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Inflorescence structure is very diverse and homoplasious, yet the developmental basis
of their homoplasy is poorly understood. To gain an understanding of the degree
of homology that these diverse structures share, we characterize the developmental
morphology and anatomy of various umbellate inflorescences across the monocots
and analyzed them in an evolutionary context. To characterize branching order,
we characterized the developmental morphology of multiple inflorescences with epi-
illumination, and vascular anatomy with Laser Ablation Tomography, a novel high-
throughput method to reconstruct three-dimensional vasculature. We used these
approaches to analyze the umbellate inflorescences in five instances of presumed
homoplasy: in three members of the Amaryllidaceae; in three members of the
Asparagaceae, including a putatively derived raceme in Dichelostemma congestum;
in Butomus umbellatus (Alismataceae), in Tacca chantrieri (Dioscoreaceae), and in
umbellate structure in Fritillaria imperialis (Liliaceae). We compare these with racemes
found in three members of the subfamily Scilliioideae (Asparagaceae). We find there
are three convergent developmental programs that generate umbellate inflorescences
in the monocots, bostryx-derived, cincinnus-derived and raceme-derived. Additionally,
among the bostryx-derived umbellate inflorescence, there are three instances of
parallel evolution found in the Amaryllidaceae, in two members of Brodiaeoideae
(Asparagaceae), and Butomus umbellatus, all of which share the same generative
developmental program. We discuss the morphological modifications necessary to
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generate such complex and condensed structures and use these insights to describe
a new variant of metatopy, termed horizontal concaulesence. We contextualize our
findings within the broader literature of monocot inflorescence development, with a focus
on synthesizing descriptive developmental morphological studies.

Keywords: inflorescence, meristems, metatopy, monocots, Evo-Devo, convergent evolution, developmental
biology, developmental system drift

INTRODUCTION

The mechanism by which developmental variation underlies
novel and adaptive morphologies is a key research program
in evolutionary and developmental (Evo-Devo) biology
(Moczek et al., 2015). Under the structuralist framework (see
Charlesworth et al., 1982) for the neo-darwinian perspective),
the developmental morphological hierarchy represents a
source of biological variation which serves as a substrate for
evolutionary forces (Gould and Eldredge, 1977; Smith et al.,
1985). Detailed comparative developmental morphological
studies are necessary to characterize evolutionary mechanisms
and can elucidate fundamental principles in organismal biology
(Kaplan, 2001).

To fully understand the role of developmental variation in
the evolution of form and function, it must be investigated
within a comparative phylogenetic framework. Convergent
evolution and parallelism are two key outcomes of particular
interest to evolutionary biologists and can only be interpreted
in a phylogenetic context. Parallel evolution, sensu M. H.
Wake, is a macroevolutionary manifestation of evolutionary
forces independently acting upon a homologous generative
developmental program (Wake, 2015). In contrast, convergent
evolution where evolutionary forces independently act on non-
homologous generative developmental programs. Discriminating
between parallel evolution and convergent evolution can shed
light on how biological variation, at the developmental level,
produces novel, adaptive or otherwise evolutionary significant
morphologies (Wake et al., 2011; Brigandt and Love, 2012;
Wake, 2015): The developmental morphological characterization
of a homoplasious character, sensu Nixon and Carpenter, will
shed light onto the mechanistic origins underlying the origins
of phenotypic novelty and organismal diversity (Kaplan, 2001;
Nixon and Carpenter, 2012; Moczek et al., 2015; Wake, 2015).

Inflorescence diversity within the monocots provides an
excellent system to investigate the role of developmental
morphology in evolutionary outcomes with functional
implications. Inflorescences are modified shoots where
flowers originate on, in angiosperms. They are distinct from
the vegetative shoot, typically demarcated by one or more
morphological shifts in phyllotaxy, internode length and leaf
morphology (Weberling, 1992). Inflorescences are important to
plant reproduction and play a key role in population-level fitness
(Harder and Prusinkiewicz, 2013) and, at the macroevolutionary
scale, multiple transitions between distinct gross morphologies
have occurred across the angiosperm phylogeny (Stebbins, 1973,
1951). As a result of such a large diversity of complex structures,
they are notoriously difficult to place into a meaningful

classification scheme (Prenner et al., 2009; Endress, 2010).
Here we focus on a form of condensed inflorescence where
flowers are closely clustered together, colloquially described
as “umbels.” True umbels, according to Troll, Weberling
and Endress, are strictly racemose derived structures (Troll,
1937; Weberling, 1992; Endress, 2010). However, umbel-like
inflorescence structures, hereafter referred to as umbellate, appear
in many groups of monocots. The most well-known umbellate
structure is the inflorescence of the family Amaryllidaceae sensu
APG IV (The Angiosperm Phylogeny Group, 2016), which
includes Allium (onions). The developmental morphology
of a wide number of taxa in the family Amaryllidaceae has
been investigated, and the morphological consensus is that the
inflorescence comprises an indeterminate primary axis with
cymose lateral branches (Bravais and Bravais, 1837; Blaauw,
1931; Luyten and van Waveren, 1938; Hartsema and Leupen,
1942; Mann, 1959; Roh et al., 1992; Theron and Jacobs, 1994;
Kamenetsky, 1997; Slabbert, 1997; Kodaira and Fukai, 2005;
Zhang et al., 2011). The number of lateral cymose branches and
the number of flowers per branch can vary across the family, with
multiple evolutionary events leading to uniflory (Meerow, 2010).
The term thyrse (= raceme of cymes) has been used to describe
the inflorescence of some Allium (e.g., Kodaira and Fukai, 2005)
and can broadly be used to describe the inflorescence in other
members of Amaryllidaceae. The only known exception within
the family is the non-umbellate Allium spicatum (originally
described as a separate genus Milula, an anagram of Allium for
its similarities), however the developmental morphology of this
endangered species has not yet been investigated (Friesen et al.,
2000). Taken together, the inflorescence of Amaryllidaceae is
not a true umbel; rather, it represents an example of convergent
evolution, arriving at an umbellate form from a non-racemose
ancestral structure.

Similar umbellate inflorescences exist in other families of
monocots. In particular developmental morphology has been
investigated in Tacca (Taccaceae: Dioscoreales), at the time
used to affiliate Tacca with Amaryllidoideae (Eichler, 1879),
in Triteleia laxa (Asparagaceae: Asparagales) (Han et al.,
1994) and in two members of Alismatales Limnocharis flava
(Alismataceae) and Butomus umbellatus (Butomaceae) (Wilder,
1974). While developmental morphological studies provide
detailed descriptions of branching, they do not contextualize
these patterns within the broader phylogenetic or evolutionary
context. Further, inflorescence morphology is almost exclusively
assessed via developmental morphological investigation of the
inflorescence meristem, characterizing the observed sequence of
branching events based on emergence of branch, bract and floral
primordia. In condensed inflorescences, assessment of branching
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order is obscured by lack of internodal elongation and can be
difficult if not impossible to observe (Wilder, 1974).

The aim of this study is to determine if the umbellate
inflorescence in monocots evolved via morphological parallelism
or convergent evolution. To test this question, we characterize
the developmental morphology of a condensed inflorescence
evolved independently in five lineages (Table 1): Taccaceae
(Dioscoreales; Figures 1A,B); Butomaceae (Alismatales;
Figures 1A,C); and Liliaceae (Liliales; Figures 1A,C),
the subfamily Brodiaeoideae (Asparagaceae; Asparagales;
Figures 1A,D–F), including a putative reversal to a raceme
(Figure 1F); Amaryllidaceae (Asparagales) (Figures 1A,G–I).
We revisit the inflorescence of Triteleia laxa (Asparagaceae:
Asparagales) (Han et al., 1994) and Butomus umbellatus
(Wilder, 1974; Eckert et al., 2000) (Butomaceae: Alismatales)
providing further investigation of the architecture which
has previously been obscure. We contrast inflorescence
morphologies with racemes found in three members of the
subfamily Scilloideae; Ornithogalum umbellatum, Ornithogalum
nutans, and Scilla siberica “Alba” (Asparagaceae; Asparagales),
as raceme developmental morphology is consistent through
ought monocot (Remizowa et al., 2013). To complement
developmental morphological studies, we reconstruct the three
dimensional (3D) anatomical vascular branching patterns
via a serial section generated by laser ablation tomography
(LAT) (Strock et al., 2019) of Butomus umbellatus and
Ornithogalum umbellatus. We contextualize our descriptions
within broader studies of the developmental morphology of
condensed inflorescences in the monocots, including other
orders Zingiberales and Commelinales.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Plant were either purchased, collected from the wild or sourced
from New York Botanical Gardens (Table 1). All purchased
plants were grown at Cornell University Kenneth Post Laboratory
facilities. They were potted in Lambert LM-AM potting mix

and watered before placing in a cooler at 10◦C on Plants were
moved from 10 to 4◦C on 1/18/2021, and to 1.5◦C on 2/6/2021.
Potted plants were watered once while in the cold. Plants were
transferred to the greenhouse on 05/01/2022.

Developmental Morphology of
Inflorescences
Meristems were stained and imaged with incident light
illumination as originally described by Sattler (1968) and later
expanded on Posluszny et al. (1980), Charlton et al. (1989),
Lacroix and MacIntyre (1995), and Dadpour et al. (2008).
Bulbs, corms, or rhizomes were dissected down to pieces of
tissue that would fit in a 20 mL scintillation vial. Material was
fixed in Formalin Acetic acid Alcohol (FAA: 50% EtOH, 10–
37% Formalin, 5% Glacial acetic acid, 35% H2O) with vacuum
infiltration and stored for at least 24 h. Samples were washed
once in 50% EtOH and then taken through a graded EtOH
dehydration series (50, 70, 70, 80, 90, 95%) for 1 h at each step.
Samples were stained for 1–4 h in a 1% w/v Nigrosin solution
(Dadpour et al., 2011) dissolved in 95%EtOH, washed twice
in 95% EtOH and further dissected in 95% EtOH to expose
the meristem. If the meristem was not sufficiently exposed and
stained, we repeated the prior step until meristems had sufficient
contrast. Throughout the process FAA and Nigrosin were reused
and 95% EtOH was used instead of 100% (Ruzin, 1999).
Samples were mounted in 100% room-temperature-vulcanizing
silicone (DAP Gasket Maker; Maryland, United States) which
remains malleable if submerged in 95% EtOH. We captured
image stacks at 5 micrometers, beginning at the apex, using a
Leitz Ultropak incident light illuminator microscope (Wetzlar,
Germany) using 3.8×, 6.5× or 11× with dipping cone objectives.
Large samples were imaged on a Nikon SMV1500 stereo
scope (Tokyo Japan). In both cases parafilm was added in the
light path if cellular structure caused refraction. Images were
captured with a Nikon Digital Sights Fi-3 camera running
Nikon Elements F software (version 4.60). We performed focus
stacking using the software Picolay (version: 2020-10-27) with
4 filter settings. In cases where an alignment correction was
necessary, we used the “2× align” parameter, which aligns

TABLE 1 | Taxonomic and voucher information for taxa in this study.

Taxonomic information Source Herbarium voucher

Butomus umbellatus L. Collected, Ithaca, NY CU JMG001

Allium triquetrum L. Collected, Berkeley, CA CU JMG002

Dichelostemma congestum (Sm.) Kunth Purchased, Easy to Grow Bulbs, CA CU JMG003

Dichelostemma × venustum “Pink Diamond” (Greene) Hoover. Purchased, Easy to Grow Bulbs, CA CU JMG004

Triteleia laxa Benth. Purchased, Easy to Grow Bulbs, CA CU JMG005

Ornithogalum umbellatum L. Purchased, Easy to Grow Bulbs, CA CU JMG006

Ornithogalum nutans L. Purchased, Easy to Grow Bulbs, CA CU JMG007

Narcissus “martinette” Purchased, Royal Anthos, Hillegom, The Netherlands CU JMG008

Scilla siberica “Alba” Andrews. Purchased, Royal Anthos, Hillegom, The Netherlands CU JMG009

Allium hollandicum “purple sensation” R. M. Fritsch. Purchased, Royal Anthos, Hillegom, The Netherlands CU JMG0010

Fritillaria imperialis “rubra maxima” L. Purchased, Van Engelen Nursary, CT CU JMG0011

Fritillaria persica L. Purchased, Van Engelen Nursary, CT CU JMG012

Tacca chantrieri André. New York Botanical Gardens NYBG
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FIGURE 1 | Taxa with Umbellate inflorescence investigated. (A) Order level phylogeny of Monocots following (Givnish et al., 2018). The order Asparagales is
separated to show two families studied; the unnamed grade represents the remainder of the families in the order. (B) Butomus umbellatus. (C) Tacca chantrieri.
(C) Fritillaria imperialis. (D) Dichelostemma × venustum “Pink Diamond”. (E) Triteleia laxa. (F) Dichelostemma congestum. (G) Allium triquetrum. (H) Narcissus
“martinette”. (I) Allium hollandicum. Colored rectangles correspond between (A–I).

first and focuses second. Image post-processing was done in
FiJI (version 1.53c): Images were converted to gray scale (i.e.,
converted to 8-bit), contrast and brightness were adjusted, and
a scale bar was added.

Anatomical Serial Section via Laser
Ablation Tomography and 3D
Reconstruction
Serial anatomical sections were obtained using laser ablation
tomography as described in Strock et al. (2019). Plant materials
were fixed in FAA and dehydrated in a graded ethanol
series then critically point dried. Samples were loaded on
the LAT and videos of serial sections were captured at 30
frames/second; the stage advanced at 30 microns/second
producing videos that captured 1 micron/frame. Videos
were segmented into individual frames with a VLC media
player (VideoLAN, France). Xylem tissue in individual
frames was manually traced using FIJI and binary masks
were generated with the “Mask From ROIs” plugin (Thomas
and Trehin, 2021). Composite hyperstacks were generated
using the raw stack and masks. 3D images were made with
a 3D viewer in FIJI (Schindelin et al., 2012). For Butomus
umbellatus, we scanned an inflorescence approximately
4 mm with LAT (Supplementary Figure 1A) and rendered
the inflorescence in 3D with an image stack composed
of serial sections taken every 15 um (Supplementary
Files 1, 2). For Ornithogalum umbellatum, we scanned an
inflorescence approximately 3.6 mm with LAT (Supplementary
Figures 1B,C) and rendered the inflorescence in 3D with an
image stack composed of serial sections taken every 30 um
(Supplementary Files 5, 6).

RESULTS

We summarize the main inflorescence architectures observed
in the umbellate taxa studied (Figure 2). We observe sciadium
(aka indeterminate umbels), a special case of a botryums (aka
indeterminate racemes) where there is differential internodal
elongation of the primary access with respect to the floral
pedicels (Figure 2A). Additionally, we observe three types of
thyrses/thyroids (Figures 2B,C). They differed in whether their
primary axis terminated in a flower (thyrsoid; Figures 2C,D)
or not (thyrse; Figure 2B), and the arrangement of the lateral
monochasial cymose branching pattern as either a bostryx
(helicoid cymes; Figures 2B,C) or a cincinnus (scorpioid cymes;
Figure 2D). These latter differ in their branching site, alternating
in left-right in cincinni vs. either left or right in bostryces. Lastly,
we observed a thyrsoid with lateral dichasia, cymes that branched
twice, in contrast to monochasia cymes that branch once. While
there is a classification system for racemose type inflorescence
with differential internode length (i.e., umbels, heads, spikes), one
does not exist for thyrses/thyrsoids (Endress, 2010). Therefore,
these were depicted without differential internode lengths.

Brodiaeoideae Inflorescence
Development
The inflorescences of all three examined Brodiaeoideae taxa
are terminal. After the vegetative shoot apical meristem
transitions to the reproductive meristem, the corm dies back,
and axillary vegetative meristems develop into individual
and separate corms. In all taxa, the vegetative shoot apical
meristem is small with distichous phyllotaxy (Figures 3A,
4A, 5A). The transition to the reproductive meristem is
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FIGURE 2 | Diagrams of inflorescence architecture observed for umbellate inflorescences in this study. (A) Sciadium, a type of true umbel. (B) Thyrse with
monochasial bostryces. (C) Thyrsoid with dichasia. Represents an early developmental stage Butomus umbellatus as in later stages cymes become monochasial.
(D) Thyrsoid with monochasial cincinni. (B–D) Depicted without differential internode lengths would be observed in umbellate taxa. Floral subtending bracts (aka
pherophylls) and floral bracts (aka prophylls) are not included these depiction (see Prenner et al., 2009: Box 1).

marked by an increase in meristem size and the formation
of inflorescence bracts (Figures 3B,C, 4B,C, 5B,C). Here
the development of Dichelostemma congestum deviates from
Dichelostemma × venustum “Pink Diamond” and Triteleia laxa.
Dichelostemma congestum exhibits internode elongation of the
primary axis and lacks secondary branching systems (Figure 3).
The inflorescence meristem remains elongated as it produces a
series of floral meristems (Figures 3D–F), eventually decreasing
in size until no new floral meristem primordia are formed
(Figures 3G–H). No prophylls were observed on in this taxon.
Development of the inflorescence in Dichelostemma × venustum
and Triteleia laxa are similar to one another (Figures 4, 5).
In both taxa, the inflorescence meristem gives rise to, in a
spiral fashion, multiple second order flower primordia with
floral prophylls (Figures 4D, 5D). In the axil of these prophylls
arises the tertiary order flower primordia (Figures 4D–L, 5D–
I; white arrows). Unlike in Dichelostemma congestum, there
is little internode elongation of the primary axis (Figure 4L:
Flower d is positioned higher than flower b). As such,
secondary flower primordia are horizontally adjacent to the
tertiary flower primordia (Figures 4E, 5H). Taken together the
inflorescence of Dichelostemma congestum can be considered a
raceme (Figure 2A) and those of Dichelostemma × venustum
and Triteleia laxa can be considered a thyrse (Figure 2B),
i.e., a primary raceme axis with multiple secondary branches
exhibiting a cymose branching pattern specifically, a bostryx
(aka helicoid cyme).

Amaryllidaceae Inflorescences
Development
In Allium triquetrum the primary axis is indeterminate, and
the inflorescence meristem branches twice, producing two
secondary flowers which continue to branch in a cymose
pattern (Figures 6A,B: Flowers a and b). The pedicels of
flowers within the same branching system appear horizontally
adjacent to each other (Figure 6C: Flowers e and c). The
inflorescence of Narcissus “martinette” contains three to four
flowers but only three flower primordia were observed here
(Figures 6E,F). It is a determinate inflorescence with two
lateral flowers (Figure 6F). In both Allium triquetrum and
Narcissus, flower pedicels appear horizontally adjacent to

each other (Figures 6C,F). Allium hollandicum exhibits a
different adult inflorescence morphology. This taxon experiences
internodal elongation of the primary axis (Figure 6H), with
the presence of secondary and higher order branching similar
to that seen in Allium triquetrum (Figures 6I–K). Due to
the internodal elongation of the primary axis, all flower
pedicels are vertically adjacent to each other (Figures 6G–F). All
three species lack both floral subtending bracts (pherophylls)
and floral bracts (prophylls). The inflorescence of Allium
triquetrum is a thyrse with two lateral bostryx (Figure 2B).
The Narcissus inflorescence observed here be considered a
sciadioid (determinate umbel). Allium hollandicum inflorescence
is interpreted as a thyrse, as previously described for other
ornamental Alliums (Kodaira and Fukai, 2005).

Butomus umbellatus Inflorescence
Development
The development morphology of the Butomus umbellatus
inflorescences has been described in detail elsewhere (Wilder,
1974; Eckert et al., 2000); however, prior studies lacked all
developmental stages and key questions remain concerning the
architecture (Figure 7). The inflorescence meristem produces
three bracts, each with an axillary secondary bud (aka primary
bud sensu Wilder) that in turn gives rise to a secondary
lateral branch that terminates into a flower (Figures 7A,D–F).
The primary axis terminates in a flower While it appears
that buds arise simultaneously because as all buds are
approximately at the same developmental stage at any moment
in time, they arise sequentially following their respective
bract origin (Figures 6A,D–F). Following these secondary
branching events, the primary axis transitions into a floral
meristem (Figures 7D,G,J,M,P). We find that each secondary
branch branches sequentially twice as opposed to a trifurcation
(Figures 7I,K) before the secondary branch meristem terminates
into a flower (the three flowers on the secondary lateral branch
are collectively referred to as triads sensu Wilder). Secondary
branches are displaced from the primary stem axis appearing
horizontal adjacent to the primary axis, as opposed to branching
from the axis (Figures 7K,N). This branching pattern is repeated
in subsequent order branching events (Figures 7M–R). However,
in latter orders of branching, there may be more than two
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FIGURE 3 | Dichelostemma congestum inflorescence developmental morphology. (A) Shoot Apical Meristem. (B,C) Inflorescence meristem imaged from the apex
(B) and laterally (C). (D–F,G–I) Two stages of inflorescence development, with meristems in the first column (D,G) imaged from the apex and the second (E,H) and
third (F,I) columns imaged laterally. Colored lines on images taken from the apex indicate orientation of the inflorescence in subsequent panels [e.g., orange and blue
lines in (D) represent orientation of images in (E) (orange) and F (blue)]. Structures only labeled in first apical image. SAM, shoot apical meristem; LP, leaf primordia;
IM, inflorescence meristem; IB, Inflorescence bract; FP, floral primordia; fb, floral bract; 2◦–second order flowers. Scale bar of all images: 100 µm.

branching events as evident by meristem primordia that are not
divisible by three. Therefore, the inflorescence can be considered
a thyrsoid with three lateral dichasia that switch to monochasia,
specifically bostryces, later in development (Figure 2C).

Fritillaria Inflorescences Development
Fritillaria persica and Fritillaria imperialis exhibit distinct
inflorescence structures. The inflorescence meristem of Fritillaria
persica initiates as a large swelling. It initiates leaf primordia that
whose proximal margins are congenitally fused (Supplementary
Figure 2 and Figure 8A: white arrowheads). The inflorescence
initiates floral meristems in a spiral phyllotaxy with flower
subtending bracts; however, the bract does not cover the floral
primordia (Figures 8B,C: false colored green). As a result,
the floral subtending bract never fully develops and remains
a rudimentary organ present in more mature inflorescences
(Figure 8E: false colored green). Floral bracts are not observed
in this taxon. The inflorescence is indeterminate, continuing
to produce flowers for as long as the meristem functions

(Figure 8D). In contrast the shape of the inflorescence
meristem of Fritillaria imperialis is fasciated (an oval shape;
Figures 8F–H). While the meristem is fasciate the mature
inflorescence stem is round, due to shape imprinting (Endress,
2008; Figure 1A). Organ primordia are initiated spirally with
little internodal elongation between organs (Figure 8I). Flowers
initiate sequentially, but development is synchronized, and all
flower pedicels end up adjacent to each other (Figure 8J). The
meristem is indeterminate continuing to produce leaf primordia
indefinitely (Figure 8K). The flowers of Fritillaria imperialis also
have rudimentary floral bracts (Figure 8J: false colored orange).
The inflorescence of Fritillaria imperialis can be considered a
botryum (indeterminate raceme) while that of Fritillaria persica
can be considered a sciadium (Figure 2A).

Tacca chantrieri Inflorescences
Development
Only unopened inflorescences that had emerged from the
stem were available. The inflorescence was interpreted as
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FIGURE 4 | Dichelostemma × venustum “Pink Diamond” inflorescence developmental morphology. (A) Shoot Apical Meristem. (B,C) Inflorescence meristem
imaged from the apex (B) and laterally (C). (D–F) Young inflorescence meristem imaged from apex (D) and laterally (E,F). (G–L) An older stage of inflorescence
meristem. Imaged apically (G) and laterally (H–L). The first 6 second-order flowers lettered a–f indicating sequence of initiation (D–L). Branching order (2◦, 3◦)
labeled only for the cyme of the first flower initiated a. Colored bars on images taken from the apex (B,D,G) indicate orientation of subsequent lateral images.
Structures only labeled in first apical image. SAM, shoot apical meristem; LP, leaf primordia; IM, inflorescence meristem, false colored green (D–L); IB, Inflorescence
bract; FP, floral primordia; fb, floral bract. White arrows indicate branching events between second and third order branches. Scale bar of all images: 100 µm.

comprising two cincinni (aka scorpioid cymes), surrounded by
four inflorescence bracts, each branching centrifugally along
the transverse plane (Figures 9A,B). Flowers did appear
to not directly formed in the axils of their floral bracts
(Figures 9C,D green); floral bracts development was delayed
appearing in two rows sides of the inflorescences flanking
the flowers (Figure 9A). Similar to other cases, pedicels of
all flowers were horizontally adjacent due to displacement of
lateral flower primordia from their branch. Taken together,

this inflorescence is classified as a thyrsoid with two lateral
cincinni (Figure 2D).

Scilloideae Inflorescence Development
The inflorescence development of three members of the
Scilloideae, all of which represent classic racemes, were studied.
The development of Ornithogalum nutans (Figures 10A–C)
and Ornithogalum umbellatum (Figures 10D–F) parallel each
other. Each represents simple racemes where flowers are
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FIGURE 5 | Triteleia laxa inflorescence developmental morphology. (A) Shoot Apical Meristem. (B,C) Inflorescence meristem imaged from the apex (B) and laterally
(C). (D–I) Two stages of inflorescence development. (D–I) Two series of inflorescence development. The meristems in the first column (D,G) are imaged from the
apex and the second (E,H) and third (F,I) columns are imaged laterally. Colored lines on images taken from the apex (B,D,G) indicate orientation of the inflorescence
in subsequent panels. The first 4 second-order flowers lettered a-d indicating sequence of initiation (D–I). Branching order (2◦, 3◦) labeled only for the cyme of the
first flower initiated a. SAM, shoot apical meristem; LP, leaf primordia; IM, inflorescence meristem, false colored green (D,G); IB, Inflorescence bract. White arrows
indicate branching events between second and third order branches. Scale bar of all images: 100 µm.

arranged in a spiral phyllotaxy. The inflorescence does not
terminate in a flower (Figures 10C,F). The inflorescence of Scilla
siberica is similar; however, this taxon exhibits double racemes
(Figures 10G–I). The inflorescence meristem branches twice or
more to produce racemes each of which contains three to five
flowers (Figure 10H). The primary axis lacks any internodal
elongation, only the lateral branches elongate and emerge above
the soil. Ornithogalum umbellatum as a representative of the
raceme condition (Supplementary Figures 1B,C). From the LAT
scan of this inflorescence, we extracted serial sections every
30 µm of distance along the inflorescence and rendered the
inflorescence manually traced two vasculature strands from the
apex toward the basis (Supplementary Files 5, 6).

Inflorescence Vascular Anatomy
To obtain complementary evidence of branching order, we traced
vascular bundles in serial sections of Butomus umbellatus, as a
representative of the umbellate inflorescence, and Ornithogalum
umbellatum as a representative of a raceme inflorescence.

We used LAT to obtain the fine scale serial sections where
contrast between anatomical features is generated by differential
autofluorescent signature of the cell wall under UV excitation.

Within the 4mm sample of Butomus umbellatus (Figure 11A)
we focused our analysis on a 1.25 mm region where the
inflorescence stem meets floral pedicels (Figure 11A dashed
lines B; Supplementary Files 3, 4). Vascular bundles could
be manually discriminated relative to surrounding tissue by a
distinct autofluorescent signature generated by differences in
the secondary cell wall composition of these bundles relative
to the surrounding ground tissue. We will refer to vascular
bundles as merging if two bundles come together relative to
their acropetal position in the flower. Moving from the flower
pedicels to the inflorescence stem, floral pedicels are composed
of three vascular bundles (Figure 11D). Two of the three pedicel
vascular bundles always merged (red puncta in Figure 11D
merge by Figure 11E, and blue puncta in Figures 11D,E merge
by Figure 11F), which resulted in two vascular bundles at
the base of each flower pedicel. Of these two bundles, one
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FIGURE 6 | Amaryllidaceae Inflorescence developmental morphology. (A–C) Allium triquetrum (A) Young inflorescence with first two flower primordia. (B,C) Older
inflorescence, with the first two flower dissected away, imaged from the apex (B) and laterally (C). (D–F) Narcissus “martinette” shoot apical meristem (D) and young
inflorescence (E,F). Colored lines on images taken from the apex indicate orientation of the inflorescence in subsequent panels. The first flowers (A–C,E,F) lettered
a–f indicating sequence of initiation. Branching order (1◦, 2◦, 3◦) labeled only for the cyme of the first flower initiated). (G–K) Allium hollandicum. (G) shoot apical
meristem. Young inflorescence (H) and close-up of three flower primordia (I–K) false colored for orientation. Branching ordered specified in (I). Colored lines on
images taken from the apex (B,E) indicate orientation of the inflorescence in subsequent panels. SAM, shoot apical meristem; LP, leaf primordia; fp, floral primordia.
White arrows indicate branching events. Scale bar for all images: 100 µm.

bundle always merges with the vascular structure associated
with the lateral axis from which it branched (Figures 11D–
F: white arrowhead). We interpret this as anatomical evidence
of branching. The other bundle arises from an independent
vascular bundle found within the inflorescence stem. Each flower,
except the terminal flower on the primary axis, is subtended
by a bract. We were only able to trace the vascular bundle
of the bract subtending the secondary branch. The primary

vascular bundle initiates from a single vascular bundle in the
inflorescence stem.

In Ornithogalum umbellatum we manually traced two
vasculature strands from the apex toward the basis (Figure 12A;
Supplementary Files 5, 6). Like Butomus umbellatus the flower
pedicels had three vascular strands (Figures 12C,D: magenta).
Vascular strands both split into two strands (Figures 12E,F
magenta; Figures 12F,G cyan). Stem twisting was expressed in
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FIGURE 7 | Butomus umbellatus inflorescence developmental morphology. (A) Leading end of rhizome including three meristems. Shoot Apical Meristem,
Inflorescence Meristem, Rhizome meristem. (B,C) SAM, (B) SAM imaged from the apex. (C) SAM imaged laterally. (D–R) Five stages of inflorescence development
(rows). The meristems in the first column (D–P) are imaged from the apex. The second and third columns are imaged laterally. (D–F) Inflorescence with three
inflorescence bracts formed, the oldest inflorescence bract (left) removed, and the second oldest inflorescence bract (right) removed in (E). (G–I) Inflorescence where
the first whorl of tepal primordia arise. (J–L) Apical flower with nine stamen primordia. (M–O) Inflorescence with nine stamen primordia fully formed, gynoecium
developmental about to initiate. (P–R) Inflorescence with gynoecium development. Branching order (1◦–5◦) labeled for one of the three cymes (M–R). Colored lines
on images taken from the apex (B–P) indicate orientation of the inflorescence in subsequent panels. SAM, shoot apical meristem; IM, inflorescence meristem; RhM,
lateral rhizome meristem; LP, leaf primordia; IB, Inflorescence bract; fb, floral bract, false colored green (H–I,K–L,O,R) fp, floral primordia; t, tepal primordia; s,
stamen primordia. White arrows indicate branching events. Scale bar for all images: 100 µm.
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FIGURE 8 | Fritillaria inflorescence developmental morphology. (A–E) Fritillaria persica. (F–K) Fritillaria imperialis. (A) SAM. (B–C) Young inflorescence meristem with
floral primordia. (B) imaged apically (C), Imaged laterally. (D,E) Mature inflorescence (D) imaged apically (E) imaged laterally following dissection. (F) SAM. (G–H)
Young inflorescence meristem exhibiting fasciation. (I–K) mature inflorescence (I) imaged apically (J) Imaged laterally following dissection of floral subtending bracts
(K) Imaged apically following dissection of leaves. Colored lines on images taken from the apex (B,D,I) indicate orientation of the inflorescence in subsequent panels.
Floral subtending bracts are false colored green (B,C,E), floral bracts false colored orange (J). White arrowheads indicate leaf fusion. SAM, shoot apical meristem;
IM, inflorescence meristem; fp, floral primordia; LP, leaf primordia. Scale bar of all images: 100 µm.

the vascular strands, they rotated along the inflorescence stem
due to branching.

We attempted LAT scans on the young meristematic tissue
of Allium hollandicum (Supplementary File 7) but due to the
delicate, under-developed cell wall structure of this tissue, this
sample was difficult to visualize and experienced “burning” under
UV excitation. Similar difficulties in visualizing the anatomy of
delicate samples with LAT were observed within B. umbellatus,
however this “burning” was localized to young meristematic
tissue (Figure 11C: dashed circle). Because LAT is primarily
utilized for the visualization of plant cell walls, this technology is

ideally suited for tissue-level visualization of larger samples with
rigid cell wall structure.

DISCUSSION

Here we present a developmental morphological and anatomical
investigation into umbellate inflorescence structures across
the monocots. We use a novel approach to characterize the
notoriously complex vascular system in monocots, focusing
on the inflorescence (Zimmermann and Tomlinson, 1972;
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FIGURE 9 | Tacca chantrieri inflorescence developmental morphology. (A) One of the two lateral cincinni on an inflorescence. (B) A zoom-in of red box in panel A.
(C) Cincinnus with a branching event and two newly formed bract primordia (false colored green). (D) Cincinnus that is not currently branching, with two floral bract
primordia, the two oldest bracts have been dissected but scar is false colored green. White arrows indicate branching events. IB, Inflorescence bract; fb, floral bract,
false colored green (C,D) fp, floral primordia; fl flower; t, tepal primordia; s, stamen primordia. White arrows indicate branching events. Scale bar of all images: 100
µm.

Vita et al., 2019). Despite the vast evolutionary time scales
represented in our sampling (Figure 1), we can identify at least
three cases of homoplasy via parallelism and at least two cases
of homoplasy via convergent developmental programs that each
result in an umbellate inflorescence. The parallel evolution cases
of inflorescence evolution are underlined by a new variant of
metatopic displacement termed horizontal concaulesence.

Developmental Parallelism and
Convergence Underlie Umbellate
Evolution in Monocots
Using a phylogenetic framework, we have identified nested cases
of homoplasy in inflorescence development across the monocots.
We identify at least three independent ways to make an umbellate
inflorescence: (1) The bostryx- (aka helicoid cyme) derived
umbellate inflorescence, (2) The cincinnus- (aka scorpioid cyme)
derived umbellate inflorescence, and (3) the racemose-derived
umbellate inflorescence which is considered a true umbel (Troll,
1937; Weberling, 1992; Endress, 2010).

Among the bostryx derived inflorescences, there are at
least three cases of parallel evolution exemplified by (a)
Brodiaeoideae, excluding Dichelostemma congestum, (b) the
inflorescence of Amaryllidaceae, including Allium triquetrum,

studied here, and (c) the inflorescence of Butomus umbellatus.
They share a generative program of inflorescence development
involving multiple bostryces (aka helicoid cymes) that lack
vertical internodal elongation of the primary axis (Figure 2B).
Within this general structure there is large variation, including
whether the primary axis terminates in a flower (e.g., Butomus
umbellatus) or not (e.g., Brodiaeoideae and Amaryllidaceae),
and how many bostryces are present in the inflorescence
(e.g., Allium triquetrum = 2, Butomus umbellatus = 3). This
parallel evolution likely applies to other umbellate taxa that fall
in these groups, specifically, Limnocharis flava (Alistimataceae
Alismatales) which has been described as a cincinnus but
diagrammatically resembles a bostryx (Wilder, 1974) and various
member of the Amaryllidaceae (Blaauw, 1931; Mann, 1959). Even
though the specimen of Narcissus observed here is classified as a
botryoid, cymose branching likely occurs in individuals with four
flowers similar to other members of this family. On the other
hand, Allium hollandicum does exhibit internodal elongation of
the primary axis and lateral cymes arranged differentially than
Allium triquetrum; this appears to be a derived condition. Further
phylogenetic and developmental studies are necessary to assess
these inflorescence types.

The inflorescence of Tacca chantrieri is a convergent case
of umbellate inflorescence originating a different type of thyrse
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FIGURE 10 | Scilloideae inflorescence developmental morphology. (A–C) Ornithogalum nutans (D–F) Ornithogalum umbellatum (G–F) Scilla siberica “Alba”.
(A) Shoot Apical meristem. (B,C) young inflorescence imaged (B) apically (C) laterally. (D) Shoot Apical meristem (E,F) young inflorescence imaged (E) apically (F)
laterally. (G) Young inflorescence imaged apically. (H) Imaged laterally showing a racemic pattern of development of a branch (I) Inflorescence meristem with
branching events. Colored lines on images taken from the apex (B,E,G) indicate orientation of the inflorescence in subsequent panels. SAM, shoot apical meristem;
LP, leaf primordia; IM, inflorescence meristem; fp, floral primordia; fb, floral bract; IB, inflorescence bract; BM, branch meristem. Scale bar of all images: 100 µm.

those with cincinni. A cincinnus and a bostryx, both cymes,
differ in their three-dimensional floral arrangements (Buys and
Hilger, 2003), but are topologically related; hypothetically they
can transition between each other through two intermediate
inflorescences, rhipidiums and drepaniums (Eichler, 1875;
Müller-Doblies, 1977; Müller-Doblies et al., 1992; Weberling,
1992; Hrabovský, 2019). Collectively these four inflorescence
types are referred to as monochasia (Eichler, 1879). While,
it may have been possible that the lateral cymes in the
Tacca chantrieri inflorescence were ancestrally derived from
a bostryces which transitioned to a cincinni through a
rhapidum or drapanium, as have been described in the
Amaryllidaceae genera Clivia and Lapideria (Müller-Doblies
and Müller-Doblies, 1978), it is more likely that the ancestor
condition was a thyrsoid with uncondensed internodes; a
common condition in this order (Remizowa et al., 2010;
Nuraliev et al., 2021; Yudina et al., 2022). As such, the this
represents a convergent case of an umbellate inflorescence
since the lateral cymes are arrange differently than the

bostryx derived umbellate taxa. The cincinnus of Tacca
resemble those found in various member of Commelinaceae
(Hardy et al., 2000; Hardy and Stevenson, 2000a,b) specifically
Plowmanianthus which is interpreted as a thyrse that has
reduced to a single cincinnus (Hardy et al., 2004). However,
the inflorescence of these taxa are not considered umbellate,
exemplifying how similar inflorescence architecture can give rise
to diverse overall form.

In contrast to thyrse derived umbellate inflorescences,
Fritillaria imperialis and Dichelostemma congestum have
independently evolved a raceme-derived umbellate inflorescence,
specifically sciadium and as such they have converged upon a
true umbel. In Fritillaria imperialis, lack of internodal elongation
is likely related to the fasciated meristem found in this taxon
(Figures 8G,H). Umbellate inflorescences are not common
in this group; most members either have solitary flowers or
have a raceme (Beetle, 1944; Rønsted et al., 2005; Huang et al.,
2018). Depictions of strongly fasciated stems, compared to
the round stems found here (Figure 1D), date back to the
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FIGURE 11 | Butomus umbellatus inflorescence anatomy. (A) Inflorescence reconstructed from serial sections at 15 µm increments. Region in between dashed
lines correspond to the section of vasculature in (B). (B) Outlined vascular bundles in the absence of other tissue. Colors correspond to different flowers (1) yellow,
(2) red and magenta, (3) green, (4) blue and cyan. White arrow corresponds to the individual section, in descending order, shown in the following panels. (C–G)
Individual anatomical panels, in grayscale. Circle indicates meristematic tissue. White arrowheads indicate when vascular bundles from distinct flower pedicels
merge. Scale bar of all images: 500 µm.

FIGURE 12 | Ornithogalum umbellatum inflorescence anatomy by laser ablation tomography. (A) Inflorescence reconstructed from serial sections at 30 um
increments overlayed with two vascular bundles (cyan and magenta). White arrow corresponds to the individual section, in descending order, shown in the following
panels. (B–G) Individual anatomical panels, in grayscale. White arrowheads indicate when vascular bundles from distinct flower pedicel merge. Scale bar of all
images: 250 µm.

1600s (Basilius, 1613) and as such may have been influenced by
artificial selection.

The inflorescence of Dichelostemma congestum may have
experienced a different evolutionary force —developmental

system drift (DSD) (True and Haag, 2001). DSD is defined when
two species with a similar overall phenotype, in this case an
umbellate inflorescence, evolved from ancestors with different
developmental pathways, in this case different inflorescence
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architectures (i.e., bostryx derived, cincinnus derived and raceme
derived). All members of Brodiaeoideae have an umbellate
inflorescence (Pires et al., 2001), however, of the species
described, only the inflorescence of Dichelostemma congestum
is raceme-derived. The underlying developmental basis of the
inflorescence (i.e., raceme vs. thyrse/thyrsoid), which is expressed
in the order in which flowers open, has been noted in taxonomic
studies of Dichelostemma (Keator, 1967). Order of flower anthesis
is an important mechanism that plants use to avoid selfing
and promote outcrossing (Harder et al., 2004). Umbellate
inflorescences often exhibit synchronous dichogamy, in which all
flowers in the umbel go through simultaneous phases of pollen
productivity or ovule maturity. This contrasts with acropetal
flower maturation, characteristic of raceme inflorescences (Ida
and Minato, 2020). In Dichelostemma, DSD may be a mechanism
whereby the gross flower display of an umbellate inflorescence
is maintained, perhaps to attract pollinators, while allowing
for changes in the order of flowering time and reproductive
success. Field observations are consistent with this; member of
the Dichelostemma genus have a similar pollination mode, mainly
butterfly, except for Dichelostemma ida-maia which is likely
hummingbird pollinated due to its distinct floral modification
with respect to the rest of the genus (e.g., flower is red, no landing
pad; Keator, 1967). A similar case may apply to the cincinnus
vs. bostryx derived umbels in Amaryllidaceae described above.
Further ecological work is needed to test this hypothesis.

Anatomical Evidence of Branching
Because assessing branching order in a condensed structure
can be difficult, as meristematic primordia rise quickly and
within a small space, we sought to obtain complementary
evidence of branching from anatomical serial sections as has
been done before (Abbe, 1935; Maze, 1977). In a the similarly
condensed inflorescence of Musa, the lateral branching system
(i.e., the banana “hand”) is interpreted to be a cincinni based
on the order of initiation of the individual flower primordia
(Fahn, 1953) but, in Musa accuminata, the second flower
primordium is vascularized before the first flower primordium,
which is inconsistent with expectations for a cincinnus.
Later, developmental morphological work shows that branching
order within non-crop members of the genus Musa exhibits
intraspecies variation in order of flowering within a “hand”
(Kirchoff, 2017).

Here, the anatomical section from LAT work provided
complementary evidence of branching. In the original
description of the Butomus umbellatus inflorescence, key
developmental morphological stages were not observed, leading
to an uncertain conclusion as to the branching order within
the condensed structure (Wilder, 1974: Figures 60, 62). Our
dissections reveal a clear order of primordia emergence during
early inflorescence development, indicating a pattern reflecting
cymose branching (Figures 7I,K,R). Our results show that
the Butomus flower pedicel has three vascular strands, two
of which merge into a single strand (Figure 11C). A similar
pattern has been observed in other Monocots including Tofieldia
(Alismatales), Metanarthecium (Dioscoreales) and Japonolirion
(Petrosaviales) (Remizowa et al., 2006, 2008, 2013), and is

thought to be correlated with the small size of the pedicel. In
Butomus, one of these pedicel vascular strands immediately
originates from the corresponding lateral axis from which it
branches (Figure 11 white arrowheads). Interestingly, the other
vascular bundle is not derived from the lateral branch but appears
to form from tissue located elsewhere within the inflorescence
stem. While only one of the two vascular bundles is derived from
the lateral branch, we nonetheless interpret this as anatomical
evidence of branching; we can consistently trace branching from
the quaternary branch in the cyme to the terminal flower of the
primary branch. It would be interesting to compare the vascular
dynamics of non-umbellate inflorescences with a cyme such as
Thismia (Nuraliev et al., 2021).

Our anatomical results were obtain using LAT, a new method
to obtain anatomical serial section to complement the anatomists’
toolkit. It’s major advantages over traditional approaches to
obtain serial sections (i.e., embedding), is speed and scalability.
Serial sections of 1um increments can consistently be obtain
within a few minutes. This consistency and large amount of
data facilitates computational 3D reconstruction as there is no
need to interpolate between section. Although, computational
3D reconstruction, can be done with serial section obtain
by traditional sectioning (Haushahn et al., 2014). The main
disadvantage is this method solely relies on diffraction from plant
cell wall limiting for imagine, as such we have found that good
resolution is obtained only mature cells. In contrast, the rich
history of staining schedules allow anatomist to visual distinct
structures cross mature and young issues.

Umbellate Inflorescence and Horizontal
Concaulescence
Umbellate inflorescences are often described as lacking
internodal elongation. Here we observe that floral pedicels are
horizontally adjacent, arising out of flat stem, and often displaced
from the pedicel which they branched. Lack of internodal
elongation, on its own, is not sufficient explain this form of
bud displacement. Instead the organization of thyrse derived
umbellate inflorescence structure can be best characterized as a
distinct form of metatopy—where buds initiated in an axillary
position are displaced secondarily as a result of differential
growth (Troll, 1957; Weberling, 1992; Endress, 2010; Kaplan,
2022). Two general forms of metatopy exist: concaulescence,
where buds are displaced upwards with respect to the subtending
bract (Figures 13A,B) and recaulescence (aka epiphylly),
where buds are displaced on the leaf. The developmental
basis of the displacement is congenital fusion of the lateral
axis to either the primary axis (concaulescence; Figure 13B)
or the leaf (recaulescence). Gross morphological outcomes
of concaulescence typically result with flowers appearing
on the underside of bracts (e.g., Streptopus amplexifolius,
Symphytum officinale, Tricyrtis hybrida) (Troll, 1937; Fukai,
2009; Kotelnikova, 2011), but can also cause the disassociation
between the flower and its glume in a Cyperoideae spikelet
(Vrijdaghs et al., 2010) and the adnation of the inflorescence
stem to the vegetative internodes in some rattan palms (Fisher
and Dransfield, 1977). In these cases, and all other described
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FIGURE 13 | Model of horizontal concaulescence. (A,B) Concaulescence following Weberling (1992) (A) Typical lateral (axillary) branching. (B) Concaulescence;
lateral branch is congenitally fused (note overlap of green with black) to the main stem and displaced vertically relative to the subtending bract. (C–G) Horizontal
concaulescence exemplified in a single cymose branch with two sequential branching events (D,F). (C) Stem with terminal flower, inflorescence bract not shown.
(D) Lateral (axillary) branching event (blue). (E) Secondary displacement of the lateral branch (blue) such that the pedicel is horizontally adjacent to the terminal flower.
(F) A second branching event (orange). (G) Secondary displacement of the lateral branch as in (E). Rectangles = stems; Circles = terminal flowers; black curved
lines = bracts; arrow = direction of concaulescent growth.

cases, to our knowledge, metatopy occurs vertically, because the
primary axis elongates orthotropically.

We argue that compound inflorescence here exhibits a
form of concaulescence occurring plagiotropically which we
term horizontal concaulescence (Figures 13C–G). Here the
floral buds are displaced horizontally with respect to their
subtending bracts when present (Figure 13G). This displacement
is due to secondary horizontal cellular elongation of the
primary axis (Figures 13E,G). The result is flower pedicels
emerging horizontally adjacent to one another, seemingly arising
out of a “flat stem.” In all thyrse/thyrsoid umbellate taxa,
lateral floral meristematic primordia, are physically attached
to the pedicel they branch from and the flat inflorescence
stem surface (Dichelostemma venustum Figure 4E; Triteleia
laxa (Figure 5I); Allium triquetrum (Figure 6B); Narcissus
(Figure 7F), Butomus umbellatus (Figure 7K), and Tacca
(Figure 9C). Parallel organization of floral pedicels also occurs
in raceme derived Fritillaria imperialis (Figure 8J) but there
is no observed fusion, instead the large size of the fasciated
meristem naturally allows for more spacing. A putative line
of evidence for this congential fusion is found in a naturally
occurring aberrant inflorescence phenotype in Agapanthus
sp. (Amaryllidaceae) (Supplementary Figure 3). The typical

inflorescence phenotype is similar to others in the family,
but the aberrant phenotype exhibits an additional umbel
(Supplementary Figures 3A,B). Interestingly, a portion of
the inflorescence stem in between the umbels shows a scar
(Supplementary Figure 3C: white bracket). We interpret these
scars as a morphological marker of congenital fusion between
a cymose axis and the inflorescence axis. However, instead
of horizontal elongation, as is typical, the inflorescence axis
had not finished elongating vertically. Further developmental
morphological analysis of the inflorescence will be necessary to
understand the development phenotype.

We describe horizontal concaulescence in all non-
raceme derived umbellate taxa studied, including Tacca,
with one exception, the inflorescence of Allium hollandicum
(Figures 6H–J) which, shares its inflorescence architecture with
Allium rosenbachianum previously described (Kodaira and Fukai,
2005). In these cases, the primary axis is elongated vertically
resulting in a classic case of concaulescence. A similar situation
may occur in Allium spicatum, that has been described as a
raceme, but more detailed morphological studies are necessary
to confirm this hypothesis (Friesen et al., 2000). We note that the
definition of metatopy may not fully apply to cases where floral
bracts have been lost (e.g., members Amaryllidaceae; Figure 5),
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as no displacement occurs per se. However, loss of floral bracts
is likely secondary to umbellate evolution and floral pedicels
still appear horizontally adjacent to each resulting in a flat stem.
Similarly, other monocots within cymose lateral inflorescences,
including members of Zingiberales and Commelinales, exhibit a
similar flat stem morphology whereby floral primordia arise out
of a stem cushion (Kirchoff, 1998, 1997, 1986, 2017; Hardy and
Stevenson, 2000a,b; Fukai and Udomdee, 2005; Kirchoff et al.,
2009, 2020). This hints at a widespread role of metatopy in the
development and evolution of diverse inflorescence architectures
in the monocots.

CONCLUSION

Understanding the generative development program that gives
rise to complex structure is a key step to fully understanding its
evolutionary significance. Recent years have seen a resurgence
in the use of plant morphology to inform phylogenetic
relationships among plants and investigate developmental
processes leading to observed patterns of diversification (Bucksch
et al., 2017). Here we describe a wide range of developmental
morphological variation found in convergent inflorescence
phenotypes. Insights from this descriptive investigation identify
a previously undescribed plant morphological process. Further
these results can provide a source of data for future evolutionary
and ecological studies focusing on the form and function of this
adaptive plant architecture.
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