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Abstract

Reentry is the main mechanism of life-threatening ventricular arrhythmias, including 
ventricular fibrillation and tachycardia. Its occurrence depends on the simultaneous presence 
of an arrhythmogenic substrate (a pre-existing condition), and a ‘trigger’, and is favored by 
electrophysiological heterogeneities. In the adult heart, electrophysiological heterogeneities of 
the ventricle exist along the apico-basal, left-right and transmural axes. Also, conduction is 
preferentially slowed in the right ventricular outflow tract, especially during pharmacologic 
sodium channel blockade. We propose that the origin of electrophysiological heterogeneities 
of the adult heart lies in early heart development. The heart is formed from several progenitor 
regions: the first heart field predominantly forms the left ventricle, while the second heart 
field forms the right ventricle and outflow tract. Furthermore, the embryonic outflow tract 
consists of slowly conducting tissue until it is incorporated into the ventricles and develops 
rapidly conducting properties. The sub-epicardial myocytes and sub-endocardial myocytes 
run distinctive gene programs from their formation onwards. This review discusses the 
hypothesis that electrophysiological heterogeneities in the adult heart result from persisting 
patterns in gene expression and function along the cranial-caudal and epicardial-endocardial 
axes of the developing heart. Understanding the developmental origins of electrophysiological 
heterogeneity contributing to ventricular arrhythmias may give rise to new therapies.
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Introduction

Sudden cardiac death is generally preceded by reentry-based ventricular tachycardia or 
fibrillation.1,2 These arrhythmias occur by the simultaneous presence of an initiating event 
(the trigger) and a pre-existing arrhythmogenic substrate.3 While a short refractory period in 
combination with slow conduction may provide the substrate for the maintenance of reentry, 
unidirectional block is required for the initiation of reentry.4 Unidirectional block can be caused 
by pre-existing heterogeneity in excitability, conduction or refractoriness.5 In the healthy heart, 
electrophysiological heterogeneities allow efficient contraction and relaxation. However, 
under pathological conditions, electrophysiological heterogeneities may underlie dysfunction 
and life-threatening cardiac arrhythmias.5 For example, during acute myocardial ischemia, 
heterogeneities in extracellular potassium concentration cause heterogeneities in excitability 
and refractoriness and arrhythmias.6-8 Also, in hearts with a chronic myocardial infarction, 
altered tissue architecture and distribution of connexins provide the basis for heterogeneous 
activation patterns and dispersion in conduction slowing.9-12 Ventricular arrhythmias 
induced by heart failure are thought to be facilitated by heterogeneity in repolarization.13,14 
In addition, Brugada syndrome, a hereditary disorder characterized by familial sudden 
death, absence of (clinically observed) structural abnormalities and characteristic right 
precordial ST-segment abnormalities, is thought to be caused by transmural or sub-
epicardial heterogeneity in action potential duration15 or heterogeneous conduction delay.16-18 
 In the heart, electrophysiological heterogeneities exist between apex and base, between 
the right ventricular outflow tract (RVOT) and the right ventricular wall, between the left and 
right ventricular wall, and between the sub-endocardial and the sub-epicardial myocardium.19 
These electrophysiological heterogeneities result, at least in part, from regional differences in 
expression of genes encoding connexins and ion channels that are responsible for the shape and 
duration of the cardiac action potential (Table 1).20 Various mechanisms underlying heterogeneity 
in gene expression in the adult are conceivable. Signaling events in the adult may locally 
affect gene expression and phenotype, as has been indicated for endothelin-signaling or after 
myocardial infarction.9,21-23 This review focuses on the possibility that aspects of the extensive 
phenotypic heterogeneity generated during heart development may persist in the adult heart. 
 The expression of channel and gap-junction genes is regulated by transcription factors that 
during embryonic development coordinate the transformation of the cardiac precursor cells of a 
tubular heart into the adult myocardium.24-29 Indeed, a causal relation between these locally acting 
transcription factors and localized expression of genes important for cardiac electrophysiology 
has been established.30-35 The mature left ventricle is mainly composed of cells derived from 
precursor cells of the first heart field, whereas the right ventricular wall and the outflow tract (OFT) 
are derived from the second heart field.36 Therefore, electrophysiological differences between 
the left and right ventricle may be related to the difference in origin of these regions. The OFT is 
formed in a later stage during development than the right ventricle and maintains its initial slowly 
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conducting and poorly contracting properties for a longer period during development.27 Because 
the embryonic OFT gives rise to the adult RVOT,37 it has an origin and developmental history 
different from the ventricles. This may well explain part of its sensitivity in the initiation of 
reentrant arrhythmias during sodium channel blockade or in patients with structural abnormalities. 
 In this review we describe the localized expression of genes in the 
developing and adult ventricles and OFT in relation to the electrophysiological 
heterogeneity in the adult heart leading to ventricular arrhythmias.

Table 1. Distribution of ion channels

Current Protein Gene Distribution Species

1Na a: SCN5A Epi           ◄ Endoα: Nav1.5 Rat, Mice, Human

1TO α: KCND2

α: KCND3

ß: KCNIP2

α: Kv4.2

α: Kv3.2*

ß: KChip2

Human, Dog, Rat

Guinea-pig, Mice

Human, Dog

Human, Dog

Dog

Epi           ► Endo

LV            ◄ RV

Epi           ► Endo

RV            ◄ RV

Base         ◄ Base Human, Dog

1Ks α: KCNQ1

ß: KCNE1

α: KvLQT1

ß: MinK

Human, Dog

Dog

Human, Dog

Human, Dog

Dog

Epi           ◄ Mid

LV            ◄ RV

Epi            ► Mid

LV            ◄ RV

Base         ◄ Apex Human, Dog

Base         ◄ Apex

1Kr α: KCNH2

ß: KCNE2

α: HERG

ß: MiRP-1

Human

Dog
Human, Dog

Epi            ► Mid

Epi             =  Mid

Epi             =  Mid

- Gja1Cx43 Dog

Rat

Rabbit

Epi           ◄ Endo

Epi            = Endo

RV           ◄ RVOT

Distribution connexins

* Kv4.3 is not important for I      in mice

- Gja5Cx40 MouseEpi           ◄ Endo

87
90

91

88

86

86

86

86

61

20

86

61

20

48,84,153

32,42,44,45,49,69

42,59

49,61

61

20

TO
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Regional heterogeneity in repolarization 
Repolarization time is determined by local activation times and local action potential duration, 
which in turn is defined by a critical balance of inward and outward ion currents. When electrical 
coupling is absent, as in isolated myocytes, the intrinsic action potential duration is only 
determined by the expression of ion channels. Differences in action potential duration have been 
observed between myocytes isolated from the apex or the base, the left or the right ventricle, 
the sub-endocardial or the sub-epicardial myocardium.38-45 These differences find their origin 
in intercellular differences in the level of expression of the genes encoding α- and β-subunits 
of ion channels carrying repolarizing currents: IKr, IKs, ITO, IK1 and ICaL (Figure 1 and Table 1).46 

Transmural heterogeneity in action potential duration
In the myocardium of the ventricular wall, three electrophysiologically different cell types 
are present along the transmural axis: sub-endocardial, mid-myocardial and sub-epicardial 
myocytes.38,47 Experiments on isolated cells demonstrated heterogeneity in action potential duration 
along this axis. Compared to sub-epicardial and sub-endocardial myocytes, mid-myocardial 
myocytes (M-cells) from dog and human hearts show more action potential prolongation during 
bradycardia, ischemia, and after application of various drugs.41,43 Also, in man,41,42 dog,43 rat44,45 
and guinea pig,39 action potential durations of sub-endocardial myocytes are longer than sub-
epicardial myocytes. These differences likely result from higher expression of Kv4.2 and Kv4.3 in 

Figure 1. The cardiac action potential and its underlying ion currents. The top panel shows a schematic 
representation of a ventricular action potential. The numbers indicate the different phases of the action potential. 
The bottom panel illustrates the time course of underlying ion currents discussed in this review. INa, fast sodium 
current; ITO, transient outward current; IKs, slowly delayed rectifying current; IKr, rapid delayed rectifying current; 
IK1, inward rectifying current and ICaL, L-type calcium current.
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the sub-epicardium32,40,42,44,45,48,49 which causes larger ITO and consequently, shorter action potential 
duration. Furthermore, in human, Cav1.2 is expressed higher in the sub-epicardium than in the 
sub-endocardium. In mice, however, a transmural gradient of ICa,L is not present.44 In rodents, IKs 
and IKr are less important for action potential duration. However, in guinea pig, IKs and IKr are 
smaller in sub-endocardial myocytes than in mid- and sub-epicardial myocytes.39 Furthermore, 
IK1 is smaller in cat sub-epicardium50 but not in sub-epicardium of guinea pig51 and dog.52 
The transmural gradient in action potential duration found in isolated myocytes is present in 
isolated perfused ventricular wedge preparations of the dog heart as well, especially at long cycle 
lengths. In this setting, the sub-endocardial cardiac action potential is longer than the sub-epicardial 
action potential.43 In contrast, transmural repolarization times in the intact dog heart are not 
different.53,54 The presence of an identifiable M-cell layer in intact myocardium is being disputed.53

 
Action potential duration in the apex and base
The action potential duration of isolated dog myocytes from the apex is shorter than 
that of myocytes from the base.20 This is caused by larger ITO and IKs in myocytes isolated 
from the apex than isolated from the base. In line with this, in dog the expression of α 
and β subunits of these channels are higher in apical myocytes than in basal myocytes.20 
In contrast, in rabbit,40 ferret,55 and rat,19 action potential duration is longer in myocytes 
isolated from the apex than in myocytes isolated from the base. In rabbit, this can be 
explained by larger Ikr in myocytes isolated from the apex than in myocytes from the base.40 
 In the intact pig heart, monophasic action potentials recorded from the apex and 
base are not different, although apical action potential duration becomes shorter than 
those from the base when afterload increases.56 Under physiological conditions, little 
is known about the apico-basal heterogeneity in action potential duration in the intact 
heart, although in dog, repolarization time is longer at the base than at the apex.53,57,58 
Difference in action potential duration between the left and right ventricle
A transmural gradient in action potential duration is present in both the left and right 
ventricle.41,42 For all cell-types across the myocardial wall, the left ventricular action 
potential is longer than the right ventricular action potential.33,39,41-45 This corresponds 
with a larger ITO in myocytes isolated from the right ventricle when compared to the left 
ventricle.43,59 In addition, IKs is larger in the mid-myocardium of the right ventricle than 
mid-myocardium of the left ventricle in dog hearts.60 This is in line with higher levels 
of KCNE1 protein in the right ventricle than in the left ventricle.61 Data on the action 
potential duration in the RVOT in relation to that in other parts of the heart are lacking. [31]
The electrophysiological properties of the ventricular septum can be divided into a 
right ventricular part and a left ventricular part.62 The action potential recorded from 
sub-endocardial myocytes from the right side of the septum is shorter than from the 
left side of the septum. This correlates with higher expression of KChiP2, KCNQ1 in 
the right ventricular part of the septum when compared to the left ventricular part.62 
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The effect of intercellular electrical coupling on repolarization heterogeneity
In the intact heart, differences in action potential duration are smaller than observed in isolated 
myocytes,63 mainly because adjacent myocytes are electrically coupled by gap junctions. 
48,53,54,57,58,64 As electrical coupling reduces action potential differences throughout the heart, 
uncoupling exacerbates these differences. For instance, when electrical coupling is experimentally 
reduced in healthy intact hearts, electrotonic interaction decreases, and differences in intrinsic 
action potential durations emerge.65 This causes heterogeneity in repolarization, which is a 
substrate for reentry.66 In a rabbit model of heart failure, heterogeneous down-regulation of 
connexins causes uncoupling of the myocytes, which leads to heterogeneity in refractoriness and 
conduction throughout the heart.67 The latter may explain the increased incidence of arrhythmias 
during acute myocardial ischemia in this model. Also, in patients with moderate heart failure, 
arrhythmias are an important cause of death.5 Although hypertrophy in heart failure per se is pro-
arrhythmic,13,68 the interstitial fibrosis seen in patients with heart failure functionally separates 
myocytes and adds to the down-regulation of connexin 43 (Cx43), the main gap-junction 
subunit in the ventricular working myocardium.11,12,69,70 Thus, changes in intercellular coupling 
and the intercellular matrix may modulate the preexisting heterogeneities in repolarization.
 
Heterogeneity in conduction
Normal cardiac conduction is anisotropic and conduction velocity in the direction of the 
fibers, called longitudinal conduction, is about 2 times faster than transversal conduction 
velocity.71,72 Conduction velocity of the activation front is approximately 0.5 m/s in the left 
ventricular myocardium. In mice, conduction velocity is slightly lower in the right ventricular 
wall,73 and there are indications that in the response to Na+ channel blockade, the right 
ventricular wall responds with more conduction slowing than the left ventricular wall.17,69,74 

Data on conduction velocities in the apex in comparison to those in the base are lacking. 
 Myocardial conduction velocity depends on the availability of Na+ channels and 
intercellular electrical coupling by gap junctions.75 The type of connexin present in the gap 
junctions determines the conductance (reciprocal of resistance) of the channel.76-78 Also, 
modification of the channel by (de)phosphorylation can alter the conductance.79 In Cx40-
deficient mice, atrial conduction velocity decreases with 35%80 and a 95% reduction of Cx43 
reduces conduction velocity with 18% in the ventricle.81 The alpha-subunit Nav1.5 of the voltage 
dependent cardiac sodium channel, responsible for the generation of the inward Na+ current, 
is encoded by SCN5A. In mice with 50% reduction in SCN5A expression, conduction velocity 
in the right ventricle decreases with 19%.82 Furthermore, pharmacological blockade of gap 
junctions or Na+ channels leads to slowing of conduction as well.83 Therefore, heterogeneity 
in expression of Na+ channels and/or connexins may lead to regional differences in conduction 
velocity, which makes some parts of the heart more vulnerable to become the origin of reentrant 
arrhythmias.4 Taken together, heterogeneity in expression level of voltage gated ion channels 
and connexins, and also tissue architecture, may contribute to regional differences in conduction 



82

Chapter 4

4

velocity. The right ventricular wall may therefore be more prone to conduction slowing.

Expression pattern of Nav1.5 / SCN5A
In rat, Nav1.5 is more abundant in sub-endocardial than in sub-epicardial myocardium of the 
ventricular wall,84 and in prenatal85 and adult mice, both SCN5A transcripts and Nav1.5 protein 
are higher in the sub-endocardium than in the sub-epicardium (unpublished observations). In 
human and dog, Nav1.5 is more abundant in the mid-myocardium than in the sub-epicardium.86 
Consequently, the upstroke velocity is lower in isolated sub-epicardial myocytes.84,86 In 
contrast, in an isolated wedge preparation of the left ventricle from dog, the upstroke velocity 
is higher in the sub-epicardial than in the sub-endocardial part of the wall.87 However, the 
sub-epicardium of the wedge preparations are probably less-well coupled, due to the 
endocardium-high transmural gradient of Cx43, which in turn may explain this phenomenon.87

 
Expression pattern of connexins
Connexins are heterogeneously expressed throughout the heart.88,89 The main connexin present 
in ventricular myocardium is Cx43,85,89 which is however absent from the bundle branches, 
atrioventricular bundle and atrioventricular node.88 In mouse and dog, Cx43 is less abundant in 
myocytes of the sub-epicardium than in myocytes of the mid- and sub-endocardial layers.87 This 
transmural gradient in Cx43 expression is species dependent, because the gradient is absent in 
rat.90 In rabbit myocardium, Cx43 is less abundant in the RVOT than in the left ventricular free 
wall.91 The expression of Cx40 is restricted to the sub-endocardial Purkinje fibers, the bundle 
branches and the atrioventricular bundle.88 Expression of Cx30.2 is restricted to the nodes of the 
conduction system.92 Furthermore, the expression of Cx45 is low in the ventricular myocardium 
and no transmural gradient is observed.93,94 Differences in connexin expression between 
the adult left and the right ventricle have not been reported, although the Cx40-expressing 
ventricular conduction system is more extensive in the left compared to the right ventricle.95

 
Conduction and RVOT in disease
Data on conduction velocity in the RVOT are lacking. However, in the Brugada Syndrome 
and arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), activation 
of the RVOT is delayed. This may be caused by either conduction slowing or structural 
block.96 In these diseases, ventricular arrhythmias are often initiated in the RVOT.97

The Brugada syndrome is defined by right precordial ST-segment elevation in the absence of 
detectable structural abnormalities. A mutation in SCN5A is present in about 30% of the patients 
with Brugada Syndrome. Two arrhythmogenic mechanisms in Brugada Syndrome have been 
proposed.15,18 The repolarization theory states that shortening of action potential duration in 
the sub-epicardial myocardium of the RVOT causes an increased transmural gradient in action 
potential duration, leading to a substrate for reentry.98 The depolarization theory states that 
regionally slowed conduction in the RVOT leads to unidirectional block and reentry.17,18 The 
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presence of small structural changes in the RVOT may underlie this slowed conduction.16,99 
ARVC/D is characterized by fibrofatty replacement of myocardium predominantly in 
the right (but also the left) ventricle and is associated with mutations in desmoplakin and 
plakoglobin.100,101 These proteins are involved in cell-to-cell junctions and cause conduction 
slowing in mice, and probably also in humans.100-102 The structural changes are most 
prominent in the right ventricular wall where also most of the arrhythmias are initiated. 
 In both Brugada Syndrome and ARVC/D the right ventricular free 
wall and the RVOT are primarily affected and related to arrhythmogenesis 
originating from these parts of the heart. We surmise that the embryonic origin 
of the right ventricle explains right ventricular susceptibility to arrhythmias.

Regionalized gene expression and electrophysiological heterogeneity in the developing 
heart
Many, if not all, genes encoding ion channels and connexins are expressed heterogeneously in 
the embryonic heart, their expression regulated by factors that are heterogeneously expressed as 
well. Some transcription factors, have been linked to regionalized expression of genes involved 
in electrophysiology, including cardiac homeobox factor Nkx2-5, the T-box transcription 
factors Tbx5, Tbx2 and Tbx3, and the Iroquois homeobox factor Irx5.30-33,103-105 Another 
contributing factor to heterogeneity is the developmental origin of the heart. The left ventricle 
is largely derived from the first heart field, which is molecularly and phenotypically different 
from the second heart field that gives rise to the right ventricle and OFT (Table 2). Moreover, 
the prenatal OFT remains undifferentiated and slowly-conducting until it is incorporated 
into the RVOT. Therefore, we suppose that differences in gene expression, tissue structure, 
size, composition and function in the adult heart find their origin in heart development.

Table 2. Patterning along the cardiac axes during development

Axes in adult Underlying developmental process Factors involved ref
The endocardium induces trabeculation of the 
sub-endocardial myocardium. The epicardium 
signals to the sub-epicardial myocardium to 
form compact myocardium.
The LV, RV, and OFT are formed along the 
cranial-caudal axis. The LV is formed from 
FHF precursor cells whereas the RV and 
RVOT are formed from SHF precursor cells. 
These heart fields are molecularly distinctive.
The base is composed of myocytes which 
differentiated later in development than 
myocytes from the apex. Therefore myocytes 
of the base have been longer exposed to 
differentiation inhibiting factors in the AVC 
and OFT than myocytes from the apex.

The RVOT is composed of the embryonic 
OFT. The myocardium of the OFT maintains 
the slowly conducting phenotype longer than 
the myocardium of the RV.

Irx3, Irx5, Hey2, Fgf4, Fgf9, 
Fgf16, Fgf20, Fgf29, endothelin, 
Neuregulin, retinoic acid, Notch

Isl1, Hand1, Hand2, Tbx1 Fgf8, 
Fgf10, Foxh1, Notch, Nkx2.5, 
Mef2c

Bmp2, Tbx2, Nkx2.5, Hey1, 
Hey2, Sp4/HF-1b 

ITbx2, Tbx3, Tbx5

32,84,141,146

36,132,155

I35,148-150, 156

35,37,120

Epi-Endo

LV-RV-RVOT
(cranial-caudal)

Apex-Base

RV-RVOT
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Role of transcriptional regulation of electrophysiologal heterogeneity deduced from the 
development of the conduction system
The involvement of transcriptional regulation in heterogeneous expression of target 
‘electrophysiological’ genes in the ventricle and RVOT is partly based on the role of specific 
transcription factors in the localized regulation of these genes in the early developing heart 
and conduction system. Pioneering human genetic studies and subsequent functional follow-up 
studies revealed critical roles of Nkx2-5 and Tbx5 in the formation, function and gene regulation 
of the atrioventricular conduction system.31,103,105-109 Nkx2-5 is broadly expressed in the heart, 
indicating that it acts through regulation of, or interactions with, locally acting factors, such 
as Id2, Tbx5 and Tbx3.30,31,34,105 The sinoatrial and atrioventricular node are slowly conducting 
and spontaneously active structures, corresponding to low expression levels of Cx40, Cx43 
and SCN5A.104,110-112 The same holds for the embryonic atrioventricular bundle and proximal 
bundle branches, which, however, during the fetal period develop fast conductive properties 
and high expression of Cx40 and SCN5A30,111,112 (in contrast to published data we observed high 
levels of expression of Nav1.5 / SCN5A in the developing and adult atrioventricular bundle). 
Recent studies have revealed that Tbx5, together with Nkx2-5, are crucial for the expression 
of Cx40.31,105 The nodal character and low expression of Cx40, Cx43, SCN5A and many other 
genes in the sinoatrial node and early developing atrioventricular bundle, depends on repression 

Figure 2. Axis of patterning in the embryonic and adult heart. Transition of axes of patterning in the heart 
during development. A, On embryonic day 9.5 the heart tube consists of a caudally positioned inflow tract and 
a cranial positioned outflow tract. The ventricles expand at the ventral side and the atria at the dorsal side. B, 
The position of the left and right ventricle and outflow tract in the adult heart are related to the cranial-caudal 
axis of the embryonic heart tube. The apical-basal axis corresponds to the dorsal-ventral axis of the embryonic 
heart tube. R/LA, right/left atrium; R/LV, right /left ventricle; Epi↔Endo, epicardial to endocardial axis
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by Tbx3. Tbx3 is selectively expressed in the conduction system and directly interacts with the 
regulatory DNA of Cx43.30,104 Moreover, Tbx3 and Tbx2 both suppress the above mentioned 
genes in the atrioventricular canal, out of which the atrioventricular node will develop.30,33,35,113 
Overall, the role of Nkx2-5 and T-box transcription factors in the heart, and their role in 
the direct regulation of genes important for electrophysiology has been well established.

Axes of polarity in the embryonic and adult heart
In the embryo, three axes of polarity can be defined: the cranio-caudal axis (also called 
rostral-caudal, anterior-posterior), the dorso-ventral axis and the left-right axis. These 
axes can also be applied to the early heart tube. The relation between the axes in the 
looped embryonic heart and the adult heart are shown in Figure 2 and Table 2, together 
with the nomenclature of the axes at these stages. Signaling and other regulatory processes 
are polarized along these axes.27 For example, the anterior side of the developing heart 
receives, or has received, different regulatory signals compared to the caudal side. 
 In the adult heart, the RVOT and the left and the right ventricular walls are anatomically 
different. These three components are formed along the caudo-cranial axis of the developing 
heart, and, hence, the differences between these components are rooted in development. Further, 
adult apex-to-base differences will arise from cranio-caudal and dorso-ventral patterning in the 
embryonic heart. The adult left ventricular base, for example, is derived from the transition between 
the developing atrioventricular canal and the left ventricular border, whereas the apex derives 
from the embryonic left ventricle positioned ventral from the atrioventricular canal. Along the left-
right axis, another layer of patterning acts on top of the other axes and therefore affects all cardiac 
phenotypes. The left and right ventricle, for example, each have a left-derived and a right-derived 

Figure 3. 

LA
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OFT
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Figure 3. The embryonic OFT forms the RVOT. A, Whole mount X-Gal staining of an embryonic day 9.5 Mlc1v-
nlacZ-24 embryo, expressing a lacZ enhancer trap of the Fgf10 gene. It reveals that the Fgf10 positive second heart 
field does not contribute to the left ventricle (courtesy of Dr R. Kelly, Marseille, France). B, Scanning electron 
microscope image of a human heart at five weeks of development. The right ventricle (orange) is composed 
of working myocardium demonstrating fast conduction and rapid contraction. The embryonic OFT (yellow) is 
composed of slow conducting primary myocardium. C, The embryonic OFT is incorporated in the right ventricle 
and forms the RVOT of the adult heart. R/LA, right/left atrium; R/LV, right/left ventricle; OFT, outflow tract; SHF, 
second heart field; PA, pharyngeal arches; RVOT, right ventricular outflow tract; Ao, aorta; PT, pulmonary trunk.
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component, and are regionally exposed to transcription factor Pitx2c-mediated signaling.114,115

Progenitors of the left and right ventricle and of the outflow tract
The early embryonic heart is a simple tube with an outer layer of cardiomyocytes, an inner 
layer of endocardium, with interposed cardiac jelly. The cells of the primitive heart tube 
originate from a progenitor population, called the first heart field. These cells differentiate 
to myocardial cells and fuse at the midline generating a linear heart tube with a caudal 
inflow and a cranial OFT. At this stage, the heart tube rapidly grows primarily by addition 
of cardiac progenitors of the so-called second heart field to the inflow tract, OFT and dorsal 
mesocardium. These second heart field-derived cells will largely form the right ventricle, 
OFT and atria.36 The ventricular septum forms at the border between the two heart fields.116-118 
During the elongation phase, the heart tube loops and ventricular working myocardium 
differentiates at the ventral side (outer curvature). First, the left, and then, cranial to this, the 
right ventricular myocardium forms. The atrioventricular canal, OFT and inner curvature 
initially do not differentiate into working myocardium.119 With further development, most 
of the muscular OFT will be absorbed in the right ventricle and form the RVOT, whereas a 
small part will form the connection between the left ventricle and the aorta.37,120 (Figure 3)
 The left and right ventricle have a different morphology, tissue architecture, 
geometry and function, and myocytes of the right and left ventricle differentiate to 
similar but not identical working phenotypes. It is conceivable that differences in the 
regulatory- and gene programs of progenitors of the left and right ventricle contribute to 
the differences in their phenotypes. Although not much is known about these contributions, 
transcription factors regionally regulate genes involved in cardiac electrophysiology. 
In the developing heart, the transcription factor Hand1 is expressed in the first heart field 
and, subsequently in the left ventricular outer curvature.29 Hand1 is required for expression 
of Cx40, Nppa, Cited1 and other genes in the embryonic left ventricle. Loss of Hand1 in the 
myocardium causes left ventricular defects and dysregulation of gene expression. In contrast, 
Hand2 is expressed in the second heart field and subsequently in the right ventricle and 
OFT.29 Loss of Hand2 results in hypoplasia of the right ventricle and OFT.121 Reduction in 
Hand-dose, by deleting one or both Hand alleles, results in complete absence of expression 
of Cx40 and Nppa.122 Accordingly, these genes are up-regulated in hearts over-expressing 
Hand genes.123,124 Taken together, while Hand1 and Hand2 play partially overlapping roles 
in ventricular differentiation, expansion and gene expression,122 their individual expression 
patterns demonstrate that morphogenesis and gene regulation in the left ventricle and 
in the right ventricle and OFT, are governed by locally distinct regulatory mechanisms.
 Tbx5 is expressed in a caudo-cranial gradient in the tubular heart and is absent 
from the second heart field.31,125 During and after chamber expansion, Tbx5 expression is 
confined to the left ventricle, in a transmural gradient (high expression at the endocardial 
side), whereas some remaining expression is observed in the right ventricular trabeculea.125 
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The OFT is devoid of detectable Tbx5 expression. Tbx5 is required for heart formation 
and chamber expansion, and is necessary for the activity of a number of genes, including 
Cx40.31 The expression pattern of Cx40 mimics that of Tbx5.31,113 Because of the important 
regulatory functions of Tbx5 and its patterned expression, it contributes to the difference in 
gene program and identity of the left ventricle and right ventricle. The expression of Tbx5 
is regulated by retinoic acid.126 Retinoic acid signals to the caudal progenitors of the heart 
tube, thereby providing them with caudal identity and fate information.127 This signal most 
likely underlies the caudal-high expression of Tbx5 in the fusing and looping heart tube.
 
The outflow tract: a slowly conducting primitive structure
The embryonic heart tube elongates by recruiting second heart field progenitors. Like the 
myocytes of the initial heart tube, these added cardiomyocytes have a poorly developed 
contractile and sarcoplasmic reticular apparatus, and are poorly coupled (mainly by Cx45). 

27,128,129 Specific regions of the heart tube differentiate into ventricular working myocardium 
and initiate expression of genes permitting fast conduction, including Cx40 and Cx43. In 
contrast, the embryonic OFT does not initiate this gene program, and retains the original 
slowly  conducting and poorly contracting properties much longer.27,130 The embryonic OFT 
therefore displays long-lasting contractions, thought to prevent regurgitation of the blood from 
the circulation to the ventricle prior to the formation of the semilunar valves.131 In vivo labeling 
studies have shown that the proximal and distal embryonic OFT eventually differentiates further 
and gives rise to the trabeculated free wall and the smooth-walled conus of the RVOT.37,120 
Although the regulatory mechanisms that control the phenotype of the OFT are only 
partially understood, a number of molecular pathways controlling its development has been 
identified.132,133 The OFT is almost devoid of Tbx5, strictly required for Cx40 expression 
and for working myocardial differentiation.31 At the same time, Tbx2, a repressor that 
competes with Tbx5 for many of the same target genes, is expressed in the OFT, but not in 
the ventricular wall. Tbx2 suppresses Cx40 and Cx43 expression and chamber differentiation 
(Figure 4).33,35,113 Moreover, Tbx2 is functionally equivalent to Tbx3, which suppresses working 
myocardial differentiation and imposes the nodal (= embryonic myocardial) gene program 
on myocardium.104 This gene program includes suppression of ion channels, connexins and 
contractile proteins that are normally highly expressed in the working myocardium.104 Hence, 
Tbx2 possibly suppresses working myocardium differentiation in the OFT, contributing 
to its persisting embryonic phenotype (Figure 4). Cx43 expression is absent from the fetal 
OFT (our unpublished observations) but is expressed in the RVOT of adults, albeit to a lesser 
extent than in the free wall of the RV.91 This suggests that insufficient up-regulation of Cx43 
and possibly other genes in the RVOT before birth can result in heterogeneous expression 
in the right ventricular wall. Tbx2 is gradually down-regulated towards the end of gestation, 
which may contribute to the gradual up-regulation of Cx43 in the RVOT myocardium.35 
 Taken together, the wall of the adult right ventricle is formed by the incorporation 
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of an initially slowly conducting embryonic OFT into the rapidly conducting working 
myocardium of the right ventricle. We suggest that remnants of the embryonic OFT 
phenotype and expression profile in the adult RVOT determine the electrophysiological and 
structural characteristics that makes the right ventricle more vulnerable for arrhythmias.
 
Cardiac neural crest cells 
The development of the conduction system and OFT, and the function of the embryonic 
heart, are influenced by cardiac neural crest (CNC) cells.134,135 CNC cells migrate into 
the OFT around embryonic day 9.5 (mouse) and form the aorticopulmonary septum that 
divides the arterial pole into systemic and pulmonary outlets.136 Furthermore, these cells 
form the smooth muscle tunics of the great arteries and the parasympathatic innervation of 
the heart, and have been implicated in the development of the conduction system.134,135 
CNC cells do not materially contribute to myocardium, but play an important signaling role in the 
development of the conduction system and OFT. Ablation of CNC in chicken, results in defects of 
the atrioventricular bundle, Purkinje fiber ands OFT.134,135,137,138 OFT misalignment and persistent 
truncus arteriosus, abnormal patterning of the great arteries, and abnormal myocardial function 
are part of these defects. Thus, congenital defects in the OFT or the great vessels mediated by CNC 
may affect cardiac electrophysiology indirectly. The local action of CNC cells implicates them 
also in regionalized gene regulation, most notably in the OFT and RVOT in the adult. However, the 
mechanistic link between CNC and heterogeneity in electrophysiology of the RVOT is not clear.

Transmural patterns in signaling and gene expression 
Transmural heterogeneities in gene expression and phenotype arise as soon as the ventricular wall 
is formed. (Figure 5) The primitive epithelial-like myocytes of the initial embryonic ventricle 
generate a series of progeny which grows vertically to form ridge-like protrusions (trabeculae). 
The peripheral layer proliferates much faster, which results in cone- or wedge-shaped sectors 

Figure 4. Expression pattern of Cx43, Cx40 and Tbx2 in the embryonic heart. A,B, In situ hybridizations of 
a mouse heart at embryonic day 14.5. A, Cx43 expression is absent from the myocardium of the embryonic 
outflow tract. B, cardiac troponin I (cTnI) expression labels all cardiomyocytes. C,D, In situ hybridisation of 
a mouse heart at embryonic day 10. C, Cx40 is expressed in the myocardium of the ventricle and atrium but no 
in the myocardium of the outflow tract and atrioventricular canal. D, Tbx2 is only expressed in the myocardium 
of the OFT and atrioventricular canal and not in that of the atrium and the ventricle. LA, left atrium; LV, left 
ventricle; CNC, cardiac neural crest; AVC, atrioventricular canal; myo, myocardium; endoth, endothelium.
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spanning the entire ventricular wall.139 The myocardium and the endocardium exchange signals, 
including Notch, neuregulin and endothelin signaling, which regulate trabeculae formation, 
proliferation and differentiation at the endocardial side.140-144 These trabeculae form papillary 
muscles, ventricular septum, Purkinje fibers, and are incorporated in the compact wall. The 
Purkinje fibers maintain automaticity, which later in live may trigger ventricular fibrillation.145 
An epicardial cell layer is formed around the myocardial wall and signals (e,g, Fgf- and 
retinoic acid signaling) to the myocardium to form the compact wall. The epicardium thereby 
controls gene regulation and maturation of the underlying sub-epicardial myocardium.139,141 

Most genes expressed in the ventricular wall show mild to profound differences in 
the expression level across the ventricular wall, including Cx40, Cx43, Serca2a, 
SCN5A and Kcnd2 (encodeing Kv4.2).48,84 For example, Cx40 is expressed across 
the entire wall of the left ventricle until the compact wall starts to form, and 
expression gradually becomes confined to the sub-endocardial Purkinje fibers.95,128 
 The combination of different signals and responses across the ventricular wall results in 
transmurally patterned expression of transcription factors and of their target genes. For example, 
the transmural pattern of Tbx5 is most likely responsible for the transmural pattern of Cx40.31 
In chicken, endothelin signaling from the endocardium and coronary endothelium positively 
regulates Cx40 expression in the sub-endocardial and sub-endothelial myocytes and functional 
maturation of the Purkinje fibers.142 Hey2, encoding a helix-loop-helix transcription factor, is 
expressed in a transmural gradient high at the sub-epicardial side. In the absence of Hey2, 
Nppa is ectopically expressed in the compact ventricular wall, whereas normally it is only 
expressed in the trabeculae.146 Proof of principle that transmural patterns of transcription factors 
are functionally important has been provided by Constantini et al.32 They demonstrated that the 
Iroquois (Irx) homeobox transcription factor family member Irx5, which is initially expressed 
in the ventricular endocardium,147 subsequently becomes expressed in a sub-endocardium-high 
transmural gradient across the ventricular wall.32 Irx5 was found to suppress the expression 
of Kv4.2, the alpha-subunit of the ion channel carrying ITO, which is a modulator of the action 
potential shape. Irx5-deficient mice express Kv4.2 homogeneously across the wall, do not 
have a detectable T-wave and are prone to arrhythmias.32 Several family members of Irx5 are 
expressed in specific patterns in the ventricles.147 Irx3 is expressed in a sub-endocardium-high 
transmural pattern like Irx5, and Irx1 and Irx2 are specifically expressed in the ventricular 
septum. Their possible contribution to electrophysiological heterogeneity awaits testing.
These examples suggest that transmural patterning in gene expression and 
function in the adult ventricular wall finds its origin in development, and 
that errors in the regulation of these patterns (e.g. due to mutations in genes 
involved in their regulation), may render individuals more prone to arrhythmias.
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Apex-to-base heterogeneity
The origin and regulation of heterogeneity over the apex-to-base axis are poorly understood. 
Transcription factor Sp4/HF-1b is expressed in the heart and neural crest. Sp4-deficiency leads 
to decreased Cx43 expression and slowed conduction in the apical ventricular domain, whereas 
the basal region is less affected.148 The underlying mechanism remains to be defined. Fate-map 
studies in chicken,120,149 have indicated that cells located initially in the atrioventricular canal or 
OFT of the early developing heart, will become part of the base of the ventricles. These initially 
primitive cardiomyocytes differentiate to working myocardium and contribute to the base of the 
left and right ventricle. Recent genetic lineage analysis using the expression pattern of Tbx2 to 
label all primary (non-working) myocardium in the embryonic heart, indicates that the embryonic 
atrioventricular canal forms the definitive left ventricular free wall, whereas the embryonic left 
ventricle forms the definitive apex and ventricular septum (our unpublished data). Therefore, the 
primitive atrioventricular canal and OFT myocardial cells differentiate later during development 
to ventricular working myocardium than the apex cells. Hence, they will be exposed longer to 
regulatory pathways such as the Bmp2-Tbx2-Hey2- and Tbx3 pathways,33,113,150-152 which initially 
suppress their differentiation and the expression of Cx40, Cx4 and SCN5A. Consequently, Tbx2-
deficiency leads to morphological defects and ectopic expression of connexins and SCN5A 
in the left atrioventricular canal and left ventricular base (our unpublished observations).  

Figure 5. Transmural heterogeneity in expression of transcription factors and ion channels. The endocardium 
and epicardium regulate growth and differentiation of the myocardium. At the endocardial side trabeculae are 
formed and at the epicardial side compact myocardium is formed. The signals from endo- and epicardium 
possibly cause gradients in expression of transcription factors and ion channels. In the adult heart, action 
potential duration is longer at the sub-endocardial side than at the sub-epicardial side. However, mid-myocardial 
myocytes with long action potential duration are found in wedge preparations from the canine ventricle
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Conclusion and future research

In the adult heart electrophysiological heterogeneity is present along the apico-basal, left-right, 
and transmural axes of the ventricles. (Table 1) Moreover, the RVOT is electrophysiological 
different from the left ventricle. Moderate electrophysiological heterogeneity is a prerequisite 
for cardiac function. However, large heterogeneities may lead to life-threatening arrhythmias. 
In this review we propose that intrinsic electrophysiological heterogeneity in the developing 
heart may persist in the adult heart. Electrophysiological heterogeneity along each of the 
axes is related to distinctive patterning and signaling processes during development (Table 
2). The established roles of T-box and other transcription factors in the regulation of the 
electrophysiological phenotype and regulation of channel genes in the developing conduction 
system provide support for the idea that these factors have a role in the heterogeneity 
of the ventricles and RVOT. Moreover, the role of Irx5 in the regulation of the transmural 
gradient in expression of channel subunits of ITO supports the general idea that transmural 
electrophysiological gradients across the adult ventricular wall are rooted in development. 
 This overview provide a framework that could help in designing models to test 
the hypothesis that development impacts on electrophysiological heterogeneity, as well 
as to test the idea that inter-individual variations in this heterogeneity affect the likelihood 
to develop arrhythmias. For example, expression profiles and electrophysiological 
phenotypes of myocytes from the left and right ventricle and RVOT could be quantified to 
identify physiologically relevant differences between these compartments. Furthermore, 
genes encoding proteins for fast conduction could be selectively over-expressed in 
the OFT to investigate whether arrhythmias with RVOT origin can be prevented.
 In conclusion, electrophysiological heterogeneity in disease states or in hereditary 
syndromes are likely influenced by cardiac developmental processes. Understanding 
these processes may enable early detection and therapy of life threatening arrhythmias.
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