
108

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.2

DEVELOPMENT OF WEB COMPONENT GENERATORS
USING ONE-STAGE METAPROGRAMMING

Vytautas Štuikys, Marijus Montvilas, Robertas Damaševičius
Software Engineering Department, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania
e-mail: vytautas.stuikys@ktu.lt, marijus.montvilas@internet.ktu.lt, damarobe@soften.ktu.lt

Abstract. We consider a methodology for the development and application of a class of generators that are
externally parameterized tools enabling to generate Web component instances on demand depending on the context of
use. Such generators are generalized entities of conventional Web components that indeed are lower-level generators
for the portal domain. We use one-stage heterogeneous metaprogramming techniques for implementing the externally
parameterized metaprograms as a specification of the generators. The first our contribution is a systemized process to
create the externally parameterized metaprograms for building Web domain generators. The process describes a logical
linking into the coherent structure of the following entities: semantic model for change, program generator model, Web
component instance model, and given metalanguages. The second our contribution is the complexity estimation of
Web component generators that were developed and used for generating Web component instances to incorporate them
into real portal settings. The complexity is estimated using the Kolmogorov’s complexity measures and Cyclomatic
Complexity. We analyze also specific features and characteristics of the developed generators.

Keywords: Web component models, Web component generator, one-stage heterogeneous metaprogram-
ming, complexity measures of metaprogram, Kolmogorov’s complexity.

1. Introduction

Over at least ten past years, various organizations
have envisioned portal solutions (Web) as a necessity
to develop and maintain integrated, personalized en-
vironments for collaborative activities. Though now
the rate of growth of Web portals has stabilized in
comparison to the boom of the last decade of the 20th
century [1], creating new portals remains as actual
problem as ever due to unsurpassable capabilities of
Web technology for connecting peoples for interaction
and information interchange. Many organizations and
design teams are involved in creating Web-based ap-
plications until now. This continues to happen because
of the fact that the initial Web implementation, defined
by its static nature and a purposefully low barrier to
entry, was sufficient only for some time for sharing
documents. But now this is inadequate to more ad-
vanced applications.

Though the infrastructure problems of the Web
have been largely solved now [2-4], the market pres-
sure and complexity growth of applications result in
the need for a more effective design process of the
Web portal development per se. The problem we deal
with here is the development of Web component gene-
rators through the use of the one-stage metaprogram-
ming techniques.

In the context of the paper, by Web component
generators we mean a class of generators which are
externally parameterized tools enabling to generate
Web component instances on demand depending on
the context of use. Such generators are generalized
entities of conventional Web components that indeed
are lower-level generators for the portal domain [5-7].
Before using in a concrete context, parameterized
generators are firstly to be instantiated.

By one state-stage metaprogramming techniques
we mean heterogeneous metaprogramming [8], in
which the functionality of portal domain is expressed
through multiple languages relevant to the domain and
the external generalization is expressed using at least
one metalanguage (e.g., ASP that is used as a meta-
language to express through parameterization scripting
and modifications). The term “one-stage” means that
we do not exclude the possibility to apply “multi-
stage” metaprogramming in the other context. The aim
of using the metaprogramming techniques is to en-
hance reuse and to extend generating capabilities of
the known technological infrastructure, such as the
one proposed by Microsoft [9] and used in practical
implementations of the created generators.

The first our contribution is a systemized process
to create the externally parameterized metaprograms
for building Web domain generators. The process

Development of WEB Component Generators Using One-Stage Metaprogramming

109

describes a logical linking of the following entities
into the coherent structure: semantic model for
change, program generator model, Web component
instance model, and given metalanguages. The second
our contribution is the complexity estimation of Web
component generators that were developed and used
for generating Web component instances to incor-
porate them into real portal settings. The complexity is
estimated using the Kolmogorov’s complexity mea-
sures [10] and Cyclomatic Complexity.

The rest part of the paper is organized as follows.
Section 2 analyzes related works. Section 3 presents a
domain analysis framework and portal domain models
(as a result of the analysis and input to building gene-
rators). Section 4 provides the problem formulation
and the definition of basics terms. Section 5 analyzes
some properties of Web components. Section 6 pre-
sents the Web component generator model. Section 7
describes a method as a detailed process for creating
externally parameterized metaprograms, i.e., input
specifications that enable functioning of domain
generators. Section 8 provides and deals with experi-
mental results and complexity issues of the developed
generators. Section 9 provides analysis and evaluates
the total results. Finally, Section 10 states conclusions
and future work.

2. Related Works

Since we consider the development of portal com-
ponents as a connection of two domains (i.e., portal
technology and its application, and solution domain
based on using meta-programming techniques), we
identify two basics streams of related works: 1) Web
technology and Web-based generators; 2) heteroge-
neous metaprogramming techniques. Other sources
which are important in the context of the paper (such
as those related to domain analysis and reuse) are
introduced in other Sections together with our consi-
derations.

Stream 1. As the portal development is indeed a
very wide field, here we restrict ourselves by present-
ing only those works which are either general and
most informative for portal development (such as
overviews, taxonomies, technology needs evaluation,
etc.) or directly relates to the problem we consider
(such as Web-based generators).

Coffmam and Odlyzko [1] evaluate the size and
the growth rate of the Internet at the end of the last
century when the boom of the technology was evident.
Fielding and Taylor [2] analyze design issues of the
modern Web architecture. In a similar paper, Hazra [3]
analyzes architectures of Enterprise Portals and for-
mulates basic principles of their design. ST Electro-
nics (Info-Software Systems) Pte. Ltd. [11] applies a
lightweight, reactive approach to support an industrial
Web Portal product line. According to the announce-
ment, unique characteristics of the approach are fast,
low-cost migration from a single, conventional Web
Portal towards a reusable “generic Web Portal”

solution, effective handling of large number of func-
tional variants and their dependencies, the ability to
rapidly develop new Web Portals from the generic
one, and to independently evolve multiple Web Portals
without ever losing a connection between them and
the “generic Web Portal”.

Doyle and Lopes [4] present a survey of Web
based technologies for the Web application develop-
ment. Authors conclude that although the infrastruc-
ture problems have largely been solved, “the caco-
phony of technologies for Web-based applications
reflects the lack of a solid model tailored for this
domain”. Losh [7] analyzes the simplest Web gene-
rators as a form of the online hypertext and provides
taxonomy of some of the most popular generator types
(i.e., those that create original verbal or visual online
texts).

Rajapakse and Jarzabek [12] identify important
technological needs in relation to reference architec-
ture for Web Applications and show how different
technological trends address each need. The paper is
interesting to those who want to get a grasp of the
Web technology landscape and understand major
trends. Djemaa et al. [6] describe a generator for
adaptive Web applications called GIWA that aims at
the design and automatic generation of adaptable Web
interface. The GIWA methodology is based on three
levels: semantic level, adaptation level and presen-
tation level. The implementation of GIWA is based on
java swing interface to instantiate the models which
are translated in XML files. The methodology uses
then XSL files to generate the HTML page corres-
ponding to the user. Helman and Fertalj [5] present
generators in Web development process and overview
of key features of Web applications and development.
The research focuses on how those features are im-
plemented and supported by different Web application
generators and other Web development tools.

Stream 2. Metaprogramming-based techniques and
approaches are also widely discussed in the literature.
What is important to know is that the relative ap-
proaches very often are called using different terms
(e.g., transformation-based, generative, multi-stage
programming, etc.) as it is identified in [13]. In this
paper, Damaševičius and Štuikys analyze also the
known taxonomies in the field and present a more
extended taxonomy of the fundamental concepts of
metaprogramming. Taha, in his contributory work
[14], calls metaprogramming as ‘multi-stage program-
ming’. Trujillo with colleagues [15] generalize the
metaprpogramming approaches identifying them as
‘generative metaprogramming’. Cruz et al. [16] ana-
lyze the role of the languages and compare generators
for language-based tools.

In general, analysis of the approaches can be
categorized as follows: (a) metaprogramming-based
approaches (as a solution domain) for generator design
(e.g., generative programming [17], aspect-oriented
programming [18], metaprogramming techniques [8,
19]); and (b) product line approaches [20-22] in which

V. Štuikys, M. Montvilas, R. Damaševičius

110

the main focus is given to variability aspects in order
to implement domain generators. Combining approa-
ches in both categories (a) and (b) one might agree
with the Veldhuizen’s vision that metaprogramming is
“the study about software generalization” [23]. We
exploit the observation given to the metaprogramming
techniques as it is explained in the remaining Sections
3 to 7.

3. Domain analysis

With the generative reuse approach [24, 25] in
mind, the initial assumption as a roadmap for investi-
gation is as follows: the approved way for building
domain generators is to start from domain analysis.
The next assumption follows: either a designer/ana-
lyzer is an expert in two domains at once (Web portal
and program generator design using metaprogram-
ming techniques), or a team that performs the work
has the stated knowledge.

In general, analyzer has at least three possibilities:
1) to apply an ad hoc analysis method; 2) to apply a
systematic method which should be selected from a
series of known methods such as FODA [26], FORM
[27], Prieto-Diaz [28], etc.; 3) to modify the known
methods or combine them in somewhat way. Here we
use ad hoc analysis. Reasons for that are two: sim-
plicity and our determination to rely on the analyzer’s
knowledge in the portal field. A success of the use of
ad hoc methods depend on such factors as: 1) under-
standing by analyzer the aims of analysis including the
awareness on which aspects to focus; 2) expert’s
/analyzer’s knowledge including literature studies; 3)
understanding what result from analysis should be

obtained and what representation of the result is most
relevant for generators design.

Analysis of (a) generator design approaches [8, 17-
19] and (b) product line approaches [20-22] and other
sources shows that the main focus should be given to
variability aspects. On the other hand, as Web based
approaches are so rapidly evolving, the “cacophony of
technologies” [4] is another aspect to focus on. We
focus on these aspects in analysis of the portal do-
main. The variability aspects can also be treated as
design for change [29]. Thus the result of analysis
should reflect the both sides of the domain: tech-
nological characteristics and application or user-
related characteristics. The later issues are conceived
in this context as requirements for change. Domain
analysis results in collecting of the relevant infor-
mation in order to achieve the goal. In reuse literature
(see [30]), this information is called by general term,
namely domain model.

What aspects describe the domain model we
extract through analysis of the portal domain? Firstly,
we obtain the portal model that describes
technological characteristics which are most important
to our context: typical Web components that practi-
cally appear in most types of portals, technological
infrastructure that is needed to implement portals;
domain languages as a part of the infrastructure. The
language aspect is represented separately in the model
because of the importance of this aspect for generators
(most types of generators are language-based tools
[16]). As portal domain is the one, which is specified
through a multi-linguistic approach, the role of each
language within the framework should be identified
too. Table 1 summarizes technological aspects of the
domain model.

Table 1. Basic technological aspects of portal domain

Typical Web
Components

Technologic
frameworks

Language
support

Role of languages

Data
management
(DMG); Content
management
(CMG);
Dynamic
module
management
(DMMG)

ASP,COM,
JScript, VB,
.net

VB,
SQL

XML
XSL
HTML
CSS
JScript
ASP

For ensuring Web security support aspects
For expressing Web component links with DB for generation objects
(tables, procedures, functions)
For storing structural data in server side (alternative for DB)
For representing data in format XML on client side
For representing text documents in browsers
For representing content described in HTML format on client PC
For modelling and representing
For scripting multi-linguistic files and managing manipulations

The next part of the model is the application-rela-

ted or possible user-related information. This informa-
tion connects the anticipated requirements for change
with the portal components characteristics. The list of
component characteristics with examples includes:
data formats, data types, modes of their representation,
selecting conditions, features such as a structure of
files that are increments of the components, etc.
Constraints identify what relationships are not feasible
among variants of various characteristics (some of

these characteristics are presented along with experi-
mental results in Section 8).

4. Problem statement

The initial data as a preliminary assumption to for-
mulate the problem are as follows: 1) requirements
(including constraints) to support design for change;
2) Web component generator model; 3) an instance of
Web component to be generalized; 4) a metaprogram

Development of WEB Component Generators Using One-Stage Metaprogramming

111

model and a metalanguage to support one-stage
programming. The design task is formulated as fol-
lows:

To transform the given models 2 and 3 into the
external metaprogram written using the given meta-
language (model 4) so that two pre-defined conditions
are satisfied: a) the requirements for change and
constraints are fulfilled; b) the metaprogram, when
executed, generates a set of Web component instances
that are syntactically and semantically correct in the
given context of use.

To facilitate the problem to be solved, one pre-
liminary step should be done firstly: we need to com-
bine the requirements for change and models 2 and 3
into a unified model, which we call a semantic model.
If this preliminary step is done, then the task can be
reformulated as a transformation of the semantic mo-
del into a metaprogram satisfying the same constrains.
The other note relates to the terminology. As there are
many terms with a very close meaning, we define the
terms with the extending explanation of their meaning
in this Section.

(Parameterized) Web component generator is an
externally parameterized tool enabling to generate
component instances on demand (the definition em-
phasizes the process aspects). Such a generator is a
generalized entity of conventional Web components
that indeed are lower-level generators for the portal
domain. Before using parameterized generators in a
concrete context, they are firstly to be instantiated.
The output of the parameterized generator is not the
data (Web page as it is in the case of simple gene-
rators) but a domain program that generates Web-
based data.

One-stage metaprogramming is the one that uses
only one level for expressing generalizations in the
heterogeneous metaprogramming paradigm. External
metaprogram is the one which: a) is developed accor-
ding to the principles of heterogeneous metaprogram-
ming; b) serves as an input specification to the para-
meterized generator. Metaprogram is also a generator
but metaprogram expresses specification aspects that
govern the generation process. Metaprogram can be
also called metaspecification. Structurally, metaprog-
ram (metaspecification) consists of the two interrela-
ted parts: metainterface (for specifying parameteriza-
tion) and metabody (for expressing generalizations
through modifications/changes).

Web component instance is an object for imple-
menting generalizations, i.e., for creating metaprog-
ram/parameterized generator. Metalanguage is a lan-
guage, which serves for specifying operations that
implement generalizations through changes. Target (or
domain language) is the one which describes some
functional aspects of Web component instances.

In the next two Sections, we describe and analyze
the structure and some properties of Web component
instances, which are essential to understand the ins-
tance and generator models, respectively.

5. Properties of Web component instances

As a result of analysis, three typical Web com-
ponents were identified (see Table 1). They are: Data
management (DMG); Content management (CMG)
and Dynamic module management (DMMG). The
components are applied across multiple applications
but with slightly different characteristics. Differences
follow from the model (see Table 1). The next
description identifies the properties of components in
detail.
1. Structural properties of Web components are as

follows: structure of the component is a set of
different files each representing some particular
attributes (e.g., representation, selection of data,
data management, etc.).

2. Components are reusable entities which were not
created from scratch but were extracted from the
previously developed projects. The latter means
that the entities were reused and their quality was
approved by the use cases.

3. Files as constituents of the components have the
following structure: invariant and variant parts.
The invariant part represents the description,
which does not depend on the context of use. The
variant part represents such a functionality that
may vary depending on the context of use, but in
a concrete context it has a pre-defined value.

4. When the variant part within the given file is
recognized and each variant is identified by a de-
signer, such a structure can be treated as a temp-
late for reusing in multiple contexts.

5. As a template file is a model for the instantiation
of the file in a given context, it can be treated as a
low-level semi-automatic generator; where the
instantiation is performed manually and the inva-
riant part is represented automatically (this is a
lower-level domain generator [4]).

6. As the intrinsic features of the files describe a
variety of specific attributes of the domain (e.g.,
representation, transferring, security, etc.), files
are to be combined into a coherent structure that,
from the designer’s viewpoint, is treated as a
monolithic component.

7. Each file has a separate technological support,
i.e., a file is described using different languages
(one or a few for the same file, e.g., ASP+ Jscript
+ HTML). The capabilities of the given techno-
logy ensure the composition of files into the
coherent monolithic structure through a simple
integrating mechanism, i.e., the file name (if there
is nothing to transfer to other file) or the call-type
statement (if there are data/parameters to transfer
to other file). The file name/the call-type state-
ment are also treated as an interface for integ-
rating files into a coherent structure.

8. Some files may appear in different components
(e.g., some files from DMG are needed to use in
CMG) too.

V. Štuikys, M. Montvilas, R. Damaševičius

112

9. The sequencing of files within a given component
is arbitrary. The given sequence pre-specifies the
structure of the component. As the arrangement of
files within the component is arbitrary, one can
consider the model of the component as distri-
buted files. The position of the file within the
component is also its interface.

The specified properties are sufficient to generalize
the Web component model in order to device the
externally parameterized Web component generator,
which uses the white-box reuse model combined with
metaprogramming techniques as it is described in the
next two sections.

6. Web Component generator model

The aim is to show that typical component models
used in other domains and Web-based component
models are slightly different entities. Typical compo-

nent models (e.g., those that describe software [30], or
hardware [31] components) contain two essential
parts: interface and functionality. The basic feature of
the parts is that they are explicitly separable (see
Figure 1, a). In order to construct a generator based on
heterogeneous metaprogramming techniques the com-
ponent model is to be generalized. One way to do so is
to introduce new functional aspects into the initial
model through changes. The additional functionality
usually affects the internal structure of both parts of
the model, its interface and functionality. Such a kind
of generalization is also known as widening [30]. The
generalization using widening results in the creation
of a metamodel (metacomponent); this contains meta-
interface for managing changes and generalized func-
tionality (aka metafunctionality or metabody) for
managing generation (when implemented) as it is
shown in Figure 1b. Metainterface is clearly separable
from its metabody (see a dotted line in Figure 1b).

Figure 1. Component models: a) typical component instance; b) typical metacomponent; c) Web-based component model;
d) Web-based metacomponent model

Now we can present and discuss the Web-based
component and their generator models (see Figure 1c
and d), which are based on the properties discussed in
the previous section. The graphical notation has the
following meaning. In Figure 1 c, contour (rectangu-
lar) represents a file; darkened places within a rect-
angular denote variable part and interface; the rest part
of a rectangular denotes the invariant part. In Figure 1
d, broken line denotes metainterface as an irregularly
distributed structure; the distributed rectangular (with
45 degree lines) indicates generalization aspects
(scripting and modification of the files).

Conceptually (if we ignore a great number of files
and their distribution within the models c, and d)
models have the same structure as their counterparts

(see Figure 1a and b). The difference can be obtained
if one looks at the semantics (roles) and internal
structure of these two kinds of the models. The models
(a and b) are intended to describe computational or
structural aspects only, while the models (c, d) are
intended to describe representational, distributional
(transferring) and manageable aspects (e.g., to support
both server and user sides connections via the
network) in the first place. If computational aspects
are needed, they are not ignored too, but their role is
miserable in this context. It is the reason why we need
to reflect all these aspects in the Web-based model
(see Figure 1 and compare a and c). Generalization of
the Web-based model (in order to obtain the model d)
follows the same track as it was described above.

Interface

Functionality

IiIntIiiiiiiIn

 Functionality

Interface

Metainterface

a)

b)

c)

d)

Generalized
functionality (meta-
functionality)
through changes
introduced changes

Metabody

Legend:

–variant part
and interface

–metainterface –generalization
–file;
invariant part

Development of WEB Component Generators Using One-Stage Metaprogramming

113

The basic idea behind building domain generators
is the model transformation into relevant programs
and metaprograms. To implement a domain generator,
such as the Web-based generator, a technological sup-
port (e.g., Web-based languages and their interpreters)
should encompass all aspects the model describes.
Since the Web-based component model reflects many
aspects of the domain it is difficult to express these
aspects using one or two languages only and a series
of languages are used (see, e.g., [4, 9] and as well
experimental results here). Today, despite of the
“cacophony of technologies”, the Web infrastructure is
developed and it is giving a good enough support for
designers.

7. One-stage metaprogramming: A method
for implementing domain generators

We accept the following pre-conditions: 1) All
initial data are given as they were identified in Section
4; 2) target (domain) language(s) and tools that
support the language(s) are execution-level domain
generator(s) [6]; 3) metaprogram that modifies in
some way a target program written in the target
language is the designer’s-level (construction time)
program generator. The aim is to describe a method
stating how metadesigner creates a metaprogram in
general, i.e., independently on the application domain
and metalanguage. But when we need to make some
emphasis on domain specificity, which affects meta-
programming, we reflect the specificity in the method.
Below we describe the method as a logical sequence

of the processes metadesigner performs in order to
develop a metaprogram.
1. To make a choice in selecting a metalanguage or

metalanguages (e.g., in Web component design)
to support the implementation of generation/gene-
ralization aspects (in other words white-box
reuse). For example, in the case of using meta-
programming to develop Web-component genera-
tors, we apply two metalanguages (e.g., ASP+VB,
where ASP supports modification (change) as-
pects and VB supports Web security aspects) in
the same metaspecification at once.

2. To analyze the selected metalanguage/metalan-
guages and, according to structural programming
principles, to form three clusters of constructs for
each metalanguage as follows. The first cluster
Ko contains constructs that correspond to ope-
rations such as assignment, Read/Write (see Table
2). The second cluster Ka contains those const-
ructs that enable to realize alternative decisions
(e.g., if, case). The third cluster Kc contains
constructs that enable to code loops in a meta-
program. Table 2 provides clusters Ko, Ka and Kc
for three different languages (Open Promol,
JScript, ASP), which may be candidates for the
metalanguage selection in various contexts.

3. To perform semantic analysis of requirements for
change aiming: a) to identify and fix constraints
(if yet they are not given) within requirements; b)
to form two clusters (classes) within requirements
(orthogonal changes, which have no other
changes within and hierarchic changes that con-
tain other changes within).

Table 2. Clusters as subsets of constructs of three different languages

Change
category*

Operation,
cluster name

Open Promol JScript ASP

1st Operation, Ko Interface$...$
@sub[…]

Document.Write (...)
...= ...

Response.Write (...)
…= …

2nd Alternative, Ka

@if[...]
@case[...]

If ...
Switch/Case ...

If ...
Switch/Case...

3rd Cycle, Kc @for[...]
@repeat[...]
@gen [...]

For...
While...

For...
While...

Note: *) type of change in orthogonal category

What is important to emphasize is that orthogonal
changes are also categorized into three categories as
follows:
I. Changes of the 1st category are those that are im-

plemented using operations from cluster Ko.
II. Changes of the 2nd category are those that are im-

plemented using operations from cluster Ka.
III. Changes of the 3rd category are those that are im-

plemented using operations from cluster Kc.
Simple examples explain the meaning of ortho-

gonal changes in each category as well hierarchic

changes below (see Table 3).
4. To form a semantic model SM for change, which

describes links or relationships among require-
ments and other given initial data, clusters of
operations, constraints and represents changes
types by parameters and their values. The model is
described by sixth sets as identified by (3):
SM = (<semantic description for change>, <class

of change with operation type>, <labelled component
instance>, <change parameter>, <set of parameter
values>, <constraints>) (3).

V. Štuikys, M. Montvilas, R. Damaševičius

114

Table 3. Matching between categories of change and operation clusters and implementation of requirements for change

Category of
change

Requirements
for change

Object for
change

Cluster/
operation

Implementation
 in Open Promol

1st y => z y = x1 + x2 Ko /@sub[z] @sub[z] = x1 + x2
2nd Context =0: ‘+’

Context =1: ‘*’
y = x1 + x2 Ka /@if[cnt, {*},{+}] y = x1 @if[cnt, {*},{+}] x2

3rd To summate to 10 y = x1 + x2 Kc /@gen[9, {+},{x},1] y =@gen[9, {+},{x}, 1]

Hierarchic sum./ mult. to 10
depending on cnt

y = x1 + x2 Ka imbedded in Kc y=@gen[9,{@if[cnt, {*},
{+}]},{x}, 1]

Note. cnt is a metaparameter meaning the context of use (if cnt=1, to perform multiplication; otherwise – summation).

Explanation:

<semantic description for change> serves for
transferring information to metaprogrammer about
semantics of change; this information is extracted
from the informal description of requirements and it is
used as comments in the metaprogram to be deve-
loped;

<class of change with operation type > may be
orthogonal in three categories or hierarchical; it is
obtained in step 3; it also indicates operations needed
to implement a given class of changes; operations are
obtained from Table 4 (see also step 2); for each
category, an orthogonal operation from clusters is
identified separately;

<libelled component instance> indicates a place-
holder within a given component instance (domain/
target program), where a given change is to be per-
formed; to identify placeholders for change, semantic
analysis is to be performed; the procedure is a part of
activity of creating SM (see step 5);

<change parameter> is the metaprogram object or
metaparameter through which manipulations are ex-
pressed when metaprogram is executed (simply speak-
ing, it is a metaprogram variable to support operation
declarations and their execution; it plays the same role
as variable in a conventional program);

<set of parameter values> is a set of feasible para-
meter values identified during requirement analysis
and semantic model formation;

<constraints > show forbidden combinations
between parameter values.
5. To analyze a given component instance and identify

placeholders within the code where changes are to
be embedded; though the component consists of
many parts described using multiple language (see
Table 1 and model in Figure 1c), a metadesigner
treats the component as homogeneous structure
that is coded using a unique scripting language
(e.g., ASP).

 6. To perform a logical linking of four entities: a gi-
ven component instance (see step 5); metaprogram
structure (it consists of metainterface and meta-
body), clusters of a metalanguage (see Table 3) and

semantic model (3). Rules for logical linking are as
follows:

• Rule A: To form the metainterface of the meta-
program to be designed according to formula (4),
where metainterface MI is formally expressed
through mappings and transformations of ade-
quate sets. Sets are found in the semantic model.

()()()()
MICMVPSM

MLKKK
k

ii

cao ∈

⇒=
,,

' ,; , MLMI ∈ . (4)

Here SM' – semantic model reflecting the change
aspects, where the instance is ignored (it is
assumed that the instant I is described implicitly);
Pi – (meta)parameter for change i (i=1, n); n –
number of changes (parameters); Vi

k – set of va-
riants for (meta)parameter i; M – set of modifi-
cation (change) classes with identified operations,
C – set of constraints, MI – metainterface; ML –
set of constructs of a metalanguage; ⇒ – is treated
as a model transformation.

• Rule B: To codify and transform the semantic
model SM into the metaspecification body MB
according to formula (5), where metabody MB is
formally expressed through mappings and trans-
formation of adequate sets:

()()
()

MBCMPISM
MLKKK

i

cao ∈

⇒=
,,

,; ,
()()ITLMLMB ∪∈ . (5)

Here SM is the semantic model that specifies the
needed sets including those that describe changes
M; I – a component instant with placeholders (see
also Table 4 and properties 3-5 in Section 5),
which is seen as a function of parameters and a set
of modifications M; TL – target language (lan-
guages) to describe the instant I.
We receive the product, the metaprogram (see (6)),

as a result either of concatenation of models (4) and
(5) (e.g., using Open Promol [8], where metainterface
is an external entity) or integration of the models (e.g.,
using metalanguages, which support internal inter-
faces within the program structure).

MPMBMI =∪ , ()()ITLMLMP ∪∈ , (6)

Development of WEB Component Generators Using One-Stage Metaprogramming

115

where ∪ means the integration of MI and MB accor-
ding to the syntax rules of a given ML.

Figure 2 illustrates the result of the process of
creating metaprograms according to the proposed
methodology. Note that there is an illustrative example

of a metaprogram only, which contains one file with
metainterface (lines 3-19) and metabody (lines (22-
36). This metaprogram, which is coded in ASP,
generates the domain program in HTML (not shown).

1<%
2 ' --- Lines 3-19: metainterface in ASP language ---

3 Response.write "<form method=""POST"" action=""testas2.asp?MMPG=true&forma=true"">" & vbcrlf

4 Response.write "<p>Choose encoding <select size=""1"" name=""Language"">" & vbcrlf

5 Response.write " <option>Baltic</option>" & vbcrlf

6 Response.write " <option>Unicode</option>" & vbcrlf

7 Response.write "</select>
" & vbcrlf

8 Response.write "
" & vbcrlf

9 Response.write "Choose Title of web page <select size=""1"" name=""Name"">" & vbcrlf

10 Response.write " <option>Example_1</option>" & vbcrlf

11 Response.write " <option>Example_2</option>" & vbcrlf

12 Response.write "</select>
" & vbcrlf

13 Response.write "
" & vbcrlf

14 Response.write "Choose a content of web page <select size=""1"" name=""Body"">" & vbcrlf

15 Response.write " <option>Test page...!</option>" & vbcrlf

16 Response.write " <option>Hello, world!</option>" & vbcrlf

17 Response.write "</select></p>" & vbcrlf

18 Response.write "<p><input type=""submit"" value=""Generate web page"" name=""Generate""></p>" & vbcrlf

19 Response.write "</form>" & vbcrlf

20
21 ' --- Lines 22-36: specification of metabody in ASP language ---

22 If Request.QueryString ("form") = "true" then

23 Response.write "Generated web page (in HTML language):" & vbcrlf

24 Response.write "<xmp>" & vbcrlf

25 Response.write "<html>" & vbcrlf & "<head>" & vbcrlf

26 If Request.Form("Language") = "Baltic" Then

27 charset = "windows-1257"

28 Else

29 charset = "UTF-8"

30 End If

31 Response.write "<meta http-equiv=""Content-Type"" content=""text/html; charset=" & charset & """></head>"

32 Response.write " <title>" & Request.Form("Name") & "</title>" & vbcrlf

33 Response.write "<body>" & vbcrlf & " " & Request.Form("Body") & vbcrlf & "</body>" & vbcrlf

34 Response.write "</html>" & vbcrlf

35 Response.write "</xmp>"

36 End If

37%>

Figure 2. An illustrative example of the fragment of a metaprogram (with the metainterface and metabody in ASP)

The process of creating a metaprogram is yet not
complete, if there is no evidence on quality of the
product. As we use abstracts models, we ensure
quality through generation and testing of generated
instances. Testing should cover at least all different
paths in the metaprogram. Each tested path should
correspond at least to one variant for each parameter.
Testing of a particular instance is similar to a
conventional program testing: we need to execute the
instance using the target language (interpreter/pro-
cessor) and check syntactic and semantic correctness.

In this paper we provide two complexity measures
to reason about the complexity of created metaprog-
rams (see Section 8).

8. Experimental results
8.1. Analysis of characteristics of developed

generators

The experimental results have been obtained
through the development and the use of three Web

component generators. The Generators incorporate
those components that are most frequently used to
implement portal-based systems (see Tables 1, 4).
Using the generators, the needed component instances
were automatically generated on demand depending
on the context of a concrete usage. The derived
instances were then integrated into 3 portal settings for
different organizations. The results we describe below
are split among Tables 4-6. Table 4 summarizes multi-
linguistic aspects of the generators only.

Table 5 summarizes some quantitative characte-
ristics of the developed domain generators. These
characteristics identify either direct attributes or those
that are further used to derive the other characteristics
such as complexity measures.

V. Štuikys, M. Montvilas, R. Damaševičius

116

Table 4. Multi-linguistic aspects of parameterized Web components described as one-stage metaprograms

No Component
generator type

Meta-
language
s*

Target languages Explanation of roles of languages

1 Data management
(DMG) generator

VB
ASP

SQL (Server side)
XML (more ser
XSL (Client)
HTML (Client)
CSS (Client)
ASP (for Scripting)

2 Content
management
(CMG) generator

VB
ASP

XML,
 XSL, HTML, CSS
JScript
ASP

3 Dynamic module
management
(DMMG) generator

ASP XML, XSL, HTML,
JScript, ASP

Roles of target languages were identified yet at the
analysis phase (see Table 1). ASP as a target language is
for scripting of other files *). ASP as a metalanguage is
for specifying generation of the anticipated changes. VB
as a metalanguage supports Web security aspects. Both
metalanguages support generation aspects, i.e., ASP calls
VB components when it is needed in the generating
process and the VB part returns the generated data.

*) Note. We distinguish two kinds of scripting: logical and physical. The first means creating links between files through the call-
type statements. The second means physical composition of files resulting in the change of the file structure.

Table 5. Characteristics of metaprograms as domain generators

Metaparameters (MP) Characteristics of Internal files Generator’s (metaprogram’s)
size

Generator
type

 MP

Variants # of
a MP

[from… to]

Constraints

Number
of files

#*)

Average
of lines/B

Total # of
lines/MB

Meta-
interface

(lines/~MB)

Meta-body
(lines/
~MB)

DMG 14 4..16 >50** 105 106/4800 B 11130/7.3 3339/2.2 7791/5.1
CMG 21 1..50 >200** 140 210/6590 B 29400/14.4 13230/6.5 16170/7.9

DMMG 4 1..4 0 40 79/2870 B 3160/5.4 1896/3.2 1264/2.2

Notes: *) - see Figure 1, c, d and Section 5. **) Constraints are introduced through analysis: either 1) to comply standards (e.g.,
HTML, SQL, etc.), 2) to fulfil requirements or 3) to simplify the implementation.

8.2. Estimation of complexity of the developed
generators

It is important to estimate the complexity of the
developed generators (i.e., metaprograms) for many
reasons (e.g., comparative study, testing and compre-
hension, etc.). Table 6 presents derivative characte-
ristics of the complexity of the generators. The comp-
lexity of metaprograms can be evaluated, e.g., using
such measures as LOC (lines of code), Kolmogorov’s
Complexity (KC), Relative Kolmogorov’s Complexity
(RKC) and Cyclomatic Complexity (CC). KC mea-
sures complexity of an object by the length of the

smallest program that generates it. RKC is calculated
as complexity of an object divided by the length of an
object. A high value of RKC means that there is a high
variability of metaprogram’s code content, i.e., high
complexity. A low value of RKC means high redun-
dancy, i.e., the abundance of repeating code fragments
in metaprogram. CC was proposed by McCabe in
1976. It directly measures the number of linearly
independent paths through a program's source code
from entrance to each exit. For metaprograms, CC is
equal to the number of distinct domain program
instances that can be generated from a metaprogram.

Table 6. Comparison of complexity measures of the developed generators and generated instances

Generators’ complexity Generated instances * Type
Meta-interface
(lines/~MB)

Meta-body
(lines/~MB)

Kolmogorov’s
Complexity

Relative
Kolmogorov’s
Complexity

Number of
instances

(Cyclomatic
Complexity)

Average
size (lines/B)

DMG 3339/2.2 7791/5.1 7805 0.157 224 120/ 4950 B
CMG 13230/6.5 16170/7.9 20123 0.101 448 240/7100 B

DMMG 1896/3.2 1264/2.2 21203 0.133 112 80/2900 B

A higher value of CC indicates higher complexity
of the metaprogram’s parameter set (metainterface). It
is worth to know that CC depends on the number of

parameters, the number of values for each parameter
and the number of constraints among parameter
values. As some parameters have an extremely large

Development of WEB Component Generators Using One-Stage Metaprogramming

117

space of values, Table 6 represents the only lower
bound on CC, i.e., the number of instances which
were generated and tested.

Based on the values of these complexity metrics,
we can conclude that CMG is the most complex
metaprogram with the largest number of component
instances that can be generated from it. However,
despite its complexity, CMG still has much room for
further generalization as indicated by low RKC metric
language. To calculate the complexity using the
Kolmogorov’s complexity measure, see [10] for
details.

9. Discussion and evaluation
The basic results we have achieved and described

in the paper are the two: 1) the detailed process of
creating externally parameterized metaprograms
which are higher-level program generators for the
portal domain; 2) functional characteristics and also
non-functional characteristics such as complexity
measures (e.g., cyclomatic number and Kolmogorov’s
complexity measures) of Web components generators
which were used in three real portal settings. The dis-
cussion relates to those aspects that outline a specifi-
city of the methodology used with respect to the portal
domain.

 Though, in general, the process of creating a
metaprogram we have described in Section 7 is inde-
pendent upon the application domain, nevertheless
some aspects of the process may have specific features
for a particular domain. For example, the Web compo-
nents are described using not a unique target language
but rather a set of portal-oriented languages, each ex-
pressing different aspects of that multi-faced domain.
Therefore a Web component instance which is to be
generalized consists of separate fragments described
using different target languages. The fragments are
combined in a coherent specification using ASP be-
cause of its scripting capabilities. Next, for that do-
main, ASP is better suited as a metalanguage for
describing modifications than other metalanguages.

On the other hand, it is not enough to have only
one meta-language because of the need to specify
security aspects independently. Thus the metaprog-
ramming-based specification for Web components is
multi-linguistic also in terms of generalization because
we need to use at least two metalanguages (e.g., VB
and ASP). Furthermore, a metalanguage may perform
two roles: it describes scripting and modifications in
the same specification at once (as it is the case for
ASP). As a result of the aforementioned features, the
structure of the metaprogram that describes externally
parameterized Web generators is slightly different
(e.g., metainterface distributed across multiple ins-
tance fragments) in comparison to stand-alone meta-
programs.

Depending on the capabilities of metalanguage, the
semantic model as a basis for developing metaprog-
rams may have a slightly different interpretation. For

example, if a metalanguage supports the external in-
terface (as it is in the case of using Open Promol),
there is no need to express a component instance in
the semantic model explicitly. Otherwise, if a meta-
language supports an internal interface (e.g., through
the WRITE statement, see also Table 2) the semantic
model reflects the instance explicitly. Combing these
two cases into the one we can write (7):

()()()CMVPSM k
ii ,;' = ⊆ ()()CMPISM i ,;= . (7)

Though the semantic model SM enables to under-
stand the process of creating metaprograms well be-
cause of its main focus on linguistic features that are
essential to form the metaprogram, however, this is
not enough when the amount of changes is big and
relationships (including constraints) between them are
complex. The semantic model is not a weak instru-
ment per se but rather its expressive power is not
enough in that case because of complexity of the
dealing problem. The complexity of the problem
arises due to 1) difficulties of domain understanding
and expressing its artefacts through the adequate
model, 2) difficulties of implementation technology
(i.e., one-stage metaprogramming with multiple meta-
languages and multiple domain languages). What is
the way for managing the complexity issues? We see
the solution by the extending (or combining) the se-
mantic model with feature diagrams [26], which are
the more relevant models for expressing domain vari-
ability and constraints. But this is beyond the scope of
the paper.

10. Conclusions and future work

The externally parameterized Web component
generators that implement pre-defined and pre-prog-
rammed changes according to the principles of hetero-
geneous metaprogramming enable to achieve higher
quality and productivity with the opportunity for
wide-range adaptations in comparison to lower-level
generators. But this result is due to the more extensive
and accurate analysis of the portal domain per se. The
foundation of applying one-stage metaprogramming
techniques is a semantic model which is to be devised
as a result of portal domain analysis and the analysis
of requirements for change. More abstractly, para-
meterized Web component generators use the white-
box reuse model combined with metaprogramming
techniques. We have also identified specific features
of the Web component generators in comparison to
stand-alone domain program generators. Those fea-
tures are: multi-linguistic aspects at two levels (meta
and domain) and structural aspects of
metaspecification. The complexity measures of the de-
veloped generators we present enable to evaluate the
complexity of the products and reason about the limits
of their evolution.

The future work will be directed at the extension
of the capabilities of the semantic model with the
opportunity to combine the model with feature dia-

V. Štuikys, M. Montvilas, R. Damaševičius

118

grams, as well as investigation of multi-stage meta-
programming techniques in the development of more
powerful Web component generators.

References
 [1] K.G. Coffman, A.M. Odlyzko. The size and growth

rate of the Internet. AT&T Labs, 1998.
 [2] R.T. Fielding, R.N. Taylor. Principled Design of the

ModernWeb Architecture. Proc. of 22nd Int. Conf. on
Software Engineering (ICSE '00), Limerick, Ireland,
June 2000, 407–416.

 [3] T. K. Hazra. Building Enterprise Portals: Principles
to Practice. ICSE’02, 2002, May, 19-25, Orlando,
623-633.

 [4] B. Doyle, C.V. Lopes. Survey of Technologies for
Web Application Development. arXiv:0801.2618v1
[cs.SE] 2008 January, http://arxiv.org/PS_cache/
arxiv/pdf/0801/0801.2618v1.pdf.

 [5] T. Helman, K. Fertalj. A critique of Web application
generators. Proc. of the 25th Int. Conf. on Information
Technology Interfaces, ITI’ 2003, 639 – 644.

 [6] R.B. Djemaa, I. Amous, A.B. Hamadou. GIWA: A
generator for adaptive Web applications. Advanced
Int. Conf. on Telecommunications / Int. Conf. on Inter-
net and Web Applications and Services (AICT/ICIW’
06), February 2006, Guadeloupe, French Carib-
bean,19-25.

 [7] E. Losh. Assembly Lines: Web Generators as Hyper-
texts. Proc. of the 18th Conf. on Hypertext and Hyper-
media. New York: ACM Press, 2007, 115-122.

 [8] V. Štuikys, R. Damaševičius. Metaprogramming
Techniques for Designing Embedded Components for
Ambient Intelligence. In T. Basten, M. Geilen, H. de
Groot (eds.), Ambient Intelligence: Impact on Embed-
ded System Design. Kluwer Academic Publishers,
Boston, November 2003, 229-250.

 [9] ASP, ASP.NET, COM, JScript, VBScript and .NET
at, http://www.microsoft.com/.

[10] R. Damaševičius. On the Quantitative Estimation of
Abstraction Level Increase in Metaprogramms. Com-
puter Science and Information Systems, Vol.3, No.1,
2006, 53-64.

[11] U. Pettersson, S. Jarzabek. Industrial Experience
with Building a Web Portal Product Line Using a
Lightweight, Reactive Approach. ESEC-FSE'05, Euro-
pean Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, ACM Press, September 2005, Lisbon,
326-335.

[12] D.C. Rajapakse, S. Jarzabek. A Need-Oriented As-
sessment of Technological Trends in Web Enginee-
ring. In D. Lowe, M. Gaedke (Eds.): Proc. of 5th Int.
Conf. on Web Engineering, ICWE 2005, Sydney, Aust-
ralia, July 27-29, LNCS 3579, Springer, 2005, 30-35.

[13] R. Damaševičius, V. Štuikys. Taxonomy of the Fun-
damental Concepts of Metaprogramming. Information
Technology and Control, 37(2), 2008, 124-132.

[14] W. Taha. Multi-Stage Programming: Its Theory and
Applications. Ph.D thesis, Oregon Graduate Institute
of Science and Technology, 1999.

[15] S. Trujillo, M. Azanza, O. Diaz. Generative Meta-
programming. Proceedings of the Conf. Generative
Programming and Component Engineering. GPCE’

07, October 1–3, 2007, Salzburg, Austria, ACM
Publication, 2007, 105-114.

[16] D. da Cruz, M.J.V. Pereira, M. Béron, R. Fonseca,
P.R. Henriques. Comparing Generators for Langua-
ge-based Tools. Proc. of the 1st Conf. on Compiler
Related Technologies and Applications, CoRTA'07,
Portugal, 2007.

[17] K. Czarnecki, U.W. Eisenecker. Generative Prog-
ramming – Methods, Tools, and Applications. Addi-
son-Wesley, June 2000.

[18] G. Kiczales. Aspect-Oriented Programming. ACM
Comput. Surv., Vol.28, No.4, 1996.

[19] S. Jarzabek, S. Li. Eliminating redundancies with a
"composition with adaptation" meta-programming
technique. Proc. of the 11th ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering 2003 at
9th European Software Engineering Conference,
ESEC/FSE 2003, Helsinki, Finland, September 1-5,
2003, 237-246.

[20] J. Bosch. Design and use of software architectures:
adopting and evolving a product-line approach. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
2000.

[21] K.C. Kang , J. Lee, P. Donohoe. Feature-Oriented
Project Line Engineering, IEEE Software, Vol.19,
No.4, July 2002, 58-65.

[22] K. Pohl, G. Bockle, F. van der Linden. Software
Product Line Engineering. Berlin, Heidelberg, New
York: Springer-Verlag, 2005.

[23] T. L. Veldhuizen. Tradeoffs of Metaprogramming.
In: ACM SIGPLAN Workshop Partial Evaluation and
Semantic-Based Program Manipulation. Charleston,
South Carolina (USA), 2006.

[24] T. J. Biggerstaff. A perspective of generative reuse.
Annals of Software Engineering, 5, 1998, 169–226.

[25] I.D. Baxter. Transformation Systems: Generative
Reuse for Software Generation, Maintenance and
Reengineering. In C. Gacek (Ed.): Proc. of 7th Int.
Conf. on Software Reuse: Methods, Techniques, and
Tools, ICSR-7, Austin, TX, USA, April 15-19, 2002,
LNCS 2319 Springer, 2002, 341-342.

[26] K.C. Kang, S. Cohen, J. Hess, W. Novak, A. Peter-
son. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. SEI Technical Report CMU/SEI-90-
TR-021, 1990.

[27] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M.
Huh. FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures. Ann. Soft-
ware Eng. 5, 1998, 143-168.

[28] R. Prieto-Díaz. Status Report: Software Reusability.
IEEE Software 10(3), 1993, 61-66.

[29] P. Grogono. Designing for change. In J. E. Botsford,
A. Gawman, W. M. Gentleman, E. Kidd, K. A. Lyons,
J. Slonim, and J. H. Johnson (Eds.): Proc. of the 1994
Conf. of the Centre for Advanced Studies on Collabo-
rative Research, October 31 – November 3, 1994,
Toronto, Ontario, Canada. IBM, 1994, 21.

[30] J. Sametinger. Software Engineering with Reusable
Components. Springer-Verlag, 1997.

[31] P.J. Ashenden. The Designer's Guide to VHDL.
Morgan Kaufmann Publishers, 2nd ed., 2002.

Received February 2009.

