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Introduction: It is widely believed that we are more attentive towards moving

versus static stimuli. However, the neural correlates underlying the perception

of human movements have not been extensively investigated in ecologically

valid settings, nor has the developmental aspect of this phenomenon.

Here, we set forth to investigate how human limb movements displayed

in naturalistic videos influence the attentional engagement of children and

young adults.

Methods: Thirty-nine healthy participants (4–26 years old) were presented

with naturalistic videos featuring human goal-directed movements, while

neural activity was recorded using electroencephalography (EEG). Video

scenes were automatically annotated as containing arm, leg or no movement,

using a machine learning algorithm. The viewers’ attentional engagement was

quantified by the intersubject correlation of EEG responses evoked by the

videos.

Results: Our results demonstrate that scenes featuring limb movements,

especially simultaneous arm and leg movements, elicit higher attentional

engagement than scenes with no limb movement. Interestingly, this effect

was found to diminish with age.

Discussion: Overall, our findings extend previous work on the perception of

human motion by implementing naturalistic stimuli in the experimental design

and extend the list of factors influencing the viewer’s engagement exerted by

naturalistic videos.
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1. Introduction

For more than a century, moving stimuli have been believed
to attract our attention more than static stimuli (Pillsbury,
1908; Washburn and Putney, 1998). Stimulus movements “force
attention on us; they take us by storm, and we can offer no
resistance” (Titchener, 1915). This phenomenon has played a
crucial role for the development of species, since one’s ability
to detect biological movements in one’s surroundings can be
a matter of life or death in such extreme situations as that of
being close to a lurking predator in the jungle. Earlier research
on biological motion perception has relied on point-light
displays of biological motion (e.g., Carter and Pelphrey, 2006),
which differ markedly from real-world movements, leaving our
understanding of how the perception of human motion develops
incomplete. Here, we investigate the perception of human limb
movements displayed in naturalistic videos, while accounting
for the developmental aspect of this phenomenon.

The perception of biological motion is often considered
an automatic function due to its significance for survival
(Thompson and Parasuraman, 2012). For instance, despite their
limited visual attention skills, newborns are able to discriminate
between point-light displays of biological versus non-biological
motion (Simion et al., 2008). However, there are factors that
appear to influence the perception of human movements, such
as attention, motor, and visual experience (Jacobs et al., 2004;
Thompson and Parasuraman, 2012). A characteristic of human
actions is that they are defined by certain features, such as
arms and legs that move in a specific way (Thompson and
Parasuraman, 2012). Tracking these features requires both
bottom-up (e.g., detect motion based on luminance modulation)
and top-down processing (e.g., attentional tracking; Lu and
Sperling, 1995; Whitney, 2006).

Importantly, both bottom-up and top-down processing have
been found to improve with age, partly due to the maturation
of ventral and dorsal visual streams (Parrish et al., 2005;
Ghanouni et al., 2015). This is believed to lie beneath the
development of motion perception with aging (Allison et al.,
2000; Blakemore, 2012; Ghanouni et al., 2015). There are
additional functional changes that occur in the brain during
development that may affect biological motion perception. For
example, the superior temporal sulcus (STS), which is a brain
region activated during the perception of biological motion
(Allison et al., 2000; Grossman et al., 2000; Grezes et al.,
2001; Frith, 2007; Blakemore, 2012), is considered to undergo
protracted development during adolescence (Blakemore, 2012).
The specificity of STS for biological motion perception has
thereby been found to increase with age (Carter and Pelphrey,
2006). In general, adults are more sensitive to biological motion
than young children (Bertenthal and Pinto, 1993; Pinto, 2006;
Blake and Shiffrar, 2007). However, given that the above
conclusions have been largely driven by studies implementing
point-light displays of biological motion, it is important to

further investigate the developmental aspect of the perception
of human movements in an ecologically valid setting.

Naturalistic videos mimic the real world while being
diverse and dynamic (Nastase et al., 2019). On the one
hand, such stimuli are considered interesting and engaging
(Lehne et al., 2015; Bezdek et al., 2017) and on the other
hand, they allow us to decipher the neural dynamics in
close-to-real-life settings (Saarimäki, 2021). Neuroimaging data
corresponding to naturalistic stimuli are usually not analyzed
with explicit response models, since it is challenging to
build predictors of specific events (Nastase et al., 2019;
Jääskeläinen et al., 2021). Instead, model-free approaches
are preferred, such as intersubject correlation (ISC) analysis
(Hasson et al., 2004; Dmochowski et al., 2012). Earlier
research suggests that electroencephalography (EEG) ISC
covaries with the attentional state of the subjects, with
attentionally engaging videos increasing the ISC of EEG
responses (Dmochowski et al., 2012; Cohen and Parra,
2016; Ki et al., 2016). Interestingly, younger individuals
have been found to exhibit higher ISC (Petroni et al.,
2018).

In the present study, we used a machine-learning algorithm
to detect video scenes featuring arm or leg human movement,
and we further assessed how these features influence the ISC of
EEG responses to the video stimuli. Given that moving stimuli
have been associated with increased attention, we hypothesized
that video scenes displaying limb movements elicit higher ISC
than scenes displaying no limb movement. Furthermore, since
sensitivity to biological motion has been found to increase
with age, we hypothesized that ISC is susceptible to video limb
movements in a pronounced way in older participants.

2. Materials and methods

2.1. Participants

Twenty-three healthy children (11 females, aged 4–16 years,
mean age = 10.34) and 16 healthy adults (10 females,
aged 18–26 years, mean age = 20.19) participated in the
experiment. The under-aged participants were accompanied
by their parents. Informed consent was obtained from all
participants or their legal guardians. The study was approved
by the Institutional Review Board of the local ethics committee.
Overall, the experiment was carried out in accordance
with the recommendations of the Declaration of Helsinki
and its amendments.

2.2. Stimuli

Each participant was presented with 83 silent clips
integrated into 4 video blocks of 4 min each. The order of the
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blocks was randomized across participants, whereas the order of
the clips within each block was fixed (clips were integrated in a
single.mp4 file presented to the subjects). The mean duration
of the clips was 16 s and there was no narrative structure
across them. There was no gap between consecutive clips of
the same video block, and participants received no instruction
about whether they should re-center their gaze before each clip
starts. The background color of the videos was black. Each video
included scenes with human motor activity, such as a child
engaged in sports, as well as scenes without motor activity (this
condition included both scenes featuring immobile humans
and scenes with no human content, such as universe footage;
Supplementary Table 1). The video stimuli can be found in
Supplementary Videos 1–4.

Notably, the videos were presented in a silent mode,
because the participants were simultaneously presented with
a non-attended auditory oddball stimuli, the results of which
will be separately reported elsewhere. Although performing
distracting tasks while watching videos has been found to
diminish neural synchronization of the subjects (Cohen et al.,
2018), the motor-related visual information could be retrieved
by the participants even under the potential distraction caused
by the oddball task. Notably, the oddball task was not consistent
across videos or participants, eliminating the possibility that
the oddball task has confounded the data presented in this
article.

2.3. EEG data collection and
preprocessing

Electroencephalography activity was recorded by means of
32 electrodes at a sampling frequency of 500 Hz for children.
The adults’ brain activity was recorded by simultaneous EEG
and MEG recording, yet in the current study we only report
the EEG data which contained the signals of 64 electrodes at
a sampling frequency of 1,000 Hz (which was downsampled
at 500 Hz). In order to not bias the ISC analysis, we analyzed
only the recordings of the 32 electrodes the two groups had
in common. Moreover, because scene transitions in the videos
could causes increases in the ISC that are not related to stimulus
movements, we removed the EEG data corresponding to the first
5 s of each short clip within each video block.

The EEG preprocessing pipeline followed previous studies
(Dmochowski et al., 2012; Cohen and Parra, 2016). First, the
EEG segments corresponding to the duration of each video
block were extracted and temporally aligned across subjects.
Then, the signals were high-pass filtered at 1 Hz and low-
pass filtered at 50 Hz. Next, the channels whose average power
exceeded the mean channel power by 4 SDs were identified and
replaced with zero valued samples, so that these channels do not
affect the calculation of the covariance matrices. Eye-movement
related artifacts were removed by Independent Component
Analysis (ICA), using the fastICA algorithm (Hyvärinen, 1999).

Outliers were replaced with zero, as well as the samples
40 ms around them (before and after). As outliers we classified
the samples whose magnitude exceeded 3 SDs of the mean
magnitude of their corresponding channel. Lastly, the time
course of each channel and each subject was z-scored. Provided
that children and adults were recorded with different EEG
systems, we z-scored the time courses in order to control for
any between-groups confounding factors. This step is typical in
fMRI ISC studies (Nastase et al., 2019).

2.4. Intersubject correlation analysis

The intersubject correlation was measured via a correlated
component analysis. Parra et al. (2018) offer a detailed
description of the method. First, the data from all participants
were concatenated for each video. Based on the concatenated
data, between-subject and within-subject covariance matrices
were computed for each stimulus. These matrices were then
averaged over the four video blocks, so that all stimuli
correspond to the same projection vectors (Cohen and Parra,
2016). After the optimization of the correlated components,
we calculated the ISC of each subject in a leave-one-out
approach. This resulted in a single number per participant,
reflecting the level at which this participant’s neural activity was
synchronized with the neural activity of all other participants.
The reported ISC values correspond to the sum of the three
most correlated components, following previous studies (Cohen
and Parra, 2016; Iotzov et al., 2017; Cohen et al., 2018; Petroni
et al., 2018), allowing us to measure the overall level of neural
synchronization regardless of each component’s anatomical
origin. We also computed the ISC over sliding time windows, in
order to assess the dynamics of ISC as a function of the motor-
related content of short video scenes. To that end, the recordings
were divided into 1.5 s sliding windows, with 1.2 s overlap
(300 ms resolutuion). The ISC of each time window was then
calculated based on the previously estimated projection vectors
W (Dmochowski et al., 2012). Code for conducting correlated
component analysis has been previously published by Parra Lab
(https://www.parralab.org/isc/).

Previous EEG ISC studies calculated the time-resolved ISC
in time windows of 5 s (e.g., Dmochowski et al., 2012; Poulsen
et al., 2017), while a recent analysis showed that ISC can
be reliably measured on a time-scale of 10 s (Madsen and
Parra, 2022). However, multiple naturalistic movements are
possible to be displayed consecutively within such a long period,
making it difficult to determine which type of movement was
dominant within each time window. On the contrary, 1.5 s is
a reasonable period for capturing individual quick movements
of the videos’ actors (based on our data, the average duration
of arm movements was 1.36 s and the average duration of
leg movements was 9.20 s), while achieving a reliable neural
synchrony estimation (here, 1.5 s correspond to 750 time
samples).
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2.5. Automatic annotation of
movements

The detection of arm and leg movements in the video
stimuli was achieved in two steps. First, a machine learning
algorithm was employed to detect the arms and legs in each
video frame of our stimuli (OpenPose demo; Cao et al., 2018).
This algorithm is robust to multiple scales and to multiple
people displayed on screen. Second, based on the Euclidean
distance of each limb’s screen coordinates between consecutive
video frames, we detected the frames containing arm or leg
movement. The Euclidean distance had to be between two
thresholds, so that we interpret that a movement occurred.
The lower threshold served to filter out small, non-significant
movement, like when the camera was not totally stable. The
upper threshold served to filter out scene transitions. The
optimal thresholds were selected by visually inspecting the
output, since there is no ground truth in terms of when a
movement occurred. This procedure resulted in a time series
of motion indicators, which was then temporally aligned with
the time-resolved ISC. That is to say, we determined during
which time windows an arm or a leg movement was displayed.
This analysis also excluded the first 5 s of each short clip within
each video block, so that it is aligned with the ISC analysis.
In general, employing a machine learning algorithm to track
movements of human limbs has been found to be promising in
studies of naturalistic human movements (Peterson et al., 2021).
For the automatic annotation of movements, we implemented
the OpenPose github repository (https://github.com/CMU-
Perceptual-Computing-Lab/openpose), as in Ntoumanis et al.
(2022).

2.6. Average luminance difference

A comparison of the ISC between scenes with human
movements and scenes without human movements might be
confounded by the fact that the former may contain higher
level of visual dynamics, in general, compared to the latter.
Therefore, we quantified the visual dynamics of the videos,
using the Average luminance difference (ALD) across time,
in order to examine the effect of human movements on ISC,
after controlling for the overall visual dynamics. The ALD was
calculated as in Poulsen et al. (2017). Specifically, the four videos
were first converted to gray scale (0–255) by averaging over the
RGB color channels. Then, we calculated the squared difference
in pixel intensity between consecutive frames and calculated
the average across pixels. The obtained ALD time series was
then downsampled to match the temporal resolution of the ISC.
The downsampling was done based on the maximum ALD per
time window (Poulsen et al., 2017). This analysis also excluded
the first 5 s of each short clip within each video block, so that
it is aligned with the ISC analysis. Supplementary Figure 1

illustrates the correlation between ALD and ISC per component.
Supplementary Figure 2 shows that there was no difference in
ALD between scenes with different motor-related content.

2.7. Statistical analysis

After obtaining the time-resolved ISC and the time-resolved
motion indicators, we estimated a linear mixed-effects model,
with subject-level random effects (Bates et al., 2015), in order
to predict ISC. Scenes with neither arm nor leg movement
served as the reference level of the motor-related content of the
stimulus and the occurrence of arm or leg (or both) movements
were included as regressors. The model also assessed whether
or not participants’ age moderates the relationship between
ISC and human movements displayed in the naturalistic
videos. Finally, the ALD was also included in the model as a
covariate, so that the effect of naturalistic movements on ISC
is examined without the confound of general visual dynamics.
A mixed-effects model was preferred over a typical fixed-effects
one, because ISC has been found to significantly vary across
individuals (Iotzov et al., 2017). Figure 1 illustrates the overall
data analysis procedure.

3. Results

First, we estimated the components of the EEG signals
that capture maximally correlated responses across subjects
(Figure 1B). These component topographies were found similar
to previous studies (Dmochowski et al., 2012, 2014; Cohen and
Parra, 2016; Iotzov et al., 2017; Cohen et al., 2018; Petroni
et al., 2018). For instance, the first two components revealed
a strong positivity at occipital sites, which is consistent with
visual processing (Figure 1B). This suggests that the highest ISC
during video watching was achieved by similar processing of
the visual stimuli. Overall, based on the scalp topographies the
estimated correlated components were moderately perceptual
and cognitive and not predominantly motor (Figure 1B).

A linear mixed-effects model with subject-level random
effects was estimated in order to predict ISC based on the
displayed human movements and participants’ age, while
accounting for visual dynamics. The results are summarized
in Table 1. First of all, children exhibited significantly higher
ISC compared to adults (p = 0.009), consistently with previous
studies (Petroni et al., 2018). Also, the ISC was found
to significantly increase with ALD (p < 0.0001), which
is a measure of visual dynamics. This finding is also in
line with earlier research (Poulsen et al., 2017). Moreover,
displayed arm movements and leg movements were found to
increase the ISC (p < 0.0001 and p = 0.003, respectively),
especially when presented simultaneously (p < 0.0001).
Importantly, participants’ age significantly moderated the effect
of simultaneous arm and leg movements on ISC (p < 0.0001).
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FIGURE 1

Schematic representation of the data analysis. Based on the preprocessed electroencephalography (EEG) signals (A), we extracted components
that are maximally correlated among participants (B). Using these components, we projected the EEG data to the so-called components’ space
and measured the intersubject correlation (ISC). We did this in a time-resolved fashion, i.e., repetitively for sliding time windows of 1.5 s size and
80% overlap. This revealed how the ISC changed across time (C). Furthermore, we applied a machine-learning algorithm to the original video
stimulus (D) in order to detect scenes in the videos where arm- or leg-related movements occur (E). We did this in a time-resolved fashion, i.e.,
repetitively for sliding time windows of 1.5 s size and 80% overlap (F). Therefore, the time series displayed on panels (C,F) were perfectly
temporarily aligned. Then, we estimated a linear mixed-effects model to predict the ISC based on the time-resolved movement indicators,
while participants’ age was included as a covariate.

TABLE 1 Linear mixed effects model for predicting the intersubject correlation (ISC) with subject-level random effects.

Effect Est. S.E. t-value d.f. p

(Intercept) 0.004 0.001 3.942 46.406 <0.0001

Children 0.004 0.001 2.720 43.945 0.009

Arm 0.003 0.001 4.491 83, 778.017 <0.0001

Leg 0.002 0.001 2.924 83, 782.516 0.003

Both 0.004 0.001 6.309 83, 778.033 <0.0001

ALD 0.002 0.000 8.650 83, 779.217 <0.0001

Children × Arm 0.001 0.001 0.893 83, 778.786 0.372

Children × Leg 0.003 0.001 3.911 83, 787.926 <0.0001

Children × Both 0.007 0.001 7.686 83, 779.647 <0.0001

Data from all the four video stimuli were included in the analysis. The reference level of the variable movement was “neither” (i.e., scenes featuring neither arm nor leg movements). The
reference age group was adults.

In order to better understand the significant interaction
between age and motion indicators on ISC, while accounting
for ALD, we conducted pairwise one-sample Wilcoxon tests.
Specifically, we first averaged the data of each participant
within each condition, in order to limit the probability of
Type I error, which has been associated with large samples
(Lin et al., 2013). Then, we transformed the continuous ALD
to a binary variable, using the median ALD as a cut-off
value (median ALD = 0.64). Then, for each level of ALD
(Low/High) and Age group (Children/Adults), we compared
the ISC between different movements (Figure 2). This post hoc
analysis revealed that children exhibit significantly lower ISC
during scenes with no movements compared to scenes with
arm movements, scenes with leg movements and scenes with
simultaneous arm and leg movements. Importantly, this effect

was present both during scenes with high- and scenes with
low-level of visual dynamics. On the other hand, adults’ ISC
was found to be less sensitive to scenes featuring naturalistic
human movements, as reflected in the corresponding pairwise
comparisons (Figure 2).

4. Discussion

To our knowledge, this is the first time that developmental
differences in the neural correlates underlying the perception of
human movements are studied in an ecologically valid setting.
Specifically, the aim of our work was to compare the level of
attentional engagement between video scenes featuring different
human limb movements, while taking into account participants’
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FIGURE 2

Average intersubject correlation (ISC) by movement, Age group and Average luminance difference (ALD) levels. Data from all 4 video stimuli
were included in the analysis. Due to the problem of p-values associated with large samples (Lin et al., 2013), we first averaged the data of each
participant and only then applied pairwise one-sample Wilcoxon tests, in order to limit the probability of Type I error. Wilcoxon tests were
preferred over t-tests due to the non-normal distribution of the data (as assessed by Shapiro–Wilk test, p < 0.05). Hence, individual points in the
plot correspond to individual subjects (sum of 3 strongest components). P-values were corrected for multiple comparisons, using Bonferroni
correction. *p < 0.05, **p < 0.01, and ****p < 0.0001.

age. To that end, we estimated the ISC of EEG responses
to the stimuli, which is considered to be a marker of neural
engagement and attention (Dmochowski et al., 2012; Cohen and
Parra, 2016; Ki et al., 2016; Cohen et al., 2018).

There are three important findings of our study. First,
in line with our hypothesis, displayed arm and leg human
movements were found to increase attentional engagement.
Thus, our data support earlier studies linking moving stimuli to
enhanced attention (Pillsbury, 1908; Titchener, 1915; Washburn
and Putney, 1998), and extend previous work on the perception
of point-light displays of biological motion by implementing
naturalistic stimuli in the experimental design.

Second, attentional engagement was found to decrease with
participants’ age, regardless of the motor-related content of
the stimuli. This finding supports previous studies showing
that neural activity becomes more variable with maturity while
passively watching real-world stimuli (Campbell et al., 2015;
Petroni et al., 2018). Campbell et al. (2015) argue that the
observed phenomenon might be regarded to different patterns
of attention, especially reflected in the superior frontal lobe and
intraparietal sulcus. However, the low spatial resolution of the
EEG technique does not allow us to test this postulation. We
speculate that older participants have developed the cognitive
capacity to interpret the videos more idiosyncratically than
young children, which is also reflected in a more idiosyncratic
brain activity (i.e., lower ISC).

Third, we found that the effect of stimulus movements on
viewers’ attentional engagement is moderated by participants’
age. In fact, ISC was found to be susceptible to simultaneous
arm and leg movements in a pronounced way in children. This
runs counter to our hypothesis of observing the opposite effect,
which was based on the lower sensitivity to human motion that
has been observed in young children (Bertenthal and Pinto,
1993; Carter and Pelphrey, 2006; Pinto, 2006; Blake and Shiffrar,

2007). While asking the participants to rate their interest in
each condition would better address the role of interest in
the perception of limb movements, a possible explanation of
our finding is that scenes featuring simultaneous arm and leg
movements were more interesting than scenes with no limb
movement to young children, whereas for older participants
all scenes were equally interesting. Essentially, ISC is not only
a marker of attention, but also a marker of interest (Nastase
et al., 2019). This speculation is supported by previous studies
positing improved saccadic responses to interesting versus non-
interesting stimuli for young but not older children (Irving et al.,
2011).

Earlier fMRI studies suggest that age affects the biological
motion perception, which is particularly reflected in the STS
brain activity (Grossman et al., 2000; Grezes et al., 2001;
Carter and Pelphrey, 2006; Ghanouni et al., 2015). In the
present study, by using EEG ISC as a marker of attentional
engagement, we reveal an additional role that age might play in
the perception of human movements. That is to say, age might
essentially influence one’s attentional capacities which in turn,
influence the perception of human motion. This postulation is
supported by earlier research showing that young children have
reduced attention span (Koriakina et al., 2021) and are worse in
allocating attention simultaneously to multiple targets (Dye and
Bavelier, 2010).

From the evolutionary point of view, motion perception has
been necessary for humans, not only for survival (Johansson,
1975), but also for social interactions (Brüne and Brüne-Cohrs,
2006). In fact, there is evidence that Theory of Mind, a higher-
order social perception skill, evolved from the capacity to
monitor biological motion (Premack and Woodruff, 1978).
Hence, the higher ISC that we found during scenes with arm
and leg movements compared to scenes with no movements
could also be explained by the fact that limbs are often used in
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social communications. In other words, our evolutionary ability
to understand other people’s intentions seems to be supported
by our increased attention to body movements that facilitate
communication. This is also supported by our finding that
biological movements direct our attention even during scenes
with low level of visual dynamics.

Finally, our results expand the list of factors influencing
the ISC exerted by naturalistic videos. According to previous
studies, the viewers’ engagement with videos depends on
the emotional content, suspense and cognitive demand for
processing complex dynamic information (Potter and Bolls,
2012; Sukalla et al., 2016; Jääskeläinen et al., 2021), as well as
on the viewers’ personality traits (e.g., Bacha-Trams et al., 2018).
Here, we demonstrate that engagement with naturalistic videos
is also influenced by the presentation of human limb movements
in the videos.

Certain limitations of this study need to be taken into
account. For instance, the videos presented to the participants
did not contain any narrative structure. An interesting story
narrated in a movie would take the viewers on a journey and
might evoke cognitive and emotional responses overweighting
the ones evoked solely by the actors’ movements (Richardson
et al., 2020). Future studies may annotate such videos to
compare the level of attentional engagement between different
motor-related categories of scenes. Notably, the scenes of the
videos that contained no movements were mainly (but not only)
nature scenes, with no clear objects/subjects to attract attention
and smoother visual dynamics compared to scenes featuring
human movements. However, given that the ALD (which is a
measure of visual dynamics) was found to not be increased by
the presentation of movements and it was also included as a
covariate in our regression model, it is unlikely that this has
confounded our findings. It is well known that experiments
using naturalistic stimuli are not fully controlled, because of
the complexity and richness of such stimuli (Jääskeläinen et al.,
2021). Hence, we cannot exclude the possibility that there was
some confound in scenes with movements, which was absent
from scenes without movements, which might have affected
the observed effects. However, by using a high variety of
video clips (83 in total), we aimed to eliminate this possibility.
In addition the machine learning algorithm that we used to
annotate the videos allowed us to examine specifically the effect
of arm and leg movements, instead of examining only the effect
of movements, in general. Moreover, we conducted the ISC
analysis in time windows of 1.5 s, although it has been found
that longer time windows may capture a wider range of the ISC
(Madsen and Parra, 2022). We did this in order to better fit the
motor-related content of the video, at the cost of decreasing
the reliability of the ISC. In addition, the order of the short
clips within each video block was fixed, yet we addressed this
issue by excluding the first 5 s of each short clip from our
data analysis. Finally, it would be promising for future studies
to investigate the generalizability of these results to a wider

population, including more infants, but also older people (e.g.,
>50 years old).

Taken together, our results extend previous work on the
perception of human motion by implementing naturalistic
stimuli in the experimental design. Moreover, by examining the
developmental aspect of the observed phenomena, we showed
that attentional engagement is susceptible to naturalistic limb
movements in a pronounced way in older participants. Our
findings may be used to improve advertising and health-related
video spots by implementing human movements to increase
viewers’ attentional engagement.
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