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Summary 

Clones for three barley non-specific lipid transfer 
proteins (LTP2, LTP3, and LTP4; formerly Cw18, 
Cw20 and Cw21, respectively) which had been 
previously shown to inhibit growth of plant 
pathogens, were selected and characterized from a 
cDNA library derived from young etiolated leaves. 
Genes Lfp2and Ltp4 were located in chromosome 3H 
and gene Ltp3 was assigned to chromosome 7H by 
Southern blot analysis of wheat-barley disomic 
addition lines, using gene-specific probes (3-ends of 
cDNAs). These assignments were confirmed by the 
polymerase chain reaction, using specific primers. 
The three genes were expressed in stem, shoot 
apex, leaves and roots (at low levéis) throughout 
development. Genes Ltp3 and Ltp4 were expressed 
at high levéis, and Lpt2 at low levéis, in the spike 
(rachis, lemma plus palea and grain coats). Neither of 
the mRNAs was detected in endosperm. The proteins 
were localized by tissue-printing with polyclonal 
antibodies in the outer cell iayer of the exposed 
surfaces of the plant, throughout the embryo, and in 
vascular tissues. Expression levéis in leaves were 
moderately increased by 0.34 M NaCI and by 0.1 mM 
abscisic acid and were not affected by cold, drought, 
salicylate, 2,6-dichloro-isonicotinic acid, ethylene or 
ethephon. Methyl Jasmonate (10 |iM) switched off all 
three genes. Inoculation with Av6 or vitó isolates of 
the fungal pathogen Erysiphe graminis increased the 
three mRNAs, especially that of LTP4, which reached 
a máximum nine-fold increase 12-16 h after infection. 

Introduction 

Non-specific lipid transfer proteins (LTPs) in plants are a 

family of homologous polypeptides of about 9 kDa which 

have been so designated because of their ability to 

shuttle different kinds of lipids between liposomes and 

mitochondria in vitro (Arondel and Kader, 1990; Breu et 

al., 1989; Watanabe and Yamada, 1986). However, a 

possible cytoplasmlc role in vivo for the LTPs has been 

questioned because they are synthesized as precursors 

with typical signal peptides (Bernhard and Somerville, 

1989; Sterk et al., 1991; Tchang et al., 1988), a cell wall 

localizaron has been found for some of them (Sterk ef al., 

1991; Thoma et al., 1993), and cell cultures have been 

shown to secrete them into the médium (Sterk et 

al., 1991). They have been reported in a variety of plant 

tissues, including barley aleurone (Mundy and Rogers, 

1986; Linnestad eí al., 1991), wheat seeds (Simorre et 

al., 1991), maize endosperm and embryo (Tchang et al., 

1988), castor beans (Takishima et al., 1988), spinach 

leaves (Bouillon et al., 1987), tomato stems (Torres-

Schumann et al., 1992), tobáceo anthers and shoot apex 

(Fleming et al., 1992), ragi seeds (Campos and 

Richardson, 1984), and carrot embryos (Sterk ef al., 

1991). It is becoming evident that múltiple LTP genes are 

present in a given genome and that these are expressed 

in different specific temporal and spatial patterns 

(Sossountzov et al., 1991). Involvement of LTPs in cutin 

deposition has been suggested based on the cell wall 

location of the carrot EP2 LTP (Sterk ef al., 1991), 

although a cytoplasmic location has been proposed for 

the maize protein (Sossountzov etal., 1991). 

Four LTPs present in crude cell wall preparations from 

barley leaves are potent growth inhibitors of bacterial and 

fungal plant pathogens (Molina and García-Olmedo, 

1991; Molina et al., 1993). We cloned cDNAs encoding 

three of these proteins and studied the developmental 

and pathogen-induced expression of their genes. 

Deposition of LTPs in the outer cell Iayer, and in vascular 

tissues of different parts of the plant, and higher steady-

state levéis of their mRNAs in response to pathogens 

were in line with the proposed protective role. 

Results 

Cloning of leafLTP cDNAs 

Nucleotide sequences presented in Figure 1 correspond 

to cDNA clones encoding LTPs isolated from a library 

which was derived from 7-day-old etiolated barley leaves. 

A total of 45 clones were selected out of about 4000 

screened, using two degenerate oligonucleotides 

deduced from appropriate regions (shaded in Figure 1) of 

the known amino acid sequences of proteins LTP2 and 

LTP4 (formerly Cw18 and Cw21, respectively). The 

sequence encoding protein LTP2 was identified in nine of 

the 24 clones sequenced, while one of the clones 



encoded protein LTP4 and the amino acid sequence LTP4 than to protein LTP2 (78% indentity versus 67%) 

deduced from the longest open-reading frame of one of and differed from both of them by an insertion of three 

the remaining clones had an N-term¡nus identical to residues (bases 295-303 in LTP3). Sequence-specific 

proteins Cw20, Cw21 and Cw22 (Molina et al., 1993). probes were obtained from the divergent 3-ends of the 

This protein, designated LTP3, was closer to protein cDNAs, as indicated in Figure 1, and checked for the 

pLTP2 AGCAAATCTAGCTATCTCATTGCCACCCTCTCCCCGTGAGCCCACCACCACAACTGCACCTTACTCCGTCGAG 73 
pLTP4 TAGCCATCTCATCATCTCCAGCTGAGCTCGGTTGCGCTACTATTCCAAACTCATTAGGG 59 
pLTP3 GCCGGCTTAGCTCACCACCACTACTATTGCTAGCTTGTGATCGAA 45 

l-^SIGNAL PEPTIDE 
pLTP2 ATG GCT CGC ACT GCA GCA ACC AAG CTC GCG CTG GTC GCC CTG GTG GCG GCA ATG CTC CTC GTA GCC GCC GAC GCG 148 

Met Ala Arg Thr Ala Ala Thr Lys Leu Ala Leu Val Ala Leu Val Ala Ala Met Leu Leu Val Ala Ala Asp Ala 
pLTP4 G T .GT C T C ..C 134 

Ala Ser Gln Val 
pLTP3 G T ..T C T A C ..T A 120 

Ala Gln Val Met 

(-»MATURE PROTEIN 

pLTP2 GCC ATC ACC TGC GGC CAG GTG AGC TCT GCC TTG GGC CCC TGC GCC GCC TAC GCA AAA GGC AGC GGC ACC AGC CCT 223 
Ala lie Thr Cys Gly Gln Val Ser Ser Ala Leu Gly Pro Cys Ala Ala Tyr Ala Lys Gly Ser Gly Thr Ser Pro 

pLTP4 T T A AT. T.. ..T ..C CGC ... .A. ... G.. .AA ..G 209 
Ser Ser H e Ser Arg Asn Ala Lys 

pLTP3 T T A.. ..T ... AT. T.. ..T ..C CGC ... .A. ... G.. .AA ..G 195 
Ser Ser lie Ser Arg Asn Ala Lys 

pLTP2 TCT GCG GGC TGC TGT AGC GGA GTC AAG AGA TTG GCC GGC TTA GCG CGG AGC ACC GCC GAC AAG CAÁ GCT ACG iGE 298 
Ser Ala Gly Cys Cys Ser Gly Val Lys Arg Leu Ala Gly Leu Ala Arg Ser Thr Ala Asp Lys Gln Ala Thr Cys 

pLTP4 C C C C C GCT ..C .A T A G G 284 
Pro Val Ala Gly Ala Ala 

pLTP3 C . .T. .C C C C GC. ..C .A T G G 270 
Pro Val Ala Gly Ala Ala 

pLTP2 liliilillllilliiliST GTC GCC GGC GCG TAC AAC GCC GGA AGG GCC GCA GGC ATC CCC TCC AGG TGC 364 
Srg'Cys Leu Lys Ser Val Ala Gly Ala Tyr Asn Ata Gly Arg Ala Ala Gly H e Pro Ser Arg Cys 

pLTP4 .A. ... A C -CT ..T ..T „&• CTA ... <.T ,.C «A C T. ... 350 
Lys l i e Ala Gly Leu Lys Met 

pLTP3 C C . . . T AC. AGC ATC AAG .GC AT. . . . ATG . .C .A. . T . T.C . . . G.G . . . GG. .A. . . . 345 
Leu Thr Ser H e Lys Gly H e Met Lys Val Ser Val Gly Lys 

pLTP2 GGG GTC AGC GTC CCC TAC ACG ATC AGC GCC AGT GTC GAC TGC TCC AAG ATC CAC TGA TCGAACGCCTGCTTCCATCATAG 444 
Gly Val Ser Val Pro Tyr Thr l i e Ser Ala Ser Val Asp Cys Ser Lys H e His r-*-PROBE 

pLTP4 . . C G.C T TCC T T .G. . . . TCAACCACTTGCTGCCTATAGCC 430 
Ala Ser Arg p * PROBÉ 

pLTP3 . . C G . . . . T . C.C ATG TCC AC AA. . . . G AG CAGGGATCAGATACTCCTTCCTA 425 
Phe Pro Met Ser Thr Asn Val 

(-*• PROBÉ 
pLTP2 CCGCTCATACCTCCAGCGATCGACGCTTGGAAGGTTGAGGTCACATACGCATATATACATATACATGAATAAATCCTCTGTTATGATCTCCATGGGAGA 543 
pLTP4 CCAGCAATCGACGCTGAGTACGTTGAGGTCACACATACATACATATATATGAATAAATGCTCTCATATTATCTTCATGTGGGATATATATAGAGAGAGA 529 
pLTP3 CGTGCATGCATGGACGCGCTTGTGTGGAGCTTAATATCTAflflfl^^ 524 

pLTP2 GAGAGGGGAGGACGTACGCTGAGCCAGCTCTACATGGCCGCTCACTeTtCíTATC6GtTTTGTATCAGTGTTTGATTGTTTGTTCACTCCCTTTGAGGAG 642 
pLTP4 CAGAGAGAGAGAGGACGGAGTATCTATCtTTCASCCAeTTCt&CATGGCCGGCCATACTGTTCTATCCATGTTTGGTTGTTCCTTCACTCCCTTTGAGGG 628 
pLTP3 GCCTATGTCTGTACCTTGCACACACACTGTGTGTGTGCGCATATATATTTACGCGGCATGCATGCACGCGTCCGTATGAGTGACTGAACAGTCATCTCC 623 

pLTP2 ACACATACGGGAGTTTGCTGTACGTTGTACCATGGGCACTTATGGTATATGGATTATAAATTAATCTAGCTCTATTTGGTTAAAAAAAAA 732 
pLTP4 GACCCAAGAGTTTATTGTATTTTGTACCATGTGCACTGTTGATATATGAATCATACACTCAGCTATGCCTGCGTGCG 705 
pLTP3 TTGCTGTACTTTAGCCGATGTGTATGTGTGATGTGTC 660 

Figure 1. Nucleotide sequences of cDNAs and deduced amino acid sequences of proteins LTP2, LTP3, and LTP4 (formerly Cw18, Cw20 and Cw21, 

respectively). 

Each nucleotide sequence has been numbered independently, excluding gaps introduced for alignment. Identities are indicated by dots and gaps by dashes. 

Regions of the previously known LTP2 and LTP4 amino acid sequences used to design the degenerate oligonucleotides used to screen the cDNA library are 

underlined. Regions corresponding to the primers used for PCR amplification are shaded. The 3-ends of the inserts (used as sequence-specific probes) were 
cut at the indicated sites with the Pvul (LTP2) and Sau3AI (LTP3 and LTP4) restriction nucleases. 



absence of cross-hybridization by the Southern blot 

technique (not shown). 

Genomic organization and mapping ofLTP genes 

Southern blot analysis of barley DNA digested with the 

EcoRI endonuclease, using a mixture of the complete 

cDNA inserts (LTP2, LTP3 and LTP4) as probé, yielded a 

pattern with four main bands (15, 9.4, 6.8 and 1.8 kb in 

Figure 2a). Sequence-specific probes for LTP2 and LTP3 

hybridized with the 15 and 6.8 kb bands, respectively, 

and gave practically no signáis with wheat DNA (Figure 

2a). The LTP2 band was associated with chromosome 

3H of barley, as it was detected only in the wheat-barley 

disomic addition line for that chromosome, and slmilarly, 

the LTP3 fragment was located in chromosome 7H 

(Figure 2a). The LTP4-specific probé hybridized with 
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Figure 2. Chromosomal locations of Ltp genes. 

(a) Southern blot analysis ot wheat-barley addition lines. DNAs (15 ug) 

were digested with the EcoRI nuclease. The sequence-specific probes 

(LTP2, LTP3 and LTP4; see Figure 1) and a mixture of equal amounts of 

the three complete cDNA inserts (MIX) were hybridized. Markers used to 

deduce fragment sizes were fragments of X phage digested with nucleases 

EcoRI and H/ndIII. 

(b) PCR amplification of the indicated DNAs. Size markers (M) used were 

fragments of plasmid pBR328 digested with nucleases Bgñ and H;'nfl. 

(a and b) Only the patterns of Betzes barley (H), Chínese Spring wheat (T), 

and of the pertinent addition line (3H or 7H) are shown in each case. 

three fragments, including the 15 kb fragment detected 

with the LTP2 probé (Figure 2a). The sizes of the 

fragments (15, 9.4 and 1.8 kb) hybridized by the short 

(300 b) LTP4 probé indicated that there was at least a 

second gene or pseudogene of this type in the barley 

genome. The same probé detected up to 17 fragments in 

wheat, which dld not overlap with those in barley, except 

for the 9.4 kb band (Figure 2a). The two non-overlapping 

bands (15 and 1.8 kb) were detected only in the DNA of 

the 3H addition line, whereas an enhancement of the 

overlapping band (9.4 kb), with respect to the preceding 

one, was also observed in the same addition line (Figure 

2a). To confirm the chromosomal localizations, DNAs 

from the wheat-barley addition lines were amplified by 

the polymerase chain reaction (PCR), using the 

sequence-specific primers indicated in Figure 1. Single 

bands associated with chromosomes 3H and 7H were 

obtained with the primers for LTP2 and LTP3, 

respectively (Figure 2b). The LTP2 band was of the same 

size as that obtained with the cDNA (not shown), while 

the LTP3 band was about 170 b longer than expected, 

which suggested the presence of an intron. The primers 

for LTP4 gave two closely migrating bands with barley 

DNA as témplate; one of them had the predicted size, 

while the other was slightly smaller and overlapped with 

the single band obtained with wheat DNA as témplate. 

The barley amplification pattern was reproduced when 

the DNA from the 3H addition line was used as témplate 

(Figure 2b). The amplification results Indicated again the 

presence of at least one more gene or pseudogene of the 

LTP4 type in barley and allowed confirmation that the 

LTP4 gene was located in chromosome 3H. 

Developmental expression of genes encoding barley 

LTPs 

Total RNA was extracted from different barley tissues 

and organs at the times indicated in Figure 3. The three 

sequence-specific probes were used to hybridize these 

RNAs by the Northern blot technique and positive signáis 

were obtained after overnight exposure for all samples 

shown in Figure 3, except for grain coats with the LTP2 

probé, which gave a weak signal even after a week-long 

exposure. This was also the case for RNAs from roots 

collected at different stages and hybridized with the three 

probes (not shown); whereas developing endosperm did 

not give any signal with these probes even after 7 day 

exposures (not shown). The main differences among the 

expression patterns of the three genes were the low 

steady-state levéis of the LTP2 mRNA in different parts of 

the spike and of the LTP4 mRNA in older leaves. 

Otherwise, steady-state mRNA levéis were similar in all 

cases, although somewhat higher in stems and, to a 

lesser extent, in young leaves. 
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Figure 3. Northern blot analysis of total RNAs (7.5 ng per lañe) collected at the Indicated ages (days) from different plant organs and tissues. 

Spikes were separated into rachis (R), lemma plus palea (LP), endosperm plus embryo (not shown) and grain coats (GC). Sequence-specific probes (1 x 107 

c.p.m.) were used in each case for the whole set of RNAs and the films exposed overnight. Longer exposures are not shown. 

Polyclonal antibodies were raised against a mixture of 

the previously purified proteins LTP2 and LTP4 and 

found to recognize all four purified LTPs from barley 

leaves (not shown). Concentrations of LTPs in different 

tissues were estimated from the Western blots in the 

range of 1-4 x 10~5 mol kg fresh weight"1. 

The distribution of LTPs in different parts of the barley 

plant was investigated by the tissue-printing technique 

(Figure 4a-g). These proteins were mainly accumulated 

in the outer cell layer of exposed surfaces of the plant, 

throughout the mature embryo, and in vascular tissues. A 

substantial fraction of the LTPs could be readily extracted 

just by dipping an intact leaf (without homogenization or 

infiltration by vacuum treatment) in extraction buffer, 

indicating an external location of these proteins in the cell 

walls of the epidermal layer (Figure 5). 

Effects of physicaí and chemícal treatments on steady-

state levéis of LTP mRNAs 

Treatment with abscísic acid increased steady-state 

levéis of all three LTP mRNAs in parallel with that of 

thionin DG3 (Figure 6a), whereas methyl jasmonate had 

the opposite effect on the LTP mRNAs under conditions 

that greatly increased the thionin mRNA (Figure 6b). 

Exposure to ethylene, ethephon, salicylate or 2,6-

dichloro-isonicotinic acid had no significant effects on 

LTP-mRNA levéis (not shown). 

As it has been reported that some Ltp genes respond 

to cold and to drought in barley (Dunn etal., 1991) and to 

salinity in tomato (Torres-Schumann et al., 1992), 

response of the Ltp genes, under study, to these 

environmental factors was investigated. Neither of the 

genes responded to cold treatment, under conditions that 

caused a 20-fold induction of the sucrose synthase Ss1 

gene, a gene which has previously been shown to 

respond to cold (Maraña et al., 1990), or to drought, 

under conditions that stimulated four-fold the thionin 

Th DG3 gene. A small, but significant increase (about 

twofold) in the steady-state levéis of the mRNAs of LTP2 

and LTP4 in response to salinity was observed, and no 

response was seen to wounding in either of the genes. 

Response of LTP genes to fungal infection 

Barley line P03 (cv. Pallas background with gene Mla-6) 

was inoculated with either isolate CC142 (Av6) or isolate 

CC143 (vir6) of powdery mildew (Erysiphe graminis) by 

L. Boyd, P.H. Smith and J.K.M. Brown, John Innes 

Centre, Norwich, UK, and total RNAs were isolated from 

ieaves at different time intervals over 72 h and subjected 

to Northern blot analysis, using the three sequence-

specific LTP-probes and that for thionin DG3 (Figure 7). 

All three LTP-mRNA levéis were significantly increased, 

especially that for LTP4, and reached a máximum at 

12-16 h after inoculation. No significant differences were 

observed between the effects of the avirulent and the 

virulent ¡solates. The mRNA increases observed for the 

Ltp genes were equal or greater than those of the thionin 

mRNA used for comparison and all of them took place 

before differences in growth between the virulent and the 

avirulent isolates could be detected under the 

microscope, as reported by Boyd (1993). 

Discussion 

The three cDNA sequences reported here clearly 

correspond to three of the four LTPs previously purified 

by us from crude cell wall preparations isolated from 

young etiolated barley leaves and selected because of 

their strong inhibitory capacity against plant pathogens 

in vitro (Molina and García-Olmedo, 1991; Molina et al., 

1993). The amino acid sequences of these LTPs were 

similar to other LTPs isolated from ragi seeds or maize 
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Figure 4. Tissue-printing detection of LTP 

proteins in different sections of the barley 

plant using an anti-LTP2/LTP4 polyclonal 

antibody (i); sections stained with amido 

black (s) and treated with pre-immune serum 

(p) were used as controls. 

(a) Transverse section of leaves plus stem in 

the upper part of a 90-day-old plant. Epider-

mal layer and vascular tissues are differ-

entially immuno-stained. Bar represents 

0.4 mm. 

(b) Longitudinal section of a 12-day-old plant, 

including the shoot apex. Bar represents 

0.5 mm. 

(c) Cross-section of leaf from a 12-day-old 

plant. The epidermal layer is preferentially 

immuno-stained. Bar represents 0.5 mm. 

(d) Cross-section of stem from the same 

plant and región as in (a). Epidermal layer 

and vascular tissue are immuno-stained. Bar 

represents 0.25 mm. 

(e) Cross-section of the rachis from the same 

plant. Bar represents 0.12 mm. 

(f) Transversal section of developing kernel, 

including lemma and palea. Grain coats, 

lemma and palea are differentially immuno-

stained. Bar represents 0.9 mm. 

(g) Longitudinal section of mature kernel 

hydrated for 12 h. The embryo and the grain 

coats are immuno-stained. Bar represents 

1.5 mm. 
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endosperm (61-62% identical positions; Campos and 

Richardson, 1984; Tchang et al., 1988) but quite 

divergent from that described by Mundy and Rogers 

(1986) in barley aleurone (48% identical positions) and 

from that deduced from the cloned cDNA of a barley cold-

induced gene (40% identical positions), designated blt4 

(Dunn et al., 1991). However, the blt4 cDNA would be 

almost identical (98%) to that encoding LTP2 if a number 

of insertions are introduced (bases numbers 149, 150, 

222, 316, 438-449 and 548 in Figure 1). As the BLT4 

protein has not been isolated and characterized, it is not 

possible to discern whether the divergence is real or is 

the result of sequencing errors. 

The Southern hybridization patterns, as well as the 

PCR results, were consistent with the presence of four 

closely related Ltp genes in the barley haploid genome, 

three of which would be located in chromosome 3H, 

probably within a few kilobases of each other, as 

suggested by a common hybridization band for two of the 

probes, and another in chromosome 7H. It is interesting 

to note that the gene for the aleurone LTP is in 

chromosome 5H (Cannell et al., 1992) and that for BLT4 

has been reported in chromosome 3H (Dunn et al., 

1991). The four members of this LTP subfamily (Cw18, 

20, 21 and 22; now called LTP2, 3, 4 and 5) that we had 

previously purified (Molina et al., 1993) would account for 

the mínimum of four genes detected by Southern 

hybridization and PCR amplification in the present work, 

but the additional existence of the BLT4 protein and its 

gene (as sepárate entities with respect to those 

described above) cannot be totally excluded. 

Both Northern and Western blot analyses indícate that 
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Figure 5. Extraction of LTPsfrom intact leaves. 

Western blot analysis of proteins washed from the leaf surface with extrac-

tion buffer (W), extracted from the washed leaf by homogenization with the 

same buffer (R), extracted similarly from the same weight of unwashed leaf 

(T), and washed from the intact leaf surface {same weight) with elec-

trophoresis sample buffer, containing 6 M urea (C). Proteins were precipí-

tated from wash and extract solutions with saturated ammonium sulfate 

and then dissolved in electrophoresis sample buffer, except in (C). 
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Figure 7, Responses of Ltp and Th genes to infection by virulent (•) and 

avirulent (O) isolates of the fungus E. graminis. 
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Figure 6. Responses of Ltp and Th genes to abscisic acid (a) and to 

methy! jasmonate (b), 

Three independent filters were processed and analyzed by densitometry, 

Densitometric reading at time 0 was taken as the arbitrary unit in each 

case. Valúes represented are the mean of ¡he three experiments and the 

bars indícate the standard error of the mean. 

the Ltp genes studied here are expressed at significant 

levéis in all tissues investigated, except in roots, where 

they are expressed at very low levéis, and in endosperm, 

where expression is not detected. As judged from 

immunological staining of tissue prints, in all parts of the 

plant where they are present, the proteins are 

preferentially located in epidermal cells and in vascular 

tissues. Their preferential localization in cell walls of 

peripheral cell layers was corroborated by the fact that a 

substantial proportion of the proteins could be extracted 

just by a short dip of the intact organ in extraction buffer. 

The uneven distribution of LTPs within the different 

tissues implies that the actual concentrations of these 

proteins in those cells where they are deposited are 

indeed very high, well above the average concentrations 

deduced from the Western blots. The location of LTPs at 

the exposed surfaces of the plant is well in line with the 

defense role proposed for them based on their inhibitory 

properties (Molina er al., 1993). This role would not be 

incompatible with oíher developmental role(s). 

The negative effect of methyl jasmonate on the 

expression of Ltp genes was simultaneous with the 

positive one previousty described for leaf thionins 

(Andresen et al., 1992), which has been corroborated in 

this work, and indicated that the two sets of defense 

genes can be independently regulated. Jasmonate 

seems to act as a signaling molecule in stress responses, 



¡ncluding wounding and pathogen attack (Farmer and 

Ryan, 1990; Staswick, 1992). The lack of induction of Ltp 

genes by wounding and by elicitors of systemic acquired 

resistance, such as salycilate or 2,6-dichloroisonicotinic 

acid, further indícate an independent regulation of these 

genes with respect to other stress responses. 

Independent regulation does not imply that the two sets 

of genes cannot be simultaneously elicited, as observed 

when the plants were treated with ABA. 

The response of Ltp genes to infection by the fungal 

pathogen Erysiphe graminis is also in agreement with the 

proposed defense role of the LTPs. This response was in 

contrast with the relative insensitivity of these genes to 

physical stresses. The lack of significant differences 

between the responses to the virulent and the avirulent 

isolates might mean that the elicitation is gratuitous in this 

particular plant/pathogen combination, or that a 

compatible ¡nteraction depends on resistance of the 

virulent isolate to the defense proteins. As in the case of 

the ABA treatment, simultaneous expression of both Ltp 

and thionin genes was observed. 

Experimental procedures 

Biológica! materials 

Cultivated barley, Hordeum vulgarecv. Borní, was used through-

out this study, except for the inoculation with the virulent (CC143; 

virS) and avirulent (CC142; Av6) Isolates of Erysiphe graminis, 

which was carrled out on barley cv. Pallas (line P03 with gene 

Mla6) by Drs L. Boyd, P.H. Smith and K.M. Brown at the John 

Innes Centre (Norwich, UK). Disomic addition lines of barley cv. 

Betzes on a Chínese Spring wheat background were the gift of 

Drs A.K.M.R. Islam and K.W. Shepherd (Glen Osmond, Aus-

tralia). Probes for the sucrose synthase gene Ss1 and the DG3 

thionin gene from barley were supplied by Dr P. Sánchez de la 

Hoz and by A. Segura (Madrid, Spain). 

Cloning of cDNA 

A cDNA library was constructed in vector pT7T3-18U (Pharma-

cia, Uppsala, Sweden) from poly(A)+ mRNA (Sambrook et al., 

1989) obtained from 7-day-old etiolated barley plants, using the 

Time Saver cDNA Synthesis Kit according to the manufacturer's 

instructions (Pharmacia, Uppsala, Sweden). The library was 

screened at 55°C, on Hybond N (Amersham, UK), with two 

degenerate oligonucleotides corresponding to regions (under-

lined in Figure 1) of the known amino acid sequences of proteins 

LTP2 and LTP4 (formerly Cw18 and Cw21; Molina eí al., 1993). 

Plasmid DNA from the selected clones was purified on Magic 

MiniPreps columns (Promega, Madison, Wl) and sequenced 

according to Hattoni and Sakaki (1986). 

DNA and FINA hybridizations 

DNAs were isolated essentially as described (Taylor and Powell, 

1982), digested with EcoRI endonuclase, subjected to 

electrophoresis in 0.8% agarose, and transferred to Hybond N 

membranes (Amersham, UK) following standard procedures. 

Hybridizations were carried out at 65°C in 0.5 M NaP04, 1% 

SDS, 1 mM EDTA, 100 |ig mi-1 salmón sperm DNA, and washed 

according to Sambrook et al. (1989). Polymerase chain reactions 

were carried out (94°C, 1 min; 56°C, 1 min; 72°C 1 min) with 

genomic DNA (100 ng per reaction) following standard proce-

dures (Sambrook et al., 1989), and the reaction producís were 

subjected to electrophoresis in 1.8% agarose gel. 

RNAs were purified from frozen tissues by phenol/chloroform 

extraction, followed by precipitation with 3 M lithium chloride 

(Lagrimini et al., 1987). Electrophoresis was carried out on 5% 

formaldehyde/agarose gels, which were blotted to Hybond N 

membranes (Amersham, UK). Hybridization and washing were 

carried out at 65°C according to Church and Gilbert (1984). Ethid-

ium bromide (40 ng mi-1) was included in the sample loading 

buffer to allow photography. Equal sample loads were checked by 

densitometry (Joyce and Loebl microdensitometer, Gateshead, 

UK) of the negatives of the U.V. photographs. Quantitation of 

radioactive signáis ¡n Northern blot experiments was carried out 

by densitometry of three independent filters. 

Hybridization probes were prepared either from the full inserts, 

or from their divergent 3-ends (indicated in Figure 1), using the 

Random Primer Labeling Kit (Boehringer Mannheim, Germany) 

and [32P]-ATP. 

Western blots and tissue printing 

Polyclonal antibodies against a mixture of proteins LTP2 and 

LTP4 were produced in rabbits (BAbCO, Richmond, CA). Pro-

teins were extracted from different plant tissues and organs (5 mg 

fresh weight) with 2 volumes of electrophoresis sample buffer 

(Laemmli, 1970), subjected to electrophoresis on 12% SDS-

polyacrylamide gels (Laemmli, 1970), and transferred to PVDF 

membranes (Immobilon, Millipore, Bedford, MA) according to 

Towbin et al. (1979). Intact leaves (15 mg) were washed with 3 

volumes of extraction buffer (1.5 M LiCI, 0.01% SDS) for 15 min. 

The washing liquid was saturated with ammonium sulfate and the 

pellet resuspended in electrophoresis sample buffer. The washed 

leaf and an intact leaf (15 mg) were homogenized in extraction 

buffer and the extracts were processed as above. 

Tissue-printing was carried out as described Hood ef al. 

(1991), using pre-immune serum and amido black staining on 

control prints. Both for Western blots and for tissue prints, the first 

antibody was used at a 1/500 dilution and the anti-rabbit antibody 

coupled to alkaline phosphatase (Sigma, St Louis, MO) was used 

at a 1/5000 dilution. Visualization was with Nitroblue tetrazolium 

(Sigma, St Louis, MO) and 5-bromo-4-chloro-3-indolylphosphate 

p-toluidine salt (Sigma, St Louis, MO). 

Externa! treatments 

Low-temperature treatment was carried out essentially as 

described (Dunn ef al., 1991): 15-day-old plants grown on 

vermiculite (22°C day/18°C night; 16 h light) were exposed to 

4°C. Shoot apex and leaves were collected 2 and 7 days after. 

Water deprivation was achieved by leaving 7-day-old plants, 

grown as before, on the bench until the appearance of clear 

symptoms of wilting (12 h). Salinity treatment was carried out by 

irrigating 3-day-old plants with 0.34 M NaCI as described by 

Ramagopal (1987) and collecting leaves 18 h later. Abscisic acid 

{cis-trans isomer; Sigma, St Louis, MO) was sprayed (0.1 mM) 
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on 7-day-old plants at 6 h intervals during 24 h and leaf samples 

were collected at 1 day and 3 days. Leaves from 7-day-old plants 

were floated on a 10 |xM solution of methyl jasmonate (Bedoukian 

Reseach Inc., Danbury, CN) as described by Andresen et al. 

(1992) and collected at 1 day and 2 days. The experiment with 

sodium salicylate (1 mM; Sigma, St Louis, MO) was performed as 

that with abscisic acid. Ethephon treatment (20 mM in 0.05% v/v 

Tween 20) was also carried out by spraying 7-day-oid plants 

and collecting leaves at 8 h, 1 day, 2 days, 3 days and 4 days. 

Ethylene (100 p.p.m) was applied on 7-day-old plants in a con-

fined atmosphere during 17 h and 46 h. A solution of 2,6-dichloro-

isonicotinic acid (4 p.p.m.; Ciba-Geigy, Basel) was formulated 

with a wettable powder carrier and applied as a soil drench to 

7-day-old plants; the wettable powder alone was used for the 

mock treatment. Leaves were collected at 2 days and 5 days after 

treatment. 

Infection with Erysiphe graminis 

Barley was planted two seeds per pot and grown according to the 

method of Martinelli et al. (1993). Plant material was inoculated in 

steel settling towers. Mildew spores were blown into the tower 

and allowed 2-5 min to settle on to the plants placed at the bottom 

of the tower. Spore inoculation densities were about 50 spores 

mm2. Leaf samples were taken up to 72 h after inoculation and 

immediately frozen in liquid nitrogen. 

Acknowledgments 

The collaboration of J. Di Maio and R. Novitzky (CIBA-GEIGY, 

Research Triangle Park, NC) in the sequencing of cDNA, of 

L Boyd, P.H. Smith and J.K.M. Brown (John Innes Centre, 

Norwich, UK) in the mildew experiment, of I. Diaz in the micro-

scopio analysis and the technical assistance from L. Lamoneda 

and J. García are gratefully acknowledged. This work was 

financed by the Comisión Interministerial de Ciencia y Tecnología 

(Spain), grant BIO90/0084. 

References 

Andresen, I., Becker, W., Schlüter, K., Burges, J., Parthier, B. 
and Apel, K. (1992) The identification of leaf thionin as one of 

the main jasmonate-induced proteins of barley (Hordeum 

vulgare). Plant Mol. Biol. 19, 193-204. 

Arondel, V. and Kader, J.C. (1990) Lipid transfer in plants. 

Experientia, 46, 579-585. 

Bernhard, W.R. and Somerville, C.R. (1989) Coidentity of puta-

tive amylase inhibitors from barley and finger millet with phos-

pholipid transfer proteins inferred from amino acid sequence 

homology. Arch. Biochem. Biophys. 269, 695-697. 

Bouillon, P., Drischel, C , Vergnolle, C , Duranton, H. and 
Kader, J.C. (1987) The primary structure of spinach-leaf phos-

pholipid-transferprotein. Eur. J. Biochem. 166, 387-391. 

Boyd, L. (1993) Gene expression in barley in response to mildew 

infection. In Engineering Plants Against Pests and Pathogens, 

Proc. Juan March Workshop, Madrid, Spain (Ponz, F., García-

Olmedo, F. and Browning, G., eds). Madrid: J. March Founda-

tion, p. 83. 

Breu, V., Guerbette, F., Kader, J.C, Kannangara, C , Svens-
son, B. and Wettstein-Knowles, B. (1989) A 10 kD barley 

basic protein transfer phosphatidylcholine from liposomes to 

mitochondhas. Carlsberg fíes. Commun. 54, 81-84. 

Campos, F.A.P. and Richardson, M. (1984) The complete 

amino acid sequence of oc-amylase inhibitor I-2 from seeds of 

ragi (Indian finger millet, Eleusine coracana Gaertn.). FEBS 

Lett. 167, 221-225. 

Canneli, M., Karp, A., Isaac, P.G. and Shewry, P. (1992) 

Chromosomal assignment of genes in barley using telosomic 

wheat-barley addition lines. Genome, 35, 17-23. 

Church, G.M. and Gilbert, W. (1984) Genomic sequencing. 

Proc. NatlAcad. Sci. USA, 81,1991-1995. 

Dunn, M.A., Hughes, M.A., Zhang, L., Pearce, R.S., Quigley, 
A.S. and Jack, P.L. (1991) Nucleotide sequence and molecu-

lar analysis of the low temperature induced cereal gene, BLT4. 

Mol. Gen. Genet. 229, 389-394. 

Farmer, E.E. and Ryan, C.A. (1990) Interplant communication: 

Airborne methyl jasmonate induces synthesis of proteinase 

inhibitors in plant leaves. Proc. Nati Acad. Sci. USA, 87, 

7713-7716. 

Fleming, A.J., Mandel, T., Hofmann, S., Sterk, P., de Vries, 
S.C. and Kuhlemeier, C. (1992) Expression pattern of a 

tobáceo lipid transfer protein gene within the shoot apex. Plant 

J. 26, 855-862. 

Hattoni, M. and Sakaki, Y. (1986) Dideoxy sequencing method 

using denatured plasmid templates. Anal. Biochem. 152, 
232-238. 

Hood, K.R., Baasiri, R.A., Fritz, S.E. and Hood, E.E. (1991) 

Biochemical and tissue print analyses of hydroxyproline-rich 

glycoproteins in cell walls of sporophytic maize tissues. Plant 

Physiol. 96, 1214-1219. 

Laemmli, U.K. (1970) Cleavage of structural proteins during the 

assembly of the head bacteriophage T4. Nature, 227, 
680-685. 

Lagrimini, L.M., Burkhart, W., Moyer, M. and Rothstein, S. 
(1987) Molecular cloning of complementan/ DNA encoding the 

lignin-forming peroxidase from tobáceo: molecular analysis 

and tissue-specific expression. Proc. Nati Acad. Sci. USA, 84, 

7542-7546. 

Linnestad, C , Lónneborg, A., Kalla, R. and Olsen, O.-A. 
(1991) Promoter of a lipid transfer protein gene expressed 

in barley aleurone cells contains similar myb and myc recog-

nition sites as the maize Bz-McC alíele. Plant Physiol. 97, 

841-843. 

Maraña, C , Garcia-Olmedo, F. and Carbonero, P. (1990) 

Differential expression of two types of sucrose synthase-

encoding genes in wheat in response to anaerobiosis, cold 

shock and light. Gene, 88,167-172. 

Martinelli, J.A., Brown, J.K.M. and Wolfe, M.S. (1993) Effects 

of barley genotype on induced resistance to powdery mildew. 

Plant Pathol. 42, 195-202. 

Molina, A. and García-Olmedo, F. (1991) Patent application 

P9101258 (24.05.91) PCT/EP92/01130. 

Molina, A., Segura, A. and García-Olmedo, F. (1993) Lipid 

transfer proteins (nsLTPs) from barley and maize leaves are 

potent inhibitors of bacterial and fungal plant pathogens. FEBS 

Lett. 316, 119-122. 

Mundy, J. and Rogers, J.C. (1986) Selective expression of a 

probable amylase/protease inhibitor in barley aleurone cells: 

comparison to the barley amylase/subtilisin inhibitor. Planta, 

169,51-63. 

Ramagopal, S. (1987) Differential mRNA transcription during 

salinity stress in barley. Proc. NatlAcad. Sci. USA, 84, 94-98. 

Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular 

Cloning: A Laboratory Manual, 2nd Edn. Cold Spríng Harbor, 

NY: Cold Spring Harbor Laboratory Press. 

Simorre, J.P., Caille, A., Marión, D.. Marión, D. and Ptak, M. 



Barley genes encoding lipid transfer proteins 991 

(1991) Two- and three-dimensional HNMR studies of a wheat 

phospholipid transfer protein: sequential resonance assign-

ments and secondary structure. Biochemistry, 30, 11 600-

11 608. 

Sossountzov, L., Ruiz-Avila, L., Vignols, F. et al. (1991) 

Spatial and temporal expression of a maize lipid transfer pro-

tein gene. Plant Cell, 3, 923-933. 

Staswick, P.E. (1992) Jasmonate, genes, and fragrant signáis. 

Plant Physiol. 99, 804-807. 

Sterk, P., Booij, H., Schellekens, G.A., Van Kammen, A. and 
de Vries, S.C. (1991) Cell-specific expression of the carrot EP2 

lipid transfer protein gene. Plant Cell, 3, 907-921. 

Takishima, K., Watanabe, S., Yamada, M., Suga, T. and 
Mamiya, G. (1988) Amino acid sequences of two nonspecific 

lipid-transfer proteins from germinated castor bean. Eur. J. 

Biochem. 177, 241-249. 

Taylor, B. and PoweII, A. (1982) Isolation of plant DNA and 

RNA. Focus, 4 (3), 4-5. 

Tchang, F., This, P., Stiefel, V. ef al. (1988) Phospholipid 

transfer protein: full-length cDNA and amino acid sequence ¡n 

maize. J. Biol. Chem. 263,16 849-16 855. 

Thoma, S., Kaneko, Y. and Somerville, C. (1993) A non-specific 

lipid transfer protein from Arabidopsis is a cell wall protein. 

Plant J. 3, 427-436. 

Torres-Schumann, S., Godoy, J.A. and Pintor-Toro, J.A. 
(1992) A probable lipid transfer protein gene is induced by NaCI 

in stems of tomato plants. Plant Mol. Biol. 18,749-757. 

Towbin, H., Staehelin, T. and Gordon, J. (1979) Electrophoretic 

transfer of proteins from polyacrylamide gels to nitrocellulose 

sheets: procedure and some practical applications. Proc. Nati 

Acad. Sci. USA, 76, 4350^354. 

Watanabe, S. and Yamada, M. (1986) Purification and 

characterization of a non-specific lipid transfer protein from ger-

minated castor bean endosperms which transfers phospho-

lipids and galactolipids. Biochim. Biophys. Acta, 876,116-123. 

EMBL Data Library accession numbers X68654 (Ltp4), X68655 (Ltp2) and X68656 (Ltp3). 


