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Development of two-dimensional groundwater flow

simulation model using meshless method based on

MLS approximation function in unconfined aquifer in

transient state

Ali Mohtashami, Abolfazl Akbarpour and Mahdi Mollazadeh
ABSTRACT
In recent decades, due to reduction in precipitation, groundwater resource management has

become one of the most important issues considered to prevent loss of water. Many solutions are

concerned with the investigation of groundwater flow behavior. In this regard, development of

meshless methods for solving the groundwater flow system equations in both complex and simple

aquifers’ geometry make them useful tools for such investigations. The independency of these

methods to meshing and remeshing, as well as its capability in both reducing the computation

requirement and presenting accurate results, make them receive more attention than other

numerical methods. In this study, meshless local Petrov–Galerkin (MLPG) is used to simulate

groundwater flow in Birjand unconfined aquifer located in Iran in a transient state for 1 year with a

monthly time step. Moving least squares and cubic spline are employed as approximation and weight

functions respectively and the simulated head from MLPG is compared to the observation results and

finite difference solutions. The results clearly reveal the capability and accuracy of MLPG in

groundwater simulation as the acquired root mean square error is 0.757. Also, with using this

method there is no need to change the geometry of aquifer in order to construct shape function.
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INTRODUCTION
Understanding groundwater flow behavior is of high impor-

tance among hydrogeologists. They have tried to investigate

the aquifer behavior in all aspects due to the low amount of

precipitation in many places in the world. The way to recog-

nize this action is to study the related governing equations.

Therefore simulation of groundwater flow system, especially

in arid zones is essential for the government and water

scientists because of increasing rates of demand on ground-

water reservoirs (Sadeghi Tabas et al. ).

Technically, the governed equations of groundwater

flow can be solved by some numerical methods such as
finite difference method (FDM) and finite element method

(FEM). These methods are mesh based and in addition to

their benefits they have some drawbacks related to the

meshes. Many scientists have tried to resolve these shortages

but FDM and FEM have their problems in the field of

meshing. Using rectangular meshes makes the FDM

amongst the most simple method for programming. How-

ever, it has its own limitations as meshes may not cover

the whole domain precisely. Moreover, some problems con-

cerned with changeable boundaries and constant update of

the domain geometry is a time-consuming and complex task.
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In order to address such problems, a newly numerical

method, called the meshless method, has been developed.

The meshless method is a numerical technique to solve

problems simply. This method is used to change partial

differential equations into a system of equations for the

entire domain without the use of a mesh (Mategaonkar &

Eldho ). Recently, there has been great attention focused

on the development of ‘meshless methods’ to reduce mesh-

ing problems (Li et al. ). The first idea of meshless

methods was introduced by Gingold & Monaghan ().

They used smoothed particle hydrodynamics for modeling

specified phenomena. The main idea of these methods is

to approximate a function in the entire domain by just

using scattered nodes. Atluri & Zhu () presented a

new meshless method called meshless local Petrov–Galer-

kin (MLPG). They developed local symmetric weak form

to solve Laplace and Poisson equations and found this

method capable and accurate (Atluri & Zhu ).

There has been little research into groundwater flow

modeling using meshless methods. Mategaonkar & Eldho

() used a meshless method based on point collocation

called polynomial point collocation method for the ground-

water flow simulation in unconfined aquifers (Mategaonkar

& Eldho ). Their case study regions include two pre-

sumptive aquifers in one- and two-dimensional and one

real aquifer. Their results in hypothetical aquifers were com-

pared with the FEM and analytical solutions. Kovarik &

Muzik () used a combination of two numerical methods,

radial basis function (RBF) and the local boundary integral

element method, to solve the unsteady density-driven

groundwater flow in a rectangular case study (Kovarik &

Muzik ). Swathi & Eldho () simulated groundwater

flow in a two-dimensional (2D) presumptive rectangular

confined aquifer with MLPG with Gaussian RBF. They

found their used method effective (Swathi & Eldho ).

Swathi & Eldho () also simulated groundwater flow in

an unconfined aquifer with MLPG with Gaussian RBF as

weight and shape functions. They chose both weight func-

tion and approximation function from one space. Also, to

keep the size of all support domains equal they considered

some dummy nodes in the aquifer (Swathi & Eldho ).

Recently, numerous studies have been related to the

simulation of groundwater flow in the Birjand unconfined

aquifer. Sadeghi Tabas et al. () presented research that
://iwaponline.com/jh/article-pdf/19/5/640/392170/jh0190640.pdf
linked multi-algorithm genetically adaptive search method

with a groundwater model to define pumping rates within

a well-distributed set of Pareto solutions (Sadeghi Tabas

et al. ). Hamraz et al. () assessed parameter uncer-

tainty of groundwater simulation in the Birjand aquifer.

They modeled Birjand aquifer in Matlab using MODFLOW.

They evaluated parameter uncertainty using GLUE (general-

ized likelihood uncertainty estimation). Their results

showed that the performance of the GLUE was satisfactory

(Hamraz et al. ). Ghoochanian et al. () developed a

model that linked MODFLOW and WEAP to manage water

resources in the Birjand aquifer.

In this paper, the MLPG method is employed to solve

the time-dependent groundwater flow equation in Birjand

unconfined aquifer located in the east of Iran. The shape

and weight functions are chosen from two different spaces.

The weight function is cubic spline, moreover, a moving

least squares (MLS) approximation function has been

chosen as interpolation function. Finally, the simulated

head is compared with the observation results and FDM

(MODFLOW) solutions for each time step.
METHODS

Geographical location of the case study

The Birjand unconfined aquifer is located in South Khora-

san province in the east of Iran. The area of this aquifer is

almost 265 km2. Mean annual precipitation in Birjand

plain is 160 mm and generally this region is placed in an

arid zone. The slope is shallow in the west part of the

plain. The groundwater system is one-layer unconfined aqui-

fer with changeable thickness of 5–225 m. (Sadeghi Tabas

et al. ). Figure 1 shows the geographical location of

the Birjand aquifer in Iran.

MLS method

MLS approximations were firstly introduced in the field of

computational solid mechanics by means of the diffuse

element method by Nayroles et al. (). Since then, this

function has been utilized in the element-free Galerkin

method by Belytschko et al. (). Now, it is an alternative



Figure 1 | Geographical location of Birjand aquifer.
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approach for constructing meshless shape functions for

approximation (Liu & Gu ). Due to two important

characteristics, much attention has been attracted toward

the MLS approximation: (1) the approximated field function

is continuous and smooth in the whole problem domain

when adequate nodes are used; and (2) it is able to produce

an approximation with the desired order of consistency (Liu

).

The hydraulic head (UI) of groundwater in an aquifer is

needed to compute. The MLS approximation of hydraulic

head Uh Xð Þ� �
can be defined as (Park & Leap ):

Uh Xð Þ ¼
Xm
j

pj Xð Þaj Xð Þ ¼ PT Xð Þa Xð Þ: (1)

m is the number of the basis function P Xð Þ and a Xð Þ is a
vector of unknown coefficient given by:

aT Xð Þ ¼ a1 Xð Þ a2 Xð Þ . . . am Xð Þf g: (2)

In Equation (1), the basis function P Xð Þ is built using

monomials from the Khayyam–Pascal triangle. In one-

dimensional space, a complete polynomial basis of order l

is given by:

PT Xð Þ ¼ 1 x x2 . . . xl
n o

: (3)

and in 2D space:

PT X, Yð Þ ¼ 1 x y x2 xy y2 . . . yl
n o

: (4)
om http://iwaponline.com/jh/article-pdf/19/5/640/392170/jh0190640.pdf
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In this study, the quadratic basis pT xð Þ ¼
1 x y x2 xy y2

� �
is used.

The functional J must be minimized with respect

to a Xð Þ:

J ¼
Xn
I

W X�XIð Þ Uh Xð Þ �UI

h i2
: (5)

where Ui are the nodal unknowns associated with the neigh-

bors nodes Xi of point x and W X�XIð Þ is a weight function

of ith node whose value decreases as the distance between X

and Xi increases (Liu ).

The minimization condition for Equation (5) requires:

@J
@a

¼ 0: (6)

which leads to the linear equation system:

a Xð ÞA Xð Þ ¼ B Xð ÞUs: (7)

Assuming that the MLS moment matrix A is invertible,

Equation (7) can then be solved for a xð Þ:

a Xð Þ ¼ A�1 Xð ÞB Xð ÞUs: (8)

A Xð Þ, B Xð Þ and Us are computed:

A Xð Þ ¼
Xn
I

W XIð Þp XIð ÞPT XIð Þ: (9)
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B Xð Þ ¼ W1p x1ð Þ W2p x2ð Þ . . . Wnp xnð Þ½ �: (10)

Us ¼ U1 U2 . . . Un½ �: (11)

Substituting Equation (9) back into Equation (1):

Uh Xð Þ ¼
Xn
I

Xm
j

Pj Xð Þ A�1 Xð ÞB Xð Þ� �
jIUI: (12)

In the simpler form:

Uh Xð Þ ¼
Xn
I

ϕI Xð ÞUI: (13)

where ∅ Xð Þ is the matrix of MLS shape function.
Choice of the weight function

Choosing the weight function plays a significant role in the

efficiency of the MLS approximation function (Liu & Gu

). The choice of Wi Xð Þ is made. It has the following fea-

tures: it is only strictly positive in a subdomain Ωs

containing Xi, but is zero outside this domain. Ωs is called

the support of the function Wi Xð Þ or the domain of influ-

ence of the node Xi. Wi Xð Þ reduces with the distance

between Xi and X. Several weight functions can be used.

In this study, the cubic spline weight function is used:

Wi Xð Þ ¼

2
3
� 4r2i þ 4r3i ri � 0:5

4
3
� 4ri þ 4r2i �

4
3
r3i 0:5< ri � 1

0 ri > 1

8>>><
>>>:

9>>>=
>>>;

(14)

In this equation ri ¼ di

rw
¼ x� xij j

rw
and rw is the influence

radius of node xi. For each node, rw must be selected in a

way that the number of non-zero weight functions be more

than each term in the polynomial.
MLPG method

This method is a truly meshless method, as it does not need

a ‘mesh’, either for purposes of interpolation of the solution
://iwaponline.com/jh/article-pdf/19/5/640/392170/jh0190640.pdf
variables, or for the integration stage (Atluri & Zhu ).

This method employs a local weak form to solve the

equations. MLS approximation function is utilized for

approximating. MLPG was first introduced by Atluri &

Zhu ().
Discretization of groundwater flow equation in

unconfined aquifer with MLPG method

The governing equation in groundwater flow modeling in

unconfined aquifer is:

@

@x
kx

@H
@x

� �
þ @

@y
ky

@H
@y

� �
þ @

@z
kz

@H
@z

� �
¼ Ss@H

@t
±R: (15)

where kx, ky and kz indicate the hydraulic conductivity coef-

ficients (L/T). H, Ss and R show the pressure head (L),

specific storage (1/L) and recharge or discharge rate per

unit volume (1/T) (positive or negative) respectively. In

the unconfined aquifer, the thickness of saturated layer

varies by groundwater table. Some assumptions proposed

by Dupuit () are:

(a) the flow is horizontal;

(b) the hydraulic gradient is equal to slope of the free

surface.

The equation is based on the Dupuit () assumption

and continuity equation as follows:

@

@x
kxH

@H
@x

� �
þ @

@y
kyH

@H
@y

� �
¼ Sy@H

@t
þ R: (16)

where Sy is specific yield.

Since:

@H2

@x
¼ 2H

@H
@x

and
@H2

@y
¼ 2H

@H
@y

(17)

with substitution of Equation (17) in Equation (16):

@

@x
kx

@H2

@x

� �
þ @

@y
ky

@H2

@y

� �
¼ 2 ×

Sy@H
@t

þ R
� �

: (18)
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Since Birjand unconfined aquifer is isotropic:

k
@2H2

@x2

� �
þ @2H2

@y2

� �� 	
¼ 2 ×

Sy@H
@t

þ R
� �

: (19)

with using weighted residual method:

ðð
Ω

Wik
@2H2

@x2
þ @2H2

@y2

� �
dΩ ¼ 2

ðð
Ω

Wi
Sy@H
@t

þ R
� �

dΩ: (20)

ðð
Ω

Wik
@2H2

@x2

� �
dΩþ

ðð
Ω

Wik
@2H2

@y2

� �
dΩ

¼ 2
ðð
Ω

Wi
Sy@H
@t

dΩþ 2
ðð
Ω

WiRdΩ: (21)

By using integration of parts in Equation (21):

k
ð
Γ

Wi
@H2

@x
dΓ�

ðð
Ω

@Wi

@x
@H2

@x
dΩþ

ð
Γ

Wi
@H2

@y
dΓ�

ðð
Ω

@Wi

@y
@H2

@y
dΩ

2
4

3
5

¼2
ðð
Ω

Wi
Sy@H
@t

dΩþ2
ðð
Ω

WiRdΩ:

(22)

Since the Birjand aquifer has no normal flow over its

boundary, the first and third term in the left side of Equation

(22) vanish:

�k
ðð
Ω

@Wi

@x
@H2

@x
dΩþ

ðð
Ω

@Wi

@y
@H2

@y
dΩ

2
4

3
5

¼ 2
ðð
Ω

Wi
Sy@H
@t

dΩþ 2
ðð
Ω

WiRdΩ: (23)

Substituting Equation (17) in Equation (23):

�2k
ðð
Ω

@Wi

@x
H

@H
@x

dΩþ
ðð
Ω

@Wi

@y
H

@H
@y

dΩ

2
4

3
5

¼ 2
ðð
Ω

Wi
Sy@H
@t

dΩþ 2
ðð
Ω

WiRdΩ: (24)
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The approximate value for head is:

H ¼
Xm
i¼1

Hi tð Þ ×∅i x, yð Þ: (25)

Substituting Equation (25) in Equation (24):

�2k
ðð
Ω

@Wi

@x
H ×H

@∅
@x

dΩþ
ðð
Ω

@Wi

@y
H ×H

@∅
@y

dΩ

2
4

3
5

¼ 2
ðð
Ω

Wi
Sy@H
@t

dΩþ 2
ðð
Ω

WiRdΩ: (26)

In this study, the FDM in time is used. Forward finite

difference approximation is employed for computation of

the time derivative:

@H
@t

¼ Hnþ1 �Hn

Δt
: (27)

Substituting Equation (27) in Equation (26):

�2k
ðð
Ω

@Wi

@x
Hnþ1 ×Hn @∅

@x
dΩþ

ðð
Ω

@Wi

@y
Hnþ1 ×Hn @∅

@y
dΩ

2
4

3
5

¼ 2
ðð
Ω

WiSy
Hnþ1 �Hn

Δt

� �
dΩþ 2

ðð
Ω

WiRdΩ: (28)

�2k
ðð
Ω

@Wi

@x
Hn @∅

@x
dΩþ

ðð
Ω

@Wi

@y
Hn @∅

@y
dΩ

2
4

3
5

� 2
ðð
Ω

WiSy
1
Δt

� �
dΩ ×Hnþ1

¼ �2
ðð
Ω

WiSy
Hn

Δt

� �
dΩþ 2

ðð
Ω

WiRdΩ: (29)

This equation is similar to the linear equation:

K½ � ¼ �2k
ðð
Ω

@Wi

@x
Hn @∅

@x
dΩþ

ðð
Ω

@Wi

@y
Hn @∅

@y
dΩ

2
4

3
5

� 2
ðð
Ω

WiSy
1
Δt

� �
dΩ: (30)
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U½ � ¼ Hnþ1: (31)

F½ � ¼ �2
ðð
Ω

WiSy
Hn

Δt

� �
dΩþ 2

ðð
Ω

WiRdΩ: (32)

Equation (32) represents force body matrix. It indicates

the rate of recharge or discharge of the aquifer. In other

words, this matrix shows the interaction or extraction flow

rate in two concentrated and distributed conditions.

The principles of groundwater modeling

Birjand aquifer was represented by using sets of nodes

which were scattered uniformly in it. The word uniform

means that the distance between two adjacent points in

horizontal and vertical direction is 500 meters

(Δx ¼ Δy ¼ 500m). Input data, such as extraction wells,

recharge and discharge rates, boundary conditions, hydrau-

lic conductivity coefficient and specific yield of each node,

were entered into the model. The algorithm of simulating

with MLPG is presented in Figure 2.

The scattered nodal points in the domain are presented

in Figure 3. Each blue point in the domain has four values:

hydraulic head that should be computed, hydraulic conduc-

tivity coefficient, specific yield and the rate of recharge or

discharge (please refer to the online version of this paper

to see Figure 3 in color: http://dx.doi.org/10.2166/hydro.

2017.024).

Boundary conditions

Generally, there are two classifications for boundary con-

ditions in modeling of groundwater flow. One is nodes with a

specified head (Dirichlet) boundary condition, and the other

one is nodes with no flow or inactive (Neuman) boundary con-

dition. Inactive nodes or no flow nodes are those for which no

flow into or out of the nodes is permitted. Constant head nodes

are those forwhich the head is specified in advance, and is held

at this specified value through all time steps of the simulation.

In the Birjand aquifer, there are 10 areas that have specified

head boundary condition, nine inflow pathways and one out-

flow pathway. Figure 4 specifies these areas. The other

boundary nodes have no flow boundary conditions, in other

words they are defined as inactive nodes.
://iwaponline.com/jh/article-pdf/19/5/640/392170/jh0190640.pdf
Wells

There are 190 extraction wells in the studied region. These

pumping wells consist of 139 agricultural, 31 drinking

water and 20 industrial wells. In this aquifer 10 observation

wells were used to investigate the level of water table.

Figures 5 and 6 show the location of extraction and obser-

vation wells with square and circle symbol respectively.

Recharge and discharge rate

Since the studied area is categorized as an arid region with

low amounts of precipitation, this low precipitation is con-

sidered as the recharge value. This aquifer had

0.000727 m/day rain between 2011 and 2012 based on

rain gauges employed in Birjand plain.

The volume of extracted water from extraction wells is

used as the discharge rate in our proposed model.

Hydraulic conductivity coefficient and specific yield

In order to allocate hydraulic conductivity coefficient and

specific yield in each node, the aquifer has been divided

into polygons. This is done by ArcGIS software. For each

polygon there is one value that represents the magnitude

of the hydraulic conductivity coefficient and specific yield.

All the nodes in each polygon have the same value as the

polygon. The unit of hydraulic conductivity coefficient is

m/day. Figures 7 and 8 indicate a divided aquifer for pre-

senting hydraulic conductivity coefficient and specific

yield parameters. These parameters are obtained from the

results of pumping tests.

According to Figure 8, Birjand unconfined aquifer is

divided into 48 polygons. Each polygon has a number as a

legend. The value of the specific yield parameter for a poly-

gon can be obtained based on its legend number from

Table 1.

MODFLOW model

The groundwater flow equation is solved by a finite differ-

ence scheme using a groundwater modeling system

(GMS). MODFLOW is a three-dimensional finite-difference

groundwater model and engages certain equations for

http://dx.doi.org/10.2166/hydro.2017.024
http://dx.doi.org/10.2166/hydro.2017.024


Figure 2 | Flowchart of groundwater flow modeling.
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computing the head of groundwater in different cells of the

aquifer. The model was first released in 1984 by the United

States Geological Survey (USGS). Now, it is used as a pop-

ular package for simulation of groundwater flow in both

steady and unsteady states. Modeling groundwater flow
om http://iwaponline.com/jh/article-pdf/19/5/640/392170/jh0190640.pdf
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with a MODFLOW package requires accurate data from

the aquifer.

The first step to simulate groundwater flow in GMS

is to define a conceptual model. This is done to simplify

the analysis of the field data in real conditions (Anderson



Figure 3 | Scattering nodal points in simulated aquifer in Matlab software.

Figure 4 | Presented inflow and outflow pathways in Birjand aquifer.

Figure 5 | Extraction wells in Birjand aquifer.
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& Woessner ). All the meteorological, hydrological

and geophysics studies, geological investigation, well

logs, water level fluctuation, type of groundwater flow

system, and hydrodynamic coefficients are employed in

the conceptual model. The conceptual model consists of

definition of boundary, type and structure of aquifer

and sources and sinks, etc. The next step is to choose

an algorithm for solving the related equation. In the

fourth stage the conceptual model is converted to a

numerical model. This stage includes griding domain,

definition of time steps and implied boundary conditions.

Finally, the model is calibrated. Calibration means the



Figure 6 | The location of piezometers (observation wells) in the aquifer.
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accommodation of simulation results with observation

results.

Sadeghi Tabas et al. () and Hamraz et al. () mod-

eled Birjand unconfined aquifer using the MODFLOW

model. They developed their model based on available

data, including well locations and measurements, geologic

map, well logs, topography data, hydrography and recharge

information.

Seven layers were used to construct the groundwater

model. Aquifer boundary conditions, piezometers, pumping

wells, surface recharge, drainage information, hydraulic con-

ductivity and specific yield are applied to the MODFLOW
Figure 7 | Hydraulic conductivity polygons in Birjand aquifer.

om http://iwaponline.com/jh/article-pdf/19/5/640/392170/jh0190640.pdf
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model to create a groundwater numerical model (Sadeghi

Tabas et al. ).
RESULTS AND DISCUSSION

The groundwater flow in the Birjand unconfined aquifer is

simulated with the MLPG and finite difference (MOD-

FLOW) methods. The water level is computed for every

node in each time step. To investigate the accuracy of

the results, observed head in piezometers (observation

wells) was compared with MLPG and FDM solutions.

Figure 9 shows the comparison of these numerical

methods and observed results for four random

piezometers.

Tables 2 and 3 show the simulated head with

using MLPG and FDM in comparison of observation

data in each time step for two piezometers (piezometer

1 and 3).

Figures 9 and 10 show the change of hydraulic head

along the aquifer in the first and last stress period (month)

of 2010–2011.

The groundwater level has a maximum value of approxi-

mately 1,390 m in the east of the aquifer, and it decreases

gradually while traveling to the west. The south-west has a

minimum value around 1,264 m.



Figure 8 | Representation of specific yield polygons in Birjand aquifer.
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Performance of the model

There are three criterion that were used to evaluate the error

of the results. Mean error (ME), mean absolute error (MAE)
Table 1 | Values of specific yield in polygons based on its number

Num Specific yield Num Specific yield Num Specific yield

0 0.25 16 0.06 32 0.04

1 0.02 17 0.05 33 0.07

2 0.04 18 0.04 34 0.17

3 0.03 19 0.064 35 0.04

4 0.03 20 0.03 36 0.12

5 0.054 21 0.06 37 0.04

6 0.03 22 0.1 38 0.1

7 0.054 23 0.03 39 0.05

8 0.03 24 0.04 40 0.04

9 0.065 25 0.1 41 0.08

10 0.07 26 0.04 42 0.04

11 0.04 27 0.03 43 0.1

12 0.075 28 0.05 44 0.04

13 0.045 29 0.1 45 0.1

14 0.07 30 0.04 46 0.04

15 0.043 31 0.04 47 0.035

://iwaponline.com/jh/article-pdf/19/5/640/392170/jh0190640.pdf
and root mean square error (RMSE). Error estimation was

computed using Equations (33)–(35) (Sadeghi Tabas et al.

):

ME ¼
Pm

j¼1

Pn
i¼1 ho � hsð Þ
m × n

(33)

MAE ¼
Pm

j¼1

Pn
i¼1 ho � hsj j

m × n
(34)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1

Pn
i¼1 ho � hsð Þ2
m × n

s
(35)

where ho, hs indicates the observed and simulated heads

respectively while ‘m’ is the number of monthly time steps

and ‘n’ is the number of piezometers. These mentioned

errors are computed in Table 4.

Actually, the allowable error associated with the field

and model data should be under þ1.9 m. In this study,

the objective error is RMSE, according to Table 4 the

RMSE of using MLPG and FDM methods are 0.757 and

1.197. They have significant differences. So the MLPG

method reveals results with more accuracy than the FDM

method.



Figure 9 | Computed water level from MLPG, FDM in comparison with observed head.

Table 2 | Comparison in results of MLPG, FDM and observation in piezometer 1

Stress period
(month)

MLPG head
(m)

FDM head
(m)

Observed head
(m)

1 1,264.34 1,263.756 1,264.07

2 1,264.33 1,263.341 1,264.08

3 1,264.33 1,263.182 1,264.11

4 1,264.27 1,263.203 1,264.14

5 1,264.26 1,263.253 1,264.17

6 1,264.26 1,263.31 1,264.29

7 1,264.363 1,263.377 1,264.27

8 1,264.362 1,263.444 1,264.12

9 1,264.363 1,263.511 1,264.14

10 1,264.366 1,263.576 1,264.22

11 1,264.37 1,263.638 1,264.34

12 1,264.37 1,263.698 1,264.39

Table 3 | Comparison in results of MLPG, FDM and observation in piezometer 3

Stress period
(month)

MLPG head
(m)

FDM head
(m)

Observed head
(m)

1 1,307.145 1,308.44 1,307.29

2 1,307.134 1,308.474 1,307.23

3 1,307.134 1,308.479 1,307.18

4 1,306.927 1,308.476 1,307.11

5 1,306.928 1,308.473 1,307.07

6 1,306.928 1,308.471 1,307.04

7 1,307.168 1,308.466 1,306.97

8 1,307.166 1,308.458 1,306.94

9 1,307.166 1,308.448 1,306.89

10 1,307.176 1,308.437 1,306.85

11 1,307.175 1,308.427 1,306.8

12 1,307.175 1,308.418 1,306.77
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Figure 10 | The variability of hydraulic head in (a) the first stress period (b) the last stress period.

Table 4 | ME, MAE and RMSE errors

MLPG method (m) FDM method (MODFLOW) (m)

ME –0.08 0.159

MAE 0.573 1.434

RMSE 0.757 1.197
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CONCLUSIONS

In recent decades, reduction in precipitation, population

growth and civilization developments caused an increase in

underground water withdrawal and endangered the
://iwaponline.com/jh/article-pdf/19/5/640/392170/jh0190640.pdf
groundwater flow system balance. In this regard, water

resources management has become one of the main issues

under investigation for better resources management. The

best way for managing water resources is to use a numerical

method. In this study, Birjand unconfined aquifer with com-

plex geometry located in east of Iran is modeled using

MLPG. The shape and weight functions are chosen from

two different spaces and cubic spline is employed as the

weight function. Moreover, the MLS approximation function

is used as the approximation function. The simulated head by

MLPG was compared with the results of observation data

and FDM (MODFLOW) solution. For four piezometers

as an example, comparison among the solutions of these
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methods was carried out. Also, the RMSE for MLPG solution

was computed as 0.757. This value shows the high accuracy

of the MLPG in simulating groundwater flow.
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