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Carcinoma in situ testis (CIS), also known as intratubular germ cell neoplasia (ITGCN), is a pre-invasive precursor
of testicular germ cell tumours, the commonest cancer type of male adolescents and young adults. In this review,
evidence supporting the hypothesis of developmental origin of testicular germ cell cancer is summarized, and the
current concepts regarding aetiology and pathogenesis of this disease are critically discussed. Comparative studies
of cell surface proteins (e.g. PLAP and KIT), some of the germ cell-specific markers (e.g. MAGEA4, VASA, TSPY
and NY-ESO-1), supported by studies of regulatory elements of the cell cycle (e.g. p53, CHK2 and p19-INK4d)
demonstrated a close similarity of CIS to primordial germ cells and gonocytes, consistent with the pre-meiotic ori-
gin of CIS. Recent gene expression profiling studies showed that CIS cells closely resemble embryonic stem cells
(ESCs). The abundance of factors associated with pluripotency (NANOG and OCT-3/4) and undifferentiated state
(AP-2g) may explain the remarkable pluripotency of germ cell neoplasms, which are capable of differentiating to
various somatic tissue components of teratomas. Impaired gonadal development resulting in the arrest of gonocyte
differentiation and retention of its embryonic features, associated with an increasing genomic instability, is the
most probable model for the pathogenesis of CIS. Genomic amplification of certain chromosomal regions, e.g. 12p,
may facilitate survival of CIS and further invasive progression. Genetic studies, have so far not identified gene pol-
ymorphisms predisposing to the most common non-familial testicular cancer, but this research has only recently
begun. Association of CIS with other disorders, such as congenital genital malformations and some forms of
impaired spermatogenesis, all rising in incidence in a synchronous manner, led to the hypothesis that CIS might be
a manifestation of testicular dysgenesis syndrome (TDS). The aetiology of TDS including testicular cancer remains
to be elucidated, but epidemiological trends suggest a primary role for environmental factors, probably combined
with genetic susceptibility.
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Introduction

Testicular cancer is in most cases considered a disease of adults.
Seeing a young man presenting with a testicular tumour or with
symptoms of disseminated cancer disease, few clinicians would
think that their patient’s disease had been initiated long time
before, during fetal development. However, evidence gathered
over the last three decades and the newest findings support this
hypothesis, as will be critically discussed in this review.

The early origin is only one of the unique features of testicular
germ cell cancer. This neoplasm is unlike any other solid tissue
cancer for a number of reasons, including unusual epidemiological
and biological features. Epidemiological hallmarks include the
peak incidence in a very young adult age, a markedly increasing
incidence worldwide but with striking geographic and ethnic dif-
ferences, and association with other reproductive conditions.

Among particular biological features are the unusual histology
characterized by extreme heterogeneity with components mimick-
ing any tissue type of the body, including caricatural reflection of
early embryos in teratomas, and the extreme sensitivity to irradia-
tion and cytotoxic treatment.

One of the possible explanations for the unique biology of tes-
ticular germ cell cancer is that it is derived from germ cells, which
are different from any other cells in the body because of their spe-
cial function of exchanging and transferring hereditary informa-
tion as gametes. Germ cells are the only cells that use two
different types of cell division (mitosis and meiosis), and for that
they require different regulation of cell cycle and DNA repair. The
regulation of gene expression appears to be different as well,
including waves of epigenetic activation and silencing, and a final
selective chromosomal condensation during the process of sper-
miogenesis. In contrast to other cell types, germ cells retain
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embryonic stem cell (ESC)-like features and pluripotency for a
long time during development. For reasons not yet fully under-
stood, perhaps because of this special hereditary role, germ cells
and the reproductive system serving them appear to be exquisitely
sensitive to changes in micro- and macro-environment. Research
on these aspects has been energized in recent years after adverse
epidemiological trends in male reproduction were observed world-
wide, with a rise in testicular cancer the first trend to be noted. As
will be discussed in detail in this review, studies on the origin and
biology of the early stage of this neoplasia played a key role for the
understanding of the association between male reproductive disor-
ders and their possible link to changing environment and lifestyle.

A bit of history: histopathology of germ cell neoplasia

Germ cell tumours have fascinated several generations of patholo-
gists because of their histological heterogeneity and seemingly
unlimited ability to differentiate into all somatic tissues (totipo-
tency). Moreover, germ cell-like tumours were noticed in remote
extragonadal locations, including intracranial sites, usually near the
midline of the body. Histological complexity of germ cell tumours
constituted a diagnostic conundrum and contributed to the chaos
with numerous classifications and nomenclatures. Because classifi-
cation is not the topic of this review, the readers are referred to spe-
cialist reviews and monographs (Grigor, 1993; Ulbright et al.,
1999; Eble et al., 2004). An easy and logical division of testicular
germ cell tumours follows three age groups: tumours of newborns
and infants (teratomas and yolk sac tumours), tumours of adoles-
cents and young adults (seminomas and non-seminomas, which
may also occur simultaneously as combined tumours) and the sper-
matocytic seminoma of elderly men (Oosterhuis and Looijenga,
2005). In addition, individuals with intersexual phenotype and dys-
genetic gonads can harbour gonadoblastoma, a clinically benign
but potentially malignant lesion (Scully, 1970). The tumours of
infants and elderly are very rare.

One of the most important advances in the understanding of the
biology and natural history of germ cell neoplasms, which led to a
substantial revision of previous classifications, was the first
description of testicular carcinoma in situ (CIS) in patients who
subsequently developed testicular cancer, by a paediatric endo-
crinologist with a keen interest in testicular development and func-
tion in various pathologies (Skakkebæk, 1972). The cells
described by Skakkebæk as a precursor for overt germ cell
tumours were seen previously, however, others did not recognize
their biological significance and considered them as ‘degenerate
forms’ secondary to a tumour or ‘intratubular spread of tumour
cells’ (Azzopardi et al., 1961; Mark and Hedinger, 1965), even
several years after the Skakkebæk’s description of CIS (Teilum,
1976; Pugh and Parkinson, 1981). Skakkebæk himself acknowl-
edged those earlier descriptions (Skakkebæk, 1981), but it
required an intervention by Gondos (1990) and a recent gracious
commentary by Parkinson and Harland (2002) to put the earlier
history of the discovery of CIS in the correct context. After a few
years of denials and discussions, CIS has been commonly
accepted as a precursor for all germ cell tumours of the adoles-
cents and young adults, both seminomas and non-seminomas
(Ulbright et al., 1999). Other synonyms for CIS have been pro-
posed: intratubular germ cell neoplasia (ITGCN), also called unclas-
sified (ITGCNU) (Ulbright et al., 1999), testicular intraepithelial

neoplasia (Loy and Dieckmann, 1990) and gonocytoma in situ
(Grigor, 1993). As will be evident from the discussion below, the last
term may be the most accurate from the biological point of view.

Already some of the early studies of Skakkebæk and his group
provided evidence that CIS was the pre-invasive lesion for the
tumours of the adolescents and young adults but not for the infan-
tile tumours or spermatocytic seminoma (Müller et al., 1987;
Skakkebæk et al., 1987; Jørgensen et al., 1995a). Biological dif-
ferences in the pathogenesis of these rare tumours have been con-
firmed subsequently by studies of genomic aberrations and gene
expression patterns (Hawkins et al., 1997; Kraggerud et al., 1999;
Perlman et al., 2000; Schneider et al., 2001; Stoop et al., 2001;
Rajpert-De Meyts et al., 2003b; Looijenga et al., 2006).

Phenotypic features of CIS in relation to germ cell 
differentiation

Morphological features of CIS cells (Figure 1) have been described
in numerous previous articles and pathology textbooks (Skakkebæk,
1972; Ulbright et al., 1999; Rørth et al., 2000; Eble et al., 2004).
Close morphological similarity between CIS cells and human fetal
gonocytes (as well as seminoma cells and the neoplastic germ cells
of gonadoblastoma) was noticed soon after the first description of
this lesion and later confirmed by ultrastructural studies (Holstein
and Körner, 1974; Nielsen et al., 1974; Gondos, 1993). Subsequent
studies provided supporting evidence for these similarities based on
the comparison of immunohistochemical markers (Hustin et al.,
1987; Jørgensen et al., 1993, 1995b, 1997; Honecker et al., 2004).
Over the years, more and more proteins/antigens were identified in
CIS cells (a partial list is presented in Table I). The status of know-
ledge on the emerging phenotype of the CIS cell up to year 2002 was
summarized in my previous review (Rajpert-De Meyts et al., 2003a).
Here, only the most important earlier findings are briefly highlighted,
whereas the most recent advances are described in greater detail.

Figure 1. Histological appearance of human adult testis with carcinoma
in situ (CIS), in cross-sections stained with haematoxylin–eosin (on the left).
CIS cells are visualized by immunohistochemical staining for placental-like
alkaline phosphatase (PLAP) in the same tissue samples (images on the right).
(A and B) Low power images showing the different appearance of tubules with
CIS in comparison with tubules with preserved spermatogenesis. (C and D) Higher
magnification images showing details of CIS cells’ morphology. Scale bar, 50 μm.
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CIS markers, including the KIT receptor, are also expressed in 
human gonocytes

Early studies focussed on finding clinically useful marker to facil-
itate the detection of CIS in testicular biopsies. A classic example
is placental-like alkaline phosphatase (PLAP, Figure 1), the first
identified marker of murine primordial germ cells (PGCs) with
still unknown biological function, which remains to this day the
most commonly used marker for CIS and seminoma in testicular
biopsies and other pathological tissue samples (Jacobsen and
Nørgaard-Pedersen, 1984; Hustin et al., 1987; Rajpert-De Meyts
et al., 2003a; references therein).

Over the years, the list of markers for CIS steadily grew; the
early markers were usually identified serendipitously, e.g. by
testing of an antibody against a glycoprotein abundant in a
tumour cell line. Two of these markers, TRA-1-60 (Giwercman
et al., 1993; Badcock et al., 1999) and M2A (Giwercman et al.,
1988; Marks et al., 1999), which are abundant in CIS but unde-
tectable in the normal adult testis, were detected in normal fetal
and infantile germ cells, thus giving the first evidence supporting
the hypothesis of the prenatal origin of CIS (Jørgensen et al.,
1993, 1995b).

Further evidence for our hypothesis was provided by investiga-
tions of the expression of c-KIT in germ cell neoplasms. This gene
encodes a cell membrane tyrosine kinase receptor for stem cell
factor, a signalling system essential for early germ cell survival, as
was first observed in mutant mice with either W or Sl phenotype
(Chabot et al., 1988; Huang et al., 1990; Yarden et al., 1987). Dif-
ferential expression of KIT was first described in germ cell
tumours by Strohmeyer et al. (1991a) and detected in CIS cells
(Figure 2) by Rajpert-De Meyts and Skakkebæk (1994), followed
by several other studies (Izquierdo et al., 1995; Strohmeyer et al.,
1995; Bokemeyer et al., 1996). As expected, KIT was also
strongly expressed in fetal and infantile gonocytes (Jørgensen

et al., 1995b; Robinson et al., 2001; Gaskell et al., 2004;
Honecker et al., 2004) but very low or undetectable in adult sper-
matogonia in the adult human testis, although this has been some-
what dependent on the specificity of the antibodies and tissue
fixation used (Rajpert-De Meyts et al., 2003b). The ontogeny of
expression of KIT in the human testis demonstrated that it is
present at a very high level in the majority of gonocytes during the
first trimester of gestation, thereafter the KIT expression was grad-
ually down-regulated (Jørgensen et al., 1995b; Gaskell et al.,
2004; Honecker et al., 2004). The retention of a very high expres-
sion of KIT beyond a normal window was noted in dysgenetic
fetal gonads of some intersex cases (Rajpert-De Meyts et al.,
1996a). As KIT is a potent pro-survival factor, its prolonged
expression could give a growth advantage to the surviving undif-
ferentiated cells. This observation, along with a known association
of CIS with poor gonadal development (Table II), led to a new
hypothesis that a delay in differentiation could be of one of the
mechanisms of neoplastic transformation of germ cells (Rajpert-
De Meyts et al., 1998a). This is in the line with reports on ‘gain-
of-function’ mutations in the c-KIT gene in virtually all sporadic
bilateral tumours, both seminomas and non-seminomas (Looijenga
et al., 2003a), and in a subset of familial and sporadic unilateral
testicular tumours but, interestingly, less frequently in non-seminomas
(Tian et al., 1999; Madani et al., 2003; Kemmer et al., 2004; Rapley
et al., 2004). The high frequency of mutations of KIT in bilateral
tumours suggests that the mutations most probably had occurred
in PGCs, before their migration to the gonadal regions has taken
place (Looijenga et al., 2003a).

Stem cell-like features: is CIS a fossil from the embryonic past?

The high expression of KIT (the receptor for the stem cell factor),
which is present in different types of tissue-specific stem cells,
turned our attention into stem cell-like characteristics of CIS

Table I. A list of selected proteins/antigens, which are expressed in carcinoma in situ (CIS) cells, presented in relation to the expression pattern in normal human 
male germ cells during their differentiation and maturation and in overt testicular germ cell tumours

EC, embryonal carcinoma; ESCs, embryonic stem cells; N-SEM, non-seminoma; PGC, primordial germ cells; SEM, seminoma; Sp-cytes, spermatocytes; Sp-gonia,
spermatogonia; SpSEM, spermatocytic seminoma; Sp-tids, spermatids; TER, teratoma.
A strong expression is marked by +, a heterogeneous expression by +/-. A minus sign means that a protein is not detectable by immunohistochemistry, but it may be
present in a given cell type in extremely low quantities, and the gene may be highly expressed at the RNA level. A question mark means that there is no information
concerning the protein presence. Modified and updated from Rajpert-De Meyts et al. (2003a).

Protein/antigen (gene) ESC PGC Gonocytes Sp-gonia Sp-cytes Sp-tids CIS SEM N-SEM SpSEM

EC TER

NANOG + + + – – – + + + – –
OCT3/4 (POU5F1) + + + – – – + + + – –
AP-2γ (TFAP2C) + + + – – – + + + –/+ –
TRA-1-60 + + +/– – – – +/– +/– + – –
PLAP (ALPL) – + + – – – + + +/– – –
M2A (PDPN) ? + + – – – + + – – –
KIT + + +/– –/+ – – + + – – –
DAZL1 ? + + +/– + – + +/– – – ?
VASA ? +/– +/– + + + + +/– – – +
Hiwi ? + + + + +/– + +/– – – ?
TSPY ? ? + + – – + + – – –
Cyclin D2 (CCND2) ? ? + – – – + +/– +/– +/– +?
MAGE-A4 ? – + + +/– – +/– +/– – – +
NY-ESO-1 ? – + + + – +/– – – – +/–
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cells. Previous studies of embryonal carcinoma-derived cell lines
have demonstrated that they closely resemble human ESCs,
including such hallmark features, as pluripotency and ability to
differentiate when stimulated with retinoic acid (Andrews, 1984,
1998). Among the above-mentioned early markers for CIS cells
was TRA-1-60, one of the best known markers for embryonal car-
cinoma and human ESC (Andrews et al., 1984; Giwercman et al.,
1993; Badcock et al., 1999; Henderson et al., 2002; Park et al.,
2004). More recently, OCT-4 (or OCT-3/4) encoded by POU5F1,
the first transcription factor associated with pluripotency and spe-
cific for ESC (Schöler et al., 1989) was detected in CIS cells,
gonadoblastoma and overt germ cell tumours, with the exception
of differentiated teratomas (Palumbo et al., 2002; Gidekel et al.,
2003; Looijenga et al., 2003b; Jones et al., 2004; Rajpert-De
Meyts et al., 2004). Interestingly, OCT-4 was highly expressed by
virtually all CIS cells in all these studies, whereas other markers,
TRA-1-60 and to lesser extent KIT, were present in a subset of CIS

cells only, preferentially in those in the vicinity of non-seminomas
or seminomas, respectively, thus demonstrating a remarkable
heterogeneity of CIS cells (Rajpert-De Meyts et al., 1996b).
Heterogeneity of the expression of certain embryonic and germ
cell-specific markers in CIS cells indicates plasticity of the pheno-
type of CIS cells, which may begin invasive transformation while
still in situ.

Recent development of high throughput methods sped up mark-
edly the characterization of gene expression in germ cell tumours
and CIS at the RNA level. Most of the published studies analysed
gene expression profiles in overt tumours or tumour-derived cell
lines, focusing first on genes on certain chromosomal regions, e.g.
17q and 12p (Skotheim et al., 2002; Rodriguez et al., 2003), and
later on a genome-wide analysis (Okada et al., 2003; Sperger et al.,
2003; Skotheim et al., 2005). The Norwegian group investigated
also gene expression at the protein level in a large array of tissues,
including CIS, and confirmed the expression of JUP (plakoglobulin)
in all CIS samples studied (Skotheim et al., 2003).

The first study that focussed on the expression profile of CIS
(Hoei-Hansen et al., 2004a) used differential display and identi-
fied several genes that function in fetal life and thus supported the
hypothesis of fetal origin of CIS. A substantial advance was the
study by Almstrup et al. (2004), which using a genome-wide
cDNA microarray, identified a large number of genes not previ-
ously reported in CIS. Importantly, the gene expression profile of
CIS revealed a remarkable similarity to ESC (Almstrup et al.,
2004). Among the genes over-expressed in CIS were NANOG,
POU5F1 (OCT-3/4), KIT, SFRP1, TFAP2C and several members
of the DPPA family, which all have been identified in human ESC
(Sato et al., 2003; Sperger et al., 2003; Clark et al., 2004), and
more recently, also in embryonal carcinoma (Skotheim et al.,
2005). A more detailed analysis of NANOG in CIS and germ cell
tumours demonstrated a pattern of expression essentially identical
to that of OCT-3/4 (Hart et al., 2005; Hoei-Hansen et al., 2005b).
A common feature of these genes is their link to pluripotency;
they prevent further differentiation of the cell and ensure a ‘stock’
of undifferentiated cells to renew the tissue. Outside the early
embryonic development, NANOG and OCT-3/4 are only found in
immature germ cells. A high expression of these genes is a
probable explanation of the ability of CIS cells to undergo repro-
gramming to pluripotent embryonal carcinoma and further differ-
entiation to teratomas, which may contain all types of somatic
tissues.

Some of the genes associated with ‘stemness’ are present not
only in ESC but also in various tissue-specific stem cells, e.g. KIT
and TFAP2C. TFAP2C (mapped to chromosome 20q13.2), which
encodes the transcription factor activator protein-2 (AP-2γ), was
previously known as a possible oncogenic factor in other neo-
plasms, e.g. breast cancer (Turner et al., 1998) but never detected
in testis. We established AP-2γ as a novel marker for fetal gono-
cytes and neoplastic germ cells, including testicular CIS (Figure 2),
with a role in pathways regulating cell differentiation and a pos-
sible involvement in testicular oncogenesis (Hoei-Hansen et al.,
2004b). This was confirmed by another study (Pauls et al., 2005).
Thanks to its abundance in nuclei of CIS cells; AP-2γ is currently
under investigation as a possible tool for the identification of CIS cells
in semen samples in a clinical setting (Hoei-Hansen et al., 2005a).

Studies of the pattern of expression during development (Figure 3)
demonstrated that OCT-4, AP-2γ, NANOG, as well as KIT, and

Figure 2. Examples of immunohistochemical staining for proteins highly
expressed in carcinoma in situ (CIS) cells in adult testicular specimens (left)
and in fetal gonocytes in normal fetal testes (right). Scale bar, 20 μm. (A and
B) KIT, (C and D) p53, (E and F) OCT-4 and (G and H), AP-2γ.
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probably a number of other CIS markers are abundant in early
fetal gonocytes and the expression gradually decreases while
gonocytes differentiate to infantile spermatogonia (Jørgensen
et al., 1995b; Gaskell et al., 2004; Hoei-Hansen et al., 2004b,
2005b; Honecker et al., 2004; Rajpert-De Meyts et al., 2004).
During human fetal testicular development, a rapid transition from
PGCs (which in the testis are germ cells not yet enclosed in sem-
iniferous cords) to gonocytes first takes place, later followed by
much slower differentiation of gonocytes into pre-spermatogonia
(also called infantile spermatogonia). At that time, germ cells
gradually loose their embryonic characteristics while acquiring
features of germ cells manifested by the expression of male-
specific genes. It is important to underline here the continuum of
the expression profile of germ cells, which are the only cell type in
the body that retains for such a long time the high expression of
genes necessary to maintain ESC-like pluripotency.

Germ cell-specific genes

In addition to ESCs and early fetal germ cells, CIS cells have also
a lot in common with normal germ cells of the adult testis. Numerous
of proteins/antigens present in normal spermatogonia were also
found in CIS cells. The list of such proteins is growing practically
by the day. Among the first published were globotriazol ceramide,
Gb3 (Kang et al., 1995), and neuron-specific enolase, NSE (Kang
et al., 1996), followed by many others, including some found also
in spermatocytes and even in haploid spermatids, as listed in Table I
(and reviewed in Rajpert-De Meyts et al., 2003a). One recent
example is VASA, a gene-encoding DEAD-box RNA helicase,
which is present in human germ cells throughout their develop-
ment and maturation (Castrillon et al., 2000; Honecker et al.,
2004) and is also expressed in CIS and overt tumours that retain
germ cell-like morphology, such as testicular seminomas and
ovarian dysgerminomas (Zeeman et al., 2002).

Recent advances in studies on germ cells uncovered a large
number of genes that are germ cell-specific, but their biological
function has not yet been elucidated, except that many of these
genes appear to be involved in RNA processing and regulation,
which is essential for spermatogenesis. As expected, quite a few of
male germ cell-specific genes are located on the Y chromosome
(Lahn and Page, 1997). Very little is known about the expression
and function of these genes during early development of germ

cells and even less about possible changes in testicular dysgen-
esis. An early study reported the expression of RBMY gene fam-
ily both in the fetal and in the adult testis (Elliot et al., 1997),
however, in more recent studies, RBMY was not detected by
immunohistochemistry neither in CIS cells nor in overt tumours
(Lifschitz-Mercer et al., 2000; Schreiber et al., 2003). Whether
or not down-regulation of this gene family has something to do
with neoplastic transformation of early germ cells into CIS
remains to be elucidated. Another germ cell-specific gene fam-
ily includes DAZ (on the Yq, usually consist of four copies) and
closely related autosomal genes DAZL and BOULE. DAZ and
DAZL have been described in mitotic germ cells, including
PGCs and gonocytes (Reijo et al., 2000; Xu et al., 2001). Con-
sequently, DAZL protein was detected in CIS, in seminomas
but not in non-seminomas, consistent with its germ cell-specific
function (Lifschitz-Mercer et al., 2002). Another multicopy
gene, TSPY, was suggested as a candidate gene for gonadoblas-
toma (Salo et al., 1995; Tsuchiya et al., 1995). TSPY in the
adult testis is expressed in spermatogonia, and its protein prod-
uct was also described in immature germ cells in undifferenti-
ated tubules of dysgenetic testes, CIS, seminoma (Schnieders
et al., 1996) and gonadoblastoma (Lau et al., 2000; Kersemaekers
et al., 2005). The function and biological role of TSPY remains
to be elucidated. Likewise, it remains to be proven that TSPY is the
only gene responsible for gonadoblastoma, as this tumour is
frequently seen in mixed gonadal dysgenesis where there is a
mosaic aneuploidy of sex chromosomes (46,XY/45,X). The
presence of gonadoblastoma is thus most probably a result of
male germ cells developing in an insufficiently masculinized
gonad because of the lack of function of the Y-chromosome
genes in somatic cells in the vicinity. As it will be discussed
further, a similar pathogenesis is most probably responsible for
CIS, except that CIS occurs in testes with development
impaired to much lesser degree than is the case in mixed
gonadal dysgenesis.

According to traditional knowledge, genes on the Y chromo-
some were considered to play the principal role in male reproduc-
tion, whereas the X chromosome was more linked to the female
fertility. Female ovarian failure is frequently caused by the mono-
somy (Turner syndrome) or deletions of the X chromosome
(reviewed in Zinn and Ross, 2001; Laml et al., 2002; Schlessinger
et al., 2002). Recent years provided new evidence that the X chro-
mosome contains a large number of genes expressed in male germ
cells and is apparently essential not only for the female but also for
the male germ cell function (Wang et al., 2001; Wang, 2004).
Only a few of these genes have been studied so far in germ cell
neoplasms. Of particular interest is large family of the so-called
‘cancer/testis’ genes, most of them mapped to the X chromosome,
which were given this name because—apart from germ cells—
they were only detected in various somatic cancers, e.g.
melanoma and breast cancer (reviewed in Scanlan et al., 2002).
Two members of this family, MAGE-A4 and NY-ESO-1, are
highly expressed at the protein level in normal fetal gonocytes at
the transition period to infantile pre-spermatogonia, in adult sper-
matogonia as well as in a subset of CIS cells and germ cell
tumours, including in spermatocytic seminoma but not in non-
seminomas (Jungbluth et al., 2000; Aubry et al., 2001; Yuasa
et al., 2001; Satie et al., 2002; Rajpert-De Meyts et al., 2003b).
Such a pattern of expression is consistent with a physiological

Figure 3. Developmental pattern of the expression of three markers of carci-
noma in situ (CIS): NANOG, OCT-3/4 (POU5F1) and AP-2γ. The image
shows approximately smoothed curves based on the combined results of sev-
eral studies (Gaskell et al., 2004; Hoei-Hansen et al., 2004b, 2005b; Honecker
et al., 2004; Rajpert-De Meyts et al., 2004).
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function of these genes in germ cells, in analogy to the above-men-
tioned germ cell-specific genes of the Y chromosome. The lack of
expression of MAGE-A4 and NY-ESO-1 in non-seminomatous
tumours is poorly understood but may be explained by differences
in the genome methylation, which is much more pronounced in
non-seminomas (Koul et al., 2002; Smith-Sorensen et al., 2002;
Smiraglia et al., 2002; Honorio et al., 2003). The re-expression of
cancer/testis genes in somatic tumours is probably also linked to
changes in DNA methylation of promoter regions (Maio et al.,
2003) but may be a result of other regulatory mechanisms. The
X chromosome is the most tightly controlled in this aspect because
of the need to compensate for the double dosage effect in females.
The process is controlled by the X-inactivation centre, which pro-
duces the XIST transcript, which in turn triggers chromatin
changes by Polycomb group proteins and DNA methylation
(Csankovszki et al., 2001; Heard, 2004). In male germ cells, XIST
is transcribed, but the X chromosome remains largely active.
Interestingly, the XIST transcript is also over-expressed in testicu-
lar germ cell tumours and in CIS cells, perhaps partly because of a
frequent increase in the copy number of X chromosomes in aneu-
ploid neoplastic germ cells (Looijenga et al., 1997; Kawakami
et al., 2003; Hoei-Hansen et al., 2004a).

Studies of the cell cycle and DNA repair are consistent with the 
pre-meiotic origin of CIS

Profound differences in the biology of germ cell neoplasms in com-
parison with the somatic tumours are undoubtedly related to a very
special feature of germ cells—their ability to switch from mitotic
cell division to the meiotic division, which is required for gamete
formation. Regulatory mechanisms involved in the two types of
cell division differ, and a number of studies provided evidence sup-
porting the pre-meiotic origin of germ cell tumours, including CIS.
Cell division is a final step in the cell cycle, which has to be exqui-
sitely regulated to maintain the balance between proliferation and
differentiation, a disturbance of this balance may lead to cancer or
cell death. Closely related to the cell cycle regulation are the mech-
anisms of DNA repair, which are essential to prevent cell death or
neoplastic transformation, especially in cells subjected to adverse
environmental effects. Germ cells appear to have inherently high
sensitivity to cytotoxic drugs and irradiation. This feature is further
magnified in germ cell-derived tumours (reviewed in Masters and
Koberle, 2003; Spierings et al., 2003). This is, of course, with great
benefit for the patients with germ cell neoplasms, who can be effi-
ciently treated by cisplatin-based regimens (Einhorn, 1997) or, in
certain cases of isolated CIS, even by irradiation alone (Von der
Maase et al., 1986). The processes of DNA repair are regulated dif-
ferently in mitotically dividing immature germ cells during testicu-
lar development, and different mechanisms are specifically
triggered when the meiotic division starts at puberty, because the
meiotic crossover requires double-strand DNA breaks. As far as
CIS is concerned, the evidence accumulated so far unequivocally
demonstrates that a high expression of the key tumour suppressors
involved in the DNA repair, such as p53 (Bartkova et al., 1991)
and CHK2 (Bartkova et al., 2001), is a persistent developmental
feature. Both proteins are abundant in normal fetal gonocytes (see
p53 in Figure 2); p53 is then down-regulated in spermatogonia,
whereas CHK2 remains highly expressed in spermatogonia but
disappears at the onset of meiosis (Quenby et al., 1999; Bartkova

et al., 2001; Rajpert-De Meyts et al., 2003b). A recent study dem-
onstrated that after the onset of meiosis, a rapid activation of the
ATM kinase takes place in spermatocytes to process multiple DNA
double-strand breaks (Bartkova et al., 2005).

A wealth of evidence indicates that the G1/S-phase transition of
the cell cycle is primarily controlled by the retinoblastoma protein
(pRB) pathway, which is commonly involved in the pathogenesis of
various malignancies (Mihara et al., 1989; Bartek and Lukas, 2001;
Sherr, 2004; references therein). The pRB pathway regulation
appears to be different in germ cells and deregulated in germ cell
tumours but without structural aberrations (mutations) typical for
somatic cancers (reviewed in Bartkova et al., 2003b). The observed
changes are most likely due to a direct transcriptional regulation, an
increased promoter methylation, or a more recently discovered reg-
ulatory mechanism by micro-RNAs (reviewed in Ambros, 2001;
Zamore and Haley, 2005). As far as the CIS cells are concerned, the
first interesting observation was the lack of pRB in CIS, seminoma
and embryonal carcinoma, with a normal expression in teratomas
(Strohmeyer et al., 1991b). This surprising finding is consistent with
developmental regulation of pRB, which is apparently physiologi-
cally down-regulated in fetal gonocytes but active in mature sper-
matogonia (Bartkova et al., 2003a). As pRB is a tumour suppressor,
the lack of pRB in fetal germ cells and CIS may render these cells
more vulnerable to oncogenic stimuli but simultaneously also more
prone to apoptosis (Bartkova et al., 2003b).

The second interesting feature of CIS and overt germ cell
tumours is the over-expression of a protooncogenic cyclin D2
(encoded by CCND2 mapped to chromosome 12p), significance of
which will be discussed below (Sicinski et al., 1996; Houldsworth
et al., 1997; Bartkova et al., 1999; Schmidt et al., 2001). The third
feature, important for our discussion on the origin of germ cell
neoplasms in relation to the meiotic switch, is the lack of the cyc-
lin-dependent kinase (CDK) inhibitor p19-INK4d in CIS and overt
germ cell tumours. P19-INK4d is abundant in normal spermato-
cytes and detectable in spermatids but completely absent from
fetal gonocytes (Bartkova et al., 2000). Similarly, cyclin A1—
which was described in spermatocytes—has not been detected in
CIS or seminomas (Liao et al., 2004). Taken together, the studies
of the regulatory machinery of the cell cycle strongly support the
origin of CIS from early fetal and pre-meiotic germ cells.

Genomic aberrations in CIS: 12p or not 12p?

The question addressed soon after the discovery of a remarkable
resemblance of CIS cells and fetal germ cells was whether CIS
cell is a truly neoplastic cell or simply an immature gonocyte per-
sisting in an adult testis. While substantial knowledge concerning
genomic aberrations of the overt germ cell tumours was accumu-
lated, the studies of CIS lagged behind, mainly because of tech-
nical difficulties due to a low number of CIS cells, their relatively
low rate of proliferation (Höfken and Lauke, 1996) and poor
growth in culture (Rajpert-De Meyts et al., 1998b). Only after the
advent of a new technology of the comparative genomic hybridi-
zation (Kallioniemi et al., 1992), the genome of CIS cells has been
better characterized. A detailed overview of genomic aberrations
in the germ cell neoplasms, including CIS, is beyond the scope of
this article, therefore, the reader is referred to recent excellent
review articles on this topic (Skotheim and Lothe, 2003; von
Eyben, 2004). I shall discuss here only the aberrations that are
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probably the most informative with regard to the possible mecha-
nism of neoplastic transformation, namely polyploidization and
regional amplification of chromosome 12p.

Like nearly all neoplasms, CIS cells found in the adults are aneu-
ploid with a mean DNA content in the hyper-triploid to hypo-tetra-
ploid range (Skakkebæk, 1972; Müller and Skakkebæk, 1981; de
Graaff et al., 1992). The longest lasting controversy concerned the
presence in CIS of an isochromosome of the short arm of chromo-
some 12, i(12p), an aberration first described by Atkin and Baker
(1982) and considered a hallmark of overt germ cell tumours (Cast-
edo et al., 1988; Rodriguez et al., 1992; Van Echten et al., 1995a).
Even in germ cell tumours without apparent presence of i(12)p,
some amplification of the 12p material have been reported (Cast-
edo et al., 1988; Rodriguez et al., 1993; Suijkerbuijk et al., 1993).
The i(12)p has usually identical arms and is probably caused by an
erroneous centromeric division during mitotic anaphase (Sinke et
al., 1993). However, some loci on 12q in i(12)p-positive tumours
retain heterozygosity, and thus polyploidization has to precede the
formation of i(12p) (Geurts van Kessel et al., 1989).

The i(12p) in CIS was sporadically demonstrated by karyotyp-
ing (Vos et al., 1990; Van Echten et al., 1995b), but this has been
disputed as the majority of the subsequent molecular studies did
not detect genomic amplification of that region in CIS (Rosenberg
et al., 2000; Summersgill et al., 2001). It was, therefore, proposed
that the formation of i(12p) was not involved in the early pathoge-
netic process, but the relative gain of 12p sequences was associ-
ated with survival of CIS independently of Sertoli cells leading to
their transformation to invasive tumours (Looijenga et al., 2003c).
Our own study performed on the microdissected CIS cells by the
comparative genomic hybridization added a missing link in this
puzzle: we demonstrated that there indeed was no gain of 12p in
two cases of CIS found as an isolated pre-invasive lesion, how-
ever, a clear genomic amplification in this region was detected in
nearly all cases of CIS present in the vicinity of invasive tumours
(Figure 4), suggesting clonal heterogeneity and possibly genomic
instability of CIS cells (Ottesen et al., 2003). A subsequent ana-
lysis performed on CIS cells flow-sorted according to the DNA
ploidy (Ottesen et al., 2004a) supported a hypothesis first sug-
gested by Oosterhuis et al. (1989, 1990) that the polyploidization
(tetraploidization) probably precedes the gain of 12p and other
chromosomal aberrations. Some allelic losses detected in CIS
resemble quite closely those in seminoma and, to a lesser extent,
those in non-seminomas (Faulkner et al., 2000). However, the pat-
tern of chromosomal aberrations/imbalances in overt germ cell
tumours reported in numerous studies is quite similar despite mor-
phological differences among germ cell tumour types (reviewed in
Van Echten et al., 1995a; Skotheim and Lothe, 2003; von Eyben,
2004). A recent analysis of a large number of germ cell tumour
karyotypes proposed that a multipolar cell division with non-
disjunction of a tetraploid precursor cell, combined with some

secondary imbalances/structural changes, is the most likely model
of the karyotypic evolution of germ cell tumours (Frigyesi et al.,
2004). Overall, genetic evidence gathered so far supports the pro-
gression of these tumours from a polyploid precursor cell, such as
CIS (Oosterhuis et al., 1989, 1990), but the mechanisms of poly-
ploidization remain to be elucidated.

Why the gain of 12p is so interesting? A look at the list of genes
located there explains that. A number of genes associated with
pluripotency of ESC and human teratocarcinoma cell lines, e.g..
NANOG, STELLAR, DPPA-5 and GDF3 (Caricasole et al., 1998;
Sato et al., 2003; Sperger et al., 2003; Clark et al., 2004; Skotheim
et al., 2005), and with germ cell proliferation or increased sur-
vival, e.g. CCND2 and K-RAS (Sicinski et al., 1996; Houldsworth
et al., 1997; Roelofs et al., 2000), are localized to the 12p region.
This region constitutes also one of the hot spots of highly
expressed genes in the profiling study of CIS (Almstrup et al.,
2004). Interestingly, non-random gains of chromosomal material
in the same region have been reported in human ESC maintained
for a prolonged period in culture (Draper et al., 2004). That study,
and a more recent investigation by Maitra et al. (2005), reported
also non-random aberrations in cultured ESC in 17q, a region fre-
quently rearranged in germ cell tumours (Kraggerud et al., 2002;
Skotheim et al., 2002) where a cluster of genes highly expressed
in CIS was detected as well (Almstrup et al., 2004). The observa-
tion of chromosomal aberrations in cultured ESC indicates that the
microenvironment of growing ESC may be important for genomic
stability. The molecular mechanisms are though poorly under-
stood, and it is not known whether 12p and 17q are especially sen-
sitive to chromosomal rearrangements. An alternative hypothesis
is that the genome of CIS cells undergoes many random aberra-
tions, and only the aberrations that render the cells better adapted
to a changed microenvironment survive. This hypothesis postulates
that the regions 12p, 17q and probably parts of X harbour genes
with oncogenic potential, perhaps particularly oncogenic for germ
cells. Some of the genes in these regions are indeed highly
expressed in CIS cells, and we listed these candidate genes in a
recent review article (Almstrup et al., 2005). I speculate that a
similarity between ESC and CIS could indicate that CIS cells per-
haps may originate from PGCs or gonocytes through a similar
mechanism of ‘natural selection’ of cells that adapted themselves
to their disturbed microenvironment in the developing gonad.
How the development of the early gonad may be disturbed is the
matter discussed in the remaining part of this review.

Who is at risk for germ cell cancer? The importance of 
prenatal events and the concept of testicular dysgenesis 
syndrome

Conditions associated with germ cell cancer and factors which
increase the risk of this cancer are numerous and surprisingly variable.

Figure 4. The mean ratio profiles of chromosome 12
analysed by comparative genomic hybridization in
carcinoma in situ (CIS) cells microdissected from tes-
tes with CIS alone (CIS/0) or CIS adjacent to overt
seminomas (CIS/S) or non-seminomas (CIS/NS). The
relative gains in 12p regions are shown as light-grey
vertical bars, marked with arrows on the right side of
the ideograms of chromosomes (Ottesen et al., 2003;
reprinted with permission from Wiley & Sons).
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A systematic and critical analysis of clinical epidemiology
of testicular cancer was recently published by Dieckmann and
Pichlmeier (2004). Here, only a partial list of the best documented
risk factors is listed in Table II, and a short summary of this topic
is presented, mainly to illustrate the concept of the testicular dys-
genesis syndrome (TDS).

Severe but relatively rare genetic abnormalities which cause
testicular dysgenesis and the intersex syndrome (e.g. 45X/46XY
and androgen insensitivity) are associated with a high risk of tes-
ticular cancer, often in combination with undescended testis and
hypospadias (Aarskog, 1970; Scully, 1981; Savage and Lowe,
1990). Skakkebæk was the first to notice CIS in the dysgenetic
testes of children with the intersex syndrome (Skakkebæk, 1979;
Müller and Skakkebæk, 1984; Müller et al., 1985). Subsequently,
several reports described the presence of CIS or gonadoblastoma
in dysgenetic gonads of subjects with various forms of the intersex
syndrome with or without structural aberrations of chromosomes
(Cassio et al., 1990; MacMahon and Cussen, 1991; Rutgers and
Scully, 1991; Jacobsen and Henriques, 1992; Ramani et al., 1993;
Slowikowska-Hilczer et al., 2001; Slowikowska-Hilczer et al.,
2003). In addition to linking gonadal dysgenesis with germ cell
neoplasia, these observations support the notion that CIS and CIS-
derived germ cell tumours may occur in the pre-pubertal testes and
speak against an alternative hypothesis that the post-pubertal
zygotene–pachytene spermatocyte is the cell of origin for CIS
(Chaganti and Houldsworth, 2000).

Among more common urogenital abnormalities, cryptorchidism
(undescended testis) is the best documented risk factor for testicu-
lar neoplasia, including CIS (Campbell, 1942; Morrison, 1976;
Krabbe et al., 1979; Batata et al., 1982; Giwercman et al., 1989;
Prener et al., 1996; Coupland et al., 1999; Weir et al., 2000). A
recent meta-analysis evaluated the relative risk (RR) of testicular
cancer in subjects with a history of cryptorchidism as 4.8 (95% CI
= 4.0–5.7) (Dieckmann and Pichlmeier, 2004). There is also evid-
ence for an association between testicular cancer and inguinal her-
nia or hypospadias (Morrison, 1976; Klein et al., 1996; Prener
et al., 1996). Testes in cases with congenital urogenital malforma-
tions often are associated with some degree of maldevelopment,
including clusters of poorly differentiated Sertoli-cell-only tubules
and hyaline bodies (Sohval, 1954; Huff et al., 1993). More con-
spicuous but surprisingly common are histological signs of poor
testicular development and function in adult patients with sporadic
testicular tumours (Sohval, 1956), even in the seemingly ‘normal’

contralateral testes in patients with unilateral testicular cancer
(Berthelsen and Skakkebæk, 1983; Hoei-Hansen et al., 2003). The
degree of differentiation of Sertoli cells in adults with testicular can-
cer is variable depending on the grade of dysgenesis, but even mor-
phologically immature Sertoli cells in most cases with complete
spermatogenesis present elsewhere in the testis do not retain expres-
sion of the anti-Müllerian hormone, which is highly expressed
before puberty (Rey et al., 1996; Rajpert-De Meyts et al., 1999).
Hyaline bodies are frequently (but not always) seen on the ultra-
sound as testicular microlithiasis (reviewed in Holm et al., 2001).
An association of microlithiasis with CIS and even testicular masses
in the contralateral testis is so common that this ultrasonic abnor-
mality should alert the attending physician about a possibility of
testicular neoplasia, especially in patients with atrophic testes (Bach
et al., 2003; Holm et al., 2003; de Gouveia Brazao et al., 2004).

Several studies documented that men with testis cancer had sig-
nificantly reduced fertility before the development of their tumour,
with a lower proportion of male children (decreased offspring sex
ratio), and abnormal semen characteristics (Berthelsen and
Skakkebæk, 1983; Møller and Skakkebæk, 1999; Jacobsen et al.,
2000a,b; Richiardi et al., 2004c). On the contrary, men with sub-
fertility have often a history of genital malformations and may
harbour histological signs of testicular maldevelopment, including
CIS, thus confirming an association between these conditions
(Skakkebæk et al., 2003). Furthermore, an analysis of risk factors,
such as low birthweight or intrauterine growth retardation (Depue
et al., 1986; Morley and Lucas, 1987; Francois et al., 1997; Cicognani
et al., 2002; English et al., 2003), suggested that the pathogenesis
might be, at least partially, shared by germ cell tumours, cryp-
torchidism and male subfertility. Recently, a Norwegian study of
risk factors for hypospadias found also, among others, a low birth-
weight and inguinal hernia (Aschim et al., 2004a). The epidemio-
logical associations outlined above constituted the basis for a
hypothesis of an aetiological link between the male reproductive
disorders that are associated with impaired testicular development,
within the so–called TDS presented schematically in Figure 5
(Skakkebæk et al., 2001; Asklund et al., 2004). The assumption
that prenatal or perinatal factors are responsible for growing inci-
dence of germ cell cancer and TDS is additionally corroborated by
the birth cohort effects, meaning that the epidemiological trends
are associated with the year of birth, and each subsequent cohort is
more affected that the previous one. A birth cohort effect was, e.g.,
demonstrated for a decline in sperm concentrations of Scottish
men (Irvine et al., 1996), one of the studies that followed the
report on the possible decline of semen quality worldwide
(Carlsen et al., 1992). One exception to the rule of the consecutive
decline, which at the same time is a striking example of a birth
cohort effect, was an unexplained decrease of the prevalence of
testicular cancer among Scandinavian men born during wartime
(Møller, 1993; Bergström et al., 1996).

A strong corroborating evidence for the TDS concept—which
simultaneously incriminates environmental factors—is the geo-
graphical association between various components of TDS. A very
illustrative example is given by the comparison of the rates in
Denmark and in Finland, and another nearby located Nordic coun-
try. The incidence of testicular cancer, which is high in Denmark,
is markedly lower in Finland (Adami et al., 1994; Richiardi et al.,
2004a). Studies of the incidence rates of testicular cancer in popu-
lations migrating from these two countries to Sweden, which is

Table II. Risk factors for carcinoma in situ (CIS)/testicular cancer

Contralateral testis tumour
Cryptorchidism
Other genital malformations (inguinal hernia and hypospadias)
Intersex, including the androgen insensitivity syndrome
Gonadal dysgenesis
Familial testicular cancer
Testicular atrophy
Subfertility/infertility
Low birthweight
Down syndrome
Birth order (first pregnancy)
Early puberty
Estrogen excess during gestation

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

upd/article/12/3/303/554414 by guest on 21 August 2022



Pathogenesis of germ cell neoplasia

311

located in between, clearly demonstrated that the first generation
immigrants retained the incidence as in their country of origin,
whereas the second generation (born in Sweden) had the risk of
testicular cancer similar to native Swedes (Hemminki and Li,
2002). Studies of semen quality found also all parameters better in
Finland than in Denmark (Jensen et al., 2000; Jørgensen et al.,
2001, 2002). The differences in rates of congenital genital malfor-
mations seemed also to be different, but less certain because of
problems with definition and registry data (reviewed in Toppari
et al., 2001). Data from other countries were confusing with some
reporting an increase while other argued for a possible decline in
cryptorchidism rates (Chilvers et al., 1984; Paulozzi, 1999;
Toledano et al., 2003). Therefore, coordinated prospective studies
of genital malformations have been launched in cohorts of infants,
providing most telling evidence for the difference in the rates of
cryptorchidism and hypospadias at birth in Denmark versus
Finland (Boisen et al., 2004, 2005). At the same time, the Boisen
et al. (2004) study demonstrated an increase of the incidence of
cryptorchidism in Denmark over time (Buemann et al., 1961).

Geographical and ethnic differences have been noted much
earlier for testicular cancer in other countries of the world, with
unexplained high prevalence among Caucasians living in well-
developed countries and notably lower prevalence among men of
African descent and Asians, even inhabiting the same countries
(English et al., 2003; Huyghe et al., 2003). The obvious question
that arises is whether the reasons for the geographic and temporal
differences in the prevalence of TDS are because of environmental
differences or genetic variation/predisposition?

Genetic aspects of testicular cancer and TDS: can genetic 
polymorphisms explain geographic differences in the 
incidences?

Familial testicular cancer

Although familial testicular cancer is rare, this cancer has quite
strong hereditary component. Sons and brothers of men with testi-

cular cancer carry a four- and eight-fold increased risk of develop-
ing tumours, respectively (Lutke Holzik et al., 2004; references
therein). However, a large proportion of familial cases, especially
among brothers, may be explained, at least in part, by shared
environment during early development (Hemminki and Li, 2004;
Ottesen et al., 2004b). A few gene mutations have been reported
in tumour tissues, but most of them have been linked to just one or
two cases, with a notable exception of the activating mutation in
the KIT gene, which has been detected in a subset of sporadic and
familial tumours (Tian et al., 1999; Rapley et al., 2004) but which
is present in virtually all bilateral testicular tumours (Looijenga
et al., 2003a). So far, only one locus suspected for a germ cell can-
cer susceptibility gene has been reported at Xq27, but its import-
ance is weakened by a simultaneous association with testicular
maldescent (Rapley et al., 2000). Epidemiological observations
suggest that most probably the majority of cases of testicular can-
cer are not because of a genetic mutation. Simple genetic polymor-
phisms, which are at the core of phenotypic diversity of human
populations, may also be responsible for ethnic differences in the
prevalence of human reproductive disorders. It is plausible that,
e.g., genes that are involved in hormonal regulation of testicular
development may contain polymorphic sequences that would
slightly alter sensitivity to hormones, natural or synthetic. A simi-
lar phenomenon was observed in mice, where steroid hormones
had vastly different effects in various mouse strains (Spearow
et al., 1999). The human genotype is, of course, much more com-
plicated that of an inbred laboratory mouse. Very few candidate
genes relevant to humans have been studied so far, and the evid-
ence is briefly reviewed here.

The androgen receptor

The androgen receptor gene is the most obvious candidate for a pos-
sible association of a polymorphism with disorders of male repro-
duction, in particular testicular cancer. Although the androgen
function in the early fetal development has not been elucidated yet,
the lack of function may impair genital development and increases

Figure 5. Schematic representation of the possible aetiology, pathogenesis and clinical manifestations of testicular dysgenesis syndrome emphasizing the key role
of disturbed germ cell differentiation in the pathogenesis of testicular carcinoma in situ (CIS) (modified from Skakkebæk et al., 2001).

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

upd/article/12/3/303/554414 by guest on 21 August 2022



E. Rajpert-De Meyts

312

the risk of germ cell neoplasia considerably (Manuel et al., 1976;
Quigley et al., 1995; Sultan et al., 2001). The opposite situation—an
increased androgen signalling during development—may decrease
the risk of testicular cancer (Rajpert-De Meyts and Skakkebæk,
1993). As mentioned above, the incidence of testicular cancer
among Africans is very low, and by contrast they have a very high
risk of prostate cancer, suggesting a possible role of higher testoster-
one levels in utero or other genetic predisposition (Henderson et al.,
1988; Ross et al., 1998). One possible explanation could be a differ-
ence in the length of the polymorphic polyglutamine stretch in the
androgen receptor, which is on average shorter among Africans and
thus may be slightly more efficient in activating transcription (Sar-
tor et al., 1999; Irvine et al., 2000).

The possible role of the two polymorphic trinucleotide (CAG
and GGN) sequences, encoding polyglutamine and polyglycine
stretches, has been extensively studied in all components of TDS.
Expansion of the CAG repeat above 40 (normal range 8–37)
causes spinal bulbar muscular atrophy, also known as the Kennedy
syndrome, a serious neurodegenerative disease with progressive
testicular atrophy and hypogonadism (La Spada et al., 1991).
A series of studies, started by Tut et al. (1997) and Dowsing et al.
(1999), reported a relation between the length of repeats and male
infertility/subfertility while a similar number of studies failed to
find such an association. It is impossible to cite in this review all
studies investigating this problem in several centres around the
world, but references can be found in meta-analyses and recent
review articles (Rajpert-De Meyts et al., 2002a; Asatiani et al.,
2003; Erasmuson et al., 2003; Ochsenkühn and de Kretser, 2003;
Yong et al., 2003; Gottlieb et al., 2005). An association of the AR
polymorphisms with testicular function (sperm production, sperm
morphology and reproductive hormone profile)—both in infertile
and fertile men—was also addressed by several studies (Mifsud
et al., 2001; von Eckardstein et al., 2001; Härkönen et al., 2003;
Milatiner et al., 2004). Most of these studies observed an inverse
association between the number of CAG repeats and sperm pro-
duction or quality. In our own study, a weak trend (not statisti-
cally significant) for a decrease in sperm concentrations with
increasing (CAG)n was observed among fertile controls, but this
trend disappeared after a greater number of subjects have been
studied (Rajpert-De Meyts et al., 2002a). The whole issue
remains open and debated; the reasons for the controversy
include pathogenetic heterogeneity of clinical infertility, ethnical
differences, poor characterization of control subjects in some
studies and possible influences of confounding environmental
factors. Possible differences in the mechanism of action of andro-
gens within the testis in comparison with other parts of the male
reproductive system should also be considered (Ochsenkühn and
de Kretser, 2003).

Testicular cancer was investigated for the androgen receptor
polymorphism in three studies only (Rajpert-De Meyts et al.,
2002b; Giwercman et al., 2004; Garolla et al., 2005). Neither
found an association of the cancer risk with the length of the
CAG repeat alone, however, Giwercman et al. (2004) reported a
possible link between the longest CAG repeats and the tumour
progression to non-seminomas as well as clinically more aggres-
sive disease, whereas Garolla et al. (2005) found that the combi-
nation CAG=20/GGC=17 was significantly more frequent in
patients with testicular cancer than in controls. As far as genital
malformations and undermasculinization are concerned, there is

a better but not perfect consensus among the few published stud-
ies. Most of the European studies reported an association of
these phenotypes with longer CAG (Lim et al., 2000, 2001) or
GGN stretches or with certain combinations of CAG/GGN
(Aschim et al., 2004b; Ferlin et al., 2005). By contrast, reports
from Japan did not find any association, however, all these stud-
ies were performed by the same centre (Sasagawa et al., 2000;
Ishii et al., 2001; Muroya et al., 2001), thus it would be benefi-
cial for the final conclusion to have some confirmation from
other Asian research groups.

Despite the controversy, a consensus slowly emerges that the AR-
(CAG)n may play a role in the function of androgen-related pathways
and their pathologies, especially outside the testis. However, this pol-
ymorphism should not be investigated in isolation, but a number of
contributing factors (e.g. other diseases, lifestyle or environmental
influence) should be considered (Hughes et al., 2001).

Possible role of deletions and polymorphisms of the Y chromosome

Individuals with the intersex syndrome and a relative reduction of
the Y chromosome genetic material carry a high risk of germ cell
neoplasia (Scully, 1981; Savage and Lowe, 1990; Peltomäki et al.,
1991). The genes on the human Y chromosome that are most
likely to be involved in germ cell differentiation and spermatogen-
esis are clustered in the so-called azoospermia factor (AZF) region
of Yq11 (Tiepolo and Zuffardi, 1976; Vogt et al., 1992; Vogt,
1996), which is a part of the recently proposed male-specific Y-
chromosome region (MSY) (Kuroda-Kawaguchi et al., 2001).
This region is especially prone to interstitial deletions, which are
associated with variable grade of testicular failure and impaired
spermatogenesis and were first identified in infertile men (Tiepolo
and Zuffardi, 1976; Vogt et al., 1992; Reijo et al., 1995; Vogt,
1996; Lahn and Page, 1997; Krausz et al., 2000; Kuroda-
Kawaguchi et al., 2001; Frydelund-Larsen et al., 2002; Luetjens
et al., 2002; Repping et al., 2002). It was long suspected that the
propensity of the Yq region to those microdeletions may be
caused by intrachromosomal recombination due to a presence of
repetitive sequences, including those of ancient retroviruses, e.g.
HERV (Kamp et al., 2000; Sun et al., 2000), high expression of
which was reported in germ cell tumours (Herbst et al., 1996;
Roelofs et al., 1998). Indeed, the sequencing of the entire Y
chromosome and subsequent studies demonstrated that much of
the sequence in MSY region consists of long palindromic repeats
called amplicons, though most of them are not associated with
retrotransposons (Kuroda-Kawaguchi et al., 2001; Tilford et al.,
2001; Skaletsky et al., 2003). A deletion of a large amplicon
usually removes a huge amount of DNA and is associated with
very severe spermatogenic failure, with an exception of rare
cases of subfertile men with large AZFc deletions who can occa-
sionally produce sperm but still demonstrate testicular failure,
manifested both by histological abnormalities and changes in the
reproductive hormone profiles (Krausz et al., 2001a; Frydelund-
Larsen et al., 2002).

More recently, smaller palindromes were discovered within the
large amplicons in AZFc region. Deletions of these sequences
remove several copies of multicopy gene families and are associ-
ated with a variable clinical and histological phenotype, although
there is growing evidence that, e.g., gr/gr deletion may be a signi-
ficant risk factor for decreased spermatogenesis, whereas b2/b3 is
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probably neutral for testicular function (Fernandes et al., 2002;
Repping et al., 2003, 2004; de Llanos et al., 2005; Giachini et al.,
2005; Lynch et al., 2005). Some of these partial AZFc deletions,
including gr/gr, can also be found in fertile men with normal sper-
matogenesis (Hucklenbroich et al., 2005), so it remains to be
resolved whether these aberrations may play a role alone or only
as a confounding factor predisposing to subfertility in the presence
of other deleterious factors.

It is important to keep in mind that lack of recombination of the
substantial part of the Y chromosome led to the formation of hap-
logroups which differ among populations, and these can contain
single-nucleotide polymorphisms defining haplotypes (McEl-
reavey and Quintana-Murci, 2003). A correlation between some of
the Y-chromosome haplogroups and reduced sperm concentra-
tions was found in Japan (Kuroki et al., 1999) and in Denmark
(Krausz et al., 2001b). What is the mechanism leading to impaired
spermatogenesis is not fully understood yet, but some haplotypes
may segregate with rearrangements/inversions which may gener-
ate different types of the aforementioned partial AZFc deletions
(Krausz et al., 2004; Machev et al., 2004). In some populations,
e.g. Japan or Finland, certain Y chromosomes with partial AZFc
deletions may have acquired compensatory mutations which
would change the phenotype (Krausz et al., 2004; Vogt, 2005).
This hypothesis is supported by observations from Finland, where
there is no evidence of problems with spermatogenesis at the
population level (Vierula et al., 1996; Jørgensen et al., 2002) despite
a high prevalence of haplogroup N which is strongly associated with
g1/g3 deletion (Krausz et al., 2004; Vogt, 2005).

The frequency of AZF deletions in the Danish population
appears to be similar to that in other European countries and is not
increased in patients with testicular cancer, thus the high preva-
lence of TDS in Denmark cannot be explained by a high incidence
of such deletions (Krausz et al., 2001a; Frydelund-Larsen et al.,
2003). A similar study was performed in Dutch patients and con-
firmed our observation of the absence of constitutional large AZF
deletions in patients with testicular cancer (Lutke Holzik et al.,
2005). This is also supported by the lack of association between Y
lineages or haplotypes and testicular germ cell cancer (Quintana-
Murci et al., 2003; Richard et al., 2004). Evidence gathered so far
suggests that the molecular aetiology of TDS and sporadic testicu-
lar germ cell cancer most likely does not involve the same path-
ways as male infertility caused by deletions of genes located in the
AZF region. A very recent study reported though that gr/gr dele-
tions might confer susceptibility to the familial testicular germ cell
cancer (Nathanson et al., 2005). However, the final conclusion
awaits more detailed structural analysis of the Y chromosome in
larger numbers of patients and controls.

Genes regulating testicular descent

As mentioned above in this review, failure of testicular descent
(cryptorchidism) is a risk factor for testicular cancer, and the two
disorders are probably closest associated with each other within
the TDS. Aetiology of the majority of cases of cryptorchidism is
unknown, indicating the involvement of a large number of factors
in the pathogenesis of this complex disorder (Hutson et al., 1997).
Among others, a lack of proper function of the androgen signalling
pathways and anti-Müllerian hormone have been long known as
capable of disturbing testicular descent, but more recently addi-

tional pathways have been unravelled. Detailed discussion on the
genetic background of cryptorchidism is beyond the scope of this
article, and the reader is referred instead to recent excellent
reviews (Ivell and Hartung, 2003; Klonisch et al., 2004; Kolon
et al., 2004). Here, only one pathway is briefly mentioned, that of
insulin-like factor 3 (INSL3), as an example of a possible involve-
ment of a genetic polymorphisms in the pathogenesis of some
forms of TDS. INSL3, a testicular hormone (also known as relaxin-
like factor, RLF), acts through a receptor named (G-protein-coupled
receptor) LGR8/GREAT (Kumagai et al., 2002), and this system
was first linked to testicular descent after targeted gene disruption
in mice (Nef and Parada, 1999; Zimmerman et al., 1999; reviewed
in Ivell and Bathgate, 2002). A large number of studies of the
INSL3/LGR8 system in human subjects with cryptorchidism fol-
lowed, some authors finding mutations, others failing to do so, but
identifying several gene polymorphisms (Ferlin et al., 2003; refer-
ences therein). Most of the identified mutations/polymorphisms
were heterozygous, moreover in some cases the same genotype
was linked to variable phenotypes, suggesting the involvement of
multiple other factors, probably also environmental. Unravelling
of the complex interplay between the structural changes of the
INSL-3/LGR8 system and environmental impact on the regulatory
pathways will require further studies, and this is only an example
of one pathway. There are, undoubtedly, many more to investigate.

Are environmental or lifestyle factors responsible for 
increasing problems in male reproductive system including 
testicular cancer?

The rapid increase in the incidences of male reproductive prob-
lems indicates that environmental or lifestyle factors may play the
primary role. A large number of epidemiological studies support
this hypothesis. Probably the best documented and most illustra-
tive are studies from Scandinavian countries, where excellent reg-
istries exist and where the reproductive problems were first noted.
Among them, the finding of an association between a decreased
incidence of testicular cancer and the year of birth, especially at
wartime, clearly indicated the importance of external factors act-
ing prenatally or perinatally (Møller, 1993; Bergström et al.,
1996). This was supported by the aforementioned studies examin-
ing incidences of testicular cancer among migrating Scandinavian
populations. (Hemminki and Li, 2002; Ekbom et al., 2003).

Which environmental or lifestyle factors can impair develop-
ment of the reproductive system? Recent years provided growing
evidence that the number and variability of contributing factors
may be much greater than what we thought when the rise in testic-
ular cancer was noted a few decades ago. The first hypothesis
came from Henderson, and his group suggested a possible link
between excessive exposure to bioavailable estrogens in utero
(associated, e.g., with first pregnancy or maternal obesity) and
reproductive abnormalities in men, in particular germ cell cancer
(Henderson et al., 1979; Depue et al., 1983). The influence of par-
ity was later confirmed by others (English et al., 2003; Richiardi
et al., 2004b). Estrogens play an important role in spermatogenesis
(Kula, 1988; Couse et al., 2001; Carreau et al., 2003), and a variant
estrogen receptor β is present in fetal gonocytes (Gaskell et al., 2003),
but the function of estrogens during early development of the tes-
tis is poorly understood. An ability to mimic estrogens and disturb
hormonal pathways in vitro and in vivo in experimental animals
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was discovered for a number of environmental chemicals, and
endocrine hormone disrupters were suggested as possible inducers
of reproductive problems in men (Sharpe and Skakkebæk, 1993;
Toppari et al., 1996). However, the issue of endocrine disrupters
appears to be very  complex when viewed from the perspective of
more recent evidence.

European epidemiological trends pointed at factors acting pre-
dominantly in highly developed countries, including those with
an intensive agricultural industry, such as Denmark and Switzer-
land. Pollution of ground waters and food with potent synthetic
hormones, e.g. estrogens, gestagens and androgenic anabolics
used for meat production, has been suspected (Daxenberger
et al., 2001). In addition, a large number of chemicals are com-
ponents of pesticides, herbicides and food additives. For
example, polychlorinated biphenyls, hexachlorobenzene and
chlordanes elevated levels of which have been detected in blood
from the mothers of men with testis cancer (Hardell et al., 2003).
Studies of the mechanism of action of these compounds broad-
ened the definition of endocrine disrupters to include chemicals
interfering with various hormone pathways, most notably with
androgen signalling and production (Gray et al., 2001; Williams
et al., 2001). Recently, the attention of researchers has been
focussed on phthalates, which are produced and utilized as plas-
ticizers and softeners around the world in enormous quantities.
Some phthalates, if administered in utero, can induce testicular
dysgenesis and a TDS-like phenotypes in rats and rabbits (Foster
et al., 2001; Fisher et al., 2003; Higuchi et al., 2003). The exist-
ing mechanistic evidence suggests that phthalates exert anti-
androgenic effects (Fisher, 2004).

Apart from environmental chemicals, a host of lifestyle factors
have also been indicated. Many of them are related to maternal
habits, which may adversely influence the developing fetus, such
as smoking (Jensen et al., 2004; Pettersson et al., 2004), maternal
obesity and delayed childbearing (reviewed in Sharpe and Franks,
2002). The aetiology of testicular cancer and TDS is most likely
multifactorial, and a relative importance of maternal factors and
external exposures may be difficult to pinpoint.

Developmental model for the pathogenesis of CIS

Our current model of the pathogenesis of early stages of germ
cell neoplasia is depicted schematically in Figure 6. Develop-
mental arrest of germ cell differentiation is the core pathogenetic
event leading to the origin of CIS. Most of this review discussed
evidence indicating that CIS cells may be considered as trans-
formed gonocytes. The initiation of the malignant transformation
is most probably caused by the disturbance in the microenviron-
ment of the differentiating fetal germ cells. Gonadal microenvi-
ronment during early development is very tightly regulated and
exquisitely sensitive to hormones and paracrine factors. If this
regulation is disturbed, a gonad may develop as a testis or as an
ovary or something in between. Histological changes associated
with CIS and evidence from animal models clearly indicate that
somatic cells in the fetal testis, Sertoli and Leydig cells, or per-
haps their precursors, are the mediators of hormonal and para-
crine factors and are largely responsible for the differentiation of
germ cells. However, direct influence on germ cells has also to
be considered.

Figure 6. A scheme illustrating current understanding of the pathogenesis of testicular carcinoma in situ (CIS) in relation to germ cell differentiation. EC, embryo-
nal carcinoma; TER, teratoma; YST, yolk sac tumour; CHC, choriocarcinoma.
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In contrast to rodents, in the human fetus, differentiation of
gonocytes into infantile spermatogonia is a relatively long and
slow process. During this transition, embryonic traits disappear
while germ cell-specific genes with a role in spermatogenesis are
switched on (Figure 6). If something goes wrong and testicular
differentiation is impaired, due to either an inherent genetic defect
(e.g. in the androgen insensitivity syndrome) or an exposure to one
or more environmental chemicals, this programme may be delayed
or arrested, leading to the retention of embryonic features in germ
cells outside the normal window of expression. Hormonal imbal-
ance in the cellular microenvironment may lead to errors in mitosis–
meiosis switch in ‘sexually confused’ germ cells and result in
polyploidization. The mechanisms remain unknown, but we know
that the processing of replicated sister chromatids and histone
modification differ between mitosis and meiosis. One can specu-
late that a premature activation of some of the meiosis-specific
mechanisms would somehow impair division of the replicated
genome and cause polyploidization. Subsequently, other errors in
cell division and progressive genomic aberrations would lead to
further genomic instability and formation of transformed ‘pre-CIS
cells’. Most of these abnormal cells are probably eliminated, but
some genomic changes may lead to the amplification of oncogenic
pathways, which in combination with a high expression of anti-
apoptotic pathways (e.g. KIT signalling) may favour survival of a
subset of these cells. Recent observations in human ESCs under-
going chromosomal aberrations during long culture in vitro sug-
gest that certain chromosomal gains (e.g. 12p, 17q or X) may be
favourable for their adaptation and survival. A similar mechanism
may be operating in transformed gonocytes in vivo; as mentioned
earlier in this review, the pattern of chromosomal aberrations in
CIS cells adjacent to overt tumours includes gains in the same
chromosomal regions and may be responsible for their invasive
ability. These adaptive changes and invasive progression are most
probably triggered by the drastic change of testicular hormone
production associated with puberty, since after puberty an explo-
sive rise in the age-specific incidence of germ cell tumours is
observed. Indeed, testicular germ cell tumours seem to be very
rare in patients with severe hypogonadotrophic hypogonadism.
Likewise, in patients with complete androgen insensitivity, undif-
ferentiated gonocytes resembling CIS may persist for years with-
out progressing to overt tumours (Manuel et al., 1976; Rutgers and
Scully, 1991; Cools et al., 2005; Hannema et al., 2006).

Conclusions and future perspectives

The evidence summarized in this review demonstrates that testicu-
lar germ cell cancer is a developmental disease. Despite being
manifested in young adults, this cancer is a result of disturbed
gonadal development and germ cell differentiation. Our studies
indicate that CIS cells are transformed gonocytes, which failed to
differentiate and subsequently underwent non-random genomic
aberrations facilitating their survival and further invasive progres-
sion, while retaining a high expression of embryonic genes linked
to self-renewal and pluripotency. The ESC-like phenotype may
explain the remarkable ability of CIS-derived tumours to differen-
tiate to a variety of teratomatous somatic tissues. Further studies
of the embryonic features of CIS cells and mechanisms of tumour
progression may have broader implications for better understand-
ing of basic pathways of PGC differentiation.

As shown in the Scandinavian countries, the prevalence of
testicular cancer appears to be a good biomarker of testicular dys-
genesis and may be used as a proxy to estimate the prevalence of
other components of TDS in any given population. Differences
between populations and between individuals within a given
population may reflect differences in environment or lifestyle but
may also be a result of genetic predisposition to reproductive
problems. We have only begun to identify genes involved in the
regulation of human gonadal development, and very few genes
have so far been studied for possible polymorphisms. Environ-
mental aetiological factors have not yet been elucidated, but testic-
ular cancer and TDS are undoubtedly complex multifactorial
diseases. To untangle this knot of possible factors will require fur-
ther studies both at the level of populations and at the level of cells
and their molecular pathways. Epidemiological trends in testicular
cancer and TDS suggest that these disorders may be added to the
list of the so-called ‘civilization diseases’, which includes diabe-
tes, obesity and a number of cancers. These diseases increased
around the world while the populations changed markedly their
lifestyle and environment. However, the attention given to these
diseases by researchers will hopefully elucidate their aetiology
and provides tools for very early detection of negative trends and
help to implement preventive measures.
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