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Abstract

Background: The symptom profile and neuropsychological functioning of individuals with Attention Deficit/

Hyperactivity Disorder (ADHD), change as they enter adolescence. It is unclear whether variation in brain structure and

function parallels these changes, and also whether deviations from typical brain development trajectories are associated

with differential outcomes. This paper describes the Neuroimaging of the Children’s Attention Project (NICAP), a

comprehensive longitudinal multimodal neuroimaging study. Primary aims are to determine how brain structure and

function change with age in ADHD, and whether different trajectories of brain development are associated with

variations in outcomes including diagnostic persistence, and academic, cognitive, social and mental health outcomes.

Methods/Design: NICAP is a multimodal neuroimaging study in a community-based cohort of children with and

without ADHD. Approximately 100 children with ADHD and 100 typically developing controls will be scanned at a

mean age of 10 years (range; 9–11years) and will be re-scanned at two 18-month intervals (ages 11.5 and 13 years

respectively). Assessments include a structured diagnostic interview, parent and teacher questionnaires, direct child

cognitive/executive functioning assessment and magnetic resonance imaging (MRI). MRI acquisition techniques,

collected at a single site, have been selected to provide optimized information concerning structural and functional

brain development.

Discussion: This study will allow us to address the primary aims by describing the neurobiological development of

ADHD and elucidating brain features associated with differential clinical/behavioral outcomes. NICAP data will also be

explored to assess the impact of sex, ADHD presentation, ADHD severity, comorbidities and medication use on brain

development trajectories. Establishing which brain regions are associated with differential clinical outcomes, may allow

us to improve predictions about the course of ADHD.
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Background

Attention-deficit/hyperactivity disorder (ADHD) is one of

the most common neurodevelopmental disorders of child-

hood, affecting 5 % of school-age children [1]. ADHD has

a major impact on everyday functioning, with affected

children experiencing significant and lasting impairments

across multiple domains including mental health, aca-

demic, cognitive, social, and family functioning [2–5].

Although 30–40 % of affected children show a reduction

of symptoms in adolescence [6], related impairments are

enduring [2, 3] and are associated with increased risk of

poor academic achievement and early school dropout, in-

creased rates of criminality, substance abuse and mental

health disorders [7].

The Children’s Attention Project (CAP) [8] is an

Australian longitudinal study of community-based chil-

dren with ADHD and non-ADHD controls, mapping the

developmental course of ADHD symptoms, and identify-

ing risk and protective factors associated with differential

outcomes. It is tracking an extremely well-phenotyped
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sample assessed at mean ages 7, 8.5, and 10 years. Data

are collected on current ADHD status, comorbidities, key

functional domains relevant to ADHD (mental health,

cognitive, academic and social functioning), medication

use, and general wellbeing.

This paper describes the Neuroimaging of the Children’s

Attention Project (NICAP). This extension to CAP in-

volves comprehensive longitudinal multimodal neuroim-

aging to determine how brain structure and function

change over developmental stages in ADHD, and whether

deviations from typical trajectories of brain development

are associated with differential outcomes, such as the per-

sistence or remission of ADHD symptoms and academic,

cognitive, social and mental health outcomes. This paper

describes the rationale, design and methodology of the

neuroimaging protocol for NICAP.

ADHD and the developing adolescent brain

As individuals enter adolescence, the presentation of

some ADHD symptoms and neuropsychological func-

tioning appears to change [9–12]. Inattentive symptoms

remain relatively constant from ages 9–12 years, whereas

hyperactive/impulsive symptoms decline although they

do not normalize [13, 14]. The transition to adolescence

is an important developmental shift with major environ-

mental and biological changes potentially exerting influ-

ence on functional status. This includes the transition to

high school which has been associated with an interrup-

tion in the decline in ADHD symptomotology [9]. It also

corresponds with the major physiological and emotional

effects of puberty.

Numerous cross-sectional studies have examined brain

differences between individuals with and without ADHD.

Functional imaging studies have highlighted several ab-

normalities in individuals with ADHD, particularly in the

prefrontal cortex and striatum (fronto-striatal circuits)

and the parietal cortex [15–19]. Structural imaging studies

have reported ADHD-related anomalies in the prefrontal

cortex, cerebellum, striatum and basal ganglia, corpus

callosum, and the parietal cortex [20–27]. There is debate

as to whether these differences represent specific brain

abnormalities characteristic of ADHD, or a delay of nor-

mal development (i.e., a maturation lag) [28]. However,

there have been marked inconsistencies in previous stud-

ies, attributable to the use of small, homogenous clinical

samples with considerable between-study variation in sub-

types, gender and age. Generalizability to the larger/wider

population of children with ADHD is therefore limited.

While ADHD symptoms vary considerably with age and

neuroimaging abnormalities have been described in chil-

dren with ADHD, it is unclear whether the changes in

brain structure and function parallel symptom changes. It

is also unknown whether deviations from typical trajector-

ies of brain development are associated with differential

outcomes, such as the persistence or remission of ADHD

symptoms and academic, cognitive, social and mental

health outcomes. A recent meta-analysis [29], identified the

need for longitudinal designs and larger samples to advance

the field. For our understanding of the neural underpin-

nings of ADHD to progress and generate knowledge that

will inform treatments, there is a need to establish working

models of neurodevelopment. This can best be achieved by

linking serial measures of brain development, using mul-

tiple state-of-the-art neuroimaging methods, with detailed

phenotypic and functional outcomes indices.

NICAP will collect single site, multimodal neuroimag-

ing on a high-resolution 3 Tesla scanner to link neuro-

biological structure and function to academic, cognitive,

social, and mental health outcomes. We will assess chil-

dren with and without ADHD as they progress through

puberty at mean ages 10, 11.5 and 13 years. This design

will enable us to map trajectories in brain growth and

how they differ between typically developing children

and those with ADHD. We will be able to ascertain

whether such changes are reflected in ADHD symptom-

atology and functional abilities.

Study aims

The primary aims are to 1) Describe how brain structure

(whole-brain volume, grey-matter volume, white-matter

volume, cortical thickness, diffusion indices) and function

(resting state connectivity) change across late childhood to

early adolescence (brain growth trajectories) for children

with and without ADHD; and 2) Examine whether differ-

ences in trajectories of brain structure and function reflect

differential outcomes for children with ADHD and non-

ADHD controls. Outcomes to be assessed include the per-

sistence of ADHD, ADHD symptom severity and functional

outcomes (academic, cognitive, social, and mental health).

Secondary aims will explore the impact of sex, ADHD

presentation, ADHD severity, comorbidities and medica-

tion use on brain growth trajectories.

Methods/Design

NICAP is single site, multimodal neuroimaging study in a

community-based cohort of children with and without

ADHD conducted longitudinally over a 5-year period. Base-

line, 18 and 36 month follow-ups will be conducted be-

tween 2014 and 2018. The study is funded by the

Australian National Medical Health and Research Council

(NHMRC; project grant #1065895). Ethics approval was

granted by the Royal Children’s Hospital Human Research

Ethics Committee, Melbourne (#34071).

The cohort

CAP (2011–2015)

Participants for NICAP are recruited from the CAP. The

CAP cohort and methods have been described previously
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[8]. Briefly, children were screened for ADHD using both

parent and teacher reports on the Conners 3 [30] ADHD

Index (N = 6098) in their second year of formal schooling.

Surveys were distributed across 43 socio-economically di-

verse Melbourne primary schools. Children screened posi-

tive as potential ADHD cases (both the parent and

teacher ADHD indices were ≥75th percentile for age for

boys, and ≥80th percentile for girls) and a matched sample

of those screened negative (both parent and teacher

ADHD indices were <75th percentile for boys and <80th

percentile for girls) received a parent face-to-face diagnos-

tic interview to confirm diagnostic status. Baseline data

were collected between 2011 and 2012, for a sample of

179 children with confirmed ADHD and 212 confirmed

non-ADHD controls aged 7 years. Participants were

followed up at two 18 month intervals at ages 8.5 and

10 years.

NICAP (2014–2018)

Recruitment for NICAP participation coincides with the

CAP 36 month data collection (age 10 years). Parents

provide additional written informed consent for the

NICAP study. Approximately 100 ADHD and 100 typic-

ally developing controls will be recruited for NICAP

baseline assessment. Two follow-up assessments will

occur at 18-month intervals when participants are aged

11.5 and 13 years.

Power and sample size

Our sample size is primarily based on the feasibility of

recruitment from the pre-existing CAP cohort. Based on

recruitment of equal numbers of controls to ADHD

cases, with a participation rate of 65 %, accounting for

exclusions due to MRI incompatibility (e.g., dental

braces), and an estimated attrition of 5 % at each time-

point, we expect ~100, 95 and 90 participants per group

at timepoints 1, 2 and 3 respectively. It is difficult to es-

timate with precision the power this will provide for de-

tecting group differences in trajectories of development.

However, a study of the sample size required in longitu-

dinal MRI studies of brain volume in adults [31] sug-

gests 80 % power detection of a 5 % difference between

two groups for change in even small subcortical struc-

tures (e.g., the caudate) from a sample size of 90–104

per group.

Procedure

At each data collection time-point participating families will

attend a 3.5 h assessment session at The Royal Children’s

Hospital, Melbourne, Australia. Assessment sessions in-

volve a structured diagnostic interview, parent question-

naire, child cognitive assessment and MRI scanning. Saliva

samples will also be collected for future research

questions around genetics and pubertal hormones.

With parent consent, questionnaires will be sent to the

child’s classroom teacher.

Measures are summarized in Table 1. Children will be

assessed in their usual classroom condition, therefore, if

the child is currently using medication, they are not

asked to cease medication for the assessment, but details

of medication history and dosage are recorded. Research

staff conducting assessments will be blinded to the

child’s diagnostic status.

Measures

Diagnostic interview

NIMH Diagnostic Interview Schedule for Children-IV

[32]: At baseline (10 years) and 36 months (13 years),

parents complete the well-validated and widely used

DISC-IV diagnostic interview (60–90 mins) to determine

the participants’ ADHD status and comorbid mental

health problems including anxiety, mood and externaliz-

ing disorders.

Questionnaires

Questionnaires assess several domains covering a range

of predictors and outcome variables. Key measures are

described below and summarized in Table 1. Parent and

teachers complete questionnaires pertaining to the

child’s ADHD symptom severity and their social and

emotional functioning. Parents also complete a series of

questionnaires about the child’s functioning including

emotional, physical, social and school quality of life, the

child’s peer victimization, a screening measure for aut-

ism spectrum disorder symptoms, the child’s general

health, the use of allied health services and medication

history. Questionnaires concerning the home environ-

ment include a measure of family quality of life, stressful

life events, and parents’ mental health. Numerous scales

are drawn from the Longitudinal Study of Australian

Children (LSAC; [33]) with items assessing parenting

and the parent couple relationship. Retrospective ques-

tions regarding potentially relevant pre- and post-natal

factors are also assessed, such as maternal alcohol use

and smoking during pregnancy, gestational diabetes, pre-

clampsia, stress/anxiety/depression/stressful life events

during pregnancy, birth weight, gestational age, intensive

care following birth and maternal postnatal depression.

Teachers are asked questions around the child’s aca-

demic competence, the student-teacher relationship, as

well as details on the teacher characteristics and educa-

tion services. Those not described below have been de-

scribed in detail elsewhere [8].

Pubertal development

The Pubertal Development Scale (PDS) [34] is a parent-

reported measure assessing development on five indices

of pubertal growth. Parents are asked about whether the
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Table 1 Summary of assessment measures for NICAP

Measures Source Timepoint

CAP NICAP

1 2 1 2 3

Diagnostic Interview

ADHD & comorbidities DISC-IV; structured clinical interview [32] P • • •

Magnetic Resonance Imaging

Structural T1 C • • •

Structural T2 C • • •

Multishell DWI C • • •

Resting state fMRI C • • •

Quantitative susceptibility mapping C • • •

Cognitive Assessment

Intellectual functioning WASI: vocabulary, matrix reasoning [52] C • • • •

Language CELF 4th edition: screening test [53] C • • • •

Academic achievement WRAT 4: word reading, numeracy [54] C • • • •

Working memory Computerised spatial n-back C • • •

Inhibition Computerised Stop-signal task C • • •

Sustained attention Computerised SART C • • •

Spatial attention Landmark task C • • •

Cognitive flexibility Computerised set-shifting task C • • •

Visual-motor Grooved pegboard test C • • •

Questionnaires

Puberty development Pubertal development scale; Tanner stage charts P • • •

Child functioning

ADHD symptoms Conner’ 3 parent & teacher ADHD index [30] P, T • • • • •

Autism Spectrum Disorder SCQ - Lifetime version [55]; SSIS: Autism spectrum scale [56] P • • • • •

Mental health & social functioning SDQ: Total problems score, emotional, conduct, peer and
inattention-hyperactivity scale [57]

P, T • • • • •

Social Skills SSIS: Responsibility, self-control, bullying, communication
and engagement scales [56]

P, T • • • • •

Prosocial behaviours SDQ: Prosocial behaviour [57] P, T • • • • •

Victimisation SEQ: Physical victimisation, relational victimisation [58] P • • • •

Quality of Life Pediatric quality of life inventory (Peds QL v4) [59] P • • • • •

Health Medication history, child global health, sustained injuries,
allied health services use

P • • • • •

Home environment

Parental mental health Kessler 6 (K6): psychosocial symptom screener [60] P • • • • •

Family quality of life CHQ: Emotional impact, time impact, family activities [61] P • • • • •

Family adversity Stressful life events scale [62] P • • • • •

Parenting LSAC parenting scales: parental warmth, hostility, consistency,
parental self-efficacy [63]

P • • • • •

Couple relationship LSAC family functioning scales: parental conflict, support,
and relationship satisfaction [63]

P • • • • •

Pre/postnatal factors LSAC prenatal & postnatal questions P •

School environment

Classroom performance SSIS: Academic competence [56] T • • • •

Teacher-child relationship STRS (short form): conflict and closeness [64] T • • • •
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child’s secondary sexual characteristics have 1) not yet

started, 2) barely started, 3) definitely started, 4) seems

complete. Parents of males are asked about changes to

voice and growth of facial hair and parents of females

are asked about breast development and about the onset

and age of menstruation.

The Tanner Sexual Maturation Scale (SMS) is a

parent-reported measure used to assess the child’s pu-

bertal stage. It comprises drawings of five progressive

stages of pubertal development of secondary sexual

characteristics, from stage 1 (pre-adolescent) through to

stage 5 (adult appearance). For males, five drawings

combining pubic hair and genital development are pre-

sented. For females, breast development and pubic hair

development are presented in different drawings. Tanner

staging has historically been considered the gold stand-

ard for puberty measurement [35].

Cognitive assessment

NICAP includes direct assessments of working mem-

ory, inhibition, sustained attention, cognitive flexibil-

ity, spatial attention and visuo-motor integration. The

first four tasks are computer-based, enabling measure-

ment of properties such as reaction time.

The Stop Signal Task assesses response inhibition [36].

Subjects perform a choice reaction task and on a ran-

dom selection of the trials, an auditory stop signal in-

structs subjects to withhold their response.

The Sustained Attention to Response Task (SART) is a

measure of sustained attention [37]. The fixed version of

SART is a repeating sequence of digits (1–9). Using a

button press, participants respond to every digit (go-

trial) except ‘3’ (no-go trial).

The Spatial N-Back is a widely used measure of

working memory that requires flexible updating cap-

abilities. This includes a spatial 1-back and 2-back

version. The 1-back requires maintaining and updat-

ing one location at a time, whereas the more diffi-

cult 2-back requires maintaining and updating two

locations.

The Set Shifting task assesses cognitive flexibility. Two

target pictures are presented that vary along two dimen-

sions (e.g., shape and color). Participants are cued with a

letter to respond to the target pictures, according to one

dimension.

The Landmark Task is a paper-based task measuring

spatial attention [38]. Participants are presented with 20

examples of a bisected line, half are bisected exactly in

the middle, while the remainder are bisected slightly off-

set to the left or right. Participants indicate which side

of the line is shorter. Leftward or rightward spatial biases

can be ascertained.

The Grooved Pegboard test (Lafayette Instruments,

Lafayette, IN) is a timed motor test to assess complex

visual-motor coordination for both the dominant and

non-dominant hand. Participants place grooved pegs

into a pegboard unit in an ordered pattern of 25 holes,

requiring the participant to match the groove of the peg

with the groove of the board.

Neuroimaging procedure

Mock scanner training

Children complete a 30 min training session in a mock

MRI scanner which reproduces the physical environ-

ment of the real scanner including sound recording of

the scanner noises. This familiarizes participants to the

MRI environment, lowers anxiety and provides practice

at keeping still during the scanning session.

MRI scan

Neuroimaging data are collected from a single-site on a

research-dedicated 3-Tesla Siemens TIM Trio MRI scan-

ner (Siemens, Erlangen, Germany) at the Murdoch Chil-

drens Research Institute, The Royal Children’s Hospital,

Melbourne. Using a 32-channel head coil, the multi-

modal MRI acquisition techniques have been selected to

provide advanced information concerning the structural

and functional development of the brain and regional

development of specific structures. The neuroimaging

protocol comprises structural and functional sequences

Table 1 Summary of assessment measures for NICAP (Continued)

Teacher characteristics Including teacher age, gender, teaching experience,
education, self-efficacy, from LSAC; level of support.

T • • • •

Education services Specialised school services, individual education plans,
in-class assistance and grade repetition.

T • • • •

Physical Measures

Height, weight C • • • •

Saliva C • • •

Child ages for data collection timepoints are 7 years (CAP 1), 8.5 years (CAP 2) 10 year (NICAP 1), 11.5 years (NICAP 2) and 13 years (NICAP 3)

Abbreviations: CELF Clinical evaluation of language fundamentals, CHQ child health questionnaire, DISC-IV diagnostic interview schedule for children-IV, DWI diffusion

weighted imaging, fMRI functional magnetic resonance imaging, LSAC longitudinal study of Australian children, SART sustained attention to response task, SCQ social

comnmunication questionnaire SDQ strengths & difficulties questionnaire, SEQ social experience questionnaire, SSIS social skills improvement system; STRS student-

teacher relationship scale, TEA-CH test of everyday attention for children, WASIWechsler abbreviated scales of intelligence, WISCWechsler intelligence scale for children,

WRAT wide range achievement test
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lasting approximately 45mins. See Fig. 1 and Table 2 for

sequence details.

Structural imaging

A modified multi-echo magnetization prepared rapid

gradient-echo (MEMPRAGE) sequence, incorporating

navigator based prospective motion correction, will be

acquired to provide T1-weighted anatomical images

[39, 40]. The MEMPRAGE sequence has many of the

properties of a traditional MPRAGE sequence of distin-

guishing grey matter and white matter morphometry. The

sequence averages multiple high bandwidth acquisitions

reducing susceptibility artifacts and improving the con-

trast of the dura and subcortical structures, allowing for

more accurate tissue segmentation.

We also employ Siemens in-scanner motion correction

(MoCo) in which the field-of-view/slice positioning is

updated in real time to accommodate for motion during

the acquisition. This reduces motion artifact and dra-

matically improves image quality. This is particularly im-

portant in this population of children with attentional

and hyperactivity difficulties, as motion artifact is a large

challenge.

Additional morphometric information is obtained by

employing the T2-SPACE (Sampling Perfection with Ap-

plication optimized Contrast with flip angle Evolution)

protocol to provide T2-weighted anatomical images.

Together, the MEMPRAGE and T2-SPACE provides T1-

weighted and T2-weighted volumes providing optimal

sensitivity for tracking subtle changes in cortical

morphometry.

Multi-band, multi-shell diffusion MRI

Diffusion-weighted images (DWI) are acquired to probe

white matter microstructure. Multi-band accelerated EPI

sequences protocol, developed by the Centre for Mag-

netic Resonance Research (CMRR, University of Minne-

sota), are acquired in order to accelerate DWI volume

coverage allowing multiple shell acquisition. Three shells

are acquired using this protocol (b = 2800, 2000, 1000 s/

mm2 + interleaved b = 0 s/mm2) with an anterior-

posterior phase encoding direction. Standard and reverse

phase encoded blipped image with no diffusion weight-

ing (Blip Up and Blip Down) are also acquired to correct

for magnetic susceptibility-induced distortions related to

the EPI acquisitions [41, 42].

Images are acquired with a multi-band acceleration fac-

tor of three. The advantage of using multi-band acceler-

ated imaging is the reduced acquisition time, which allows

the collection of multiple diffusion weightings (see Table 2)

in the time it takes to collect just one typical diffusion

weighting without multi-band acceleration. By acquiring

three diffusion-weighted shells, we can obtain high angu-

lar resolution diffusion imaging (HARDI) required for

spherical deconvolution tractography, as well as high

signal-to-noise ratio (SNR) data for reliably assessing

quantitative scalar metrics in white matter microstructure.

The DW processing pipeline uses a combination of

purpose built neuroimaging tools from the MRtrix [43]

and FSL [44] packages. First, raw images are corrected

for susceptibility-induced geometric distortions, eddy

current distortions, and inter-volume subject motion

using EDDY and TOPUP toolboxes [45]. Corrected im-

ages then have all non-brain material “stripped” away by

Fig. 1 An example of the different sequences acquired to evaluate structural and functional development (a) T1-weighted; (b) T2-weighted; (c)

Quantitative Susceptibility Mapping; (d) Diffusion Weight Imaging: fractional anisotropy (FA) map; (e) Diffusion Weight Imaging: estimation of the

fibre orientation distribution; (f) Diffusion Weight Imaging: whole brain tractography; (g) resting state fMRI showing default mode network; (h)

connectivity network for structural and function connectivity
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the BET tool [46]. For low b-value images, the diffusion

tensors are calculated and scalar maps generated. For

high b-value data, the images are prepared for con-

strained spherical deconvolution (CSD) tractography by:

the estimation of a response function; estimation of the

fibre orientation distribution (FOD); anatomically con-

strained tractography (ACT) in the white matter [47];

and SIFT2 to reconstruct streamline densities that are

proportional to the fibre densities [48].

Multi-band resting state functional MRI

Resting state fMRI (rs-fMRI) images are acquired to

measure spontaneous intrinsic correlated neural activity

while subjects are at rest, enabling detection of func-

tional connectivity between brain regions. rs-fMRI has

longitudinal reliability and reproducibility in children

[49], has the advantaged of not relying on task compli-

ance, and avoids issues of age-appropriateness of task in

longitudinal studies. Participants are instructed to keep

eyes open and to look at a fixation cross. The multi-

band accelerated EPI sequences (MB3), acquired as

above, allows for 250 volumes with whole brain coverage

to be acquired in a 6 min 33 s sequence.

The rs-fMRI processing pipeline begins with realign-

ment of EPI volumes to correct for participant movement.

Volumes are then aligned to the participant’s structural

images, which are segmented into different tissue classes.

Removal of physiological noise and other nuisance

variables is then performed using a component-based

approach. Signal from white matter and cerebrospinal

fluid is used to estimate noise of non-neuronal origin (e.g.,

cardiac, respiratory). This noise is then removed from re-

gions of interest, along with the contribution of realign-

ment parameters and movement outliers.

Quantitative susceptibility mapping (QSM)

QSM provides a quantitative and spatially specific image

contrast, which is differentially sensitive to myelin and

iron content [50]. The novel sequence used in this study

is a multi-echo spoiled-gradient-recalled (SPGR) se-

quence. We have optimized the acquisition protocol to

reduce acquisition time to 8 min and 43 s, which is

more feasible for a pediatric population. The QSM and

phase reconstruction algorithm [51] are employed to

process and analyze the data.

Quality control

Quality control procedures are important at a number of

steps. Regarding MRI motion artifacts, several steps are

taken in order to minimize movement during the scanning

and to assess the data quality afterwards. The mock scan-

ner session prior to the scan is vital to assist participants

be aware of movements and become comfortable in the

scanner environment. During all scans except for the rs-

fMRI participants watch a movie of their choice distracting

them from the scanning environment. During scanning,

movement is monitored and participants are reminded to

keep still when necessary. Poor images due to motion are

Table 2 MRI sequence parameters for scanning

Sequence T1w T2w DWI fMRI QSM

Type MEMPRAGE T2-SPACE Shell 1 Shell 2 Shell 3 Blip Up/Down rs-fMRI Blip Up/Down Multi-echo

TR (ms) 2530 3200 3200 3200 3200 3200 1500 3980 52

TE (ms) 1.77, 3.51
5.32, 7.2

532 110 110 110 110 33 33 7.38, 14.76, 22.14,
29.52, 36.90, 44.27

TI (ms) 1260 - - - - - - - -

Flip angle (deg) 7 - 90 90 90 90 85 85 15

Slices 176 176 63 63 63 63 60 60 -

Voxel size (mm3) 0.9 0.9 2.4 2.4 2.4 2.4 2.5 2.5 1.0

FoV read (mm) 230 240 260 260 260 260 255 255 256

FoV phase (%) 90.6 89.8 100 100 100 100 100 100 68.8

Matrix 256 × 232 256 × 230 110 × 110 110 × 110 110 × 110 110 × 110 104 × 104 104 × 104 256 × 176

Band width (Hz/Px) 723, 751,
651, 651

610 1748 1748 1748 1748 1718 1718 210, 210, 210, 210,
210, 210

Echo spacing (ms) 10.1 3.76 0.69 0.69 0.69 0.69 0.69 0.69 -

Orientation S S T T T T T T T

B value (s/mm2) - - 2800 2000 1000 0 - - -

No. directions/b = 0 s - - 60/4 45/6 25/6 -/2 - - -

Multi-band factor - - 3 3 3 3 3 1 -

Acquisition time 6 m 52 s 4 m 8 s 3 m 57 s 3 m 15 s 2 m 11 35 s (x 2) 6 m 33 s 24 s (x 2) 8 m 43 s

S sagittal, T transversal
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repeated if time permits. At the scanner level, scanner

stability is monitored weekly with the standard functional

Brain Imaging Research Network (FBIRN) QA protocol.

In addition, T1 and T2 are performed to examine signal-

to-noise and image uniformity.

Staff training and supervision

Research staff and students who conduct the assess-

ments are trained to a high level of competence in the

scanning and assessment procedures, and are observed

for the first two assessments. Written standard operation

procedures were developed for standardized assess-

ments, cognitive testing, mock scan and saliva collection.

Fortnightly supervision meetings take place with a regis-

tered clinical psychologist (ES) in order to maintain

consistency across cognitive and diagnostic assessments.

Discussion

This research will provide the ability to map trajectories

of brain structure and function onto a comprehensive

set of functional outcome domains encompassing aca-

demic, cognitive, social, and mental health functioning.

Developing a large database of multimodal MRI se-

quences with ongoing clinical and cognitive/behavioral

measures in a demographically diverse sample will en-

able the detection of subtle, yet important, differences in

brain developmental trajectories in children with ADHD

compared to non-ADHD peers.

Identifying objective neural markers of outcomes in

ADHD, and potential modifiable predictors of outcomes

will be an important innovation and will contribute sub-

stantially to improving the prognosis of children with

ADHD. Establishing which brain regions are associated

with positive clinical outcomes will help improve predic-

tions about the course of ADHD. The advantage of a

large community sample is the opportunity to examine

neurobiological development across the continuum of

severity, as well as in healthy controls.

A better understanding of the developmental links be-

tween brain changes and outcomes also has important

implications for children with developmental and mental

health problems broader than ADHD. The identification

of neurodevelopmental changes associated with func-

tional outcomes will open the possibility for future stud-

ies to test targeted interventions leading to improved

long-term outcomes.
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