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Abstract. Developmental studies have suggested that infants’ action is
goal-directed. When imitating an action, younger infants tend to repro-
duce the goal while ignoring the means (i.e., the movement to achieve
the goal) whereas older infants can imitate both. We suggest that the
developmental dynamics of a Recurrent Neural Network with Paramet-
ric Bias (RNNPB) may explain the mechanism of infant development.
Our RNNPB model was trained to reproduce six types of actions (2 dif-
ferent goals x 3 different means), during which parametric biases were
self-organized to represent the difference with respect to both the goal
and means. Our analysis of the self-organizing process of the parametric
biases revealed an infant-like developmental change in action learning:
the RNNPB first adapted to the goal and then to the means. The differ-
ent saliency of these two features caused this phased development. We
discuss the analogy of our result to infant action development.

Keywords: Cognitive developmental robotics,Infant action development,
Recurrent neural network, RNNPB.

1 Introduction

It is known that infants can understand and imitate adults’ goal-directed actions
as reported in previous empirical studies [1,2]. The study of Carpenter et al. [3]
compared an ability of imitation of a goal-directed behavior between 12-month-
old and 18-month-old infants when an adult demonstrated actions with two
different goals and two different motion styles. Their results demonstrated that,
younger infants achieved the goals of the actions while ignoring the motion styles
(i.e., the means). Older infants, however, reproduced the both without ignoring
them.

Why is there a difference in the ability between younger and older infants
in terms of two aspects of the goal-directed action? A perspective of cognitive
developmental robotics has suggested computational approaches to understand-
ing the internal mechanisms of cognitive developmental process of humans [4,5].
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Tani and Ito [6] suggested a neural network model called a Recurrent Neural
Network with Parametric Bias (RNNPB). The key feature of an RNNPB is that
it can encode multiple dynamic patterns into a static activity of the parametric
bias (PB) units and the representation of the PB units is self-organized during
learning process. It is also known that the RNNPB has biological plausibility
such as mirror neuron property [6, 7]. Hence, this architecture has been used in
robotic experiments for goal-directed action imitation [6, 8]. The study by Ito
et al. [9] showed that a self-organized representation of the PB units exhibits a
generalization capability in case of simple action learning.

Our study investigates how PB units are gradually self-organized during learn-
ing of an RNNPB in order to represent the two aspects of goal-directed actions
(i.e., the goal and means). It can be expected that the PB units would be or-
ganized to be able to distinguish all trained actions, as previous studies have
shown. The dynamical changes in learning process, however, cannot be predicted
because there have not yet been any studies of that. If there are meaningful
relation between the dynamic changes of the PB units and the two aspects of
goal-directed actions, it would provide new insights into the mechanism of infant
development of goal-directed behavior.

2 Goal-Directed Behavior

A virtual robot arm, which consists of two joints, is defined in a simulated
environment as illustrated in Fig.1(a). In this environment, each joint (θ =

[θ1, θ2]
T
) moves from 0 to 180 degrees in a two dimensional space. Inspired by

the experiment of Carpenter et al. [3], goal-directed actions are designed to reveal
two aspects of reaching behavior: the goal and the means. The goal of an action
is moving the arm from the initial position to one of two goal positions (A, B).
The means of an action is matching the trajectory of the movement.

(a) (b)

Fig. 1. (a) An overview of task and simulation environment. (b) The sequence of joint
angles.

As shown in Fig. 1(b), the motor behavior consists of three parts. In the first
part, the arm waits at the initial state for Tstart time steps, and then moves to
the goal state for Tmeans. Finally, it stays at the goal state for Tend. Hence, a
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Table 1. Lists of reference behaviors

Goal Period Amplitude Goal Period Amplitude

A0 A - - B0 B - -
A1 A Tmeans α B1 B Tmeans α

A2 A 0.5Tmeans α B2 B 0.5Tmeans α

reaching behavior appears in the form of time sequence of joint angles Θ whose
length is L = Tstart + Tmeans + Tend.

For each goal position (A, B), there are three different types of movements
to achieve the goal (see Fig.2). Thus, there are totally six reference motor be-
haviors (2 simple movements + 4 hopping movements) as explained in Table
1. A0 and B0 are simple movements, which have straight trajectories of the
joint angles from the initial posture to the goal posture (see Figs.2(a) and (d)).
A1, A2, B1 and B2 are, in contrast, hopping movements, which add a sinu-
soidal perturbation with a different period (see Figs. 2(b), (c), (e) and(f)). In
our experiment, the agent is supposed to experience a desired motor behavior
Θref ∈

{

Θ{A0,A1,A2},Θ{B0,B1,B2}

}

through, for example, kinesthetic teaching.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Three different movements for two goal positions. (a) to (c) are reaching for
the goal A, and (d) to (f) are for the goal B.
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3 An RNNPB Model for Learning Agent

The main feature of an RNNPB [6] is that it can encode multiple dynamics of
input/output relationships using static activation of PB units, where PB units
are self-organized through learning process. The agent can be modeled to build
its own internal memory for goal-directed actions based on its own experiences.

3.1 Architecture of the Model

As modified version of Jordan-type recurrent neural networks [10], an RNNPB
basically consists of input/output units in a three-layered structure and context
units with closed feedback. In addition, it has PB units in the input layer, which
enable the network to learn multiple actions. (see Fig. 3(a)). The parameters of
the network are Ψ = {W21,W32,b2,b3} , where W21 and b2 are the connecting
weight and the bias between the first and hidden layers, and W32 and b3 are
the same between the hidden and third layers.

(a) (b) (c)

Fig. 3. (a) An RNNPB model consists of three layers: input layer, hidden layer, and
output layer. (b) and (c) indicate the PB space before learning and after learning,
respectively. The six goal-directed actions Yref are encoded as different PB values
xrecog, which are illustrated as markers in the space.

In our experiment, the activity of input/output units represent normalized
joint angles of the virtual robotic arm θ. Hence the number of input/output
units is 2, and the activity of input/output units is denoted by y = [y1, y2]

T . PB
units have two elements because it is easy to visualize and analyze them in a two-
dimensional space. The number of the context and hidden units is empirically
set to be able to represent all the reference behaviors.

3.2 Learning Procedure

The main rule of learning is to update the network parameters Ψ to enable the
agent to generate desired motor behaviors. The agent initially has randomly
initialized network parameters Ψ0. When the agent experiences a desired motor
behavior Yref ∈

{

YA{0,1,2}
,YB{0,1,2}

}

as a form of a normalized time sequence
Y = [ŷ1, · · · , ŷL], the network parameters Ψn at the n-th iteration are updated
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to minimize errors Eout
t between the desired values ŷt and the outputs predicted

by the network yt for all time steps (1 ≤ t ≤ L). Back Propagation Through
Time (BPTT) [11] is used for updating Ψ .

Eout
t = ŷt − yt (1)

During the BPTT process, the back-propagated delta values for the hidden
units δhid, the input units δin, the output units δout, the context units δcxt, and
the PB units δPB are calculated from the error of the outputs Eout

t from 1 to T

time steps. Especially values of PB units (x = [x1, x2]
T ) are updated by Eq. (2).

∆ρ
(i)
PB = kbp

T
∑

t=1

δ
(i)
PB,t

x(i) = sigmoid(ρ
(i)
PB) (2)

After the value of the PB units x
(n)
i is determined for behavior i at the n-th

iteration, it is used for calculating the forward dynamics and updating ψn+1 in
the (n+ 1)-th iteration.

3.3 Recognition and Generation Procedure

When the normalized reference behaviors Yref are given in the recognition
phase, the RNNPB firstly finds corresponding PB values xrecog based on the
BPTT algorithm. Unlike the learning procedure, only PB values are updated in
the recognition phase.

In the generation phase, the RNNPB generates new motor behaviors Ygen

based on the PB values xrecog recognized in the previous phase. The activity of
the output units at t time step is calculated using the network parameters Ψ . As
the output is directly used as the values of the input units at t+ 1 time step, a
sequence of motor behavior is generated step by step.

3.4 Role of PB Values

A set of static PB values represents a corresponding action as a characteristic
of the RNNPB model. The PB values, which range from 0.0 to 1.0, are self-
organized through learning so as to represent all the experienced actions. Thanks
to linearity (not globally but locally) in the PB space, the RNNPB can also
represent novel behaviors by combining experienced actions. Figs. 3(b) and (c)
illustrate how the PB space is self-organized through learning. Before learning
(see Fig. 3(b)), the six goal-directed actions are not separated from each other.
The RNNPB at this stage would thus produces only one type of motion. The
PB values for the six actions gradually change during learning. After learning
(see Fig. 3(c)), the six actions will be discriminated as six different PB values,
which can generate the desired actions.
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4 Experimental Results

We trained an RNNPB model to reproduce the six goal-directed actions de-
scribed in Section 2.

4.1 Learning Curve

The ability of an agent with the RNNPB model was assessed in terms of two
viewpoints. The first point of view is whether the agent successfully reaches
the desired goal posture from the initial posture. An error Egoal was calculated
by taking the average of two error values at the initial posture Estart and the
end posture Eend. The two error values (Estart and Eend) were obtained by

calculating Euclidian distance between the reference motor behaviors y
ref
t ∈

Yref and generated motor behaviors ygen
t ∈ Ygen at tstart and tend, respectively

(see Fig. 1(b)).

Estart =
∥

∥

∥
y
ref
tstart

− y
gen
tstart

∥

∥

∥
, Eend =

∥

∥

∥
y
ref
tend

− y
gen
tend

∥

∥

∥

Egoal =
Estart + Eend

2
(3)

The second point of view is measuring how accurately the agent traces the
style of movements. An error of the means Emeans was defined as the averaged
error over Tmeans time steps, where Euclidian distance between the reference
motor behaviors yref

t and generated ones ygen
t was applied.

Emeans =
1

Tmeans

∑

t∈Tmeans

∥

∥

∥
y
ref
t − y

gen
t

∥

∥

∥
(4)

Fig. 4 shows the average value of Egoal and Emeans for 100 RNNPBs with
different initial parameters Ψ0. As the RNNPB models have been trained, the
error values also have decreased. The average error for the goal became smaller
than the average error of the means when the networks had been trained enough.

4.2 Dynamics of PB Space and Generated Output

To investigate the developmental dynamics of the PB space and its relation to the
action generation, Emeans was examined for all possible PB values. Additionally
a recognized PB value xref for each reference action Yref and generated output
Ygen were calculated. Three iteration points (0, 10,000 and 200,000) were picked
up based on the error curves to show the dynamical self-organization of the PB
space. Fig. 5 shows the result for an RNNPB among the 100 trained RNNPBs.
On the left-side of this figure (see Figs. 5 (a), (c) and (e)), the direction and the
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Fig. 4. The transition of errors in terms of the goal Egoal and the means Emeans. The
two curves plot the average of 100 networks with different initial parameters.

color of triangular markers indicate which types of actions (Sx) have a minimum
error value with the corresponding PB values.

Sx = argmin
S∈{A0,··· ,B2}

{

Emeans

∣

∣

Yref=YS

}

(5)

On the right-side of the figure (see Figs. 5 (b), (d) and (f)), the reference
behaviors Yref (thick lines) and the generated outputs Ygen (thin lines) are
plotted for the six different actions. Recognized PB values for each reference
behavior xrecog are painted as a circle with a triangular marker in (a), (c), and
(e).

The result shows that the agent has gradually improved the ability to repro-
duce the reference actions as it increases experiences. Meanwhile, the PB space
is gradually self-organized to represent the actions. When the agent has no ex-
perience of the reference behaviors (0 iteration), it cannot produce the desired
actions due to the undifferentiated PB values (see Figs. 5 (a) and(b)). When the
agent has been trained for 10,000 iterations, it generates simpler behaviors (i.e.
A0 and B0) well, while producing larger errors for the hopping actions (i.e., A1,
A2, B1, and B2) (see Figs. 5 (c) and (d)). The PB space separates only between
A and B but not within A and B, indicating that the goal of the actions has
been acquired but the means has not yet. When the agent is fully trained, it
finally generates the six actions in terms of both the goal and the means. The
well-organized PB values enable the agent to discriminate the actions (see Figs.
5 (e) and (f)). Taken all together, phased learning (i.e., first learning the goal of
the actions and then the means) has been achieved through the development.

5 Discussion

Empirical studies of infant action development have shown that only older infants
can imitate both of two aspects of the adults goal-directed actions. Our result of
the self-organizing dynamics of the PB space also showed similar characteristic
of the infant development. In terms of the trajectory of the reference behavior
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Dynamics of PB space and results of action generation. (a) (c) and (e) illustrate
which reference actions (from A0 to B2) have a minimum error in the PB space. The
direction and the colors of triangular markers indicate the goal and the style of motion,
respectively. The size of the markers indicates the amount of error Emeans: The larger
a marker is, the smaller the error is. Recognized PB values xrecog are illustrated as a
circle with triangular markers inside. (b) (d) and (f) represent Ygen (thin lines) for all
reference actions Yref (thick lines) in the time domain. The red and green lines are
the first and second joint angles, respectively.
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Yref and the generated action Ygen (see Fig. 5), the immature agent that was
trained 10,000 iterations reproduced the goal position well and only the simple
trajectories without sinusoid movement. The mature agent, on the other hand,
reproduced both of the goal postures and the shapes of the trajectories. As a
result, it was found that the RNNPB model first adapted to the goal and then
the means among the two aspects of motions through learning process.

As reported in the studies by Carpenter et al. [3] and Bekkering et. al [12],
infants imitate adults action differentially based on the salience of the actions.
For instance, Carpenter et al. [3] compared two different types of movements:
(a) sliding an object and (b) bouncing the object several times. Both 12- and 18-
month-old infants tended to ignore the means of motions when a toy house was
given as the goal position (House condition). In contrast, when the goal position
was not indicated (No house condition), infants imitated well the means of the
motions (sliding and hopping) as ignoring the goals.

In case of the RNNPB model, the error function used for the BPTT learning
(see Eq. 2) seems to be a key rule for the phased development of the two aspects of
the actions. The internal parameter of the network Ψ is updated at one iteration
and the amount of the update is calculated based on the error values for the
whole action sequence and for all the reference behaviors. Hence, the effects of
error values are averaged for all the reference behaviors. That is, it makes the
error of the transition part (i.e., the means) diminish while relatively enhancing
the error in the initial and the goal states of the actions. The errors of the means,
however, become a salient feature after the errors of the goal decreased enough.
Another characteristic of the RNNPB model is that more than one behavior can
be encoded into the PB values by the one network parameter.

An interesting point is that the change of the salient features of actions in the
RNNPB model is due to its internal maturing procedure without changing the
capacity of the network or giving any external signal. This could be one of possi-
ble explanations for the development of infants’ ability for goal-directed actions.
However, there is still a small gab between our model and infant mechanism in
terms of the representation of behaviors. Therefore, we intend to improve our
model by including multimodal representation such as visual information and to
examine whether it can better simulate infant experiments.

6 Conclusion

In this study, we trained the RNNPB model to reproduce the six goal-directed
actions using the virtual robot arm. The goal-directed actions were composed
of the two different goal positions and the three different means of motions.
While the network was gradually trained, the organization of the PB space and
the generated actions were analyzed. As a result, the agent trained for 10,000
iterations could generate the simple actions well as fulfilling the goal but not
the hopping actions. The agent trained for 200,000, in contrast, could generate
both the simple and the hopping actions accurately. Taken together, our RNNPB
model first adapted the goal and then the means during learning process. Finally,
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we discussed that these self-organized developmental changes in the RNNPB may
explain the mechanism of infant development of goal-directed actions.
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