as the failure of the valve is assumed to be a random event and is not explicitly modeled. It 
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should be noted that the effect of a condition node on an output variable is modeled through a decision table, as is the 
case for a process variable node. The reason for having the added modeling elements of condition nodes and 
condition edges is to offer a clear distinction between continuous and discontinuous behavior in a system. 

2.2.1.6 Transition Boxes and Associated Decision Tables 

Transition boxes are similar to transfer boxes in that they connect process variable nodes to indicate cause-and-effect 
relationships. Condition nodes can be associated with transition boxes to represent discontinuous behavior between 
the input and output process variable nodes. Decision tables are again used to describe the relationships between the 
input and output process variable nodes. However, transition boxes differ fiom transfer boxes in the essential aspect 
that a time lag or time transition is assumed to occur between the time when the input variable states become true and 
the time when the output variable state($ associated with the inputs is(are) reached. This time delay is a 
characteristic of the transition which is being modeled and is treated as an attribute of the transition box. For 
example, in Figure 2.1, the transition box l T 1  indicates that a new value of TP (an updated value of the tank 
pressure) depends on the value of NGF (the net gas flow into the tank) and the old value of TP (the tank pressure at 
the previous clock cycle). Transition boxes are routinely used to model the execution of software routines and the 
handling of interrupts, which often play an important role in the execution flow of digital control systems software. 
They can of course also be used to model hardware time transitions.. 

2.2.2 Model Construction and Integration 

To construct a DFM model for a digital control system, the fust step is to select the physical components and the 
software functions that are to be included in the model. Following that, the physical parameters and s o h a r e  
variables that capture the essential behavior of these components and software functions are identified and 
represented as process variable nodes. These process variable nodes are then linked together by causality edges 
through fransfer boxes or transition boxes to form an integrated “causalityyy and “time-transition” network. Discrete 
behaviors such as component failures and logic switching actions are then identified and represented as condition 
nodes, which are tied to transfer boxes and transition boxes expressly to show how a “conditioning network” of 
discrete actions and events actually interacts with and affects the integrated “causality” and “time-transition” 
network. The parameters represented by the process variable nodes and condition nodes are discretized into 
meaningful states, and decision tables are constructed to relate these states. The decision tables can be constructed 
by empirical knowledge of the system, from physical equations that govern the system behavior, or fiom available 
software code and/or pseudo code. The completed DFM model then reflects the essential causal, temporal, and 
logical behavior of the digital control system. The example discussed in Section 2.5 will illustrate how these steps 
are carried out. 

2.3 Framework for Model Analysis (Step 2) 

2.3.1 Introduction to Fault Trees and Cut Sets 

The analysis of a DFM system model constructed according to the rules described above (Step 1) is, in the 
applications of interest to this study, conducted by tracing sequences of events backward fiom effects to causes (i.e., 
“deductively”) through the model structure, to identi@ the paths and the order by which combinations of hardware 
and/or software conditions can propagate through the system to produce system events of interest. This kind of DFM 
analysis thus shares many of the conceptual features of fault tree analysis. A fault tree is a graphical model that 
represents the combinations of individual component failures which can lead to the occurrence of an overall system 
failure (referred to as the top event). In conventional binary fault tree analysis, once a fault tree has been developed, 
Boolean algebra can be used to reduce the tree to a logically equivalent mathematical form in terms of the tree 
minimal cut sets. A cut set is defined as a set of events that, if they all occur, will lead to the top event. A minimal 
cut set is a cut set that does not contain any other cut set as a subset. The removal of any event from a minimal cut 
set would cause it to no longer be a cut set. 
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To illustrate the above in formal notation, let Xmp be an indicator variable for the top event. An indicator variable 
can take the value of either 0 or 1 (0 if the top event is false, and 1 if it is true). Similarly, let X:? be an indicator 
variable for the i-th primary event in the j-th minimal cut set. Then the indicator variable for the j-th minimal cut set, 
MCSj, is a monomial that can be expressed as the conjunction of the indicator variables of its primary events: 

n 

MCSj = ,,’) 
1 

where n is the number of primary events in the j-th minimal cut set. The indicator variable for the top event can then 
be expressed in disjunctive form as: 

m 

x, = 1-n<1- MCS,) (Eq. 2.2) 

A useful property of binary fault trees is that, if the binary variables that appear in them are appropriately defmed, 
the formula that expresses the top event as a function of the basic events, equation (2.2), shows that when a basic 
event variable changes from the value 0 to the value 1 (Le., in the customary conventions, from the unfaulted to the 
faulted state) the top event variable can remain at the value 0 or change fiom 0 to 1 (if it was at 0 before the basic 
event change), or remain at the value 1 (if it was already at 1 before the basic event change), but never go from 1 
back to 0. A binary logic tree or fimction that displays this type of behavior is called a “coherent” binary tree or 
function. 

2.3.2 Multi-Valued Logic Trees and Prime Implicants 

A fundamental limitation to conventional fault tree analysis is that the above method can only be applied to systems 
in which the primary events, X??, are binary. Because DFM models represent physical variables (e.g., pressure, 
temperature, voltage, etc.), binary logic (in which only two states may be used to characterize each variable space) is, 
in general, not sufficient for an adequate representation of the behavior of the system. DFM models thus employ 
multi-valued logic (MVL), wherein each variable space may be discretized into an arbitrary number of states. A 
DFM fault tree, therefore, would contain non-binary primary events (or certain equivalent binary expressions 
containing groups of mutually exclusive binary primary events, which may be defmed ad-hoc to signify whether the 
assertion that a given multi-valued variable is in any one of its states is true or false). Although a defmition of 
coherent IvlVL tree can be given, most MvL trees of,practical interest (and their equivalent binary expressions), 
including DFM-derived fault trees, are non-coherent. An intuitive, rdther ’than formal way, of understanding this is 
by noting that DFM variable states are not ordered in such a way that higher states always indicate “increasingly- 
faulted” conditions and lower states always indicate “increasingly-nominal” conditions. Thus, as a basic variable 
changes from a lower to a higher state, the system-state indicator variable of choice for the particular analysis of 
interest may be going in the opposite direction, i.e., fiom a higher to a lower state. 

The top event of a MVL fault tree can still be expressed in disjunctive form (the form of a disjunction of 
conjunctions of primary events), but the MVL analogue of the minimal cut sets encountered in binary fault trees are 
known as prime implicants (Henley and Kumamoto, 1992, Ogunbiyi, 1980, Ogunbiyi and Henley, 1981, Garriba, et 
al., 1985 and Shields, et al., 1994). A prime implicant is any monomial (conjunction of primary events) that is 
sufficient to cause the top event, but does not contain any shorter conjunction of the same events that is sufficient to 
cause the top event. The prime implicants of a function are unique and finite (Quine, 1955); however, fmding them 
is a more challenging task than finding binary logic minimal cut sets. 

DFM uses decision tables to map the combinatorial states of transfer box inputs to their outputs. Decision tables 
allow each variable to be represented by any number of states, and they have been applied in fault tree analysis in the 
past to model component behavior. Given the state of a transfer box output node, the decision table gives the 
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complete sets of inputs that could have caused it. Since a decision table is, ,itself, essentially a disjunction of 
conjunctions of states, it is possible to generate prime implicants from the table (Henley and Kumamoto, 1992). 
Methods have been developed for obtaining system prime implicants from component decision tables (Henley and 
Kumamoto, 1992 and Ogunbiyi, 1980). The fundamental approach is to combine the individual component decision 
tables into a single critical transition table (Henley and Kumamoto, 1992 and Kumamoto and Henley, 1979), and 
performing Quine’s consensus .operation (a series of absorption and merging operations (Quine, 1955, Quine, 1952 
and Mott, 1960)) on the rows ofthe table to reduce it to the complete set of prime implicants. 

When referring to prime implicants in the context of a DFM analysis, another important observation is that the 
presence of the time element in the DFM modeling framework introduces the possibility of prime implicants that 
would not be possible in ordinary time-invariant logic. In the latter, in fact, a prime implicant of the form: 

<variable A = 2 AND variable A = 3> 

would not be possible, and, if found in the course of a time-invariant analysis, would have to be eliminated by 
application of explicit “physical consistency rules”. In the application of DFM to time-dependent systems however, 
if.a time-transition has been encountered and the prime implicant is thus “time-stamped” to indicate: 

<variable A = 2 @time t = T1 AND variable A = 3 @ time t = T2>, 

then the logical inconsistency no longer exists, and the prime implicant can be considered possible (unless of course 
it violates a “dynamic consistency rult?’, which still applies in time-dependent logic; please refer to Section 2.3.3.3). 
All prime implicants identified in a DFM analysis are conjunctions of primary events with associated time stamps, 
and they are simply referred to as “timed prime implicants” (TPI’s). 

DFM, therefore, represents a significant advancement beyond conventional fault tree analysis. In particular, a 
conventional fault-tree produces cut-sets for one, and only one, binary top event, with no associated time dependent 
information. The DFM representation is one or hvo orders of magnitude more powerful, because it produces multi- 
valued logic and time-dependent prime implicants for a.-very large number of possible top-events, A DFM top-event 
can in fact be chosen to be any state among all the possible states of any of the variables, or even any combination of 
states of separate variables. This is in addition to. the fact that, once a DFM system model has been constructed, it 
can be used repeatedly to investigate many different top events. 

The algorithms for the identification of TPI’s can produce different types of information, depending on the level of 
detail included in the original DFM model. More specifically, if the system is only modeled to the module level, so 
that each software subroutine or module is represented in DFM as a relatively high-level “transfer box” between 
“global” system-level principal input and output variables, then by definition the top-event prime implicants will only 
be expressed in terms of the states of such system-level variables (i.e., not in terms of local software variables that 
are “internalyy to each software module). Another option in the type of information sought is whether the DFM 
backtracking is conducted module by module and component by component, so that, when the process is completed, 
information equivalent to an actual “timed fault tree” (TFT) is produced as output of the analysis, along with its 
”PI’S. It should be noted that, as discussed further in Section 2.3.3.4, the backtracking process is conducted step by 
step within the DFM algorithmic procedure and therefore decision-table-format information equivalent in substance 
to a TFT is produced as an intermediate result on the way to identifying the top-event TPI’s. The TFT, when read 
from the basic events to the top, provides the“exp1anation” and illustration of how, starting from the basic events 
contained in the prime implicants at the bottom of the tree, the system evolves through a time-sequence of states 
which finally lead to the top-event identified at the top of the tree. Please note that the actual progression of cause 
and effect in the precess is exactly in reverse order with respect to the order in which the DFM model analysis 
unravels the event-sequence, backward in causality and time, from the ultimate system-level effect down to the basic 
events that are at its origin. 
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2.3.3 Model Analysis Procedure 

2.3.3.1 Timed Fault Tree (TFT) Construction 

To obtain a timed fault tree from the system model constructed in Step 1 , we first have to identify a particular system 
condition of interest (desirable or undesirable). This system condition is usually expressed in terms of the state(s) of 
one or more process variable nodes, which are thus taken to be the fault tree “top event(s)”. The DFM model is then 
analyzed by backtracking, via a computer-implementable analytical procedure, through the network of nodes, edges 
and transfer boxes and through the time transition network which keeps track of timing effects. This “automated 
back-tracking procedure” is continued for a few steps back in time, producing along the way the definition of the 
TIT associated with the particular top-event of interest, to fmd the possible “cause(s)” of that top event, that is, all 
the combinations of states of.basic system variables which may produce the top event. The order in which the 
transfer boxes are visited in reverse is dictated by the logical sequence of these boxes in the DFM model, as well as 
by the sequence of transitions (corresponding to the execution order of software modules or physical events 
associated with a time delay) in the time-transition network. The information discovered at each step of the 
backtracking process is represented in the timed fault tree. 

To illustrate the timed fault tree construction process, as it may be implemented in a manual execution, consider the 
analysis of the tank pressure control system shown in Figure 2.1, in which a top event has been defined as a situation 
in which the pressure in the tank reaches a dangerously high level. This top event is first translated into the state of 
the process variable node { TP = 5 @ t = 0 } and is shown in Figure 2.3(a). This event is to be expanded by 
backtracking through the model. From the DFM model in Figure 2.1, TP at t = 0 is calculated from TP at t = -1 and 
NGF at t = -1 through the transfer function associated with the transition box “I. The decision table for transition 
box TTl is then consulted to identify combinations of Tp and NGF at a previous time step that can cause TP = 5 at 
the current time step. In this case, the two events (TP = 5 @ t = -1) OR ((Tp = 4 @ t = -1) AND (NGF = +1 @ t = - 
1)) are found to be the causes and they are entered into the fault tree as in Figure 2.3(b). Note that a dotted line 
separates the top event and the events at the second level to indicate the presence of a time transition between the 
events at the two different levels. Next we backtrack through transfer box T3, in the DFM model in Figure 2.1, to 
find the combinations of IGF and OGF which can cause NGF = +l. One combination is identified and is shown in 
Figure 2.3(c) as an AND gate joining the particular states of IGF and OGF. Backtracking through the transfer. boxes 
T1 and T2 will give us the causes for IGF = 1 and OGF = 0 respectively. The backtracking steps are repeated to 
produce the branch shown in Figure 2.4. 

8 TP=5 I 0 
4 

& IGF=1 OGF-O 

Figure 2.3 : Example of Timed Fault Tree Construction 
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,Figure 2.4 : Timed Fault Tree for Very High Tank Pressure 

In many digital control systems, there are feedback or feedforward characteristics. This can cause a node to be 
traced back to itself in the fault tree construction. Consistency rules must be applied when these situations are 
encountered. Inconsistent branches are then pruned fiom the timed fault tree. Two major classes of consistency 
rules have been identified, they are "physical" consistency rules and "dynamic" consistency rules. 

2.3.3.2 Physical Consistency Rules 
I .  

Physical consistency rules are applied to eliminate physically impossible conditions from the timed fault trees. An 
example of this would be a system parameter taking on two different values at the same time step in the timed fault 
tree. This class of consistency rule is similar to the consistency rules applied in conventional static fault tree 
analysis. If the same variable appears twice, but in different states, in the same time step and under the same AND 
gate, then everything beneath the first AND gate above the second occurrence of the event must be pruned from the 
tree due to physical inconsistency. This is illustrated in Figure 2.5(a). If pruning this AND gate causes events above 
to become impossible, then these events - must be pruned as well. Such is the situation illustrated in Figure 2.5(b). 

2.3.3.3 Dynamic Consistency Rules 
I -  

Dynamic consistency rules, likewise, are applied to'th'e timed fault trees to eliminate branches which cannot occur 
due to constraints on the dynamic behavior of the system under consideration. These rules are developed from the 
analyst's knowledge and assumptions about the system's dynamic behavior. Dynamic consistency rules are expressed 
in terms of allowable variations of parameter values across different time steps. Table 2.111 shows the form of some 
possible rules of this type. 

Rule type 1 can be a result of the analyst's knowledge about the dynamic constraints of the system. For instance, in 
modeling a draii tank system, the level in the tank cannot increase with time as inventory is constantly being used up 
and is not being replenished. Rule type 1 can also come from modeling assumptions. For example, if the analyst 



assumes the equipment in the tank system can only fail permanently, then a failed valve cannot return to the normal 
state in a later time step. 

Rule 
1 
2 
3 

Description , 

A parameter cannot change in a certain direction between two time steps 
A parameter cannot change by more than a certain amount between time steps 
Several parameters must vary in a specific way between two time steps 

I 
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............................... t 
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in Valve Position 
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t 
Prune due to inconsistency 

in Valve Position 

This event becomes 
impossible after the 
inconsistent branch 

is removed 

Figure 2.5 : Illustration of Physical Inconsistency 

Rule types 2 and 3 come from knowledge of the system. For instance, a type 2 rule can state that the position of the 
valve cannot vary by more than two states in one time step, as it takes a fmite amount of time for the valve to open or 
close. An example of a type 3 rule can be the constraint that the valve position and flowrate must vary in a 
proportional manner as required by physical law. 

Dynamically inconsistent branches are pruned in a way similar to physically inconsistent branches. If a dynamically 
inconsistent event occurs in a timed fault tree, the dynamically inconsistent event, including all of the sub-branches 
connected to it via the first parent AND gate, must be pruned. This is illustrated in Figure 2.6. As with physical 
consistency rules, further pruning may be necessary if eliminated branches cause other events to become impossible. 

2.3.3.4 Timed Prime Irnplicant PPI)  Identification 

As discussed above, TPI's may be identified directly from a system DFM model. In the analytical algorithm actually 
implemented by the model-analyzer module of the DFM Software Toolset (Section 3.2.2), decision tables 
encountered during the backtracking process are expanded and joined, one by one, to form a singlecritical 
transition table, which contains directly all of the system parameter states that are produced along the sequence 
leading to the top event. As mentioned earlier in Section 2.3.2, the process of expanding and joining the decision 
tables in the backtracking process is logically equivalent to generating a timed fault tree, except that the events are 
not presented graphically as a tree structure, but in tabular form as intermediate transition tables. The critical 
transition table, on the other hand, is logically equivalent to the basic events produced in a timed fault tree. The 
reader should note that for a multi-state representation, the bs i c  events identified in a timed fault tree (or the rows in 
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a critical transition table) are the sufficient conditions for the top event. The complete set of unique timed prime 
implicants (Le., the necessary and sufficient conditions) are produced by performingQuine’s consensus operation 
on the rows of the critical transition table. Quine’s consensus operation is a series of absorption and merging 
procedures which are performed on the table to reduce it to an irredundant form. For example, consider the decision 
table in Table 2.IV, which is the equivalent of a sum-of-products expression for some function, called TOP. The 
variables are assumed to be multi-state and their states are: 

A E [ -1,O, +1 1, . 

B E  [N,R,Fl ,  
c E [ -2, -1,o, +1 1, 
D E [ H , N , L ] .  

(These variables and the corresponding decision table do not necessarily reflect any particular logic, but are merely 
intended to illustrate QuineTs consensus operation.) 

General Dynamic Consistency Rule: 
Valve Position cannot change by more 

than 2 states in a single time step 

...................................... 

PaitaD - 4 

8 .  . .  Tme=t-lFq$$ : I  ................................. ; ,  

t 
Prune due to djnamic 

inconsistency in Valve Position 

Figure 2.6 : Illustration of Dynamic Inconsistency 

In the application of the consensus operation procedure for Table 2.W, rows 7 and 9’ merge with row 5,  yielding a 
“don’t care” (which is represented by a “-”) in column 1 of row 5 and a new decision table (Table 2.V). 

16 



Table 2.V : Decision Table for TOP After Merging Operation 
B I C I D I TOP I 

R -1 
+1 

R 0 
-1 

R -1 
N -2 
R -2 
F 

- 
- 

- 

N 1 
H 1 

1 
L 1 
H 1 

1 
H 1 
H 1 

- 

- 

Rows 6-8 of Table 2.V can then undergo a reduction operation, yielding a “don’t care” in column 2 of row 7. Rows 
1, 4 and 5 of the table also undergo a reduction-merging operation, yielding Table 2.VI. Table 2.VI contains only 
irredundant terms since none of the simplifying operations can be applied to any term in the table. 

ROW 

1 
2 
3 
4 
5 
6 
7 

A B C D TOP 

- - R -1 1 
0 +1 H 1 

R 0 1 
-1 L 1 

N -2 1 
0 -2 H 1 
0 F H 1 

- 
- - 
- - 
- 

ROW 

1 
2 
3 
4 
5 
6 
7 
8 

2.4 Framework for DFM Analysis-Driven Testing 

A B C D TOP 
- - R -1 1 
0 +1 H 1 

R 0 1 
-1 L 1 

N -2 1 
0 -2 H 1 
0 F H 1 
0 R H 1 

- 
- - 
- - 

- 
- 
- 

2.4.1 Overview of Testing 

Testing is traditionally one of the most important activities carried out to assure that a given design is, in its actual 
implementation, complying with certain assigned constraints and specifications, be they in the realm of ‘‘peak 
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performance”, safety, or reliability. Testing assures the quality of the final product, validates that the product will 
perform as it is designed to do, and provides reasonable assurance that the product will not threaten life or endanger 
the user. For systems such as spaceships, aircraft, and nuclear reactors, where failures may threaten life, testing costs 
may account for as much as 80% of the total manufacturing cost (Beizer, 1990). This is also true for software 
systems, where the dominating cost is often not the cost of design and programming, but the costs associated with 
logic and implementation errors: the cost of detecting them, the cost of correcting them, the cost of designing tests 
that discover them, and the cost of running those tests @e@er, 1990). 

In traditional “black box” testing, combinations of inputs for the control system software are chosen and the software 
is executed to produce outputs. These outputs are verified for conformance to specified behavior. However, this 
k i d  of testing is not the “silver bullet” in identifying errors in control system software, since it is limited by several 
factors, e.g.: 

1) it is practically impossible (except for the simpler situations) to identify input sampling patterns 
which provide coverage and assurance for all of the execution paths of the control system software; 

2) “hidden” errors in the software which only manifest themselves in conjunction with some other 
system conditions are very hard to identify. 

A major difficulty in functional testing is the selection of inputs. A large set of inputs reflecting normal and 
exceptional circumstances are subjected to testing. Exceptional inputs cannot be overlooked as they often are the 
inputs that trigger undetected faults in software programs, resulting in system, failures. However, there is no 
guideline as to how these exceptional inputs can be sampled. Selecting them is largely based on judgment. The 
coverage of all possible inputs is both impossible and impractical. It is very likely that some exceptional inputs are 
overlooked in testing. When these inputs arise in conjunction with some other unpredictable system conditions, 
serious consequences can result. 

Other than the problem associated with the coverage of inputs in testing, there are also difficulties in assuring the 
execution paths of the software. Since the implementation details are not considered in functional testing, it is 
possible that expected outputs can be produced via unexpected paths in the software. Even though the behavior of 
the software seems correct to the testing team, there exists fundamental errors in the software which cause the 
selection of the incorrect path. In addition, the inability to verify the execution paths makes it difficult to trace the 
source of errors found. Functional testing indicates the existence of bugs in the software when unexpected outputs 
are produced, but it does not tell us how to find them. Locating the source of errors is not an easy task. Different 
bugs can have the same manifestations, and one particular bug can have many symptoms. A great number of small 
tests must be run in order to locate the bug. 

In addition to being unable to verify the execution path of the embedded system software, functional testing is also 
ineffective in identifying “hidden” bugs which only manifest themselves together with some other system conditions 
(i.e., conditions in the hardware part of the system that interfaces with the software). It is impossible and impractical 
to test the software under all conditions. But scenarios can arise where a combination of low probability system 
conditions causes the “hidden” bugs to produce failures. 

2.4.2 DFM Analysis Based Testing 

Performing a preliminary DFM analysis on the system before testing could drive functional testing to focus on a 
limited domain of inputs. The objective was to eliminate the need to blindly select inputs to test the software. In a 
nutshell, each system state (desirable or undesirable) being investigated via DFM (usually referred to as a top event), 
is resolved into the combinations of primary events which can cause it to occur. Each event is described by a range 
encompassing the value of a particular variable, either in the physical system or in, the software, and the time interval 
in which the variable assumes that value. In addition, DFM identifies the paths and the time sequences by which the 
top event is produced by these software and physical system conditions. As discussed above in Section 2.3, the 
principal result of a DFM analysis, as defmed earlier in Section 2.3.3, is the identification of “timed prime 
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implicants” (TPI’s). A timed prime implicant is a minimum combination of events which is both necessary and 
sufficient to cause the top event. 

Several DFM analysis-based software testing strategies have been identified. The two basic modes in which DFM 
can bewed to support the development of testing strategies are: 

1. Top-Event Decomposition Mode (TED-Mode) 
2. Timed Fault Tree Derivation Mode (TFTD-Mode) 

2.4.2.1 Top Event Decomposition Mode (TED-Mode) 

TED-Mode represents a high level test of the control system. In this mode, individual software modules are treated 
as black boxes, and a detailed representation of the input-output relationships that the modules implement is not 
sought. This mode may be used, for example, when analyzing a system design at a stage when functional 
requirements of the software modules have been identified, but have not yet been translated into code. In such a 
case, DFM would provide a re-definition, or “decomposition” of a system top event (Le., the system failure mode to 
be avoided) in terms of “intermediate-level implicants” (ILI’s) defined as combinations of states of the output 
variables of those software modules. Testing can then be broken down to the level of making sure that these 
combinations of output variable states cannot be produced by any allowed combination of input variable states. Note 
that, in general, the ILrs may also contain the states of certain hardware parameters or components. These hardware 
states would then become boundary conditions for the functional testing of the software. 

2.4.2.2 Time Fault Tree Derivation Model (TFTD-Mode) 

In the Timed Fault Tree Derivation Mode, a detailed DFM analysis produces not only timed prime implicants, but 
also the timed fault tree which describes the evolution of the system from these conditions towards the top event. 
Testing in this case can be executed to verify that the temporal behavior (evolution) of the system corresponds to 
what is expected by the analyst per the DFM model. Because DFM can be employed to produce TPI’s for success as 
well as failure top events, a TFTD-Mode DFM analysis, followed by testing, can be used to verify that the system 
executes according to the expected and desired execution paths. Beyond the testing purposes, the utility of the 
TFTD-Mode is that it provides the user with an “explanationy’ of how the TPI’s produce/give rise to the top event. 

In addition, the form of the timed prime implicants, whether these consist of software “single event prime 
implicants” (SEPIs) or softwarehardware “multiple event prime implicants” (MEPIs), can dictate how testing can 
best be carried out. Software conditions which are identified as SEPIs point to certain individual software states that 
are active without the need for outside“triggers”. These prime implicants can contain normal conditions external to 
the software, such as those which are understood and are included within the “design envelope” represented by the 
software requirements and specifications. For example, the prime implicant identified in the analysis of the 
Demonstration Test Case (which is presented in Section 5.3.2) is a conjunction of software input conditions (the 
steam generator level, the steam flow and a variable in the memory) and an external condition (the steam generator 
pressure). Since the steam generator pressure is within the range encountered under normal operating conditions, the 
prime implicant is hence classified as a SEPI. MEPIs (i.e., multi-event prime implicants consisting of both software 
conditions and one or more physical system conditions) indicate system states which can only be caused by the 
combination of software conditions and unexpected or unwanted system conditions outside of the software, Le., 
“external-world” conditions not included in the original “design envelope” of the software. Note that these 
conditions may exist concurrently, or they may take place at different times. This is a direct result of the fact that 
DFM models explicitly depict the progression, due to physical cause-and-effect, of the system state as it evolves in 
time towards failure. Thus, a multi-event prime implicant is essentially a unique combination of events which gives 
rise to a system evolution sequence leading to the top event. An example of a MEPI is the prime implicant identified 
in the analysis of the Interim Test Case (which is presented in Section 4.4.2). In addition to containing a software 
input condition (the tank level) and other normal external conditions (the sensors, the stop valves and the control 
valves being normal), this prime implicant also requires the failure of the check valve, and hence is classified as a 
MEPI. 

/’ 
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A basic process of critical software testing based on a TFTD-Mode DFM analysis can be defined as follows: 

a) If the DFM analysis identifies any single software implicants for a system state, this would therefore 
indicate the existence of fundamental bugs or logic errors in the software. The only remedy would thus be’ to correct 
the software so that these software conditions are made inactive and unreachable. The corrected version of the 
sohare  would thus have to be reanalyzed to ensure that the corrections do not bring about new errors. 

b) 
conditions associated with the system state history is off-nominal, then one of two subcases may arise: 

If the DFM analysis identifies a multi-event prime implicant, i.e., one or more of the external-world 

bl) 
condition must be removed and the corrected version must be reanalyzed as before. 

if the combination of external-world conditions ‘is highly probable, the error-causing software 

b2) if the conjunction of external-world and software conditions is not believed to be easily achievable 
or likely, functional testing of the software can be performed in the“neighborhood” of these “unlikely” 
conditions to determine the actual margin of safety in the system. This means that the inputs selected for 
functional testing are concentrated in the ranges specified by the events which form the prime implicant, 
and the boundary conditions are constrained to correspond to that implicants state history, resulting in a 
much smaller domain of test inputs from which to sample. Testing in the neighborhood of the prime 
implicant conditions is stressed because a DFM model and the resulting prime implicants that it produces 
can be expected to be only a finite approximation of the actual system. The purpose of “neighborhood 
testing” would be to confirm the existence of identified faults and to ensure that “neighboring states” of the 
TPI variable states and conditions will not result, themselves, in system failures. 

2.5 Example of DFM Modeling and Analysis 

In this section, a simple control system is used to illustrate how DFM can be applied to identify the failure modes of 
the system. The system selected is a slight modification of the pressure tank example used in Chapter VI11 of 
NUREG-0492, “Fault Tree Handbook”. The sub-sections that follow will show the reader how a system definition is 
translated into a DFM model and how top events can be analyzed to identify the basic failure modes; The reader 
should note that this section intends to illustrate the basic concepts of DFM in semi-tutorial fashion, and that DFM is 
not limited to analyzing simple systems such as the one used here for this purpose. Chapters 4 and 5 will show how 
DFM can be applied to analyze more complicated systems with feedback control loops and software modules defined 
in line-code detail. 

2.5.1 System Description 

The example system consists of an inexhaustible gas source, a pressure tank, a pressure sensor, a pressure controller, 
a pump, an AC power source for operating the pump, an electric switch and an outlet valve. The schematic of this 
system is shown in Figure 2.7, and the controller function is to maintain the pressure of the tank at a certain level. 
The electric switch and the valve are controlled by the pressure controller, but the command fiom the controller to 
the valve can be overridden by a human operator’s command. The operator’s command is modeled as the node 
MVO in Section 2.5.2, and the discretization of the node is shown in Table 2.XII. The controller monitors the 
pressure in the tank via signals from the pressure sensor: If the reading is too low, the controller will close the outlet 
valve and close the electric switch.“Closing the electric switch will activate the pump to replenish the gas inventory 
in the tank. On the other hand, if the pressure reading is too high, the controller will open the electric switch, thus 
disabling the pump, and open the ’outlet valve to vent the gas’ in the tank. Table 2.VIII summarizes the control 
actions that may be undertaken. 
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Figure 2.7 : Schematic of the Pressure Control System 

Meaning 
AC Power 
Gas flow into the tank through the pump 
Manual override command to the outlet valve 
Net gas flow into the tank 
Gas flow out of the tank through the outlet valve 
Electric switch position 
Tank pressure 
Outlet valve position 

2.5.2 Example of DFM Model Construction 

The fvst step in applying DFM is to construct a model to capture the behavior of the system. To accomplish this, the 
components to be modeled are fwst chosen. In this case, all the components will be included in the DFM model. 
Next, parameters that capture the attributes of these components are identified and they become the process variable 
nodes (Table 2.IX). These process variable nodes are linked together by causality edges through transfer boxes and 
transition boxes to model the cause-and-effect relationships among the parameters (Figure 2.8). For example, 
transfer box T1 represents the pump in which the AC power and the switch position will yield the gas inflow into the 
tank. On the other hand, transfer boxes T4 and T5 represent the pressure controller where the pressure reading 
triggers the outlet valve position and the electric switch position. The reader should note that the pressure tank is 
represented by a transition box (TT1) instead of a transfer box because pressure variation is dynamic. The current 
pressure depends on the net gas flow into the tank as well as the pressure a split second before. 

21 



1 clock cyde 

Figure 2.8 : Integrated Causality and Time Transition Network 

After the construction of the integrated causality and time transition network, discontinuous behavior such as 
component failures are identified and represented in the model as condition nodes and condition edges (Figure 2.9). 
In this figure, SS represents the state of the pressure sensor and it has an impact on the controller action as the 
pressure control command is based on the pressure reading, not' on the actual tank pressure. Similarly, SWS, the 
state of the electric switch can affect the gas flow into the tank, as a stuck open switch will prevent the pump fiom 
working even though power is ,available. The process variable nodes and the condition nodes are then discretized 
into fmite number of states, and they are shown in Tables 2:X to 2 . m .  These discretization schemes are also 
shown in Figure 2.9 for easy reference. 
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Table 2.X : Discretization of E 
States Meaning 

0 AC power is unavailable 
1 AC power is available 

Table 2.XI : Discretization of IGF 
States Meaning 

0 
1 

No gas flow into the tank 
Gas flows into the tank 

“-ble 2.XII : Discretization of MVO 

1 I States Meaning 
- - -  I 

-1 Operator commands valve to close 
0 Operator does not ovemde controller command 

+I Operator commands valve to open A 

Table 2.XIII : Discretization of NGF 
States Meaning 

-1 
0 No net gas flow 

3-1 

Net gas flow out of the tank 

Net gas flow into the tank 

.Table 2.XIV : Discretization of OGF 
States Meaning 

No gas outflow through the valve 
Gas flows out through the valve 

0 
1 .. 

Table 2 . W  : Discretization of SS 
States I Meaning 

-1 I Pressure sensor stuck low I 
0 Pressure sensor is normal 

+I  Pressure sensor stuck high 

Table 2.XVI : Discretization of SW 
States Meaning 

0 Electric switch is opened 
1 Electric switch is closed * 

Table 2.XVII : Discretization of SWS 
States Meaning 

-1 Electric switch failed opened 
0 Electric switch is good 

+I  Electric switch failed closed 

Decision tables are then constructed from the knowledse of the behavior of this system. These tables are shown in 
the model in Figure 2.9. In the construction of the decision tables, it was assumed that gas inflow is possible when 
the tank pressure is high and gas outflow is possible when the tank pressure is low. This assumption is reflected in 
the decision table for transition box ?T1. At this point, the DFM model is completed and can be analyzed to identify 
failure modes. 



States 
1 
2 
3 
4 
5 

Meaning 
Tank pressure is very low 
Tank pressure is low 
Tank pressure is normal 
Tank pressure is high 
Tank pressure is very high 

2.5.3 Example of DFM Model Analysis 

States 
0 
1 

The DFM model constructed for the pressure control system can be analyzed to generate timed fault trees and timed 
prime implicants. The timed prime implicants are the necessary and sufficient conditions for specific failure events, 
whereas the timed fault trees show how the necessary and sufficient conditions can cause the failure events. For 
example, to analyze how the pressure in the tank becomes dangerously high and causes the tank to rupture, we first 
defme the top event in terns of the state of the process variable node TP ( TP = 5 @ t = 0 ). The top event is then 
backtracked through the DFM model (via the steps discussed in Section 2.3.3) for one time step to generate the timed 
fault tree shown in Figure 2.10. The timed prime implicants for this corresponding timed fault tree are listed in 
Table 2 . X .  Take for example prime implicant #1, the failed sensor gives a low pressure reading which causes the 
controller to command the electric switch to close and the outlet valve to close. The absence of manual override 
command and the fact that the valve is normal will lead to the closure of the outlet valve. At the same time, with AC 
power being available and the electric switch being operational, the closing of the switch will pump more gas into the 
tank. With the prior tank pressure being high, the net inflow of gas into the tank will cause the pressure to become 
dangerously high. The reader should note that even though a single failure is characterized by prime implicant # I ,  
the fact that the other key components are normal has to be expressed explicitly in this prime implicants. This is a 
feature of multi-state representations of systems. If power had been unavailable, the tank pressure would not have 
reach the dangerously high level as the pump could not operate, and thus there would be no net gas flow into or out 
of the pressure tank. It is also important to point out that the assumptions made in constructing the DFM model had a 
direct impact on the prime implicants identified. In this particular case, if the assumption that gas inflow is possible 
at high tank pressure were to be removed, none of the prime implicants shown in Table 2.XX would be identified. 

Meaning 
Outlet valve is closed 
Outlet valve is opened 

As the DFM model of the pressure control system implicitly contains most, if not all, conceivable behaviors believed 
to be exhibited by the system, one single model can be analyzed for as many top events as the analyst desires. The 
same model analyzed for the top event TP = 1 @ t = 0 (Tank pressure is low at time 0) produced the timed fault tree 
shown in Figure 2.1 1 and the timed prime implicants listed in Table 2.xXI. 
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Figure 2.10 : Timed Fault Tree for the Top Event TP = 5 @ t = 0 

IGF = 0 

Iss =+11 

I 1 
vs=o vx=l vs = +1 

Figure 2.1 1 : Timed Fault Tree for the Top Event TP = 1 @ t = 0 
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Number 

! 

5 

1 

5 

6 

7 

It should be noted that the prime implicants shown in Table 2.XX and Table 2.XXI list both “faulted” and “nomal” 
states of components and parameters. A “reduced” form of prime implicant defmition can also be obtained which 
does not list states that can be always considered as unconditionally faulted. States that would continue to be listed in 
the reduced prime implicant form are marked with an asterisk in the two tables, whereas the states that are not 
marked would not be listed. More complete definition and discussion of this topic can be found in Chapter 6 
(Section 6.3.2.3), and examples of “reduced prime implicants” are provided there for the test case analyses that are 
presented in Chapter 4 and Chapter 5. 

Table 2.XX : Prime Implicants for the Top Event TP = 5 @? t = 0 

Electric switch was normal @ t = - 1  AND 
*Power was available @ t = - 1  AND 
Outlet valve was normal @ t = - l  AND 
*No manual valve command a t t - 1  AND 
*Sensor failed low @ t = - l  AND 
*Tank pressure was high @ t = - l  
Electric switch was normal @ t = - l  A N D  

@ t = - l  AND 
Outlet valve was normal @ t = - l  AND 
*Valve closed manually @ t = - l  AND 
*Sensor failed low @ t = - l  AND 
*Tank pressure was high @ t = - l  
Electric switch was normal @ t = - l  AND 
*Power was available @ t = - l  AND 
*Outlet valve failed closed @ t = - l  AND 
*Sensor failed low @ t = - l  AND 
*Tank pressure was high @ t = - l  

*Power was available @ t = - l  AND 
Outlet valve was normal @ t = ; l  AND 
*No Manual valve command @ t = - l  AND 
*Sensor failed low @ t = - l  AND 
*Tank pressure was high a t t - 1  

Prime hplicant 

*Power was available 

*Electric switch failed closed @ t = -1 AND 

*Electric switch failed closed @ t = -1 AND 
@ t = - l  AND *Power was available 

Outlet valve was normal @ t = - l  AND 
*Valve closed manually @ t = - l  AND 
*Tank pressure was high @ t = - l  

*Power was available @ t = - l  AND 
*Outlet valve failed closed @ t = - l  AND 
*Tank pressure was high @ t = - l  

*Electric switch failed closed @ t = -1 AND 

*Tank pressure was very high @ t = -1 
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Number 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
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Table 2,XXI : Prime Implicants for the Top Event TP = 1 @ t = 0 

*Power was unavailable @ t = - l  AND 
Outlet valve was normal @ t = - l  AND 
*No manual valve command a t = - 1  AND 
*Sensor failed high a t = - 1  AND 
*Tank pressure was low a t = - 1  
*Power was unavailable @ t = - l  AND 
Outlet valve was normal a t = - 1  AND 
*Valve opened manually a t = - 1  AND 
*Tank pressure was low @ t = - l  
*Power was unavailable a t = - 1  AND 
*Outlet valve failed opened a t = - 1  AND 
*Tank pressure was low a t = - 1  
Electric switch was normal @ , t = - l  AND 
Outlet valve was normal @ t = - l  AND 
*No Manual valve command @ t = - l  AND 

Prime Implicant 

*Sensor failed high @ t = - l  AND 
*Tank pressure was low a t = - 1  
Electric switch was normal a t = - 1  AND 
Outlet valve was normal a t = - 1  AND 
*Valve opened manually a t = - 1  AND 
*Sensor failed high @ t = - l  AND 
*Tank pressure was low @ t = - l  
Electric switch was normal a t = - 1  AND 
*Outlet valve failed opened @ t = - l  AND 
*Sensor failed high a t = - 1  AND 
*Tank pressure was low a t = - 1  
*Electric switch failed opened @ t = -1 AND 
Outlet valve was normal a t = - 1  AND 
*No manual valve command a t = - 1  AND 
*Sensor failed high @ t = - l  AND 
*Tank pressure was low a t = - 1  
*Electric switch failed opened 0 t = -1 AND 
Outlet valve was normal @ t = - l  AND 
*Valve opened manually a t = - 2 .  AND 
*Tank pressure was low a t = - 1  

.*putlet valve failed opened @ t = - l  AND 
*Tank pressure was low @ t = - l  
*Tank pressure was low-low @ t = - l  

*Electric switch failed opened @ t = -1 AND 





3 DFM SOFTWARE TOOLSET 

This chapter provides a discussion of the DFM Software Toolset, which is an integrated set of software tools 
developed in Phase II of this research project for implementing the model construction and analysis procedures of 
DFM. The topics covered include the development of the various modules (Section 3.1), description of the 
hctionality and the user-interfaces of all the modules within this software toolset (Section 3.2), and the input and 
output relating to the analysis of the example discussed in Section 2.5. 

The DFM Software Toolset is developed as a Microsoft WindowsTM application which can run on Intel processor- 
based PCs. The goal of this software application is to assist the analysts to construct DFM models and to analyze the 
DFM models to generate prime implicants. This tackles the problem where manual construction of timed fault tree 
and generation of prime implicants, without the help of automated tools, is difficult for simple systems, and 
practically impossible for complex systems. 

3.1 Development of the DFM Software Toolset 

The DFM Software Toolset is an integration of two principal modules: the Model Editor and the Model Analyzer 
(Figure 3.1). The Model Editor aids analysts in the construction of DFM models for any given system of interest. It 
features a relational database, supporting a library of the pre-defined DFM modeling elements, which stores the 
information relating to the structure and the display attributes of the DFM model created with the Model Editor. The 
Model Analyzer analyzes DFM system models and obtains the prime implicants for any system state of interest 
defmed by the user. The development and integration of these two principal modules are discussed below. 

DFM Model Editor 
Graphic Modeling Environment 

ICONS 

Td' Box 
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DFM Model Analyzer 

User Specified Top Event 

Analysis 
Engine 

Transition Tables 
Prime Implicants 

Figure 3.1 : Architecture of the DFM Software Toolset 

3.1.1 Development of the Model Editor 

The DFM Model Editor is a Windows-based graphical model building tool with which the user can create and edit 
DFM models. The user interface resources (windows, menus, dialog boxes, dialog controls, etc.) were created using 
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the GUILDm GUI-development tool. GUILD is a resource editor that allows the user to visually design Windows 
resources. 

The rest of the Model Editor was implemented in C. There are basically four types of C functions that provide the 
functionality of the. Model Editor. The “laydown” functions deal with drawing, moving and otherwise visually 
manipulating the graphical objects on the Model Editor laydown page. The “callback” functions are the event 
handlers that process the mouse messages (button clicks and movements) on the laydown page. The “dialog” 
functions deal with the transmission of data from the data structures in memory to the various dialog box displays 
(list boxes, edit fields, etc.), and back again. The “loadsave” functions handle all of the tasks related to disk input 
and output. 

3.1.2 Development of the Model Analyzer 

The DFM Model Analyzer is a Windows-based tool with which the user can analyze models created with the DFM 
Model Editor. The user interface resources, which include all the dialog boxes for defining top events, displaying 
prime implicants and intermediate transition tables, were created using the GUILDm GUI-development tool. The 
analysis engine, which contains all the modules for carrying out different operations on the intermediate transition 
tables, was implemented in C. Figure 3.2 shows the algorithm which is implemented in the analysis engine. In 
addition, the modules for interfacing with the database and the dialog boxes were also written in C. 

to form a new 

Perform static 
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the transition table 

Perform dynamic 
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the transition table 

i 
Simplify the 

transition table via 
absorption and 
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Figure 3.2 : Algorithm used in the Analysis Engine 
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3.2 Functionality of the DFM Software Toolset 

The functionality and the user interfaces for the Model Editor and the Model Analyzer are discussed below. 

3.2.1 Functionality of the Model Editor 

The Model Editor facilitates the construction of DFM models by the analyst and converts the graphic representation 
of these models into a set of data that can be stored in a database, and later used by the Model Analyzer. The Model 
Editor consists of a graphic model building environment in which the user creates DFM models and a database 
structure which stores information about the model created. 

3.2.1.1 Graphic Model Building Environment 

The graphic model building environment assists the user to construct a DFM model. It provides a toolbox of graphic 
icons representing DFM modeling elements with which the user can build a DFM model. A screen capture of this 
graphic modeling environment is shown in Figure 3.3. This graphic model building environment is developed using 
a combination of the “Cy’ programming language and the GUILDm graphic user interface (CUI) development tool. 
The user defmes the structure of a DFM model by picking the modeling elements from the icon menu and placing 
them on the screen. Connections are made by picking the source and the target as well as any intermediate points. 
Figure 3.4 shows the DFM model of the tank pressure control system (discussed in Section 2.5) created using the 
Model Editor. 

Figure 3.3 : Screen Capture of the Model Editor Graphic Model Building Environment 

Associated with each modeling element is a dialog box in which the user can define the attributes of that element. 
The user accesses the dialog box by double clicking the mouse on top of the graphic icon. Figure 3.5 shows the 
dialog box accessed by double clicking on the node TP where the properties of the tank pressure process variable 
node can be defined. The properties that need to be defined in that dialog box are summarized and explained in 
Table 3.1. Similarly, Figures 3.6 and 3.7 show the dialog boxes for definiing the properties of a transfer box and a 
transition box respectively, while Tables 3.11 and 3.111 provide explanations for the properties thus defined. These 
dialog boxes are accessed by double clicking on the transfer box T2 and the transition box TTl respectively. 

31 



n 

Properties 
Name 
Label 

Description 

Figure 3.4 : DFM Model of the Pressure Control System Created with the Model Editor 

Meaning 
The name of the parameter that the node represents 
The label to be seen on top of the node in the graphic modeling 
environment 
A brief descriDtion of what the node rewesents 

Figure 3.5 : Dialog Box for Defining Properties of a Node 

Number of States 
State 
State Name 

The number of states into which the node is discretized 
The arrows allow the user to select any possible state 
The name of the states 

State Description 
Orientation 

A brief description of what the state means 
The radio buttons toggle the orientation of the transfer box on the 
screen 
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Figure 3.6 : Dialog Box for Defining Properties of a Transfer Box 

Properties 
Name 
Decision Table 

PVN Inputs 

CN Inputs 

Both Inputs 

outputs 
Orientation 

Figure 3.7 : Dialog Box for Defining Properties of a Transition Box 

Meaning 
The name for identifying the transfer box 
A button for accessing another dialog box to define the decision table 
for this transfer box 
List the Process Variable Nodes which are inputs to this transfer box' 
through causality edges 
List the Condition Nodes which are inputs to this transfer box' 
through condition edges' 
List the nodes which connect to this transfer box through both 
causality edges and condition edges' 
Lists the nodes which are outputs of this transfer box 
The radio buttons toggle the orientation of the transfer box on the 
screen 

3.2.1.2 Database Structure 

The database structure is created with a built-in feature of the G m D m  GUI development tool. The database is in 
the form of a "B-trieve" database structure, and is directly accessible by any C code routine. The relational database 
structure consists of two major classes of data. One class characterizes the graphic attributes of the model, the other 
class characterizes the structure attributes of the model. The graphic attributes define the positions, the sizes and the 
orientations of all the nodes and boxes shown on the screen. In addition, these attributes determine how the 
connections are to be drawn, Le., the color, the starting point, the end point and any intermediate points. The graphic 
attributes allow the Model Editor to "remember" how to regenerate the picture of the model. On the other hand, the 
structure attributes are essential if the model is to be analyzed. They define the structure of the DFM model so that 
the Model Analyzer can backtrack the model correctly through all the boxes and time transitions. 
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1 

Properties 
Name 
Decision Table 

Meaning 
The name for identifying the transition box 
A button for accessing another dialog box to define the decision table 
for this transition box- 
The time delay associated with this transition box 
List the Process ,Variable ’Nodes which are inputs to this transition 

Time Delay 
PVN Inputs 

CN Inputs 

Both Inputs 

outputs 
Orientation 

box’ through causality edges 
List the Condition Nodes which are inputs to this transition box’ 
through condition edges’ 
List the nodes which connect to this transition box through both 
causality edges and condition edges’ 
Lists the nodes which are outputs of this transition box 
The radio buttons toggle the orientation of the transition box on the 
screen 

3.2.2 Functionality of the Model Analyzer 

The function of the Model Analyzer is to backtrack the model to produce time fault trees and timed prime implicants 
for top events defined by the user. The Model Analyzer consists of the user interface resources and the analysis 
engine. 

3.2.2.1 User Interface Resources 

The user interfaces provide the environment for defining the goal of and displaying the results of the analysis. ,There 
are altogether 5 user interfaces for the Model Analyzer; the Top Event Interface, the Analyze Interface, the Display 
Result Interface, the Prime Implicants Interface and the Tables Interface. 

The Top Event Interface (Figure 3.8) provides the interface for the user to define the top event for an analysis. The 
user defines a top event by specifying the states of the nodes and the associated time stamps. The list box on the left 
hand side of the dialog box (under the label “Nodes:”) displays all the nodes in the model created using the Model 
Editor. The user can pick the node fiom this list to appear in the top event. The states defined for the node that has 
been selected will be shown in the list box in the middle of the dialog box (under the label “States:”) and can be 
chosen to appear in the top event. The list box on the right hand side of the dialog box (under the label “Time:”) 
allows the user to define a time stamp associated with the top event. After the node, the state and the time are all 
defined, the “Select” button can be pressed to add this node state to the top event. This will be summarized in the 
box at the bottom of the dialog box. Defining a top event with more than one state of a single node is just a matter of 
repeating the above procedure. The top event defined in Figure 3.8 is the one used in the example in Section 2.5.3 
(TP = 5 @? t =  0). 

Figure 3.8 : User Interface for Defining the Top Event 

34 



The Analyze Interface (Figure 3.9) provides the interface for the user to specify how the analysis is to be carried out. 
The user can specify the number of time steps to be backtracked, as well as define the dynamic consistency rules to 
be used in the course of the analysis. The interface also notifies the reader that the decision table will be imported 
from a file of which the name is shown. Figure 3.9 defines the analysis that was performed for the example 
discussed in Section 2.5.3. The analysis procedure can be initiated by pressing the “Start” button. 

Backtracking Steps : 

Import Decision 7 1  
Tables  from : 

Import Rules from : 71 

Figure 3.9 : User Interface for Defining the Scope of the Analysis 

The Display Results Interface (Figure 3.10) shows the number of prime implicants found in the analysis. The two 
button “PI’s” and “Tables” allow the user to access the details regarding the analysis and the prime implicants. 
Pressing the “PI’s” button will take the user to the Prime Implicants Interface, whereas pressing the “Tables” button 
will take the use to the Tables Interface. Figure 3.10 shows the result that was obtained for the example in Section 
2.5.3. 

Thsrc arc 7 pdmt lmpllcanto 

Figure 3.10 : User Interface for Displaying a Summary of the Analysis Results 

The Prime Implicants Interface (Figure 3.1 1) displays the details of the prime implicants found in the analysis as a 
Notepad text file. As Notepad is a Windows application, the user gets all the convenience of printing a hardcopy of 
the file, cutting and pasting to incorporate the results into another word processing software. The prime implicants 
shown in Figure 3.1 1 are those obtained for the example discussed in Section 2.5.3. 

The Tables Interface (Figure 3.12) shows the user how the Model Analyzer obtains the prime implicants as a Write 
text file. This file keeps track of all the intermediate transition tables. Like a Notepad file, the results shown can be 
printed out or incorporated into another word processing software. The intermediate tables shown in Figure 3.12 are 
those obtained for the analysis of the example discussed in Section 2.5.3. 
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A t  t im 1. TP:hi-hi tank pressure  

There a r e  7 p r i n e  i n p l i c a n t s  

P r i m  I a p l i c a n t  t 1 
R t  t ine -1. SWS:suitch is norna l  RND 
R t  t i m e  -1. E:power a v a i l a b l e  RND 
lit tine -1, US:ualue is norna l  RND 
R t  time -1. MI0:no nanual connand RHD 
R t  t ime -1, SS:sensor f a i l e d  l o u  RHD 
R t  t i m e  -1. TP:high tank pressure  

R t  t ime -1. SWS:suitch is norna l  RND 
A t  t ine -1. Erpouer a v a i l a b l e  RND 
R t  t ine -1, US:ualue is norna l  RHD 
R t  t i n e  -1. W0:ualue nanually c l o s e  RND 
R t  t i n e  -1. SS:sensor f a i l e d  l o u  RHO 
R t  t i n e  -1. TP:high tank pressure  

P r i m  I a p l i c a n t  t 2 

Figure 3.1 1 : User Interface for Displaying the Prime Implicants 

a 
Elle Edlt Flnd Charader paragraph Document Help 
Starting System Analysis : 

0.0 
TP I TOP 
S I  T 

*77*7777.77777.*777*77* 

7 Current Tlmc 0.000 7 
7 7 7 ~ ~ 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 ~ ~ 7  

After top event table expansion: 
2 rows 
1.0 1.0 
TP NGF I TOP 
4 + l I  T 
S - 1  T 

777777777..7.*....7.7*~ 

7 Currenc Tlmc 1.000 
.778877777.7*....t...+. 

After top event table exparuion: 
2 rows 
1.0 1.0 1.0 
TP IGF OGF I TOP 

Figure 3.12 : User Interface for Displaying all the Intermediate Transition Tables 

3.2.2.2 The Analysis Engine 

The analysis engine is the part of the Model Analyzer which performs the backtracking steps. It carries out the steps 
of expanding the decision tables to form the intermediate transition tables, applying physical and dynamic 
consistency rules to remove inconsistent rows from the intermediate transition tables, simplifying the intermediate 
transition tables to obtain the critical transition table, and finally applying Quine's consensus theorem to generate the 
timed prime implicants. 
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4 INTERJM TEST CASE 

The testing and demonstration of the DFM modeling and analytical approach has been executed by applying the 
technique in two realistic test cases, which are referred to within our project as the “Interim Test Case” (ITC) and 
the “Demonstration Test Case” (DTC). The latter, which is discussed in detail in Chapter 5, refers to the analysis of 
a PWR (Pressurized Water Reactor) steam generator level control system, the logic and algorithms of which are 
implemented via software. The DFM demonstration task called for a detailed analysis of this steam generator digital 
control system and this required the development of a detailed thermal hydraulic simulator of the steam generator 
portion of the system, which in turn was recognized from the beginning as being a relatively lengthy and complex 
task. Thus, the interim test case was conceived and constructed as a methodology test and demonstration tool that 
would not require itself as much effort to construct as the DTC. 

The ITC was constructed to be a realistic system, that is a system that could conceivably exist and be used in an 
actual industrial application. The system was to be defined in such a way as to be easy to model and simulate in 
terms of its physical behavior, so that its simulated representation could be readied quickly for the purpose of 
enabling testing of the DFM approach and techniques. At the same time, to provide a true test for the DFM 
application and generate feedback on how DFM may need modifications andor improvements, it was decided that 
the system would include a digital control system with logic and hctional characteristics of a relatively high degree 
of complexity. The resulting ITC, which is described in detail, has been used to interactively test and develop the 
basic features and procedures of DFM, that is, to test how well the existing DFM features and procedures worked, 
and what extensions or additions might be needed to make DFM more readily usable and useful in more complex 
applications. 

This chapter is organized into four sections. Section 4.1 (ITC System Description) describes the overall structure of 
and the functions carried out by the ITC system, as well as the system components and its control logic. Section 4.2 
(ITC System Simulation) discusses how the system has been abstracted, Le., the modeling assumptions and the 
physical laws used for representing the various portions and components of the system. This section also presents 
the procedures for simulating the behavior of the system and explains in detail the simulation algorithms employed in 
the simulation code which was used to understand the detailed behavior of the system. Section 4.3 (DFM Model of 
the ITC System) discusses the DFM model for this system, including the assumptions and the details regarding the 
definition of DFM nodes, transfer boxes and transition boxes. Finally, Section 4.4 (ITC DFM Model Analysis) 
summarizes some key ITC analyses that were executed, e.g., the top events that were analyzed and the resulting 
prime implicants and system sequences. 

4.1 ITC System Description 

The tank level and flow control system is shown in Figure 4.1. The key features of this system are summarized 
below: 

- A water tank, fed by water pump on the inflow pipe and regulated by control and stop valves on the inflow 

A 3-element (level sensor, inflow sensor, outflow sensor) tank flow and level control system, with control 

A tank bypass is allowed for emergency mode of operation (e.g., tank overflow). In this mode, the inflow 

Stop-valve actuation and control logic selection implemented within the digital controller software. 

and outflow pipes. 

logic implemented in a software-driven controller. 

and outflow pipes are directly connected and the tank is isolated via the actuation of the three stop valves 
located on the inlet and outlet sides of the tank piping. 

- 
- 

- 
The major components of this system are the pump, the pipe, the control valves, the stopped valves, the water tank 
and the digital controller. Details of these components are discussed below. 
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Figure 4.1 : ITC Digital Tank Level and Flow Control System 

4.1.1 Pump 

The pump is a centrifugal pump. It is used for pumping water to the water tank at an elevation of 50 ft. The pump 
operates at a constant speed and the pump characteristics curve is shown in Figure 4.2. 

20 

0 
0 500 loo0 1500 2ooo 2500 rxw) 3500 

Row Rate (gpm) 

Figure 4.2 : Pump Characteristics Curve 

4.1.2 Pipes 

The pipes have a very smooth internal surfaces. The diameter of the pipes is 6 in. The upstream pipe is 600 ft long, 
while the downstream pipe and the bypass pipe are both 100 ft long. 



4.1.3 Control Valves 

The control valves are globe valves which are good for throttling operations. These valves can be throttled fiom 5% 
opened all the way to fully opened. 

4.1.4 Stop Valves 

The stop valves can either be fully opened or fully closed. 

4.1.5 Water Tank 

The water tank is 30 ft high and has a diameter of 15 ft. 

4.1.6 Digital Controller 

The digital controller operates in cycles of 100 ms. Its function is to maintain the water level at 15 ft and the 
downstream flowrate at a certain value by throttling the upstream and downstream control valves cvl and cv2. The 
water level is controlled via cvl, while downstream flowrate is controlled via cv2. The controller receives inputs 
fiom the two flowrate sensors and the water level sensor, implements the control logic and then gives commands to 
the two control valves and the three stop valves. 

The control flow is shown in Figure 4.3. In the control logic, the measured water level is compared with the level 
set-points. If the level is within a safe boundary, the controller will try to maintain the water level and the 
downstream flowrate at the corresponding set-points. The control logic uses Proportional Integral and Derivative 
(PID) control law to maintain the water level and Proportional Integral (PI) control law to control the downstream 
flowrate. Stop valves v l  and v3 will remain opened, while stop valve v2 will remain closed. 

close VI 
Drain water open v2 

from the 
cvl =men 
cv2=max level too 

high 

set-point 

open VI 
close v2 Caladm rhe 

with the level 
xt-points calculate cvl 

within calculate cv2 

upstream dofinstream 
flowlate flowrate 

meanvement measurement 
level too 

open VI 
close v2 

-b closev3 
cvl =may 
1x2 = min 

Replenishwater - - 

Figure 4.3 : Control Flow 

However, if the water level is below a dangerously low level, the controller will bypass the normal control logic. 
Stop valve VI will remain opened, but stop valves v2 and v3 wil! be closed in an attempt to replenish the water 
supply in the tank. On the other hand, if the water level is too high, the stop valve vl will- be closed and stop valves 
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v2 and v3 will be opened. This will drain the water fiom the tank. In both circumstances, the normal operation will 
be resumed once the water level returns to within the safe boundaries. 

Flowate Set-Point 
low 
normal 
high 

The control logic implemented is summarized in Table 4.1 and the level and flowrate set-points are shown in Tables 
4.11 and 4.111. 

Flowrate (gpm) 
500 
700 
900 

If (level < low-low set-pt.) 

If (low-low set-pt. 5 level < low set-pt.) 

If (low set-pt. 5 level 5 high set-pt.) 

If @igh set-pt. < level I high-high set-pt.) 

If (high-high set-pt. < level) 

4.2 

Table 4.1 : Control Logic 
0 Open stop valve vl  
0 Close stop valve v2 
0 Close stop valve v3 

0 

0 Open stop valve vl  
0 Close stop valve v2 
0 Open stop valve v3 
0 

0 Open stop valve v l  
0 Close stop valve v2 
0 Open stop valve v3 
0 

0 Open stop valve v l  
0 Close stop valve v2 
0 Open stop valve v3 
0 

0 Close stop valve vl  
0 Open stop valve v2 
0 Open stop valve v3 
0 

0 

Open control valve cvl to maximum 
Close control valve cv2 to minimum 

Calculate positions for control valves cvl and cv2 using the 
normal level set-point and the low flowrate set-point 

Calculate positions for control valves cvl and cv2 using the 
normal level set-point and the normal flowrate set-point 

Calculate positions for control valves cvl and cv2 using the 
normal level-set-point and the high flowrate set-point 

Close control valve cvl to minimum 
Open control valve cv2 to maximum 

Table 4.11 : L 
Level Set-Point 

low-low 
low 
normal 
high 
high-high 

.vel Set-Points 
Level (ft) 

5 

ITC System Simulation 

As pointed out in the general discussion provided in Chapter 2, if the DFM analysis of the system is to be carried out 
with a high degree of completeness and fidelity, then the key features of the expected cause and effect and dynamic 
behavior of the system being modeled need to be known in detail by the analyst. This may be assumed to be true in 
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the assurance or safety analysis of a system that is either already operational, or that has at least been defined and 
designed to its detailed component level. A more qualitative knowledge, on the other hand, may be entirely 
sufficient for a DFM analysis that is conducted at the system specification level, when only a first-tier, preliminary 
defmition of the system design is available. Because the ITC exercise was intended to test the more complete set of 
DFM capabilities, the first type of analysis was used in this exercise, and a behavior simulation model of the tank and 
piping system described in Section 4.1 was developed to understand the quantitative and dynamic aspects of the 
system behavior which may be usehl in the construction of the DFM model of the system. 

The simulation model that was developed finds the operating condition of the system and is also capable of 
predicting the dynamic evolution of the system parameters during operational transients. It calculates, as a function 
of time during a transient set in motion by the change of certain system boundary conditions, the pressure head 
developed by the pump, the pressure losses across the components, the upstream flowrate A d  the downstream 
flowrate and keeps track of the water level in the tank. 

The pressure head developed by the pump and the upstream flowrate is calculated by finding the intersection 
between the pump characteristics curve and the upstream friction loss curve (Figure 4.4). The downstream flowrate 
is calculated by equating the pressure head at the water tank exit and the sum of the pressure losses in the 
downstream control valve (cv2) and the downstream pipe. If the stop valve v2 (the bypass valve) is opened, this 
flowrate is added to the upstream flowrate to get the total downstream flowrate. The variation in the water tank level 
is calculated by integrating the difference between the flowrate into the tank and the flowrate out of the tank. 

pressure heat 
developed in 
the Pump 

System Curves 
/ 

Control valve 
cvl5% o p e d  

throttling of . . \ 
% 

- - - - - - - -  - --s. Pump 3 
characteristics ....................................... ... ........ ............. 5. ; \  ,y 

\ 
\ 

Control valve 
i cvl 100%opened 

Figure 4.4 : Finding the Operating Condition of the System 

The following describes how the different components are modeled by physical laws in the simulation program: 

4.2.1 Pump 

The pump behavior is described by the pump characteristics curve shown in Figure 4.2. A second order polynomial 
is used to approximate this curve. The equatiofi is 

H = -9.28 x 10" q2 + 2.8 x l'x3 q + 136 0% 4.1) 

where H is the total head in ft 
q is the flowrate in gpm 



4.2.2 Pipes 

The fiction head loss in the pipes in modeled by the empirical Hazen-Williams equation: 

4*73L 1.852 
HL = ~ 1 . 8 5 2 ~ 4 . 8 7  4 

where HL isthe fi-iction head loss in ft 
D is the pipe diameter in ft 
L is the pipe length in ft 
q is the volumetric flowrate in ft3/s 
C is the Hazen-Williams coefficient 
For a highly smooth pipe, C = 140 

4.2.3 Control Valves 

(Eq. 4.2) 

The head loss in the control valves is also estimate- 
ratio of 400 is used. The opening and closing of the valve is assumed to affect the pressure loss similar to an orifice. 

using the Hazen-Williams equat.m. An equivalent (L/D) 

where x is the valve position in % 

4.2.4 Stop Valves 

No pressure loss is assumed for a fully opened stop valve. 

4.2.5 Digital Controller 

Under normal conditions, the controller controls the water tank level by varying the upstream valve (cvl) position 
command. The upstream valve position command is calculated using a PID control logic, as shown in Eq. 4.4: 

Aldt + R,,(q,, - qou,) (Eq. 4.4) 

where Acvxl is the change in control valve position command 
A1 is the actual level - level set-point 
g ~ ,  is the flowrate into the tank 
qoul is the flowrate out of the tank 
kll, Rll, R12 are control parameters 
kI1= 10, R11= 0.1, Rl2 = 0.005 

The controller controls the downstream flowrate by varying the downstream control valve position. The downstream 
valve position is calculated using a P-I control logic, as shown in Eq. 4.5: 

(Eq. 4.5) 

where Acm2 is the change in the control valve position command 
Aqdom is actual downstream flowrate - flowrate set-point 
k21 and R2, are control parameters 
k21=0.1,R21=5 
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4.2.6 Simulation Code Algorithms 

As discussed previously, the simulation code fuids the operating condition of the system and keeps track of the water 
level in the tank. The algorithm used in the simulation code is shown in Table 4.N. It should be noted that when 
both stop valves vl  and v2 are opened, most of the water will flow through v l  into the tank because of the lower 
pressure drop. Hence, it was assumed in the algorithm that the bypass flowrate is zero in both cases. A simulation 
time step of 10 ms is used. A sample output of this simulation program is shown in Figures 4.5 - 4.7. For this 
simulation run, the initial water level in the tank is 18 fl, both control valves start at their minimum positions. In 
addition, the stop valves v l  and v3 are opened, while the stop valve v2 is closed. 

Table 4 . N  : Simulation Algorithm (1/2) 
Initialize the simulation time 
Initialize the positions for the stop valves VI, v2 and v3 
Initialize the positions for the control valves cvl and cv2 
Initialize the water level in the tank 
Initialize the upstream flowrate, the bypass flowrate, and the downstream flowrate 
Based on current positions for valves vl, v2, v3, cvl, cv2 and the water level, calculate the upstrean 
flowrate, the bypass flowrate, the downstream flowrate, qm(flowrate into the tank) and q,,,(flowrate OUI 
of the tank). 

If ( vl is opened AND v2 is opened AND v3 is opened ) 
Solve 
Pump Head = Static Loss + Upstream Pipe Loss i Control Valve Loss 
for Upstream flowrate 
Bypass flowrate = 0 
Solve 
Water Level = Downstream Pipe Loss + Downstream Control Valve Loss 
for Downstream flowrate 

Solve (1) for Upstream flowate 

Downstream flowrate = 0 

Solve (1) for Upstream flowate 
Bypass flowrate = 0 
Solve (2) for Downstream flowrate 

If ( v l  is opened AND v2 is closed AND v3 is closed ) 
Solve (1) for Upstream flowrate 
Bypass flowrate = 0 
Downstream flowrate = 0 

.....( 1) 

.....(2 ) 

If ( vl is opened AND v2 is opened AND v3 is closed ) 

I Bypass flowrate = 0 

If ( vl is opened AND v2 is closed AND v3 is opened) 



2... 
aont 

3 

4 
5 
6 
:ontrol 

Table 4.IV : Simulation Algorithm (2/2) 
If ( vl is closed AND v2 is opened AND v3 is opened ) 
Solve 
Pump Head = Static Loss + Upstream Control Valve Loss + Upstream Pipe Loss + Bypass Pipe 

for Upstream flowrate 
Solve (2) for Downstream flowrate 
If ( Downstream flowrate < Upstream flowrate ) 

Loss + Water Tank Level .....( 4) 

Solve 
Pump Head = Static Loss + Upstream Control Valve Loss + Upstream Pipe Loss + 

Bypass Pipe Loss + Down Pipe Loss + Downstream Valve 
Loss .....( 3) 

for Upstream flowrate 
Downstream flowrzte = Upstream flowrate 

Bypass flowrate = Upstream flowrate 
If ( VI is closed AND v2 is opened AND v3 is closed.) 

Solve (3) for Upstream flowrate 
Bypass flowrate = Upstream flowrate 
Downstream flowrate = 0 

If ( v l  is closed AND v2 is closed AND v3 is opened ) 
Upstream flowrate = 0 
Bypass flowrate = 0 
Solve (2) for Downstream flowrate 

If ( vl is closed AND v2 is closed AND v3 is closed ) 
Upstream flowrate = 0 
Bypass flowrate = 0 
Downstream flowrate = 0 

qi, = Upstream flowrate - Bypass flowrate 
qoul = Downstream flowrate - Bypass flowrate 
For every 100 ms (10 simulation steps), calculate the sensor inputs. 
From sensor inputs, calculate command positions for valves for vl, v2, v3, cvl and cv2 
Based on qm, qout and the current water level, calculate the new water level 
Increment simulation time 
Go to step 2 
’ cycle = 100 ms 

Simulation cycle = 10 ms 

4.3 DFM Model of the ITC System 

This section describes the DFM model of the ITC system. In building the.DFM model for this system, certain 
standard assumptions were made regarding the possible failure modes of- the individual system hardware 
components. Both the flowrate sensors and the level sensor were assumed to be allpwed to fail high, fail low, or fail 
as-is. Similarly, both control valves can fail closed, fail open, or fail as-is, while the stop valves can either fail closed 
or fail open, and the check valves can fail open. 

The DFM model of the tank level and flow control system was constructed by following the steps outlined in Section 
2.2, and is shown in Figure 4.8. The digital controller model is shown as a black box in this figure, but is expanded 
in full detail in Figure 4.9. The description of the variables that appear in the model as DFM “nodes” can be found in 
Table 4.V. In the DFM model in Figure 4.8, transfer boxes 1 and 2 represent the control valve actuators, and transfer 
boxes 3 , 4  and 5 model the stop valve actuators. Similarly, transfer boxes 6 and 7 represent the flowrate sensors, 
while transfer box 8 models the level sensor. In addition, transfer box 9 represents the pump, transfer box 10 shows 
the bypass pipe and transfer boxes 11 and 12 model the inlet pipe and the outlet pipe respectively. The transfer box 
13 and the transition box 14 model the behavior of the water level in the tank. In Figure 4.9, the transfer boxes 15, 
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16 and 17 represent the A/D converters for the upstream flowrate sensor signal, the downstream flowrate sensor 
signal and the level sensor signal respectively. Transfer boxes 18-21 model the PID control logic for maintaining the 
water level, while transfer boxes 22 and 23 model the PI control logic for regulating the downstream flowrate. In 
addition, transition box 24 represents the module in the software that switches the positions of the stop valves vl, v2 
and v3, while transition boxes 25 and 26 model the DIA converters for the upstream (Le., level-control) valve 
position command and the downstream flow-control valve position command, respectively. 

ITC Tank Level 

1 5 .  

14.5 . 

14,  I 
0 1 2 3 4 5 

Time (s) 

I I 

Figure 4.5 : Variation of the Tank Level with Time 

ITC Flowrates 
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Figure 4.6 : Variations of the Upstream Flowrate and the Downstream Flowrate with Time 
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Control Valve Positions 
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Figure 4.7 : Variations of the Control Valve Positions with Time 
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Figure 4.8 : DFM Model of the Tank Level and Flow Control System 

46 



L------------------ 

*............................... .................... ................................ , . ...,.. .. . .....___ ._._.._....___ .. 

Figure 4.9 : DFM Model of the Digital Controller 

In developing the DFM model for the tank level and flow control system, the issue of how to model different types of 
control logic (such as PI, PID, etc.) was encountered. The ensuing investigation resulted in modeling templates for 
representing these different classes of control logic. The related findings are discussed in detail in Chapter 6. The 
branch linking nodes DELL, DELLP, ILP, IL, DL and LC in Figure 4.9 is an example of the template which can be 
used to represent a PI control logic. 

The nodes in the DFh4 model are discretized into fmite number of states. The discretization schemes are shown in 
Tables 4.VI - 4 . Z .  These schemes reflect the knowledge about the system and assumptions regarding the failure 
modes ofthe components. For example, the discretization scheme for L (tank water level) in Table 4.XIV is such 
that the state boundaries correspond to the set-points used in the control logic. On the other hand, the scheme for 
discretizing CVSl (state of the upstream control valve) in Table 4.VIII is defmed in accordance with the assumption 
regarding the failure modes of this component. 



Table 
I Variable 

CVPl 
CVPlP 
CW2 
CVP2P 
CVSl 
' c v s 2  
DcVPl 
Dcw 
DELL 
DELLP 
DELQ 
DL 
IL 
ILP 
L 
LC 
LL 
LM 
Lh4P 
LS 
QC 
QD 
QDM 
Q D W  

Qm 
QNET 
QOUT 

Q D O W  

4.V : Description of the Variables in the DFM Model 
Description 

: valve 

QSl 
QS2 
QU 
QUM 
Q- 
QUP 
VCl 
vc2 
vc3 
VPl 
W2 
vP3  
vs1 
vs2 
vs3 

State 
0 
1 

;tate of the ched 

Description 
Normal 
Failed opened 

'osition of the upstream control valve cvl 
'osition of the upstream control valve cvl in the previous cycle 
'osition of the downstream control valve cv2 
'osition of the downstream control valve cv2 in the previous cycle 
state of the upstream control valve cvl 
State of the downstream control valve cv2 
Zhange in position of the upstream control valve cvl 
Zhange in position of the downstream control valve cv2 
,eve1 error term in the software 
,eve1 error term in the software in the previous cycle 
lownstream flowrate error term in the software 
Mismatch between upstream flowrate and downstream flowrate 
itegral control term for level in the sokvare 
htegral control term for level in the previous cycle 
Water Level in the Tank 
Upstream valve position command 
Software representation of the water level in the tank 
Measurement of the water level in the tank 
Measurement of the water level in the tank in the previous cycle 
State of the water level sensor 
Downstream valve position command 
Downstream flowrate 
Measurement of the downstream flowrate 
Measurement of the downstream flowrate in the previous cycle 
Software representation of the downstream flowrate 
Flowrate into the tank through the inlet 
Net flowrate into the tank 
Flowrate out of the tank through the outlet 
State of the upstream flowrate sensor 
State of the downstream flowrate sensor 
Upstream flowrate 
Measurement of the upstream flowrate 
Measurement of the upstream flowrate in the previous cycle 
Software representation of the upstream flowrate 
Command to stop valve v l  
Command to stop valve v2 
Command to stop valve v3 
Position of stop valve v l  
Position of stop valve v2 
Position of stop valve v3 
State of stop valve v l  
State of stop valve v2 
State of stop valve v3 



State 
0 
1 
2 
3 
4 
5 

Table 4.VIII : Discretization of CVSl and CVS2 

Normal 
Failed stuck opened 
Failed as is 

Description 
0%-10% 
10%-30% 
30%-50% 
50%-70% 
70%-90% 
90%-100% 

State 
-3 
-2 
-1 
0 
+1 
+2 
+3 

Description 
-100% to -60% 
-60% to -20% 
-20% to -5% 
-5% to +5% 
+5% to +20% 
+20% to +60% 
+60% to +loo% 

State 
-3 
-2 
-1 
0 
+1 
+2 
+3 

49 

Description 
-15 ft to -5 ft 
-5 ft to -1 ft 
-1 fi to -0.2 fi 
-0.2 ft to +0.2 ft 
10.2 fi to +1 ft 
4-1 ftto-J-5ft 
+5 fito+15 ft 

State 
-3 
-2 
-1 
0 
+1 
+2 
+3 

Description 
-1000 gpm to -600 gpm 
-600 gpm to -200 gpm 
-200 gpm to -50 gpm 
-50 gpm to +50 gpm 
+50 gpm to +200 gpm 
+200 gpm to +600 gpm 
+600 to +lo00 gpm 



Table 4 

State 
-2 
-1 
0 
+1 
+2 

Description 
-1500 gpm to -800 gpm 
-800 gpm to -150 gpm 
-150 gpm to +150 gpm 
+150 gpm to +SO0 gpm 
+SO0 gpm to +1500 gpm 

State 
-2 
-1 
0 
+1 
+2 

Description 
-7000 to -1500 
-1500 to -200 
-200 to +200 
+200 to + I  500 
+ 1500 to +7000 

State 
0 

2 
3 
4 
5 

1 

Description 
0-5 ft, Very low 

10-15 ft, Slightly low to normal 
15-20 ft, Normal to slightly high 
20-25 ft, High 
25-30 ft, Very high 

5-10 ft, LOW 

State 
-1 
0 
1 
2 

Description 
Failed Low 
Normal 
Failed High 
Failed As Is 

State 
0 
1 
2 
3 
4 

Description 
0 to 250 gpm 
250 to 500 gpm 
500 to 700 gprn 
700 to 900 gpm 
900 to 1300 gpm 

State 
-2 
-1 
0 
+1 
+2 

Description 
-1300 to -1000 gpm 
-1000 to -500 gpm 
-500 to +500 gpm 
+500 to +lo00 gpm 
+lo00 to +1300 gpm 



State 
0 
1 
2 
3 
4 

Description 
.Oto250gpm 
250 to 500 gpm 
500 to 750 gpm 
750 to 1000 gpm 
1000 to 1300 gpm 

Table 4.XX : Discretization of VSl, VS2 and VS3 
Description 
Failed Closed 
Normal 

State 
0 
1 

Decision tables were constructed to complete the defmition of this DFM model. The decision tables for the physical 
components were built by running the corresponding subroutines in the simulation code. For instance, Table 4.m 
is the decision table for transition box 14 and is constructed by running the software module in the simulation code 
that updates the water level in the tank. It is important to note that this would most likely be true even in the case in 
which one were modeling a materially existing system, since it would be completely impractical to exercise all kinds 
of arbitrary transients on the actual system, just to determine what its behavior is. 

Description 
Close 
Open 

An equally important observation needs to be made with regard to construction of the decision tables for the system 
software. In fact, since an exact copy of the control software can be in most cases be obtained for an existing system, 
the decision tables for the digital controller can be constructed by executing, off-line, module by module, the control 
software that is actually implemented. This activity is essentially the exact equivalent, within the overall 
implementation of the DFM analytical technique, of performing “module testing” (as normally referred to in the 
software test practice) on the software, and was discussed in this context in Sections 2.1 and 2.2. Of course, in the 
analysis of the ITC system, the distinction between “actual copy” and “simulation copy” of the control software 
cannot be quite made, as we are dealing with a fictional system which exists only in its “simulated” version. The 
observations just made above remain valid, however, for their significance in the analysis of actual systems. 

Table 4.XXII shows the decision table for transfer box 20, as built by actually running the subroutine that performs 
the PID control logic. 

4.4 ITC DFM Model Analysis 

The section discusses the analysis performed on the DFM model of the ITC system. To test the capability of DFM in 
a system and software assurance mode of application, a fault was intentionally injected in the control software. We 
present here the results of this “faulted-case analysis” to illustrate the capability of DFM for identifying and isolating 
software errors in such a mode of application. A number of analyses were also performed on the original unfaulted 
system, mostly for the purpose of refming and debugging the DFM analytical procedures and software tools. Since 
these analyses are judged to be of little interest for the reader, they are left out of the discussions in this section. 
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Table 4 . m  : Decision Table for Transition Box 14 
QNET 

-2 
-1 
0 

-2 
-1 
0 
0. 
1 
2 

-2 
-1 
0 
0 
1 
2 

-2 
-1 
0 
0 
1 
2 

-2 
-1 
0 
0 
1 
2 

0 
1 
2 

- 

- 

- 

- 

- 

- 

L 
0 
1 
1 
1 
1 
2 
2 
2 1  
0 
0 
0 
2 
3 
3 
3 
1 
1 
1 
3 
4 
4 
4 
2 
2 
2 
4 
5 
5 
5 
3 
3 
3 
5 
4 
4 
4 

L+ 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 

4.4.1 Description of the Fault Injected 

A fault was injected into the digital control sofhvare. The fault was placed in the module of the sohaf-e  code that 
sets the position of the control valves and the stop valves when the measured water level is above the high-high set- 
point. Under that condition, the digital controller should close the stop valve vl, open the stop valves v2 and v3, 
close the upstream control valve to the minimum positior? (5%) and open the downstream control valve to the 
maximum position (loo%), as was defined in Table 4.1. A comparison of the unfaulted software and the faulted 
software is shown in Figure 4.10. Instead of setting the variable cn2-cornmand to 100, the programming error 
causes the software to set the variable to -100. This fault has the effect of closing the downstream control valve to 
5%. The reader should note that this branch of the code will not be esecuted unless the level is above the high-high 
set-point, and that this programming error requires an additional hardware failure to cause a system failure. Hence, 
blind testing may not be able to catch this software error unless this branch is specifically tested under the special 

. condition. 
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Table 4 . m  : Decision Table for Transfer Box 20 
DELL 

-3 

-3 
- 
- 
- 
-2 
-3 

+3 
- 
- 
- 

+2 
+3 

+3 
- 

DELLP 
-3 - 
- 
- 

-3 
-2 
-3 

+3 

+3 
+2 

- 
- 

- - 
+3 

Unfaulted Software 
/t.*t+tt*ttttttttttt*****************/ 

/* Subroutine Controller0 */ 

/tt*.+t*t.tt*tt.*ttt*****************/ 

( 

/* Simulates the digital controller */ 

void ControllerO 

else if ( 1-measured =. 
Setpoint .level (41 ) 

( 
vxl-command = Closed; 
vx2-command = Opened; 
-3-command = Opened; 
cvxl-command = -100; 
C V X ~ - C O ~ ~  - 100 ; 

I 

ILP 
-1 
-2 
0 
-1 
0 
0 

+I 
0 
-1 
+1 
0 
0 
0 

+2 
+I 

IL 
-2 
-2 
-1 
-1 
-1 
-1 
0 
0 
0 
+1 
+1 
+1 
+1 
+2 
+2 

Figure 4.10 : Comparison of the Unfaulted Software and the Faulted Software 

Faulted Software 
/t*ttt.t**t*tttt*t*******************/ 

*/ /* Subroutine ControllerO 
/* Simulates the digital controller */ 
/**tt+ttttt+tttt+ttf************~...,j 

void Controller0 
{ 

else if ( 1-measured > 
Setpoint. level 141 ) 

vxl-command = Closed; 
vx2-command = Opened; 
vx3-command = Opened; 
cvxl-command = -100; 

( 

CVX2-C-d I -100 ; 

The DFM model was constructed without using any prior knowledge of the software error. This is possible because, 
as mentioned earlier, the decision tables are built directly by"testing" the individual modules of the digital control 
software. Figure 4.1 1 shows the difference between the decision tables for the correct software and the faulted 
software. Note that the decision table on the left hand side (corresponding to the correct version) is produced by 
testing the module shown on the left hand side of Figure 4.10, while the decision table on the right hand side is 
generated by testing the module on the right hand side of Figure 4.10. 
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Unfaulted Software Faulted Software 

LL DELL IL DL LC 

+2 -2 +3 
-3 

Figure 4.1 1 : Comparison of the Decision Tables for the Unfaulted Software and the Faulted Software 

4.4.2 Analysis of the System with the Faulted Control Software 

4.4.2.1 Definition of the Top Event 

The system failure was defined as the tank “overflowing”. This translates into a definition of the states of the 
pertinent DFM nodes as: 

{ (L z 5 @ t = 0) AND (L = 5 @ t = -1) AND (QNET = + 1 @  t 0) }. 

The meaning of the above definition is that the tank level is very high in both the current and the previous time step 
and that there is a net inflow of water into the tank. In the course of the various ITC analyses that were carried out, it 
was discovered that defining the top event as specifically as possible, such as using a combination of several 
conditions across different time steps to describe the tank overflowing, would enabIe the analysis to be performed 
more efficiently. Defining a top event in very precise terms ensures that the DFM Model Analyzer sofhvare needs 
less computer memory to store the intermediate transition tables developed during the analysis and spends less 
computing time tracing events that are irrelevant. As a comparison, when the top event was defined more 
simplistically as { L = 5 @ t = 0 } (the level is high at the current time step), the Model Analyzer ran out of memory 
before the analysis was completed. The care that has to be exercised in a specific and precise definition of the 
possible top events of interest is one of the key findings of our test cases and will be revisited in Section 6.3. 

4.4.2.2 Constraints Imposed on the Analysis 

Dynamic consistency rules are defined to prune out the branches that encompass events that the analyst assumes to 
be impossible due to the dynamic constraints of the system. The dynamic consistency rules so defined are listed in 
Table 4.XXIII. These rules reflect the assumption that if any sensor or valve has failed, then it remains in the 
original failure state. 

In addition to the use of dynamic consistency rules, we also determined that it is very beneficial, in terms of use of 
computational resources during an analysis, to permit the specification of “check rules” , which can be used to limit 
the DFM search to the identification of specific classes of errors. In this particular case, the rules were defined in 
such a way as to force the Model Analyzer to analyze, store and display only those failure sequences that are related 
to software errors. For this purpose, the definition of software error must be referred to a formal catalogue of system 
behavior specifications, and includes any kind of software-produced action that violates the given set of top-level 
software behavior specifications. The specifically relevant portion of these specifications requires the controller not 
to command m e r  opening of the upstream valve and/or hrther closing of the downstream valve when the water 
tank level is in the “high-high’’ range. This rule was defined as a boundary condition that the Model Analyzer used 
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to distinguish between branches that needed to be expanded further and those for which further expansion was not 
required. The benefit and effectiveness of the defmition of this sort of check-rules is another key finding of our study 
and will be discussed further in Section 6.3. 

Table 4.XXIII : The Dynamic Consist{ 
Rule 

For CVS1, states -1,l and 2 are sink states 

For CVS2, states -1,1 and 2 are sink states 

For LS, states -1 , 1 and 2 are sink states 

For QS 1 , states -1 , 1 and 2 are sink states 

For QS 1 , states -1, 1 and 2 are sink states 

For VSl, states -1 and 1 are sink states 

1 For VS2, states -1 and 1 are sink states 
I I For VS3, states -1 and 1 are sink states 

ncy Rules Defined for the Analysis 
Meaning 

The upstream control valve, once failed, 
cannot be repaired. 
The downstream control valve, once failed, 
cannot be repaired. 
The level sensor, once failed, cannot be 
repaired. 
The upstream flow sensor, once failed, cannot 
be repaired. 
The downstream flow sensor, once failed, 
cannot be repaired. 
The stop valve vl ,  once failed, cannot be 
repaired. 
The stop valve v2, once failed, cannot be 
repaired. 
The stop valve v3, once failed, cannot be 
repaired. 

4.4.2.3 Result of the Analysis 

The analysis was carried out for one step backward in the reference time h e  and the prime implicant that was 
correspondingly identified is shown in Table 4.XXIV. The software error that causes the tank to overflow is found to 
be the downstream control valve commanded to close to its minimum position (software condition) AND the failure 
of the check valve (external condition). The other conditions present in the prime implicant are those that specify 
that all the sensors, the control valves and the stop valves are normal, and that the level was high in the previous time 
step. The presence of these other non-failure conditions is a characteristic of the multi-state, non-coherent 
representation of the system, as is in the example given in Section 2.5.3. To facilitate the efficient presentation of the 
prime implicants,’it will be helpful to give the user the option to exclude certain normal component states from the 
display. This point will be revisited in Section 6.3.2.3, Findings and Insights. 

Table 4.XXIV : Prime Implicant for the Event in which the Tank Overflows 
Prime Implicant 

1 Level sensor is normal @ t = O  AND 
Upstream flow sensor is normal @ t = O  AND 
Downstream flow sensor is normal @ t = O  AND 
Upstream control valve is normal @ t = 0  AND 
Stop valve vl is normal @ t = 0  AND 
Stop valve v2 is normal @ t = O  AND 
Stop valve v3 is normal @ t = O  AND 
Downstream control valve is normal @ t = O  AND 
check valve failed open @ t = O  AND 
Upstream control valve commanded to close to its minimum @ t = -1 AND 
Downstream control valve commanded to close to its minimum @ t = -1 AND 
Tank level was very high @ t = - l  

The reader should note that the prime implicant in Table 4.XXIV is not the only cause for the tank to overflow. In 
fact, many other prime implicants can lead to the same top event; one of which is, for example, the failure of the 
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level sensor in the “stuck low” mode. The prime implicant in Table 4.XXIV, however, is the only one containing a 
software error as a contributor to producing the top event. The fact that the non-software-related prime implicants 
were not produced by the DFM analysis that uncovered this particular time implicant is due to the application of the 
check rule of which we have made mention above. The effect of the application of this rule is to narrow the analysis 
into searching for a particular class of errors. Appropriate use of the check-rules allows the analyst to focus on 
particular failure paths, if he/she so desires, and to make more efficient use of the computational resources available 
for the analysis. 
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5 ~ DEMONSTRATION TEST CASE 

The testing and demonstration of the DFM‘ modeling and analytical approach has been executed by applying the 
technique in two realistic test cases, which are referred to within our project as the “Interim Test Case” (ITC) and 
the “Demonstration Test Case” (DTC). The forper has been discussed in detail in Chapter 4. The DTC refers to the 
analysis of a Pressurized Water Reactor ’(PWR) & e m  generator level control system, the logic and algorithms of 
which are implemented via software. This DFM demonstration case study called for a detailed analysis of this steam 
generator digital control system, and thus the development of a detailed thermal hydraulic simulator of the steam 
generator portion of the system was included as part of the task. 

This chapter is organized in three sections. Section 5.1 (Steam Generator Simulation Package) provides a detailed 
discussion of how the thermal hydraulic and digital control portions of the test case are set up, Section 5.2 (DFM 
Model of the DTC System) gives a summary of how this test case is modeled using DFM, and Section 5.3 (DTC 
DFM Model Analysis) presents the defmitions for and results of some key analyses. 

5.1 Steam Generator Simulation Package 

A dynamic simulation model of a vertical U-tube steam generator (SG) typical of a two loop Combustion 
Engineering Pressurized Water Reactor (PWR) was developed. The simulation model consists of the steam 
generator, Main Feedwater and Auxiliary Feedwater systems, Steam Header, SG Pressure Control System, and the 
SG Level Control System. This model is converted to a simulation code written in FORTRAN. 

5.1.1 Steam Generator Model 

The function of a steam generator is to remove heat from the primary coolant during the operation of a PWR. 
Reactor coolant enters the SG hot leg plenum, flows through the SG tubes to the cold leg plenum, and enters the 
primary system cold leg. While flowing through the tubes, heat is transferred from the primary coolant to the SG 
shell side and boils the secondary coolant. 

Tile secondary side of the steam generator consists of an evaporative section and a steam drum. The evaporative 
section contains the U-tubes, and is located in the lower shell, while the steam drum houses the steam separator and 
dryer equipment. The steam drum section has a larger overall diameter than the evaporative region. There is a flow 
restrictor at the top of the steam drum where the steam line connects to the SG. 

The shell side of the steam generator is modeled as two non-equilibrium regions separated by a moving boundary 
which is the SG level (see Figure 5.1). The simulation model recognizes the different flow areas of the evaporating 
and steam drum sections. As the level moves between the two sections, the model accounts for the flow area change 
when computing SG level. The governing equations for the shell side of the SG are: Conservation of mass in each 
region, conservation of energy in each region, equation of state, and constant volume constraint. 

The SG shell side inventory is normally in a saturated state. There are however transients that may lead to non- 
equilibrium conditions. The two regions of the non-equilibrium SG model may be in the following thermodynamic 
states: 1) The lower region (F region) is either subcooled liquid or saturated liquid with bubbles forming and rising to 
the surface; and 2) The upper region (G region) is either superheated steam or saturated steam with liquid droplets 
forming and flowing to the liquid region. 

5.1.1.1 Governing Equations 

The two regions of the steam generator may have four different combinations of thermodynamic states and there is a 
different set of governing equations for each combination: 

Upper region (G) superheated steam, lower region (F) subcooled liquid, 
Region G superheated steam, region F saturated liquid with bubbles forming, 
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Region G saturated steam with droplets forming, region F subcooled liquid, and 
Region G saturatdsteam with droplets forming, region F saturated liquid with bubbles forming. 

I 
\ 

J- 
Steaa drum 

Region G 

0 
0 
0 
0 
0 

0 
0 
0 

0 

- 

I I  

Region P 

0 

I," 
i o  

WSIV x- 

Evaporator 

Hrin FW. - 
0 

I- 

Figure 5.1 : Schematic of the U-tube Steam Generator 

The steam generator model accounts for heat and mass transfer between the two regions. Mass transfer is modeled 
in the bubble rise and condensate drop models: The governing differential equations for each thermodynamic state 
are derived by first applying the mass and energy equations as well as the equations of state to each region of the 
steam generator. The resulting equations are analytically reduced until explicit state equations are obtained for all 
dependent variables (Motamed, 1983). The governing equations for the four possible combinations of states in the 
steam generator are as follows. All of the parameters in this section are defined in Tables 5.1 and 5.11, unless 
otherwise noted. 

State 1: Upper region superheated, lower region subcooled. 

The final form of the governing equations are: 
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Symbol. 
A 
a 
h 
J 
M 

Meaning 
Flow area 
32.2 fus’ 

. 
m 
P 

a 
P 
T 

t 

Void fiaction 
Density 
Time constant 

IJ 

Subscript 
b 
C 

U 

V 

Meaning 
Bubble 
Condensate 

V 

cs 
F 
Ff 

Enthalpy 

Mass 
Mass flow rate 

Pressure 
Time 
Internal energy 

778 ft-lbE/Btu 

Condensate on spray 
Fluid in the lower region 
Fluid portion in the lower region 

velocity 
Volume 
Specific volume 

Fg 
f 
fg 

Vapor portion in the lower region 
Saturated liquid 
Saturated liauid to vauor 

Q,q I Heat flow rate 1 

G 
Gf 
GE 

Fluid in the upper region 
Liquid portion in the upper region (condensate) 
Vapor portion in the umer region 

i3 
i 
SP 
HTR 
FG 

Saturated vapor 
Summation convention indicating boundary flows 

Heater 
Interfacial transuort 

spray 

Loss 
in 
0 

Indicating heat loss to the environment 
Indicating flow into 
Flow out of, 

Where “Qh” is the heat transfer from the tube to the shell side. 
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Equations (5.1) to (5.5) are integrated to determine the mass and enthalpy of each SG region. Equation (5.5) is 
solved for the SG pressure. These equations are simultaneously integrated to calculate the steam generator state. 
Equations (5.6), (5.7), (5.7a) and the equation of state are used to determine the volume of each region. 

b) State 2: Upper region superheated, lower region saturated. 

The final form of governing equations for this case are: 

-- dMG - Z A G [  
dt i 

Where, 
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(Eq. 5.8) 

(Eq. 5.9) 

(Eq. 5.10) 

(Eq. 5.1 1) 

(Eq. 5.12) 

(Eq. 5.13) 



Where, 

(Eq. 5.14) 

(Eq. 5.15) 

(Eq. 5.16) 

(Eq. 5.17) 

(Eq. 5.18) 

Equations (5.8) through (5.15) are numerically solved to obtain the following: 

1) Mass of fluid in the upper and lower regions, 
2) enthalpy of fluid in the upper region, 
3) vapor and liquid masses in the lower region, and 
4) SG pressure. 

Having calculated the state variables, equations (5.16) through (5.18) and equation of state are used to compute the 
volume of each region. 

c) State 3: Upper region saturated, Lower region subcooled. 

The final form of the governing equations are: 

(Eq. 5.19) 

(Eq. 5.20) 

(Eq. 5.21) 

@q. 5.22) 
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Where, 

(Eq. 5.23) 

(Eq. 5.24) 

(Eq. 5.25) 

Where, 

V=VF+VG 

(Eq. 5.26) 

(Eq. 5.27) 

(Eq. 5.28) 

(Eq. 5.28a) 

Equations (5.19) through (5.26) are numerically htegrated to obtain the fol!owing system parameters: 

1) Mass within the lower region, 
2) enthalpy in the lower region, 
3) masses of vapor and liquid in the upper region, and 
4) steam generator pressure. 

The equation of state and equations (5.27) through (5.28a) are then used to calculate fluid properties and volume of 
each region. 

State 4: Upper region saturated, lower region saturated. 

The fmal form of the governing equations are: 

- dMG = CmGi a 

dt j 
(Eq. 5.29) 
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.Where, 

Where, 

(Eq. 5.30) 

(Eq. 5.3 1) 

(Eq. 5.32) 

(Eq. 5.33) 

(E% 5 34) 

(Eq. 5.35) 

(Eq. 5.36) 

(Eq. 5.37) 

(Eq. 5.38) 

(Eq. 5.39) 

(Eq. 5.40) 

(Eq. 5.41) 
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v=v, +VG $12  

Equations (5.29) through (5.39) constitute the governing equations and are numerically integrated over time to 
obtain: 

1) Mass of vapor and liquid in the upper region, 
2) mass of vapor and liquid in the lower region, and 
3) steam generator pressure. 

As in the previous cases, the equation of state and equations (5.40) through (5.41a) are used to calculate the volumes 
of each region.. In this case since both regions are saturated, the enthalpy in each region is uniquely defined once 
mass and pressure are calculated. 

Heat transfer from the primary to the secondary side of the steam generator is modeled by forcing functions based on 
plant data for similar transients. Heat transfer at the interface between the upper and the lower region is not modeled 
in the simulation code as it is negligible; because the two phases are at or close to thermal equilibrium. 

5.1.1.2 Bubble Rise and Condensate Droplet Models 

The upper and lower regions of the steam generator are separated by the mixture level. The mixture level 
representation and the bubble density distribution in this model are the same as Wilson's model (Nahavandi,' 1980). 

When the SG upper region is in a saturated thermodynamic state, it may contain liquid droplets. The differential 
equation for the mass flow rate of condensate droplets removed by the steam separator and entering the lower region 
is approximated by a fmt order lag. The lag is modeled as a function of the average distance that the droplet has to 
travel. 

5.1.2 Main Steam System 

The main steam system in this model consists of the system of pipes and valves between the steam generator and the 
turbine. The system piping includes the main steam header and main steam line. Valves include the Main Steam 
Isolation Valve (MSIV), nine Safety Valves (SV), the Turbine Stop Valve, and Turbine Governor Valve. A flow 
restrictor located at the junction between the steam line and steam generator is also included in the model. The 
operations of the steam dump and steam bypass systems are not included in this model. 

The thermodynamic state of the main steam system is governed by conservation of mass and energy. The equation 
of motion is applied to determine the flow rate between the steam generator and the steam header (Motamed, 1983). 
The flow is limited to choked flow conditions. The flow at the flow restrictor, MSIV, the safety valves, and the 
turbine valve is also governed by the equation of motion and limited to choked flow conditions. 

During transients which exceed the capacity of the pressure control system, the steam generator pressure is 
controlled by a set of nine spring-loaded safety valves. The valve operations are expressed by a set of bistable 
actions. The model accounts for different lift settings between safety valves to simulate lift and reset sequence. 

5.1.3 Main Feedwater and Auxiliary Feedwater Systems 

The Main Feedwater System (MFWS) is designed to deliver water to the steam generators during power operations 
and after reactor trip. For the purpose of this study, feedwater flow delivered to the feedwater regulating and bypass 
valves are modeled. The feedwater regulating and bypass valves are controlled by the SG level control system, 
which is discussed later. 

The Auxiliary Feedwater System (AFWS) is designed to deliver water to the steam generator upon actuation of the 
emergency feed signal on low steam generator level. The AFWS flow is controlled by a bistable controller. Its 



actuation on low steam generator level is independent of the IvfFWS. n e  SG level instruments associated with the 
AFWS operation are redundant and safety related. 

5.1.4 Steam Generator Level Control System 

5.1.4.1 Overview 

The function of the steam generator level control system is to maintain the water level at a pre-defined set-point 
(68% narrow range level under normal operating conditions). The system consists of sensors that measure steam 
generato?level (narrow range), steam flow and feed flow, DIA and AfD converters, a digital control software that 
executes at a clock cycle of O.ls, and actuators that regulate the position of the main feed valve. The system is 
implemented as a three-element control system, where measurements of the steam generator level, the steam flow 
and the feed flow are taken every tenth of a second as sensor inputs to the control software. The software then uses 
these inputs to generate a target position for the main feed valve. Thii command is the output to the valve actuators. 
A schematic of the steam generator control system is shown in Figure 5 2 .  

SG 
steam 

Generator 

I 

E l  ;-------: 

hhin 

Vdve n 

Figure 5.2 : Schematic of the Steam Generator Level Control System 

5.1.4.2 Control Logic 

Three sets of control logic are implemented by the steam generator control system; they are Proportional Integral and 
Derivative (PID) logic, High Level Override (HLO) and Reactor Trip Override @TO). Reactor Trip Override logic 
is used when the digital control software receives a reactor trip signal, in which case the target main feed valve 
position is then set to 5%. The reader should note that the valve position would not change to 5% instantaneously, 
instead it could take as long as 16 seconds (the stroke time). High Level Override logic is employed when the steam 
generator reading is greater than 89%, in which case the target main feed valve position is set to fully closed. The 
HLO control action is irreversible; this means that once a HLO signal is triggered, the system will not return to the 
normal PID control action unless the system is reinitialized. Proportional Integral and Derivative logic is 
implemented in all cases not covered by the other two sets of control logic. Figure 5.3 shows a block diagram of 
how the PID logic is implemented. 
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Figure 5.3 : Block Diagram of the PID Control Logic 
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5.1.5 Testing the Steam Generator Simulation Package 

Control - +  

The steam generator simulation code was tested under five different scenarios. The purpose of these tests is to 
ensure that the simulator accurately reproduces the behavior of an actual steam generator, and thus can be used as a 
realistic case study for DFM. The five test scenarios are listed below, and they are events that can be encountered by 
a real steam generator control system. 

v 
4 

1. Steady state 
2. Turbine trip 
3. Level sensor failure 
4. Step power reduction 
5. Ramp power reduction 

7 
Sum Target 

valve position 4 

Integral + 

For each test run, the steam generator level, the steam flow, the feed flow, the steam generator pressure and the 
auxiliary feed flow were monitored over a period of several minutes. The plots of these parameters are shown in the 
sections that follow. The results of these tests were examined by a utility plant simulator expert and compared with 
actual records, and were found to be consistent with actual plant transients. 

Error Sum 

5.1.5.1 Steady State 

The simulation code was tested under steady state conditions. The initial steam generator level was set at 68% 
'narrow range, the initial steam flow was set at loo%, the initial feed flow was set at 100% and the initial steam 
generator pressure was set at 1000 psi. The parameters were monitored for 400 seconds and the plots are shown in 
Figures 5.4 - 5.7. 
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Figure 5.4 : Variation of the Narrow Range SG Level in Steady State 
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Figure 5.5 : Variation of the Steam Flow in Steady State 
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Feed Flow (Steady State) 

0 50 100 150, 200 250 300 350 400 

Time (s) 

Figure 5.6 : Variation of the Feed Flow in Steady State 

A 
v) 
CL 

=I cn cn 

P 

Y 

e! 

e! 

B 

SG Pressure (Steady State) 

I 

Imom 800 

Figure 5.7 : Variation of the SG Pressure in Steady State 
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5.1.5.2 Turbine Trip 

The simulation code was tested for its turbine trip response. The initial conditions for level, steam flow, feed flow 
and pressure were the same as in the steady state case. A turbine trip signal was generated at 0.2 sec after the start of 
the simulation. The parameters were monitored for 400 seconds and the plots are shown in Figures 5.8 - 5.12. 
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Figure 5.8 : Variation of the Narrow Range SG Level After the Turbine Has Tripped 
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Steam Flow (Turbine Trip) 
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Figure59 : Variation of the Steam Flow After the Turbine Has Tripped 
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Figure 5.10 : Variation of the Feed Flow After the Turbine Has Tripped 
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Figure 5.1 1 : Variation of the Auxiliary Feed Flow After the Turbine Has Tripped 
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Figure 5.12 : Variation of the SG Pressure M e r  the Turbine Has Tripped 
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5.1.53 Level Sensor Failure 

The simulation code was executed under the condition of a level sensor failure. The initial conditions were the same 
as in the steady state case. The sensor failed stuck high at 0.5 second after the start of the simulation and the reading 
remained at 95%. The parameters were monitored for 75 seconds and the plots are shown in Figures 5.13 - 5.17. 
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Figure 5.13 : Variation of the Narrow Range SG Level After the Level Sensor Has Failed 
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Steam Flow (Sensor Failure) 
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Figure 5.14 : Variation of the Steam Flow After the Level Sensor Has Failed 
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Figure 5.15 : Variation of the Feed Flow After the Level Sensor Has Failed 
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Figure 5.16 : Variation of the Auxiliary Feed Flow After the Level Sensor Has Failed 
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Figure 5.17 : Variation of the SG Pressure After the Level Sensor Has Failed 
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5.1.5.4 Step Power Reduction 

The simulation code was tested under the condition of a step load change. The initial conditions were the same as in 
the steady state case. Power was reduced from 100% at 2 s to 80% at 7 s. The parameters were monitored for 1400s 
and the plots are shown in Figures 5.1 8 - 5.2 1. 

5.1.5.5 Ramp Power Reduction 

The simulation code was executed under the condition of a ramp load change. The initial conditions were the same 
as in the steady state case. Power was reduced from 100% at 2 s to 50% at 352 s. The parameters were monitored 
for 1400 seconds and the plots are shown in Figures 5.22 - 5.25 
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Figure 5.18 : Variation of the Narrow Range SG Level During Step Power Reduction 
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Figure 5.19 : Variation of the Steam Flow During Step Power Reduction 
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Figure 5.20 : Variation of the Feed Flow During Step Power Reduction 
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Figure 5.21 : Variation of the SG Pressure During Step Power Reduction 
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Figure 5.22 : Variation 3f the Narrow P a g e  SG Level During Ramp Power Reduction 
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Figure 5.23: Variation of the Steam Flow During Ramp Power Reduction 
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Figure 5.24: Variation of the Feed Flov During Ramp Power Reduction 
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Figure 5.25: Variation of the SG Pressure During Ramp Power Reduction 

5.2 DFM Model of the DTC System 

This section describes the DFM model that was constructed to represent the DTC system. In building the DFM 
model for this system, certain standard assumptions were made regarding the possible failure modes of the individual 
system hardware components. They we: 

0 

0 

The steam flow sensor, the feed flow sensor and the SG level sensor can fail high or fail low. 
The main feed valve can fail closed or fail open. 

The DFM model of the DTC system was constructed by following the steps outlined in Section 2.2, and is shown in 
Figure 5.26. The control software is shown as a black box in this figure, but is expanded in full detail in Figure 5.27. 
The description of the variables that appear in the model as DFM “nodesn can be found in Table 5.III. 

Some of the features represented in the DFM model of Figure 5.26 are listed below: 

0 

0 

0 

0 

0 

Transfer boxes 26, 27 and 18 represent the level sensor, the feed flow sensor and the steam flow sensor 
respectively. 
Transfer box 28 shows the actuation of the auxiliary feed flow. 
Transfer box 16 models the variation of the water level in the steam generator. 
Transfer box 20 represents the variation of the pressure in the steam generator. 
Transfer box 25 models the actuator of the main feed valve. 
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Figure 5.26 : DFM Model of the DTC System 
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Figure 5.27 : DFM Model of the DTC Control Software 
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While the features included in the DFM model of Figure 5.27 are as follows: 

Transfer boxes 1,2 and 3 model the A D  converters for the steam flow signal, the feed flow signal and the level 
signal respectively. 
Transfer boxes 4 and 5 represent the software module that calculates the derivative-lag term for the steam 
flow/feed flow mismatch. 
Transition boxes 0 and 6 show the updating of the steam flowlfeed flow mismatch and the derivative-lag term. 
Transfer box 7 models the software module that generates the error term for controlling the steam generator 
level. 
Transfer boxes 8 and 9 represent the software module that generates the intermediate flow demand signal. 
Transfer box 11 and transition box 30 model the activation of the High Level Override signal. 
Transfer box 10 shows how the final flow demand signal can be overridden by the Reactor Trip Ovemde and 
High Level Override signals. 
Transition box 12 represents the D/A converter that converts the final flow demand signal to a command for the 
main feed valve position. 

The nodes in the DFM model are discretized into finite number of states. The discretization schemes are shown in 
Tables 5.IV - 5.xxVI. These schemes reflect the knowledge about the system and assumptions regarding the failure 
modes of the components. For example, the reasoning behind the discretization scheme for L (the steam generator 
water level), shown in Table 5.XIV, is listed as follows: 

If the level goes below 25%, the auxiliary feed flow will be turned on. 
When the level rises back above 30%, the auxiliary feed flow will be turned off. 
The low level alarm will be triggered if the level drops below 40%. 
68% is the control reference point. 
The high level alarm will be activated if the'level rises above 87%. 
If the level goes beyond 89%, the High Level Ovemde signal is activated. 
90% level is the high level trip point. 
The level between 40% and 87% is M e r  discretized into a number of states to represent slight and moderate 
deviations from the control set-point. 

On the other hand, the discretization scheme for FS (the state of the feed flow sensor) shown in 5.VIII follows from 
the assumption regarding the failure mode of this component. 



Ts 
Variable 

AUXF 
AUXFP 
DFLOW 
DFLOWP 
ERFLOW 
ERFLOWP 
FEEDM 
FFM 
FS 
FWF 
HDP 
HG 
HLO 
HLOM 
IFD 
ISG 
ISGP 
L 
LD 
LM 
LP 
LREF 
LS 
MIN 
MSIVP 
QR 
RTO 
SF 
SFM 
SFP 
SGERROR 
SGP 
SGPP 
ss 
STMM 
TFD 
Tvx 
vc 
vs 
vx 
VXP 
XLEVM 

1 
2 

: 5.IJ.I : Description of the Variables in the DFM Model 

4wciliary feedwater flowrate 
4uxiliary feedwater flowrate in the previous controller clock cycle 
Software representation of the derivative-lag control term 
Value of DFLOW in the previous controller clock cycle 
Software representation of the steam flow/feed flow mismatch 
Value of ERFLOW in the previous controller clock cycle 
Software representation of the feedwater flowrate 
Measurement of the feedwater flowrate 
State of the feedwater flow sensor 
Feedwater flowrate 
Steam header pressure 
State of vapor at the top of the SG 
High Level Override signal 
High Level Override signal in the digital controller memory 
[ntermediate flow demand signal 
htegral control term for level in the software 
Integral control term for level in the previous controller clock cycle 
Steam generator level (narrow range) 
Change in the SG level 
Measurement of the SG level (narrow range) 
SG level in the previous controller clock cycle 
SG level set-point used in the software 
State of the SG level sensor 
Total liquid mass flowrate into the SG 
Main Steam Isolation Valve position 
Heat transfer from the primary side 
Reactor Trip Override signal 
Steam flowrate 
Measurement of the steam flowrate 
Steam flowrate in the previous controller clock cycle 
Software representation of the SG level mismatch 
Steam generator pressure 
SG pressure in the previous controller clock cycle 
State of the steam flow sensor 
Software representation of the steam flowrate 
Final flow demand signal 
Turbine governing valve position 
Valve command 
State of the main feed valve 
Main feed valve position 
Main feed valve position in the previous controller clock cycle 
Software representation of the SG level (narrow range) 

Description 

0% - 50% 
50% - 100% 

Table 5.IV : Discretization of AUXF and AUXFP 
State I Description ' 

0 I off 
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State Description 
-2 Largely negative 
-1 Slightly negative 
0 Close to zero 
+1 Slightly positive 
+2 Largely positive .. 
. 

State Description 
-2 Largely negative 
-1 Slightly negative 
0 Close to zero 
+1 Slightly positive 
+2 Largely positive 

Table 5.VIII : Discretization of FS, LS and SS 

Normal 
Failed Hieh 

State 
0 
1 
2 
3 
4 

Table 5.IX : Discretization of HDP 

Very Low 

Description 
0% - 5% 
5% - 30% 
30% - 60% 
60% - 80% 
80% - 100% 

State 
0 
1 

Description 
Superheated 
Saturated 
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State 
0 
1 

Description 
Signal is active 
Simal is inactive 



Table 5x11 : Discretization of IFD 
State I Description 
1 I 0%-25% 

State 
-1 
0 
+1 

Table 5x111 : Discretization of ISG and ISGP 

Description 

-1% to 1% 
+1% to +3% 

-3% to -1% I 

Description 

Close to zero 
Positive 

State 
0 
1 
2 
3 
4 

Table 5.XIV : Discretization of L. LM. LP and X L E W  

Description 
0% - 5% 
5% - 30% 
30% - 60% 
60% - 80% 
80%- 100% 

State 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

~I 

Description 
0% - 25% 
25% - 30% 
30% - 40% 
40% - 55% 
55% - 65% 
65% - 71% 
71% - 78% 
78% - 87% 
87% - 89% 
89% - 90% 
90% - 100% 

Table 5.XV : Discretization of LD 
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Table 5.XVIII : Discretization of QR 

0% - 10% power 
10% - 50% power 
50% - 90% power 
90% - 100% power 

State 
0 
1 

Description 
Signal is active 
Signal is inactive 

State 
0 
1 
2 
3 
4 
5 

Table 5.XXIII : Discretization of SGP and SGPP 

Very low 

Normal 
Hi& 

Description 
0% - 5% 
5% - 30% 
30% - 60% 
60% - 80% 
80% - 100% 
loo%+ 

State 
0 
1 
2 
3 
4 

85 

Description 
0% - 5% 
5% - 30% 
30% - 60% 
60% - 80% 
80% - 100% 

State 
-3 
-2 
-1  
0 
+1 

Description 
Largely negative 
Negative 
Slightly negative 
Close to zero 
Slightly to largely positive 

State 

1 
2 
3 
4 

0 
Description 

5% - 30% 
30% - 60% 
60% - 80% 
80% - 100% 

0% - 5% 



Table 5 . W  : Discretization of TVX 

Fully closed 
Closing or opening 

Table 5.XXVI : Discretization of VS 

Normal 

Decision tables were constructed to complete the definition of this DFM model. The decision tables for the physical 
components were built by running the corresponding subroutines in the simulation code. For instance, Table 
5.XXVII shows the decision table for transfer box 28 in Figure 5.26. It shows the actuation of the auxiliary 
feedwater system. In particular: 

0 If LP (previous SG level) is in state 0, the inactive auxiliary feedwater system will be switched on (AUXFP = 0 
-+ AUXF = 1). On the other hand, if the auxiliary feedwater system has been turned on, the auxiliarq. feed flow 
will try to reach 100% (AUXFP = 1,2 + AUXF = 2). 
If LP is in state 1, the inactive auxiliary feedwater system will remain inactive (AUXFP = O+ AUXF = 0). On 
the other hand, if the auxiliary feedwater has previously been triggered, the auxiliary feed flow again will try to 
reach 100% (AUXFP = 1,2 + AUXF = 2). 
If LP is in state 2, the inactive auxiliary feedwater system will remain inactive (AUXFP = 0 + A t ? ?  = 0). 
Whereas, if the auxiliary feedwater has previously been triggered, it will be gradually shut down (AUXFP = 1 
-+ AUXF = 0, AUXFP = 2  + AUXF= 1). 
If LP is in any state at or above state 3, the auxiliary feedwater system will remain inactive. 

0 

0 

0 

Table 5.XXVII 
LP 
0 
0 
0 
1 
1 
1 
2 
2 
2 
3 
4 
5 
6 
7 
8 
9 
10 

)ecision Table fi 
AUXFP 

0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 

Transfer Box 28 
AUXF 

1 
2 
2 
0 
2 
2 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

As in the study of the Interim Test Case, the decision tables for the system software were constructed by executing 
off-line, module by module, the control software that is actually implemented. The observation regarding the 
relationship between this activity and “module testing”, which was made in Sections 2.1,2.2 and 4.3, is still valid in 
this case. 
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Table 5.xxVIII shows the decision table for transfer box 10 in the DFh4 model of Figure 5.27. It includes the 
information that: 

RTO 
1 
1 
1 
1 
1 
0 
0 

0 If neither the High Level Override signal nor the Reactor Trip Override signal is active (€EO = 1 and RTO = l), 
there is a one-to-one correspondence between the states of IFD (intermediate flow demand signal) and those of 
TFD (fmal flow demand signal). 
If either the High Level Override signal or the Reactor Trip Override signal is active (HLO = 0 or RTO = 0), no 
matter what the intermediate flow demand signal is, the final flow demand signal will always be the minimum 
state (IFD = - 3 TFD = 0). The “-’’ is a “don’t care” symbol and it indicates that IFD can be at any state. 

0 

IFD TFD 
1 1 
2 2 
3 3 
4 4 
- 0 
- 0 

0 

Table 5.XXVIII : Decision Table for Transfer box 10 

~ 0 

0 

5.3 DTC DFM Model Analysis 

This section discusses the analyses performed on the DFM model of the DTC system. To test the capability of DFM 
in a system and software assurance mode of application, two different faults were intentionally injected into the 
control software. We present here the results of these“fau1ted-case analyses” to illustrate the capability of DFh4 for 
identifying and isolating software errors in such a mode of application. J 3 e  first fault was injected into the software 
specification and the corresponding analysis is presented in Section 5.3.1, while the second fault was injected as a 
programming error in the software code and the corresponding analysis is discussed in Section 5.3.2. A number of 
analyses were also performed on the original unfaulted system, the results of which did not point to any unexpected 
errors. Since these analyses are judged to be of little interest to the reader, they are left out of the discussions in this 
section. 

5.3.1 The First Faulted-Case Analysis 

5.3.1.1 Description of the Fault Injected 

For this frrst faulted-case analysis, it was assumed that an error had been initially introduced into the design 
specification of the control software. The assumption was that, instead of subtracting the derivative-lag signal of the 
steam flow-feed flow mismatch fiom the steam generator level, as shown in Box 3 in Figure 5.3, the faulted 
specification called for the addition of these two terms. The software developed fiom the faulted specification had 
thus an inherent fault. This fault can be triggered into an execution error if there exists a significant steam flow-feed 
flow mismatch, comparable in magnitude to the level mismatch. A comparison of the original specification and the 
faulted specification is shown in Figure 5.28, and a comparison of the corresponding software modules developed 
from these specifications is shown in Figure 5.29. 

The DFM model was constructed without assuming any prior knowledge of the software specification error. This is 
possible because, as in the ITC case discussed in.Section 4.4.1, the decision tables were built directly by executing 
the individual modules of the digital control software. Figure 5.30 shows the difference between the decision tables 
for the correct software and the faulted software. Note that the decision table on the left hand side (corresponding to 
the correct version) is produced by testing the module shown at the top half of Figure 5.29, while the decision table 
on the right hand side is generated by executing the module at the bottom half of Figure 5.29. 
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LERIIOR I 10.- + DPLO(I 
SDB(RDR I 10.SORgP - LERROR 

Figure 5.29 : Comparison of the Correct Software Module and the Faulted Software Module 
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Unfaulted Software Faulted Software 

XLEVM DFLQW 
2 -2 
3 -2 
4 -2 
5 -2 
6 -2 

8 -2 
9 -2 
10 -2 - -2 

6 -1 
7 -1 
8 -1 
8 0  
9 -1 
9 0  
10 -1 

7-  -2 

~ 

SGERROR 
-3 
-3 
-3 
-3 
-3 
-3 
-3  
-3 
-3 
-2 
-2  
-2 
-2  
-2 
-2 
-2  
-2 

. .  

XLEVM DFUlW 
2 +2 
3 +2 
4 +2 
5 +2 
6 +2 
7 +2 
8 +2 
9 +2 

1 0  +2 - +2 
6 +1 
7 +1 
8 0  
8 +1 
9 0  
9 +1 

10 -1 

3GERROR 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-2 
-2 
-2 
-2 
-2 
-2  
-2 
-2 

Figure 5.30 : Comparison of the Decision Tables for the Unfaulted Software and the Faulted Software 

5.3.1.2 Analysis of the DTC System with the Software Specification Error 

Definition of the Top Event 

The system failure was defined as the steam generator “overflowhig”. This translates into a definition of the states of 
the pertinent DFM nodes as: 

{ (L = 10 @ t = 0) AND (L < 10 @ t = -1) } 

The above top event definition assumes that system failure occurs when the steam generator level increases from a 
non-maximum level in the previous time step to the maximum level in the current time step. Thus, the analysis 
focused on identifying modes in which the steam generator level could be raised to the maximum level, and ignored 
the cases in which the steam generator level was maintained at the maximum level. . 

Constraints Imposed on the Analysis 

Dynamic consistency rules were defmed to prune out the branches that encompass events that the analyst assumed to 
be impossible due to the dynamic constraints of the system. The dynamic consistency rules so defmed are listed in 
Table 5.XXIX. These rules reflect the assumption that if any sensor or valve has failed, then it remains in the 
original failure state. . .  

As in the ITC analysis presented in Section 4.4, it is very beneficial to specify check rules to limit the DFM search to 
the identification of classes of errors. In this particular case, the rules were defined in such a way as to force the 
Model Analyzer to analyze, store and display only those failure sequences that are related to software errors. For this 
purpose, the defmition of software error that was used includes any kind of software-triggered action that violates the 
given set of top-level software behavior specifications. The specifically relevant portion of these specifications 
requires the control software to maintain the SG level at the 68% level, and thus not to command further opening of 
the main feed valve when the level is above this set-point. This rule was defined as a boundary condition that the 
Model Analyzer used to distinguish between intermediate transition table rows that need to be expanded M e r  and 
those for which further expansion was not required. In addition, we assumed that the control software had not 
accumulated a large error that would bias the control action to correcting this previously accumulated error instead of 
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responding to the current condition. This assumption was enforced in the analysis by defining another set of 
boundary conditions. 

1 

2 

3 

4 

5 

Rule Meaning 
For FPH, states -1 and +1 are sink states The main feed pump, once failed, cannot be 

repaired. 
For LS, states -1 and +1 are sink states The level sensor, once failed, cannot be 

repaired. 
For FS, states -1 and +1 are sink states The feed flow sensor, once failed, cannot be 

repaired. 
For SS, states -1 and +1 are sink states The steam flow sensor, once failed, cannot be 

repaired. 
For VS, states -1 and +1 are sink states The main feed valve actuator, once failed, 

cannot be repaired. 

The steam generator pressure is in state 2 (between 960 psi and 1185 psi). 
The reactor is operating close to full power. 
The turbine governing valve is fully opened. 

Result of the Analysis 

The analysis was carried out for one step backward in the reference time h m e  and the 10 prime implicants that were 
correspondingly identified are shown Table 5.XXX. 

Table 5 . X  : Prime Implicants for the Top Event in which the Steam Generator Overflows (1/3) 
Prime Implicant 

Main feed valve is normal Q t = O  AND 
Q t = O  AND Main feed pump is normal 

High Level Override signal was inactive e t = - 1  AND 
Reactor Trip Override signal was inactive C t = - 1  AND 
Main feed valve was opened between 60% and 8 0 %  C t = -1 AND 
Feed flow was between 60% and 80% @ t = - l  AND 
Steam flow was between 30% and 60% Q't. = -1 AND 
SG level was at level 8 Q t t - 1  AND 

@ t = - l  AND Feed flow sensor was normal 
Steam flow sensor was normal @ , t = - l  AND 
Level sensor was normal Q t = - l  
Main feed valve is normal @ t = O  AND 
Main feed pump is normal Q t = O  AND 
High Level Override signal was inactive Q t = - l  AND 
Reactor Trip Override signal was inactive Q t = - 1  AND 
Main feed valve was opened between 60% and 80% Q t = -1 AND 
Steam flow was between 30% and'60% Q t = - 1  AND 
SG level was at level 8 Q t = - 1  AND 
Feed flow sensor stuck high a t = - 1  AND 
Steam flow sensor was normal Q t = - l  AND 
Level sensor was normal a t = - 1  



Table 5 . m  : Prime Implicants for the Top Event in which the Steam Generator Overflows (2/3) 
Prime Implicant 

Main feed valve is normal @ t = O  AND 
Main feed pump is normal @ t = O  AND 
High Level Override signal was inactive @ t = - 1  AND 
Reactor Trip Override signal was inactive @ t = - 1  AND 
Main feed valve was opened between 60% and 80% @ t = -1 AND 
Steam flow was between 30% and 60% a t = - 1  AND 
SG level was at level 8 @ t = - l  AND 
Steam flow sensor was normal @ t = - l  AND 
Level sensor stuck low a t = - 1  
Main feed valve stuck fully opened @ t = O  AND 

@ t = O  AND Main feed pump is normal 
Steam flow was between 30% and 60% @ t = - 1  AND 
SG level was at level 8 a t = - 1  AND 
Steam flow sensor was normal a t = - 1  
Main feed valve is normal @ t = O  AND 
Main feed pump is normal @ t = O  AND 
High Level Override signal was inactive @ t = - 1  AND 
Reactor Trip Override signal was inactive @ t = - l  AND 
Main feed valve was opened between 60% and 80% @ t = -1 AND 
Steam flow was between 80% and 100% @ t = - 1  AND 
SG level was at level 8 @ t = - 1  AND 
Level sensor stuck low @ t = - l  
Main feed valve stuck fully opened @ t = O  AND 
Main feed pump is normal @ t = O  AND 
Steam flow was between 80% and 100% @ t = - l  AND 
SG level was at level 8 @ t = - 1  

@ t = O  AND Main feed valve is normal 
Main feed pump is normal @ t = O  AND 
High Level Override signal was inactive a t = - 1  AND 
Reactor Trip Override signal was inactive @ t = - l  AND 
Main feed valve was opened between 60% and 8 0 %  @ t = -1 AND 
Steam flow was between 30% and 60% a t = - 1  AND 
SG level was at level 9 a t = - 1  AND 
Steam flow sensor was normal @ t = - l  AND 
Level sensor stuck low @ t = - 1  

@ t = 0  AND Main feed valve stuck fully opened 

Steam flow was between 30% and 60% @ t = - l  AND 
SG level was at level 9 @ t = - l  AND 
Steam flow sensor was normal @ t = - 1  
Main feed valve is normal @ t = O  AND 
Main feed pump is normal @ t = O  AND 
High Level Override signal was inactive a t = - 1  AND 
Reactor Trip Override signal was inactive a t = - 1  AND 

Main feed pump is normal @ t = O  AND 

Main feed valve was opened between 60% and 8 0 %  @ t = -1 AND 
Steam flow was between 80% and 100% a t = - 1  AND 
SG level was at level 9 @ t = - 1  AND 
Level sensor stuck low a t = - 1  
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10 

Prime implicants 3,5,7 and 9 reveal that the steam generator level sensor stuck at the low reading combined with the 
level being very high (at states 8 or 9) will cause the steam generator to overflow. The low reading provided by the 
level sensor will cause the control software to act k if there is not enough water in the steam generator and command 
the main feed valve to open up to add water into the steam generator. Combined with the fact that the SG level is 
already very high, the surplus feed flow into the SG over the steam flow out of the SG will cause the level to rise and 
the SG to overflow. The presence of the other non-failure conditions in the prime implicants is a characteristic of the 
multi-state, non-coherent representation of the system, as it was earlier seen in the example given in Section 2.5.3. 
For instance, the main feed pump being normal is part of the necessary condition in the prime implicant since a failed 
pump cannot sustain feed flow into the SG to cause the overflow condition. From the point of view of the best form 
of presentation of the results of a deductive analysis, however, some of the non-failure condition can be omitted, as 
mentioned earlier in Section 2.5.3 and a"reduced prime implicant" can be shown. This is discussed hrther in 
Chapter 6 (Section 6.3.2.3). 

Prime Implicant 
Main feed valve stuck fully opened @ t = O  AND 
Main feed pump is normal @ t = O  AND 
Main feed valve was opened between 60% and 80% @ t = -1 AND 
Steam flow was between 80% and 100% @ t = - l  AND 
SG level was at level 9 @ t = - l  

Similarly, prime implicants 4,6, 8 and 10 imply that the main feed valve stuck fully opened combined with the level 
being very high will cause the steam generator to overflow. The main feed valve stuck fully opened will force the 
maximum rate of feed flow into the SG. Together with the SG level already very high, the surplus feed flow over the 
steam flow will again cause the level to rise and the SG to overflow. Just like the prime implicants discussed above, 
these prime implicants also contain necessary non-failure conditions of some hardware components. 

If a prime implicant does not contain basic component failure modes that can cause the top event directly, this 
usually means that a hidden software error is identified. The event sequence leading from the prime implicant to the 
top event needs to be analyzed in detail to locate the software error. In this particular analysis, prime implicant 1, 
unlike prime implicants 3-10, does not contain any basic component failure modes, but consists of non-failure 
hardware component conditions and input conditions of the control software (specification of the level, the feed flow 
and the steam flow). This prime implicant points to the possibility of a software fault, but it is not directly obvious 
where the fault is and how the overflow condition is brought about. The intermediate transition tables provided by 
the Model Analyzer can be used to reconstruct the sequence of events from the prime implicant to the top event. The 
sequence of events reconstructed in such a manner is show in Figure 5.3 1. As shown in that figure, SF (steam flow) 
at state 2 and SS = 0 (steam flow sensor normal) give the correct steam flow reading to the control software (STMM 
= 2). Similarly, FWF (feed flow) at state 3 and FS = 0 (feed flow sensor normal), and L (SG level) at state 8 and LS 
= 0 (level sensor normal) provide the control software with the correct feed flow reading (FEEDM = 3) and the SG 
level reading (XLEVM = 8) respectively. Inside the control software, STMM = 2 and FEEDM = 3 produce the 
corresponding steam flow-feed flow mismatch (ERFLOW = -1). This mismatch, combined with the lack of 
accumulated error through the previous controller clock cycles, gives the appropriate derivative lag signal (DFLOW 
= -1, -2). The fact that DFLOW can be in either state -1 or state -2 is due to the fact that each state of a node 
presents a range of values, thus a mismatch between STMM = 2 (30%-60%) and FEEDM = 3 (60%-80%) can result 
in a range of DFLOW values. Continuing to follow the sequence of events, DFLOW = -1, -2 and XLEVM = 8 give 
the error term SGERROR = 0, +I.  However, this does not correspond to a desirable system behavior, as a very high 
SG level and a negative derivative steam flow-feed flow mismatch indicate a net mass influx into the SG while the 
level is very high, and thus should give a negative error (the level set-point is less than the anticipated level). This 
points to the presence of an error in the software module that calculates SGERROR from DFLOW and XLEVM. By 
checking this module in the software specification diagram, the inappropriate addition of the derivative lag to the SG 
level could be identified. The identification of software errors by means of reconstructed sequences of events is 
another major findings of this research, and it will be revisited in Section 6.3.2.3. At the current state of 
development, DFM requires the analyst to possess sufficient knowledge and understanding of the overall system so 
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that he/she can identify undesirable behaviors from the sequence of events. The possibility of enhancing DFh4 to 
allow users with lower degrees of system knowledge to presented in Chapter 7 (Conclusions and Recommendations). 

+ m o w  = -1 

mowP=o 
DFLOW = 0 

SGERROR = 0, +1 

Figure 5.31 : Sequence of Events for Prime Implicant #1 

Even though prime implicant 2 contains a basic component failure (the feed flow sensor failing high), this failure 
does not contribute directly towards the top event as in prime implicants 3-10. Instead, a sequence of events can be 
generated, similar to the one shown in Figure 5.31, to show that this prime implicant causes the top event because of 
the same software error identified by the sequence of events for prime implicant 1. 

DFM Analysis Driven Testing 

The result of the analysis identified prime implicants #1 and #2 as sets of input conditions that would trigger the 
software to reverse the control action. Namely, these input conditions can cause the software to command further 
opening of the main feed valve while the SG level is already very high. However, the prime implicants so identified 
contain conditions that represent ranges of values, such as feed flow between 60% and SO%, steam flow between 
30% and 60%, and SG level at state 8 (87%-89%) for prime implicant #l. To ascertain the exact combinations of 
input parameters that can cause the top event, testing can be carried out by sampling the above input parameters 
within the identified ranges. The reader should note that testing with the knowledge of the prime implicants and 
sequences of events is an advancement over pure"b1ack box" testing of the software, as the results provided by a 
DFM analysis point to the key parameters that need to be tested, and the ranges within which these parameters 
should best be sampled in the tests. The insights gained in testing will be discussed further in Section 6.3.3. 

5.3.2 The Second Faulted-Case Analysis 

5.3.2.1 Description of the Fault Injected 

For the second faulted-case analysis, it was assumed that an error had been introduced into the control software code. 
The assumption was that, instead of triggering the High Level Override (HLO) signal at 89% level, this 
programming error causes the HLO signal to be activated at 69% level. As the level set point is at 68%, a sight 
increase in SG level from the set point will cause the software to command the closing of the main feed valve to 5%. 

As in the other faulted case studies, the DFM model of the faulted system was built without prior assumption about 
the software error. The decision tables were constructed by directly executing the individual modules of the digital 
control software. Figure 5.32 compares the original unfaulted software module and the software module with the 
HLO error, and the corresponding decision tables built by executing these software modules respectively. 
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Original Softvjiue Faulted Software 

IF (XLEVM.GT.0.89) THEN 

END IF 
HLO = 0 

IF (XLEVM.GT.0.69) THEN 

END IF 
HLO = 0 

Figure 5.32 : Comparison of the Original and Faulted Software and the Corresponding Decision Tables 

5.3.2.2 Analysis of the DTC System with the Programming Error 

Definition of the Top Event 

The system failure was defined as the "steam generator level dropped to 0% narrow range". This was translated into 
a definition of the states of the pertinent DFM nodes as: 

{ L = O @ t = O )  

Constraints Imposed on the Analysis 

Check rules were defined to limit the DFM search to the identification of software errors. Thus, the Model Analyzer 
was directly to analyze, store and display only those failure sequences that are related to software errors. In this 
particular case, the check rules constrained the analysis to event sequences in which the SG level is low and the 
software commands m e r  closing of the main feed valve, as these sequences violate the top level specification that 
the level be maintained at 68% narrow range level. 

In addition to the above check rules, two sets of boundary conditions were enforced in the analysis to limit the DFM 
search to: 

0 

event sequences which did not contain any hardware component failure. 
event sequences where the control software had not accumulated a large error that would bias the control action 
to correcting this previously accumulated error. 

Result of the Analysis 

The analysis was carried out for five ste& backward in the reference time frame and the one prime implimnt that 
was correspondingly identified is shown in Table 5.XXXI. 
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Table 5.XXXI : Prime Implicant for the Top Event “SG Level Dropped to 0% Narrow Range” 
Prime Implicant 

1 High Level Override signal was inactive in the memory @ t = - 5 A N D  
Steam generator level was between 65% and 71% @.=-SAND 
Steam generator pressure was between 960 psi and 1185 psi @ t = -5 AND 
Steam flow was between 80% and 100% @ t = - 5  

The prime implicant does not contain any basic events, but it encompasses input conditions that can trigger possible 
errors in the software. To locate the error in the software, the intermediate transition tables obtained by the DFM 
Model Analyzer in the backtracking process can be used to reconstruct the sequence of events that lead fiom the 
prime implicant to the top event, The sequence of events thus reconstructed is shown in Figure 5.33. The steam 
generator level between 65% and 71% (L = 5) and the assumption that the level sensor is normal give the correct 
reading to the control software (XLEVM = 5). This SG level reading triggers the activation of the HLO signal 
(HLOM = 1 + HLO = 0) and causes the flow demand to become 5% (TFD = 0). Thus, the activation of the HLO 
signal at the incorrect set-point is identified. The sequence of events that follows shows that this irreversible control 
action eventually causes the SG level to drop to 0% narrow range. 

t=-5 ; t=-4 

SF-4 , + S F P = = F  S G F 2  7 

... f- ==2 + ... ... + - = 2 +  ...e 
t=-2 ; t=-3 

Figure 5.33 : Sequence of Events for Prime Implicant #I 

It is important to point out that even though the prime implicant was identified by backtracking the DFM model for 5 
time steps, this does not imply that the prime implicant leads to the top event in 5 computing cycles of the digital 
control software. This is because the decision tables in the DFM model represent state transitions of parameters in 
the system. Take for instance the event (LD = -1 AND LP = 5)- L = 4 at t = -4 shown in Figure 5.33. It shows 
that a drop in the SG level (LD = -1) from the 65% to 71% range (LP = 5) will yield a new SG level in the 55% to 
65% range. In reality, the level transition fiom state 5 to state 4 will take a much longer period of time than one 
computing cycle, unless the level is already very close to the boundary separating the two states (Le., slightly above 
65%). Thus, a DFM analysis implicitly compresses the time to identify the prime implicants in backtracking the 
fewest possible number of time steps. 
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DFM Analysis Driven Testing 

From the prime implicant and the sequence of events generated from the DFM analysis, it was determined that a SG 
level in the 65%-71% range could inadvertently trigger the High Level Override mode of control. As in the first 
faulted case analysis, testing can be carried out to ascertain the exact level at which HLO is triggered. Thus, the 
results of a DFM analysis can identify the key parameters to be tested, and narrow down the ranges from which these 
parameters are to be sampled in the testing. In this particular case, testing can be focused on sampling SG levels 
within the 65%-7 1% range, and not be diverted to trying other SG level ranges or testing with other parameters. This 
observation will be revisited in the Findings and Insights in Section 6.3.3. 



6 FINDINGS AND INSIGHTS 

In the execution of this research, lessons and insights were learned in several relevant areas of interest for the 
application of the analytical techniques that we have discussed in the preceding chapters. A possible broad 
categorization of the principal areas in which these insights were gathered can be made as indicated below: 

0 

0 

insights on possible expanded objectives and uses of a DFM analysis; 
insights on the applicability of DFM to the analysis of systems other than those containing software exercising 
closed-loop continuous control actions; 
insights on the optimization of DFM modeling, analysis and testing procedures. 

The various types of insights and lessons learned in the three broad categories defined above are summarized and 
discussed in this chapter. More specifically, Section 6.1 presents the insights in the first of the three areas defined 
above, Section 6.2 addresses the second, and Section 6.3 addresses the third. 

6.1 Objectives and Uses of a DFM Analysis 

The application of deductive procedures to DFM models has been discussed in Chapter 2 and demonstrated in 
Chapters 4 and 5. In this mode of analysis, the objective is to identie the possible combinations of basic failure 
modes of the elemental components of a system that may result in a predefined type of system failure and the logic- 
sequential progression of events from the basic failure mode combinations to such a system failure. Timed fault 
trees (or the logically equivalent series of intermediate transition tables) and the associated timed prime implicants 
are the products that are generated by the DFM analysis to satisfy that objective. 

As we have noted earlier, however, the descriptive formalism adopted in DFM does not necessarily limit the analysis 
to be performed only in the “backtracking” (i.e., deductive) mode of execution. An inductive procedure can, in fact, 
also be carried out. In the course of our study, we have briefly explored this possibility and arrived at the conclusion 
that such a mode of DFM analysis could be particularly usehl in verifying that the system behavior corresponds to a 
given specification of desired behavior. The objective being pursued would, in this type of application, be the 
comparison and verification of the as-designed or as-built system behavior with respect to the system design goals 
and objectives. In particular, the capability of DFM to represent the essential functionality of a specified control 
s o h a r e  allows it to be used as a modeling framework for design verification. Since a DFM model captures the 
causal relationships between variables in a control software, both logical (discrete) and functional (continuous), a 
prediction of the behavior of the software in response to specified stimuli (i.e., input from the non-software portions 
of the modeled system) can be inductively inferred from it. Section 6.1.1 outlines the possible analytical procedures 
and shows an example of such an inductive analysis. 

6.1.1 Design Verification of Control Software 

A design verification objective can be fulfilled by using the DFM model of a digital controller and interfacing system 
in a forward-simulation mode of analysis, to derive a system state-transition graph or generate the equivalent set of 
system state-transition relations, which can then be used to verify the design of the controller via a model checking 
algorithm. Instead of traversing the DFM model backward in causality and obtaining a sequence of intermediate 
transition tables in reverse sequential order, as in a deductive analysis, the DFM model can be traversed forward in 
causality from a set of initial conditions to generate the sequence of events which follow from the initial conditions. 
The sequence of events can be summarized in tabular form as transition relations or presented in graphical form as a 
state-transition graph. Binary decision diagrams (BDD), a tool for modeling binary systems, have indeed been used 
to generate state-transition graphs to verify logic circuit designs (Browne, et al., 1986). A natural extension for non- 
binary systems is thus to obtain state-transition graphs fiom a multi-valued representation such as DFM. Indeed, 
there is no inherent property of state-transition graphs that precludes the use of multi-valued logic. 

The pressure tank example in Section 2.5 is used here again to illustrate how to derive, from its DFM model, a state- 
transition graph and apply to this a design verification procedure. The focus here is in the verification of design and 
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not with the identification of physical faults. Thus, the variables E, SWS, SS, VS and MVO, as well as their 
“faulting effects”, are ignored in this exercise. 

T P = I @ t = O  -+ 

T P = 2 @ t = O  + 

T P = 3 @ t = O  + 
T P = 4 @ t = O  + 

T P = 5 @ t = O  -+, 

For the purposes of this example, suppose that the pressure control system has been incorrectly designed , so that the 
set-point for closing the electric switch is specified at the boundary between TP = 3 and TP = 4, instead of between 
TP = 2 and TP = 3. The DFM model of this design is presented in Figure 6.1. Starting from an arbitrary initial tank 
pressure, the DFM model can be traversed forward to produce the sequences shown in Table 6.1. This sequence can 
then be simplified and translated into the state-transition graph shown in Figure 6.2. 

S W = I  + IGF=I  + NGF=+l -+ T P = 2 @ t = 1  
V X = O  OGF = 0 
S W = l  -+ IGF=I  -+ NGF=+I -+ TP = 3  @ t = 1 
V X = O  OGF = 0 
S W = I  + IGF=I + NGF=+I -+ T P = 4 @ t = 1  
V X = O  OGF = 0 
SW=O + IGF=O -+ NGF=-1 + TP=3 @ t =  1 
vx= 1 OGF = 1 
SW=O + IGF=O + NGF=-1 + T P = 4 @ t = 1  
VX=1 OGF= 1 

1 clock cycle 

E SW IGF 

I Ti  T2 T5 l T 1  m 5 1  

Figure 6.1 : DFM Model far Verification of the Pressure Control Software 
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SW=l SW=l 
V X = O  V X = O  

SW=l sw=o 
~ 

sw=o 
VX= 1 

Figure 6.2 : State Transition Graph 

The control software can be verified against the requirement that the pressure is to be stabilized at level 3. Given the 
state-transition graph, an analyst can follow the history of the tank pressure for any number of time steps. If the 
above condition is not satisfied for all transition histories, the controller is not verified. It can be seen from Figure 
6.2 that the pressure will eventually reach level 3 from any other level, but will not be stabilized at level 3 (it will 
oscillate between levels 3 and 4). Thcs, the requirement is not satisfied. The reader should note that the design error 
will not result in the tank bursting, as the tank pressure cannot reach level 5 from other levels, but the error can create 
a serious problem as the pressure oscillates about the normal level and cannot reach steady state. 

6.2 Applicability of DFM to Other Types of Systems 

The basic elements of DFM can be used to model any causality driven behavior. Thus, as argued earlier in Section 
2.1, DFM can be applied to analyze a broad variety of systems, and not just those characterized by the presence of 
digital control software and closed-loop digital conmol actions, such as those that have been the principal subject of 
our investigation and that were discussed earlier in this report. . Section 6.2.1 presents our views and insights with 
respect to the feasibility of applying DFM to open loop control systems. This type of system is commonly found in 
the safety systems of nuclear power plants. 

6.2.1 Feasibility of Applying DFM to Open ?Aoop Control Systems 

Open loop control systems are control systems in which tSe control actions are solely determined by pre-defined 
system conditions which are used as discontinuous trigger-points for the actions. Unlike closed-loop control systems 
that constantly apply mathematical manipulation of monitored parameters to provide continuous control adjustments, 
open loop systems usually control one-shot, discrete actions. These systems are commonly found in the safety 
systems used in nuclear power plants. Typical examples are the safety injection system and the reactor trip control 
system. 

The capabilities provided by DFM analyses are well suited for veriQing systems with open loop control actions. By 
application of a DFM deductive analysis, Le., one that produces timed fault trees and prime implicants, the analyst 
can frnd out whether the overall system integrity can be violated despite the actions of the open loop control system. 
For example, by including the safety relief valve control in the DFM model of a steam generator and defming the top 
event as steam generator overpressure, a DFM analysis can be canied out to investigate the possibility that the safety 
relief valve fails to prevent the pressure from building up to an undesirable level. If this event is possible, a DFM 
analysis can be used to determine the necessary and sufficient conditions for it to occur, and the sequence of events 
that would lead to overpressure. Or, for a more complex open-loop logic implemented in software, such as the 
reactor trip logic itself, the DFM analysis could be applied to derive timed fault trees for the trip control software, 
and make sure that no prime implicants resulting from sofhvare logic errors are possible. 
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On the other hand, an inductive analysis, Le., one that generates transition relations, can help verify that an open loop 
system will do what it is supposed to do. For instance, the trip control system can be modeled to generate transition 
relations for all the possible execution paths and check that the execution sequences are followed exactly as desired 
and specified. 

If the use of DFM to verify open loop control systems can in principle be established, the question of its practicality 
needs to be addressed. Open loop control systems are causality driven systems where combinations of events can 
trigger different control actions, and the control actions lead to different sequences of events. In addition, the events 
can take place with or without time intervals in between. The elements of DFM are well suited to modeling these 
kinds of control flow. Furthermore, certain types of open loop control actions may be logically complex, with many 
possible combinations of system conditions leading to different actions. The multi-state representation used in DFM 
allows the variable space to be discretized to reflect the different trigger points, and the formalism for multi-valued 
logic adopted in DFM would enable decision tables to be constructed to represent the exact logic relationships that 
the control system enforces. The DFM system-model would thus be an integrated representation of all these logic 
relationships and could therefore be analyzed to identify and verify all the possible control-system-triggered actions, 

A further argument can be used in trying to make a prediction on the practical level of difficulty that may or may not 
be experienced in applying DFM to systems with-open loop control actions. The examples in Chapters 4 and 5 have 
shown the feasibility of applying DFM to systems with closed-loop control actions, and open loop control actions can 
be considered as a special case of closed loop control, where t!!e gain in the feedback or feedforward loop is zero. 
The test cases discussed in Chapters 4 and 5 also dealt with systems in which open loop logic was intermixed to 
closed loop feedback control (e.g., the mode-of-control switch and trip logic included with the control of the water 
tank system discussed in Chapter 4). With the experience of mode!ing these systems, the'authors feel confident that 
an extension of the methodology to the verification and safety assurance of complex open loop control logic does not 
entail any insurmountable difficulty, and that a practical demonstration could be carried out. This will be discussed 
further in Chapter 7 (Conclusions and Recommendations). 

6.3 Optimization of DFM Procedures 

In the course of applying DFM to the Interim Test Case and the Demonstration Test Case, ways to cany out the 
modeling, analysis and testing procedures with greater efficiency were identified. Simplification measures that are 
useful in producing DFM models efficiently are presented in Section 6.3.1; optimization rules for DFM analysis are 
discussed in Section 6.3.2; and the formulation of a set of software testing related steps is given in Section 6.3.3. 

6.3.1 Modeling Procedures 

In modeling the Interim Test Case and Demonstration Test Case digital control systems, the authors observed that 
common modeling structures are used to represent the control logic within these systems. These modeling structures 
can be grouped together to form a library of modeling templates from which DFM models of similar systems can be 
assembled. As more common logic structures are identified, modeling efforts can be reduced by making use of the 
available templates instead of constructing the model from the most basic modeling elements. This object-oriented 
approach to constructing DFM models is not limited to digital control systems. As experience is gained in modeling 
other classes of systems, templates for representing common modules can be identified. The discussions in Sections 
6.3.1.1 and 6.3.1.2 will present templates that have been identified for the modeling of digital control systems. 

6.3.1.1 Modeling Different Types of Control h g i c  

Proportional (P) control, proportional-integral (P!) control, proportional-derivative (PD) control and proportional- 
integral-derivative (PID) control are commonly used in kc:h analog and digital control systems. Standardized 
procedures are available to design control sys%~s with thesr: types of control logic to meet specific requirements, 
such as rise time, overshoot and steady state error. As a tgol for modeling control systems, it is advantageous for 
DFM to provide the user with a library of pre-defined structures for representing these different types of control 
logic. This section discusses the templates that were identified for such a purpose. 
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In the ensuing discussion, the parameter P represents the error in the variable being controlled (i.e. the difference 
between the value of the variable and the set-point), DP indicates the derivative of P, IP means the integral of P, and 
C is the control command generated by application of the control logic. In addition, a superscript "-,' is used to 
indicate the value of the variable in the previous computation cycle. 

Modeling Proportional Control Logic 

Figure 6.3 shows a template for representing P-control logic. As seen fiom this figure, the command is directly 
related to the parameter through transfer box 1. The associated decision table for transfer box 1 models the correct 
gain of the relationship. 

Figure 6.3 : DFM Template for Modeling P Control Logic 

Modeling Proportional-Integral Control Logic 

Figure 6.4 is a template for modeling P-I control logic. The integral control term is generated by P, the previous 
value of P and the previous value of the integral control term through transfer box 2, where the average of P and P' 
multiplied by the time step yields the new area to be added to IP-. P and IP are then used to calculate the command 
through transfer box 1. Transition box 3 updates the value of P so that the present value of P in the current cycle 
becomes the past value of P in the next cycle. 

1 cycle cbck 8 
Figure 6.4 : DFM Template for Modeling P-I Control Logic 

Modeling Proportional-Derivative Control Logic 

Figure 6.5 shows a template for modeling P-D control logic. The derivative control term @P) is generated by the 
present value of P and the previous value of P through transfer box 2, DP and P are then used to calculate the 
command through transfer box 1. Transition box 3 updates the value of P so that the present value of P in the current 
cycle becomes the past value of P in the next cycle. 
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Figure 6.5 : DFM Template for Modeling P-D Control Logic 

Modeling Proportional-Integral-Derivative Control Logic 

Figure 6.6 is a template for modeling P-I-D control logic. The integral control term is generated and the parameter is 
updated as is in Figure 6.4, while the derivative control term is calculated as is in Figure 6.5. The control command 
is then calculated using the trio P, DP and IP through transfer box 1. 

Figure 6.6 : DFM Template for Modeling P-I-D Control Logic 

6.3.1.2 Modeling Irreversible Control Actions 

Irreversible control actions are control actions which once triggered, cannot be switched off unless the entire system 
is shutdown or reset. These control actions are commonly found in safety systems. An example is the HLO mode of 
operation for the SG level control system presented in Chapter 5. It would seem obvious that the signal to activate 
the irreversible control action depends only on the parameters that trigger the signal, but the fact is that the signal 
also depends on the memory of itself in the system. If the memory was inactive in the previous cycle, the parameters 
entering the triggering domain will activate the irreversible control sigal.  However, if the memory was already 
active in the previous cycle, the signal will remain inactive, even though the parameters can be outside the triggering 
domain. The template for modeling this type of irreversible control action is presented in Figure 6.7, and the 
corresponding decision table is shown in Table 6.11. In the figure, S represents the signal for triggering the 
irreversible control action, SM represents the memory of this signal in the system, and Ps represents the set of 
parameters that can trigger the irreversible control action. 
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S 

Ps SM 
Outside Triggering Domain Inactive 
Within Triggering Domain Inactive 

Don't Care Active 

Figure 6.7 : DFM Template for Modeling Irreversible Control Action 

S 
Inactive 
Active 
Active 

6.3.2 Analysis Procedures 

In using the DFM Software Toolset to analyze the Interim Test Case and the Demonstration Test Case, the authors 
found that with the application of certain guidelines, the search algorithm of the Model Analyzer can be optimized to 
produce the results in a more efficient manner and present the results which yield the most useful infomation. These 
guidelines can assist the analyst to prioritize the analysis so that the most hazardous failure modes can be identified 
first, The guideline pertinent to the formulatioddefinition of the top event in terms of DFM model states is presented 
in Section 6.3.2.1, the guideline for narrowing down search paths is discussed in Section 6.3.2.2, and the guideline 
for presenting the analysis results is given in Section 6.3.2.3. 

6.3.2.1 Guideline for Formulation of the Top Event 

The way in which the top event is expressed in terms of a combination of the states of the nodes has an impact on the 
efficiency of the analysis. A more generic translation of a top event would yield more prime implicants, but not all 
the prime implicants accordingly identified would necessarily represent an equally critical threat to the integity and 
safety of the system, Hence, the most efficient way of analysis is to first translate the top event into the most specific 
expression involving the states of those nodes which correspond to portions of the system of the greatest interest and 
concern to the analyst. The ensuing analysis will then produce prime implicants of the highest priority, i.e., those 
associated with failure modes which represent types of system hazards for which the analyst has the higher degree of 
specific concern. Thus, for example, if the focus of the analysis is to identify software related problems, it would be 
pointless to search for system failure modes originated by basic failures involving exclusively physical equipment 
and hardware. After the first high priority analysis, successive analyses can be performed with the top event 
expressed in more generic terms to identify additional failure modes of possible interest. 

To hrther illustrate the concept expressed above, take for exampk the Interim Test Case discussed in Chapter 4, 
where the top event is fmt generically identified as the"tank overflowing". This top event can be first translated 
into the combination of the tank level being very high in fl?? previous step and E net positive inflow of water into the 
tank. With this top event interpretation, the search is narrowed down to identifying the most hazardous conditions, 
whereby the control system itself brings about the overflow condition. A second analysis can be carried out where 
the top event is interpreted as the combination of the level being very high in the previous step and the level 
remaining very high in the current step. The search is now geared towards fmding ways in which the control system 
fails to correct the undesirable event of the level being very high, but does not directly cause the overflow condition. 
Further analysis can be performed for the top event of the level being very high in the current time step to identify 
paths by which the system dynamics fills the tank up to the undesirable level. Successive levels of analysis canied 
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out in this manner, can prioritize the search to find the most critical conditions first, and find the less critical 
conditions in successive analyses. 

6.3.2.2 Classification of Failure Modes 

In addition to translating the top event in successive degree of generality, intelligent analysis can also be performed 
by grouping the prime implicants into classes of failure modes. The classification of failures can narrow down the 
search for prime implicants and enable the analyst to make intelligent interpretations out of the results. This is 
implemented by defining rules to reflect a certain class of behavior, and using the rules to distinguish between events 
in a timed fault tree (or, equivalently, rows in an intermediate transition table) that need to be further explored and 
those that may be stored and not analyzed further. 

One particular approach may be used to look for single failure causes, whereby only event-sequences which contain 
one failure event at most are develoyed, Le., t5e sevch is redirested tg another braxh as soon as a second failure 
event is determined to be necessary to make tke sequence possible. Such an approach can similarly be extended to 
look for double failures, triple failures and so on. For example, the analysis of the Demonstration Test Case 
presented in Section 5.3.2 was carried out to search for event sequences in which there was no hardware failure. 

Another possible approach is to classify the source of the failure modes, i.e., as to whether they originate from the 
software, fiom the hardware, or from both. If we assume that the analyst intends to look for software induced 
failures first, the rules to be defined will seek to specify the behavior of a correct software. In the search, any event 
that matches the rules, and hence indicating the software is behaving correctly, will not be explored hrther. In fact, 
this approach has been applied in the analysis of the Interim Test Case in Section 4.4.2 and the Demonstration Test 
Case in Section 5.3. The rule being defined limit the search to finding failure modes in which the software does not 
behave as it is designed to. The results presented in Sections 4.4.2 and 5.3 show how this approach can help an 
efficient identification of the software error present within the controller. Further analysis can be performed with 
similar definition of rules to identify failures emwating from the hardware or failures requiring both a software error 
and external triggering conditions. As discussed in Section 4.4.2, the definition of check rules to classify that errors 
originate from the software require the analyst t9 refer to a fomal "catalogue" of system behavior specifications. 

6.3.2.3 Presentation of the Analysis Results 

Reconstruction of the Sequences of Events 

As the reader can see in the results of the DTC analysis given in Section 5.3, the prime implicants are expressed as 
combinations of software input conditions, system boundary conditions and component failure conditions. Software 
errors are not identified as basic events, but as input conditions at the hardware/software interface. This is due to the 
fact that the faulted software module does not necessarily accept parameters at the hardware/software interface, the 
parameters it receives as inputs can be parameters calculated inside the software. In a DFM analysis, when these 
internal parameters are encountered, they will be backtracked to their predecessors, which might also be internal 
software parameters. Backtracking is terminated until the hardware/software interface is reached. To pinpoint the 
module in which the software error is located, it is necessary to reconstruct the sequence of events fiom the input 
conditions through the software modules. As the events are traced forward in causality through the software 
modules, undesirable responses emanating f;om any software module can be identified by comparing with the 
specification behavior, as in the cases discussed in Section 5.3.1 and 5.3.2. This forward causality tracing activity is 
similar to the generation of the state-transition sequences discussed in Section 6.1.1, except not all possible 
sequences resulting fiom the input condition are generated. The intermediate transition tables generated by the DFM 
Model Analyzer will limit the sequences to those which will ultimately cause the top event. The discussion in 
Section 5.3 pointed out that the analyst must possess sufficient knowledge and understanding of the system to 
recognize whether the generated sequence of events correspond to the desirable system behavior or not. The 
possibility of enhancing the capability of DFM to make it usable for users with lower degrees of system knowledge 
and understandings is discussed in Chapter 7, Conclusions and Recommendations. 
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Reduction of Prime Implicants 

As seen in the ITC and DTC analyses, prime implicants may contain non-failure conditions. For example, the prime 
implicant shown in Table 4.XXIV contains the normal states of the level sensor, the flow sensor, the control valves 
and the stop valves. A “reduced form” of the prime implicant which was correspondingly identified is shown in 
Table 6.111. The software error that causes the tank to overflow is identified via its immediate effect, that is the 
command issued to the downstream control valve to its minimum position (software condition), AND the failure of 
the check valve (external condition). The reduced form of the prime implicant was obtained by the Model Analyzer 
from the fill form initially identified, by deleting fiom the list of conditions in the prime implicant all those 
conditions which identify the states of sensors, control valves and stop valves related to the event sequence of interest 
as being normal, i.e. none of these components are failed. 

Table 6.111 : Reduced Fonn of the Prime Implicant for the ITC Analysis 
I Prime lmplicant 

Q t = 0  AND 1 I check valve failed open 

I Upstream control valve commanded to close to its minimum Q t = -1 AND 
Downstream control valve commanded to close to its minimum Q t = -1 AND 
Tank level was very hish 0 t = -1 

In general, in a multi-state, non-coherent system representation such as that used in DFM, a parameter state can be 
always classified as “faulted” or “normal” only for the model parameters expressly set up to represent hardware 
failure / non-failure states. A reduced form of prime implicant can thus be obtained by not including in it the listing 
of normal states of this type of parameters. The states of process variables, on the other hand, are not defmable a 
priori to be always “good” or “bad”, and consequently are always listed even in the reduced prime implicant. This is 
because a process parameter state which is “good” in a certain type of situation may become “bad” when the 
situation changes. For example, in the prime implicant in Table 6.111, the state of the upstream control valve is 
“good” (the valve is trying to reduce the tank inflow to a minimum in the presence of a potential overflow situation), 
whereas the state of the downstream valve is “Lad” (since tbis valve is trying to reduce outflow). This classification 
of good and bad, however, would be completely reversed if we were in an opposite situation in which the tank water 
level had fallen below the minimum allowable. In essence, the state of being “commanded to close to its minimum” 
cannot be determined for either valve to be good or bad until the context within which this happens has been 
identified. The prime implicants for the frst faulted case analysis of the DTC (Table 5.XXX) can similarly be 
reduced to the those shown in Table 6.W. 

6.3.3 Testing Procedures 

From the study of the Interim Test Case and the Demonstration Test Case, the authors found that intelligent testing 
strategies could be devised using the prime implicants and the sequence of events obtained from a DFM analysis. 
Better testing could be performed at the module level and the system level, and the discussions on these aspects are 
presented in Section 6.3.3.1 and 6.3.3.2 respectively. 

6.3.3.1 Module Testing 

Prime implicants for DFM analyses, such as thos2 obtaked from t!!e ITC and the DTC studies, are combinations of 
input conditions to the software, boundary conditions i? the rest of the system (e.g., the components which must be 
operational), and component failure conditions. In addition, the sequence of events reconstructed by retracing the 
intermediate transition tables could locate the software errors within specific software modules, such as the cases 
presented in Sections 5.3.1 and 5.3.2. These two pieces of information can be used to optimize the testing 
procedures. As the location of the software errors can be pinpointed in the sequence of events, more resources can 
be directed to test the specific modules where critical errors are identified. In addition, the input conditions, which 
are identified as part of the prime implicants, can guide thr selection of the parameters to be tested, and the defmition 
of the ranges within which the parameters can best be sampled in the tests. 
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Table 6.IV : Reduced Form of the Prime Implicants for the First DTC Analysis 
. , Prime Implicant 

High Level Override signal was inactive @ t = - l  AND 
Reactor Trip Override signal was inactive Q t = - l  AND 
Main feed valve was opened between 60% and 80% a t = -1 AND 
Feed flow was between 60% and 80% @ t = - l  AND 
Steam flow was between 30% and 60% a t = - 1  AND 
SG level was at level 8 @ t = - l  
High Level Override signal was inactive . @ t = - l  AND 
Reactor Trip Override signal was inactive @ t = - l  AND 
Main feed valve was opened between 60% and 80% a t = -1 AND 
Steam flow was between 30% and 60% @ t = - l  AND 
SG level was at level 8 @ t = - l  AND 
Feed flow sensor stuck high 
High Level Override signal was inactive a t = - 1  AND 
Reactor Trip Override signal was inactive @ t = - 1  AND 

@ t = - l  

Main feed valve was opened between 60% and 80% a t = -1 AND 
Steam flow was between 30% and 60% @ t = - l  AND 
SG level was at level 8 a t = - 1  AND 
Level sensor stuck low a t = - 1  
Main feed valve stuck fully opened a t = 0  AND 
Steam flow was between 30% and 60% @ t = - l  AND 
SG level was at level 8 @ t = - l  
High Level Override signal was inactive a t = - 1  AND 
Reactor Trip Override signal was inactive a t = - 1  AND 
Main feed valve was opened between 60% and 80% a t = -1 AND 
Steam flow was between 80% and 100% @ t = - l  AND 
SG level was at level 8 a t = - 1  AND 
Level sensor stuck low @ t = - l  
Main feed valve stuck fully opened @ t = O  AND 
Steam flow was between 80% and 100% a t = - 1  AND 
SG level was at level 8 a t = - 1  
High Level Override signal was inactive a t = - 1  AND 
Reactor Trip Override signal was inactive a t = - 1  AND 
Main feed valve was opened between 60% and 80% a t = -1 AND 
Steam flow was between 30% and 60% a t = - 1  AND 
SG level was at level 9 @ t = - l  AND 
Level sensor stuck low a t = - 1  
Main feed valve stuck fully opened a t = o  AND 
Steam flow was between 30% and 60% a t = - 1  AND 
SG level was at level 9 @ t = - l  
High Level Override signal was inactive a t = - 1  AND 
Reactor Trip Override signal was inactive @ t = - l  AND 
Main feed valve was opened between 60% and 80% a t = -1 AND 
Steam flow was between 80% and 100% a t = - 1  AND 
SG level was at level 9 a t =‘-1 AND 
Level sensor stuck low @ t = - l  
Main feed valve stuck fully opened a t = o  AND 
Main feed valve was opened between 60% and 80% a t = -1 AND 
Steam flow was between 80% and 100% a t = - 1  AND 
SG level was at level 9 @ t = - l  



6.3.3.2 System Testing 

Besides identifying the modules and the parameters where testing is most needed, the results provided by DFM 
analyses can also help guide system level testing activity to identify the most efficient way of improving the system. 
As the prime implicants are expressed in terms of combinations of input conditions, boundary conditions and 
component failure conditions, system level testing can be directed to determine the likelihood of encountering these 
conditions. The prime implicants can be ordered according to their likelihood of occurrence. The prime implicants 
higher on the list should be addressed frst. For example, in the first faulted-case analysis of the DTC presented in 
Section 5.3.1, if system level testing could determine that the input conditions and the failure events in prime 
implicants 3-10 were unlikely to occur, the development activity could be redirected to focus entirely on furing the 
software specification error, rewriting the code, and re-analyzing the system with the specification error removed. In 
the extreme case in which system level testing can determine that all the prime implicants are not likely to be 
encountered, a trade-off can be made where the user accept the system with the inherent error. This can be beneficial 
if the cost associated with furing the error and re-qualifying the system is much higher than the cost of accepting the 
risk. 





7 CONCLUSIONS AND RECOMMENDATIONS 

The objective of this research was the development of a modeling environment and analytical h e w o r k  to enable 
the execution of a practical process of verification and validation for software that is devoted to critical process 
control and safety functions, and more specifically for control software of the type that may be employed in the next 
generation of nuclear power plants, as well as in digital upgrades that are presently being proposed and implemented 
in the control systems of existing plants. This objective has been successfully pursued and achieved with the 
completion of the development and demonstration activities documented in this report. 

The principal accomplishment of this research can be summarized as follows: 

e 

0 

a 

The features of the Dynamic Flowgraph Methodology (DFM) analytical approach have been developed and 
defmed in all detail necessary to establish a practical baseline for future applications. The approach is 
articulated in two steps, which involve, respectively, system modeling and system assurance analysis. These 
steps can also be integrated with, and facilitate, the traditional step of system assurance-testing. 

An integrated analytical software package, which implements the DFM rocedures and algorithms, has been 

models and user interfaces for data input and output, which directly reflect the “directed graph” representation 
at the base of DFM. 

developed. This software runs on PC workstations under the Windows & environment and relies on graphic 

Two extensive validation and demonstration activities were carried out to refine and test the capabilities of the 
DFM methodology. An “interim test case” (ITC) was developed and used to aid the development and 
finalization of DFM. A “demonstration test case” (DTC) was developed and used to prove the viability of the 
DFM methods and tools, as fmalized in a baseline version at the end of the development phase concluded with 
the ITC exercise. 

The DFM methodology trial and demonstration activities carried out in the project have established the suitability of 
the DFM analytical approach. Besides validating the detailed DFM modeling and analysis procedures, the two 
extensive test cases carried out within this research have demonstrated the validity of the “systems approach” in the 
assurance analysis of software-based control systems. This approach requires both the software and hardware 
portions of the system to be represented and analyzed by use of one integrated model, which includes all the major 
system functions and interfaces, instead of partitioned and separate representations that are analyzed and verified 
separately, The advantage of using and analyzing an integrated system model is that the specification of behavior, as 
well as the actual behavior, of individual elements can be, as the analysis is carried out, compared with the 
specification of behavior and the actual behavior of the whole system. This makes possible the uncovering of 
inconsistencies that may exist between the two levels of specifications and behaviors, which would be very hard to 
identify by the traditional approaches of “partitioning” the assurance analyses. 

In the course of this development, an understanding has been developed of how DFM modeling and analysis 
activities can be carried out in coordination with established software testing activities and how they can facilitate a 
systematic and close-ended approach to carry out the latter. The DFM system modeling process requires in fact a 
systematic execution of software module testing (if of course the system software exists in executable form at the 
time the DFM analysis is carried out). After a DFM system model has been assembled by putting together software 
and hardware module representations, the process of DFM analysis can then take out the guesswork from system 
integration testing and identify, from the integrated hardware / software analysis, the test inputs and sequences that 
need to be applied as input “stimuli” to the software portion of the system in order to test for the existence or not of 
software faults. It must be acknowledged, however, that the amount of direct practical experience that has been 
gathered in the area of coordination of DFM analysis and software testing activities is still relatively limited. Thus, 
because of the importance that software testing has in current assurance and verification practices and the large 
amount of resources that are routinely invested in testing activities, a recommendation can be made to focus a portion 
of future DFM development and application efforts onto the objective of systematically expanding the current level 
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of understanding and experience base regarding how DFM analysis and software testing integration can be fully 
achieved and optimized. 

Particularly important toward the objective of enabling the use of the DFM technique in practical industrial 
applications is the fact that an application toolset, which we have referred to in this report as the DFM S o h a r e  
Toolset, has been created and is now available for such a use. The DFM Software Toolset is an integrated set of 
software tools for implementing the model construction and analysis procedures of DFM. This software toolset, 
which is made up of two principal modules, Le., the Model Editor and the Model Analyzer, runs as a Microsoft 
WindowsTM application on any PC workstation (486 or Pentium class workstations with 16 Mbytes or more of 
memory are recommended). The availability of this tool makes the MVL (multi-valued logic) algorithms which are 
at the core of the DFM analytical capability transparent to practically-oriented users, while also providing a graphic 
model-editor en&onment for the construction of DFM representations of systems to be analyzed and for the input of 
user-provided data concerning such systems and the desired assurance analyses thereof. 

With the use of the DFM application software, deductive analyses of systems presenting a level of complexity 
comparable to those of the ITC or DTC systems (discussed, respectively, in Chapter 4 and Chapter 5 )  can be carried 
out in relatively straightforward fashion. However, DFM analysis of control system software cannot be expected to 
be executable as a routine task. On the contrary, users should be aware that the correct application of the technique 
requires an in-depth understanding of the technical issues that have been presented and discussed in this report. 
Computational resources may also pose limitations to the mode of application of the analysis. If care is not applied 
to follow the recommendations for the definition of top-events and boundary conditions (or “check-rules”) that have 
been discussed in Chapters 4, 5 and 6, greater amounts of computer resources @e., memory andor processor time) 
become necessary to execute an analysis, possibly to the point of running against final limits of feasibility for 
systems of greater complexity. 

Among all the insights that have been discussed in Chapter 6, two appear to be especially important for the future 
development and execution of DFM analysis. The fust is linked to the observation that many software faults are 
identifiable by DFM not directly as basic conditions that are part of a “prime implicant” logic definition, but only via 
the observation of the actual sequence and logic path to the top event associated with the prime implicant itself. This 
requires the analyst to examine carefully the sequences originated by a prime-implicant condition, and compare them 
with a reference model of “good system behavior” in order to pinpoint the fault. The direct implication of this is, 
therefore, that the analyst must refer to a formal “catalogue” of system behavior specifications, fiom the highest to 
the lowest level available, and he/she must possess an overall knowledge and understanding of the system sufficient 
to recognize whether, and how, a DFM-generated sequence of system-events does not correspond to the desirable 
system behavior. A conclusion that may immediately follow fiom this observation is that, to evolve towards more 
“routine” applications of DFM by personnel with lower degrees of system knowledge and understanding, it ma>be 
desirable to develop a systematic procedure for the identification and definition of desired system behavior, similar 
perhaps in nature to the one that is envisioned by the proponents of “formal specification methods” (Rushby 1995 
and Thomas 1994). This observation also indicates the existence of an opportunity for an investigation of the relation 
of an engineering modeling and analysis method such as DFM with the formal methods of logic specification and 
verification, including the investigation of possible avenues by which the more intuitive and practical representation 
of the former may be utilized to facilitate the use and application of the latter in practical situations. 

The second important indication for further development of DFM is to extend the analytical procedures to permit 
inductive logic analysis, in addition to the present capability for deductive analysis. By tracking system state 
evolution forward in time and cause-effect order of sequence, this added analytical capability would be useful for 
software specificati0n”and design verification purposes, as it would allow the analyst to test specifically for whether 
the control software and the associated system follow a certain type of desired behavior which has been specified in 
advance (e.g., whether the system reaches a controlled and stable state starting €tom certain specified initial 
conditions). A simple trial application of this mode of analysis which was conducted manually within our study (and 
reported in Section 6.1.1) shows that this extension is not only useful, but that it should be also achievable without 
excessive application of additional development effort. 
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With respect to the assurance analysis of open-loop software systems, such as those which implement nuclear plant 
safety and protection logic, the conclusion of this research is that DFM analysis should be well suited for this 
purpose. The importance of such software-based safety systems and their assurance in the nuclear regulatory process 
is readily recognized, Although the principal focus of this study has been the assurance analysis of closed-loop 
control systems, mainly because of the technical challenges posed to the analyst by their dynamic characteristics, 
consideration of the nature of the DFM analysis technique and direct evidence from the execution of the test-cases 
conducted in this research both support the above conclusion (please refer to Section 6.2.1 for details). Thus, an 
optimization of DFM analysis techniques for open-loop safety systems analysis, although not within the direct scope 
of this study, is judged to be an achievable objective. Given the current dearth of actual analytical tools to support 
safety-critical software assurance efforts, a recowmendation can be made for the development of DFM application 
capabilities and specialized implementation tools in this direction. 

At the conclusion of the development cycle and studies documented in this report, the DFM methodology has been 
brought to the working level of being applicable to software-driven control systems of considerable complexity. This 
results from both the successful demonstration of its basic features and capabilities in two realistic and large-scale 
test cases and from the development of engineering-workstation software that implements and partially automates the 
execution of a desired analysis. Further refinement of the DFM tools will be conditional upon user feedback from 
field applications which will be pursued, if possible, in the immediate future (e.g., as part of the SBIR Phase 111, if 
commercial sponsors and users can be identified). 
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