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Developmental disruption and restoration of
brain synaptome architecture in the murine
Pax6 neurodevelopmental disease model

Laura Tomas-Roca1, Zhen Qiu1, Erik Fransén 2, Ragini Gokhale1, Edita Bulovaite1,
David J. Price3, Noboru H. Komiyama1,3 & Seth G. N. Grant 1,3

Neurodevelopmental disorders of genetic origin delay the acquisition of
normal abilities and cause disabling phenotypes. Nevertheless, spontaneous
attenuation and even complete amelioration of symptoms in early childhood
and adolescence can occur in many disorders, suggesting that brain circuits
possess an intrinsic capacity to overcome the deficits arising from some
germline mutations. We examined the molecular composition of almost a
trillion excitatory synapses on a brain-wide scale between birth and adulthood
in mice carrying a mutation in the homeobox transcription factor Pax6, a
neurodevelopmental disorder model. Pax6 haploinsufficiency had no impact
on total synapse number at any age. By contrast, themolecular composition of
excitatory synapses, the postnatal expansion of synapse diversity and the
acquisition of normal synaptome architecture were delayed in all brain
regions, interfering with networks and electrophysiological simulations of
cognitive functions. Specific excitatory synapse types and subtypes were
affected in two key developmental age-windows. These phenotypes were
reversedwithin 2-3 weeks of onset, restoring synapse diversity and synaptome
architecture to the normal developmental trajectory. Synapse subtypes with
rapid protein turnover mediated the synaptome remodeling. This brain-wide
capacity for remodeling of synapse molecular composition to recover and
maintain the developmental trajectory of synaptome architecture may help
confer resilience to neurodevelopmental genetic disorders.

Excitatory synapses, which make up the vast majority of synapses in
the brain, have highly diverse identities resulting from their differing
protein composition and protein lifetimes1–3. The anatomical dis-
tribution of these molecularly diverse synapses can be studied using
synaptome mapping technology, a large-scale, single-synapse resolu-
tion, systematic image analysis approach that has uncovered brain-
wide excitatory synapse diversity in the mouse1–3. The Mouse Lifespan
Synaptome Atlas2 revealed that the synapse composition of the brain
changes continuously across the lifespan, with trajectories of

excitatory synapse types and subtypes in dendrites, neurons, circuits
and brain regions, together defining the Lifespan Synaptome Archi-
tecture (LSA)2. A key featureof the LSA is its threedistinct age-windows
(LSA-I, LSA-II, LSA-III), which correspond to childhood, adolescence/
young adulthood, and the aging adult, respectively. During LSA-I,
which extends from birth until weaning, there is a dramatic increase in
synapse number and synapse diversity. Following the transition to
independence frommaternal care, the synaptome architecture of LSA-
II progressively develops until adult sexual maturity with further
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increases in synapse diversity and differentiation of the synaptome
composition of brain regions2.

Although the genetic mechanisms controlling synaptome
architecture are only beginning to be understood, analysis of the
spatial patterning of synapses suggests that developmental
mechanisms controlling the body plan might be involved3. Tran-
scription factors containing homeodomains play a key role in
establishing the body plan and in development of the brain4–10 andwe
hypothesized that they might control synaptome architecture. Pax6,
amember of the homeodomain transcription factor family, regulates
the expression of many synaptic proteins including PSD95 and
SAP10211, two postsynaptic proteins in excitatory synapses that are
used in synaptome mapping2,3. Heterozygous (haploinsufficient)
loss-of-function PAX6mutations cause autism, intellectual disability,
epilepsy and aniridia (WAGR syndrome)12–19, which are phenocopied
in Pax6+/− mice18,20–23. Pax6 is expressed during embryogenesis in
progenitor cells giving rise to forebrain and hindbrain structures, and
postnatally in subsets of diencephalic neurons24–27. In this study, we
have characterized the effect of a germlinemutation in Pax6 on early
and late postnatal development (LSA-I to mid LSA-II) of the mouse
brain synaptome architecture. Our findings not only show that the
development of brain synaptome architecture is organized by this
homeobox gene, but also that the synaptome has the capacity to
repair itself during phases of mouse development representing
childhood and adolescence.

Results
Mapping the developing synaptome architecture of Pax6+/−mice
The synaptome architecture of Pax6+/− mice was analyzed using the
SYNMAP synaptome mapping pipeline2,3, which quantifies the expres-
sion of postsynaptic proteins PSD95 and SAP102 in synaptic puncta
(Fig. 1). PSD95 and SAP102 are two of the four paralogous members of
the MAGUK family and their levels are functionally important because
they physically assemble multiple proteins controlling synaptic trans-
mission, plasticity and neuronal excitability into macromolecular
complexes28–31, and altering their expression leads to changes in
synaptic and cognitive functions32,33. Previously, we have characterized
mice carrying engineered alleles of endogenous PSD95 and SAP102 in a
wide range of biochemical, anatomical, physiological and behavioral
studies1–3,28–30,32–41. Here we used mice that have been engineered
to express the fluorescent proteins eGFP and mKO2 attached to the
carboxyl terminus of PSD95 and SAP102, respectively, which enable
visualization of synaptic puncta2,3. Pax6+/− mice were crossed
with PSD95-eGFP and SAP102-mKO2 mice to generate cohorts of
Pax6+/−;Psd95eGFP/eGFP;Sap102mKO2/mKO2 and control Pax6+/+;Psd95eGFP/eGFP;
Sap102mKO2/mKO2 mice. Parasagittal brain sections were collected at
day one (P1) and at one (P7), two (P14), three (P21), four (P28), five
(P35), six (P42), seven (P49) and eight (P56) weeks. The first five time
points correspond to LSA-I (P1-P28) and the latter four to LSA-II
(P35-P56)2.

Brain sections were imaged at single-synapse resolution on a
spinning disk confocal microscope (pixel size 84 × 84 nm and optical
resolution ~260nm) and the density, intensity, size and shape para-
meters of individual puncta were acquired in 131 brain subregions. We
classified the synaptic puncta into three types (type 1 express PSD95
only, type 2 express SAP102 only, and type 3 express both PSD95 and
SAP102), which were classified into 37 subtypes on the basis of mor-
phological (size and shape) features3 (type 1 subtypes 1–11; type
2 subtypes 12–18; type 3 subtypes 19–37). All data were registered to
the Allen Developing Mouse Brain Atlas (Supplementary Data 1) and
are available in Supplementary Data 2–16 and at Edinburgh
DataShare42. We created the Pax6 Developmental Synaptome Atlas43,
an interactive visualization tool for displaying the spatial framework of
datasets and differences in the developing brain synaptome of control
and Pax6+/− mice.

Pax6+/− mice show transient synaptome phenotypes in two
developmental age-windows
We measured a total of 3.65 × 1011 excitatory synapses and found no
significant differences in synapse number between Pax6+/− and control
mice in any brain region or in the whole brain at any age (P >0.05,
Benjamini–Hochberg corrected). However, quantifying the synapse
types and subtypes at each of the nine ages (Figs. 2 and S1) indicated
that the molecular composition of excitatory synapses was sub-
stantially impacted by this germline homeobox gene mutation. At
birth (P1) the Pax6+/− synaptome was largely normal, but during the
second and third postnatal weeks (P7–P21) strong synaptome pheno-
types emerged inmost brain regions, which then reverted to normal in
week four (P28). Synaptome phenotypes then remerged in week five
(P35–P42) before reverting again to normal by P49. This temporal
progression of synaptome phenotypes describes two ‘phenotype
waves’, one starting in the second postnatal week and the other in the
sixth postnatal week, each lasting approximately two weeks. At the
peak of each phenotype wave, synapse composition was affected in
almost every region and subregion of the Pax6+/− brain (Figs. 2 and S1).
The strongest phenotypes were observed in the neocortex, including
visual cortex (Figs. 2, S1, Supplementary Data 16).

We next examined the impact of the Pax6+/− mutation on excita-
tory synapse type and subtype diversity. As shown in the summary
plots (Figs. 2 and S1) and example single-synapse resolution images
(Fig. 3), synapse types and subtypes were differentially affected during
the phenotypewaves. In bothwaves therewas a loss of type 2 synapses
(which express SAP102 only) and an increase in type 1 and 3 synapses
(which express PSD95), suggesting that the PSD95-expressing synap-
ses are compensating or adapting to the loss of SAP102-expressing
synapses. Looking at the synapse composition of each brain subregion
at the different ages (Fig. 4A) revealed a lower synapse diversity across
most regions of the Pax6+/− brain compared with control brains during
thefirst phenotypewave (diversitywas reduced in 34/131 subregions in
P1, 117/131 in P7 and 63/131 in P14). These results indicate that the
molecular identity of synapse types and subtypes is affected during
brain development in Pax6+/− mice, resulting in a lower synapse
diversity during the phenotype wave in LSA-I. As the animals aged, the
synapse composition of brain regions recovered to the normal devel-
opmental trajectory and synapse diversity increased to control levels.

We recently found that PSD95-expressing excitatory synapse
subtypes differ greatly in their rate of protein turnover, indicating that
some subtypes can more rapidly remodel their proteomes1. We hypo-
thesized that these synapse subtypes could be capable ofmediating the
phenotype waves observed in Pax6+/− mice. To address this hypothesis,
we ranked the 30 PSD95-expressing synapse subtypes and identified
those that were widely impacted throughout the Pax6+/− brain (Fig. 4B).
Short protein lifetime (SPL) (subtypes 6, 8, 11, 28, 29, 31) and long
protein lifetime (LPL) (subtypes 2, 3, 5, 30, 34) synapses had skewed
distributions, with SPL synapses disrupted in more brain regions than
LPL synapses. SPL synapses were disproportionately affected in Pax6+/−

mice, showing a significantly stronger phenotype than LPL synapses
(P <0.05, Bayesian test with Benjamini–Hochberg correction) in 72%
(94/131) of subregions at P14 and in 28% (36/131) of subregions at P35
(Fig. 4B, C). By contrast, only 3% (4/131) of subregions at P14 and 7% (9/
131) of subregions at P35 showed a significantly stronger phenotype in
LPL over SPL synapses (P <0.05, Bayesian test with Benjamini-
Hochberg correction) (Fig. 4B, C). These results show that the
dynamic and transient nature of synaptome phenotypes resides largely
with SPL synapses, whereas LPL synapses remain significantly more
resilient to the impact of the Pax6+/− mutation.

Pax6mutation transiently disrupts brain network structure and
function
The synaptome architecture of the brain canbe described as a network
of brain regions3, which has previously been shown to correlate with
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structural connectome networks and with dynamic network activity
measured using resting-state fMRI3. To assess the impact of the Pax6+/−

mutation on brain synaptome networks, we examined the similarity of
the synaptome between all brain regions at each age and the topology
of networks built from the similarity matrices (Figs. 5 and S2). The

similarity matrices of control mice at birth show high and homo-
geneous similarity between brain regions, followed by a rapid decline
in similarity by P14, consistent with previous results2. By contrast, in
Pax6+/− mice this decline was delayed, resulting in major differences
between the similarity matrices and, therefore, in the similarity ratio

Fig. 1 | Procedure formapping the synaptomearchitecture ofPax6+/−mice.Mice
carrying the heterozygous Pax6 mutation were crossed with mice carrying fluores-
cently tagged PSD95 and SAP102 proteins to produce cohorts of Pax6+/−;Psd95eGFP/eGFP;-

Sap102mKO2/mKO2 and control Pax6+/+;Psd95eGFP/eGFP;Sap102mKO2/mKO2 mice. Genetic tagging
of the endogenous Psd95 and Sap102 loci with eGFP and mKO2 results in the
expression of PSD95-eGFP and SAP102-mKO2 fluorescent fusion proteins, which
assemble into postsynaptic protein complexes. The differential distribution of these
proteins into synapses underlies synapse typediversity,whichcanbevisualized inbrain

tissue sections by spinning-disk confocal microscopy. In the SYNMAP computational
pipeline, raw images of fluorescent synaptic puncta are detected, segmented, and the
density, intensity, size and shape of each punctum determined. The puncta are then
classified into three types and37 subtypesbasedon theirmolecular andmorphological
parameters. To create the Pax6 Developmental Synaptome Atlas43, the parameters of
these synapse types and subtypes were quantified in 131 brain subregions and their
spatial maps and temporal trajectories presented.
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compared with control mice at P14 (Cohen’s d = 4.27 and P < 0.005,
Bayesian test with Benjamini–Hochberg correction, Figs. 5A, B and S2).
This developmental delay was overcome in the following week
(P > 0.05, Bayesian test with Benjamini–Hochberg correction, Figs. 5A,
B and S2), corresponding to the end of LSA-I. Two weeks later, at P35
(in LSA-II), there was another significant increase in the similarity of
brain regions in Pax6+/− mice (Cohen’s d = 1.24 and P <0.05 in similarity
ratio, Bayesian test with Benjamini-Hochberg correction, Figs. 5A, B
and S2), which again was followed by a return to control values in the
subsequent twoweeks.Whenwe examined the topologyof synaptome
networks using an index of small worldness2,3, this showed major
reductions in small worldness at P14 (Cohen’s d = −3.14 and P <0.05,
Bayesian test with Benjamini–Hochberg correction, Fig. 5C) and P35
(Cohen’s d = −4.48 and P <0.05, Bayesian test with Benjamini–
Hochberg correction, Fig. 5C) in the Pax6+/− brain. These results indi-
cate that the network properties of the brain are transiently impaired
during the two phenotype waves.

To explore the functional consequences of these synaptome
architectural phenotypes in terms of synaptic electrophysiological
properties relevant to the storage and recall of behavioral repre-
sentations, we employed a computational simulation approach2,3. In
the model, synapses in the CA1 stratum radiatum contain different
amounts of PSD95 and SAP102 (Figs. 2, S1, and S3) and their respective
electrophysiological responses are simulated using parameters from
previous studies of PSD95 and SAP102 in synaptic transmission and
plasticity33,44–47. The model, which does not require a complete
understanding of the molecular mechanisms by which PSD95 and
SAP102 regulate AMPA receptors, can address the question of how

different temporal patterns are integrated based on the level of
synaptic spatial diversity and, specifically, whether this integration is
sensitive to the temporal pattern. In the simulation, the synaptome of
CA1 pyramidal neurons is stimulated with patterns of neural activity
and the spatial output of excitatory postsynaptic potentials (EPSPs) is
quantified at ages before, during and after the two phenotype waves
(P1, P7, P28, P35 and P56) (Figs. 6A and S4, Supplementary Data 14, 15).
We found that theta burst and gamma train stimulation (Fig. 6B), but
not theta train or gamma burst (Fig. S4), resulted in significant phe-
notypes at P7 and P35 in Pax6+/− mice (P <0.01, paired t-test,
Benjamini–Hochberg corrected, N = 121 samples). These findings
indicate that the synaptome in the CA1 region, which is a structure
crucial for spatial navigation, learning and memory48, is reversibly
impaired during the two phenotype waves in Pax6+/− mice. Moreover,
the phenotypes are restricted to particular patterns of neuronal
activity.

Discussion
We have uncovered the effects of a germline mutation in Pax6, a
homeobox transcription factor, on the postnatal development of
synaptome architecture of the mouse brain. We analyzed almost a
trillion individual excitatory synapses at weekly intervals from
birth to maturity at 2 months of age, creating the Pax6 Devel-
opmental Synaptome Atlas43. The total number of excitatory
synapses was not affected in any brain region at any age in Pax6+/−

mice. Instead, there were substantial changes in the regional
composition of excitatory synapse types and subtypes. These
synaptome phenotypes emerged transiently in two age-windows,
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indicating that the molecular identity of excitatory synapses is
not only dynamic but also has the capacity to restore a normal
developmental trajectory of brain synaptome architecture in a
genetic neurodevelopmental disorder.

The restoration of synaptome architecture required changes in
synapse type and subtype molecular diversity, indicating that their
postsynaptic proteomes were being remodeled. Protein turnover is a
fundamental mechanism for homeostatic maintenance of the pro-
teome (proteostasis) and is required for proteome remodeling
instructed by transcriptional programs49–51. Consistent with this, in
Pax6+/− mice it was the density of synapse subtypes with the fastest
protein turnover (SPL synapses) that was most affected during the
age-windows. Furthermore, the half-life of PSD95 in SPL synapses is
around one to two weeks1, which corresponds well with the duration
of synaptome repair in Pax6+/− mice. These results, together with the
dynamic changes in the synaptome and in the turnover of synaptic
proteins across the lifespan1,2, indicate that the capacity to remodel
the molecular identity of synapses is a property of all regions of
the brain.

The synaptome architecture phenotypes are likely to arise from
both cell-autonomous and cell non-autonomous mechanisms during

embryonic andpostnatalbraindevelopment. Duringearly neurulation,
Pax6 is expressed by progenitor cells located throughout much of the
neural plate andneural tube, including regions that form the forebrain,
hindbrain and spinal cord but not those that form the
midbrain18,25,27,52–54. Pax6 expression disappears from many of these
regions as neurogenesis proceeds, although it is retained by cells in
some areas including the olfactory bulb, amygdala, thalamus and
cerebellum18. Pax6 regulates a wide range of genes including those
encoding PSD95, SAP102 and other synaptic proteins such as AMPH,
NRXN3, SYNGAP1, SYNPR, SYT11 and SYT1711, and is expressed post-
natally in diencephalic and cerebellar neurons, where we observed
strong phenotypes at P7 and P14 in type 2 synapses and at P35 in type
1 synapses. Pax6 is also required for postnatal neurogenesis in the
hippocampus55, whichmay also contribute to the observed synaptome
phenotypes. It is likely, therefore, that the abnormalities in synaptome
architecture reported here could arise fromboth the reduction in Pax6
expression atpostnatal ages aswell as from residual defects in neurons
whose lineages no longer express Pax6. During a critical periodof early
development, Pax6 protects early progenitors from erroneous speci-
fication by inductive signals and thereby controls the identity of neu-
rons long after Pax6 has ceased to be expressed56. Neurons that would
be expected to have cell-autonomous defects in Pax6+/− mice project
their axons to neurons that do not express Pax6, such as midbrain
neurons, and these postsynaptic neurons might alter their PSD95 and
SAP102 expression as a result of the mutation-dependent changes in
neuronal activity in the input neurons. Consistent with this, Vitalis and
colleagues have shown that loss of Pax6 in populations of neurons
causes cell non-autonomous phenotypes in populations of neurons
whose lineages have never expressed Pax652.

The age-windows during which synaptome architecture was
restored in Pax6+/−mice correspond to two important transitions in the
life of a mouse: from dependency on the mother to independent
feeding in LSA-I, and the attainment of sexual maturity and adult
behaviors in LSA-II. By ensuring normal trajectories of synaptome
architecture during these crucial transitions, maladaptive behaviors
caused by underlying genetic variation would be minimized and the
mice more likely to survive. The brain of young animals is highly
enriched in SPL synapses1, providing a pool of synapse subtypes cap-
able of rapidly remodeling and repairing the synaptome architecture
during development.

In humans, neurodevelopmental disorders delay the acquisition
of speech and language, social interactions, learning, attention and
motor skills, and also manifest with the onset of epilepsy or motoric
dysfunction. Despite this, spontaneous attenuation and even complete
ameliorationof symptomsoccur in early childhoodand adolescence in
some individuals57–66. This ameliorationaffects behaviors controlledby
different brain regions and arising from diverse types of mutation,
indicating that the capacity for spontaneous recovery from neurode-
velopmental disorders is a brain-wide and general mechanism in the
developing nervous system.

Eighty years ago Waddington introduced the concept of canali-
zation as a mechanism that maintains normal trajectories of develop-
ment in the face of genetic mutations and environmental
perturbations67. Canalization has been invoked as an explanation for
why apparently normal individuals carry deleterious mutations, why
symptom penetrance varies in diseases35,64–73, and how developing
neuronal networks overcomemutations in vitro35. Our results suggest
that remodeling the molecular composition of synapses is a mechan-
ism of canalization in the developing brain. Synaptome canalization
does not completely mask all mutations because adult mice lacking
Dlg2 (Psd93) orDlg3 (Sap102) have abnormal synaptome architecture3.
It is conceivable that therapeutic approaches, potentially targeting SPL
synapse subtypes, could enhance remodeling of the synaptome and
induce resilience to neurodevelopmental disorders and environmental
insults.
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Synaptome mapping is a highly scalable technology that has
enabled systematic analysis of the number and molecular prop-
erties of excitatory synapses on a brain-wide scale throughout
development in a neurodevelopmental disorder. To understand

the cellular basis of the synaptome phenotypes in Pax6+/− mice we
will require cell-type-specific synaptome mapping methods, which
are now available using conditional tagging of synaptic proteins41.
Application of these tools will enable the identification of
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synaptome phenotypes in the many types and subtypes of exci-
tatory and inhibitory neurons. Autism and other neurodevelop-
mental disorders show a sex bias and it will be important to
establish whether synaptome phenotypes are sex specific.
Expanding the Pax6 Developmental Synaptome Atlas through the
addition of further synaptic proteins (including presynaptic and
inhibitory) will enhance its discovery potential, as will the devel-
opment of parallel atlas resources for other germline mutations of
significant health impact. Indeed, the synaptome mapping
approach employed in this study can be applied to any genetic
model of neurodevelopmental disease, with the potential to
uncover and map through time the commonalities and distinc-
tions that may inform underlying mechanisms and brain regional
impacts. The application of synaptome mapping to human brain
tissue, employing an immunological detection regime74, adds a
further layer to the discovery potential of this technology.

Methods
Animals
Animal procedures were performed in accordance with UK Home
Office regulations and approved by Edinburgh University Director of
Biological Services. Generation and characterization of Psd95eGFP/eGFP;-

Sap102mKO2/mKO2 knock-inmice were described previously using C57BL/
6 J mice3. Pax6+/− mice22 were crossed with PSD95-eGFP and SAP102-
mKO2mice to generate cohorts ofPax6+/−;Psd95eGFP/eGFP;Sap102mKO2/mKO2

and control Pax6+/+;Psd95eGFP/eGFP;Sap102mKO2/mKO2 mice. We estimated
the sample size according to our previous studies in mutant and wild-
type mice2,3 using a t-test analysis. Both control (c) and mutant (m)
mice fromboth sexes were collected at nine postnatal timepoints: one
(P1, c = 11, m = 6), seven (P7, c = 7, m= 7), fourteen (P14, c = 6, m= 7),
twenty-one (P21, c = 7, m= 8), twenty-eight (P28, c = 8, m= 7), thirty-
five (P35, c = 11, m = 6), forty-two (P42, c = 7, m =6), forty-nine (P49,
c = 6, m= 6) and fifty-six (P56, c = 16, m=9) days. We only excluded
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See Methods for sample numbers.
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animals with absent or damaged brain regions due to errors in dis-
section. After imaging we only excluded images that were out of focus.
No data were excluded after computational replication. Samples were
allocated according to their postnatal day of collection into 9 groups
(P1-P56). When collected each sample received a randomized ID
number, masking their genotypes. The masking ID number was
maintained during tissue and imaging processing.

Tissue collection and sectioning
Mice were anesthetized by an intraperitoneal injection of 20% (w/v)
sodium pentobarbital (Pentoject; Animalcare, York, UK): 0.01ml for
P1–P7, 0.05ml for P14–P21, 0.1ml for P28-P56. After complete anes-
thesia, phosphate-buffered saline (PBS;Oxoid, Basingstoke, UK) at 5ml
for P1–P14 and 10ml for P21-P56 was perfused transcardially, followed
by 4% (v/v) paraformaldehyde (PFA; Alfa Aesar, Heysham, UK) at 5ml

for P1–P14 and 10ml for P21–P56.Whole brains were dissected out and
immediately postfixed at 4 °C in 4% PFA (2 h for P1–P14, 4 h for
P21–P56) before transfer into 30% (w/v) sucrose (VWR Chemicals,
Lutterworth, UK) at 4 °C in 1×PBS. Brains were then embedded into
Optimal Cutting Temperature (OCT; CellPath, Newtown, UK) medium
within a cryomould and frozen in isopentane cooled with liquid
nitrogen. Brains were then sectioned in the parasagittal plane at 18 μm
thickness using an NX70 cryostat (Thermo Fisher Scientific, Glouce-
ster, UK). Cryosections were mounted on Superfrost Plus glass slides
(Thermo Fisher Scientific) and stored at −80 °C.

Tissue preparation
Parasagittal sections from left hemisphere (corresponding to sections
12–13/24 from sagittal Allen Brain Reference Atlas)75 were washed for
5min in PBS, incubated for 15min in 1mg/ml DAPI (Sigma-Aldrich,
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(color bar, arbitrary units) and statistical differences between synaptic responses of
control (upper) and Pax6+/− (lower) were assessed.

Article https://doi.org/10.1038/s41467-022-34131-w

Nature Communications |         (2022) 13:6836 8



Gillingham, UK), washed with PBS and mounted using home-made
MOWIOL (Calbiochem, Nottingham, UK) containing 2.5% anti-fading
agent DABCO (Sigma-Aldrich), covered with a coverslip (thickness
#1.5, VWR International) and imaged the following day.

Spinning-disk confocal microscopy
Fast high-resolution imaging was achieved using an Andor Revolution
XDi system (Andor, Oslo, Norway) equipped with a UPlanSAPO 100x
oil-immersion lens NA 1.4 (Olympus, London, UK), a CSU-X1 spinning-
disk (Yokogawa, Runcorn, UK) and an Andor iXon Ultra monochrome
back-illuminated EMCCD camera, a 2x post-magnification lens and a
Borealis Perfect Illumination DeliveryTM system. Images acquired with
that system have a pixel dimension of 84 × 84 nm and a depth of 16
bits. A single mosaic grid was used to cover each entire brain section
with an adaptive z focus set up by the user to follow the unevenness of
the tissue using the Andor iQ2 software. In both systems, eGFP was
excitedusing a 488 nm laser andmKO2with a 561 nm laser. Acquisition
parameters were optimized at adult stages when the synapse intensity
was high.

Cohen’s d formula
Cohen’s d values in Fig. 2 measure the effect size of synaptome para-
meter changes between control and Pax6+/− mice as follows:

d =
x0
1 � x02
s

ð1Þ

where x0
1 and x02 are the sample average synaptome parameter for the

Pax6+/− and control groups, respectively, for a given subregion, and s
is pooled standard deviation, as follows:

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 � 1Þ s21 + ðn2 � 1Þ s22
n1 + n2 � 2

s

ð2Þ

where s1 and s2 are the sample standard deviations in Pax6+/− and
control groups, respectively, and n1 and n2 are the sample numbers of
mutant and control groups, respectively.

The Cohen’s d values in Figs. 4 and 5 were calculated based on the
Bayesian estimation by firstly inferring a probability distribution of
Cohen’s d values. The final Cohen’s d value was then given as themode
of the distribution. Details of the calculation are provided in the next
section.

Bayesian analysis
Bayesian estimation76 as used previously3 was also applied to test the
significance of the mutant effects on synaptome maps, including
subtype density (Fig. 2), similaritymatrix (Fig. 5), and synapse diversity
(Fig. 4A), and also the difference in mutant effects on SPL versus LPL
synapse subtypes (Fig. 4C). The results were finally corrected over all
subregions using the Benjamini-Hochberg procedure.

Bayesian estimation was also used in calculating the Cohen’s d
values between Pax6+/− and control mice (Figs. 5B, C and 4A, C). Using
the Monte Carlo simulation, the sample number was upscaled based
on the sample values and a t-distributionmodel to infer the probability
density distributions/functions (PDFs) of the mean and standard
deviation of the Pax6+/− and control groups. Then the distributions
(PDFs) of Cohen’s d values were calculated based on the mean and
standard deviation. The final Cohen’s d was given as the mode of its
PDF, namely the Cohen’s d value that gave the highest probability
density.

In Fig. 4C, we testedwhether the SPL subtypes have a largermutant
effect size than the LPL subtypes in each subregion across all age
groups. This was achieved by comparing the mutant effect size values
(Cohen’s dmutant) of SPL and LPL subtypes using Bayesian analysis. We
first inferred the PDFs of mutant effect size, fSPL(dmutant) for SPL and

fLPL(dmutant) for LPL, respectively, with a Monte Carlo simulation. The
two PDFs fSPL(dmutant) and fLPL(dmutant) were then compared using
Bayesian analysis to test whether the mutant effect size in SPL was
significantly larger or smaller than that in LPL, and by how much using
Bayesian estimation of the Cohen’s dSPL−LPL,

dSPL�LPL =
E f SPL dmutant

� �� �� E f LPL dmutant

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 f SPL dmutant

� �� �

+ s2 f LPL dmutant

� �� �� �

=2
q ð3Þ

where E[f] and s[f] are and are, respectively, the expectation and
standard deviation of a PDF f. The Cohen’s dSPL−LPL of SPL against LPL
and the corresponding significance P values were calculated for each
of the 131 subregions in all age groups. The Benjamini-Hochberg
multiple comparison correctionwas finally applied over all subregions
to generate the adjusted P values.

Similarity matrices and network analysis
Each row/column in the matrix represents one delineated brain sub-
region at one age of either control or mutant group (Figs. 5A and S2).
Elements in the matrix are the synaptome similarities between two
subregions quantified by differences in standardized synaptome
parameters. The similarity ratio (Sratio) of the matrix in the Pax6+/− and
control mice of different ages in Fig S2 is calculated as the similarity of
two subregions from different main regions (corresponding to areas
outside the white boxes distributed diagonally in the similarity matri-
ces in Figs. 5A and S2) dividedby the similarity of two subregions in the
same main region (the areas marked by the white boxes lying on the
diagonal in Figs. 5A and S2). A high Sratio value indicates a homo-
geneous synaptome similarity distributed over all columns/rows in the
matrix, whereas a low ratio indicates homogeneous synaptome simi-
larity only within the same main region. Details concerning the calcu-
lation of similarity matrix and ratio have been published previously2,3.

After the Sratio is calculated for each subregion in the Pax6+/− and
control mice of different ages, the Bayesian estimation was used to
provide a developmental trajectory of Cohen’s d with P values
in Fig. 5B.

The network analysis was based on the similarity matrices of
individual brain sections quantified in a similar way to those in Figs. 5A
and S2. Nodes in the network are representations of the delineated
subregion. The small worldness is the topology quantification of the
network, where the whole set of nodes is divided into small and clus-
tered groups: nodes within the same groups are highly connected/
similar, whereas those between groups are disconnected/dissimilar77.
Details of the small-worldness calculation canbe found in our previous
studies2,3. With the small-worldness values calculated for each age in
the Pax6+/− and control mice, the Bayesian test was used to calculate
the Cohen’s d and P values in Fig. 5C.

Computational modeling of synaptic responses
Computational modeling of synaptic responses was based on our
previously described model3 representing physiology in the
CA1 stratum radiatum, briefly outlined below. Here we extend this
model to include the effects of genotype and age. These models
simulate changes in synapse physiology, EPSP amplitudes, short-term
plasticity and temporal summation based on observations from neu-
rons where PSD95 and SAP102 expression is altered33,44–47.

Synaptic scaling representing genotype and age. The amount of
PSD95 and SAP102 in synapses along the radial and tangential direc-
tions of the CA1 stratum radiatum (Figs. 6 and S4) is derived from the
fluorescence intensity measurement of individual synaptic puncta and
represented by color intensity; PSD95 (green) and SAP102 (magenta),
as described in previous work2,3, were used to scale the synaptic
properties of the computational model to represent differences in
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genotype and age. Tomodel synaptic physiology corresponding to P1,
P7, P28, P35 and P56 in control and Pax6+/− animals, differences in the
intensity of PSD95 and SAP102 along radial as well as tangential
directions of CA1sr were computed as outlined below.

The CA1 stratum radiatum was delineated into four radial and ten
tangential subregions, for each of the genotypes and age groups. Next,
we computed the geometric mean over individuals (control N = 5,
Pax6+/−N = 4) of intensity of PSD95 and SAP102. Then, for each radial or
tangential direction and protein, we normalized data according to the
following. We computed the mean for each age point and genotype
(the mean expression level along a direction for that age and geno-
type) and from this identified the minimum and the maximum value
over all ages and genotypes. Normalization was done by subtracting
the minimum value and dividing by the span (the difference between
the maximum value and the minimum value). Thus, for radial and
tangential values of PSD95 and SAP102, the intensity of expressionwas
compared over all time points regardless of genotype. This relative
intensity was used to scale the spatial distribution of synaptic puncta
used in previous work3. This scaling thus takes into consideration the
observation that intensities of PSD95 and SAP102 increase fromP1 and
attain a maximum at 3 months2, which is the age of the mice in the
study by Zhu et al.3, and allows for a comparison of Pax6+/− versus
control relative intensity levels over the age points studied.

In the model, weighted spatial distribution of synaptic puncta
described above were used to scale the amplitude of short-term
depression and facilitation (the PSD95 and SAP102 tangential gradient
decrement factor, respectively), as well as the time constant of short-
term depression and facilitation (the PSD95 and SAP102 radial decre-
ment factor, respectively). The model is constrained to consider only
age-dependent and genotype-dependent changes in synapse protein
composition and does not consider potential changes in dendritic
morphology or other neuronal properties. Synaptic responses fol-
lowing a stimulation pattern were first quantified for each synapse as
the sum of synaptic max amplitudes reached following each of the
20 stimulus pulses. Differences in synaptic responses between control
and Pax6+/− mice of all age groups and all stimulation patterns were
assessed using a paired t-test with corrections for multiple compar-
isons using Benjamini-Hochberg correction, where all the 121 synaptic
responses of the control case were compared with those from the
Pax6+/− case.

Computational model of spatial differences in PSD95 and
SAP102
The following text is adapted fromZhu et al.3 where themodelwasfirst
described andmodels synaptomedata from the CA1 stratum radiatum
of mice aged 3 months.

Synaptic responses. Synaptic EPSPs evoked by an incoming event
(transmitter release following a presynaptic spike) were described by a
bi-exponential function. Parameters τ1 and τ2 were set to reproduce a
fast ionotropic synaptic AMPA-type time course.

V =Ae × ðexpð�t=τ1Þ � expð�t=τ2ÞÞ ð4Þ

where Ae = Πi1 × Atfi × Atdi, τ1 = 3.0ms, τ2 = 0.4ms, i index of all
preceding spikes.

Short-term synaptic changes followed a formalism described by
Tsodyks and Markram78 and Varela et al.79. We included one fast and
one slow facilitating component and one depressing component, all of
which affected synaptic responses following the triggering one. In all
figures, amplitudes are shown normalized to the amplitude of the first
response.

Depression model.

Adi =Ad × expð�Δt=τdÞ ð5Þ

where
Δti is the time between the preceding event i and the

present event
Ad = Ad0 × SAd, SAd is normalized tangential PSD95 size

factor*, [0, 1]
τd = τd0 × STd, STd is normalized radial PSD95 size factor*, [0, 1]
Atdi = max (Σi(1−Adi), 0), total depressing response was limited to

positive values.

Fast facilitation, F1.

Af i =Af × expð�Δti=τf Þ ð6Þ

where
Af =Af0 × SAf, SAf is normalized tangential SAP102 size factor*, [0, 1]
τf = τf0 × STf, STf is normalized radial SAP102 size factor*, [0, 1]

Slow facilitation, F2.

Asi =As × expð�Δti=τsÞ ð7Þ

where

As =As0

τs = τs0

The total facilitatory response had a saturation at 3.3 times the
unit response80.

Atf i = minð1 +ΣiðAf i +AsiÞ, 3:3Þ ð8Þ
∗The experimental tangential and radial profile data of PSD95 and

SAP102 normalized size data3 were used to set the differential model
parameter values along the spatial dimension.

Estimation of free model parameters from data. Free model para-
meters were set to replicate experimental data of synaptic ampli-
tudes in response to a 10 cycle theta-burst protocol47. The model
was fitted to amplitude data from theta-burst experiments for
bursts 1, 2, 8 and 10 in a 10 burst protocol. Verification tests showed
that including a second, potentially slower, depression factor did
not significantly reduce the fitting error. Furthermore, PSD95-
related parameters were set to replicate the respective paired-pulse
facilitation fractional differences between recordings in tissues
from wild-type and knockout animals (IPI = 25, 50, 100, 200ms)44.
For the estimation of the parameters in knockout models, only Ad0,
τd0 and Af0 were allowed to change. Verification and parameter
sensitivity tests showed that inclusion of the three other para-
meters did not significantly affect the fitting error. Simulations were
performed using MATLAB, R2020a with a time discretization of
1 ms. Time constants τ in unit ms and amplitudes in a.u (arbi-
trary units).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The synaptic data generated in this study have been deposited at
Edinburgh DataShare42 and project website43. Raw imaging data can be
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made available on request. There are no restrictions on data avail-
ability. Source data are provided with this paper.

Code availability
Analysis scripts used in this manuscript are available on GitHub
(https://github.com/rickqiu1981/Mouse-synaptome-Pax6-disease).
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