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There is increasing interest in and evidence for altered immune factors in the etiology and pathophysiology of
schizophrenia. Stimulated by various epidemiological findings reporting elevated risk of schizophrenia fol-
lowing prenatal exposure to infection, one line of current research aims to explore the potential contribution
of immune-mediated disruption of early brain development in the precipitation of long-term psychotic dis-
ease. Since the initial formulation of the “prenatal cytokine hypothesis” more than a decade ago, extensive
epidemiological research and remarkable advances in modeling prenatal immune activation effects in animal
models have provided strong support for this hypothesis by underscoring the critical role of cytokine-
associated inflammatory events, together with downstream pathophysiological processes such as oxidative
stress, hypoferremia and zinc deficiency, in mediating the short- and long-term neurodevelopmental effects
of prenatal infection. Longitudinal studies in animal models further indicate that infection-induced develop-
mental neuroinflammation may be pathologically relevant beyond the antenatal and neonatal periods, and
may contribute to disease progression associated with the gradual development of full-blown schizophrenic
disease. According to this scenario, exposure to prenatal immune challenge primes early pre- and postnatal
alterations in peripheral and central inflammatory response systems, which in turn may disrupt the normal
development and maturation of neuronal systems from juvenile to adult stages of life. Such developmental
neuroinflammation may adversely affect processes that are pivotal for normal brain maturation, including
myelination, synaptic pruning, and neuronal remodeling, all of which occur to a great extent during postnatal
brain maturation. Undoubtedly, our understanding of the role of developmental neuroinflammation in pro-
gressive brain changes relevant to schizophrenia is still in infancy. Identification of these mechanisms
would be highly warranted because they may represent a valuable target to attenuate or even prevent the
emergence of full-blown brain and behavioral pathology, especially in individuals with a history of prenatal
complications such as in-utero exposure to infection and/or inflammation.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Schizophrenia is a chronic psychotic disorder that affects 0.5–1% of
the population worldwide (Tandon et al., 2008). The onset of full-
blown schizophrenic disease is typically in late adolescence or early
adulthood, and the clinical manifestation involves expression of dis-
tinct but often co-existing symptom classes which are commonly re-
ferred to as positive, negative and cognitive symptoms (Carter et al.,
2008; Möller, 2007; Tandon et al., 2009). Positive symptoms refer to
clinical features that are normally not present in healthy individuals
but appear as a result of the disease. These include visual and/or au-
ditory hallucinations, delusions, paranoia, and major thought
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disorders. Negative symptoms are features that are normally present
in healthy individuals, but are reduced or absent in schizophrenic pa-
tients. This symptom category typically includes social withdrawal,
apathy, anhedonia, alogia, and behavioral perseveration. Finally, cog-
nitive symptoms of schizophrenia are characterized by disturbances
in executive functions, working memory impairment, and inability
to sustain attention.

Despite extensive research and remarkable advances in the neuro-
biological, neurochemical and genetic aspects of this disabling mental
illness (Insel, 2010; Jaaro-Peled et al., 2009; Ross et al., 2006; van Os
and Kapur, 2009), the underlying etiological processes remain a chal-
lenge for clinicians and basic researchers alike. Since its initial formu-
lation in the late 1980's (Murray and Lewis, 1987; Weinberger, 1987),
the neurodevelopmental hypothesis of schizophrenia has been one of
the most enduring theoretical accounts of the disorder's etiology and
has since then received converging support from various research
fields, including epidemiology, neuroimaging and post-mortem anal-
ysis (Fatemi and Folsom, 2009; Lewis and Levitt, 2002; McGrath et al.,
2003; Rapoport et al., 2005). In essence, this hypothesis suggests that
the etiology of schizophrenia involves aberrant neurodevelopmental
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processes, in which primary cerebral insults occur during early brain
development long before the illness is clinically expressed. Recent ad-
vances in brain imaging techniques have led to an important refine-
ment of the neurodevelopmental hypothesis of schizophrenia by
underlining the importance of progressive brain changes that occur
during the early stages of the disease, i.e., before and/or during the
transition to full-blown psychosis (Hulshoff Pol and Kahn, 2008;
Pantelis et al., 2005; Wood et al., 2008). Brain changes in schizophre-
nia thus appear to be more dynamic than previously assumed, so that
an interaction between early neurodevelopmental disturbances and
pathological events occurring during postnatal brain maturation
seems necessary to trigger the onset of overt schizophrenic disease
(Cannon et al., 2003; Keshavan, 1999; Keshavan and Hogarty, 1999;
Read et al., 2001; Walker et al., 1999).

There is increasing interest in and evidence for altered immune
factors in the etiology and pathophysiology of schizophrenia
(Drexhage et al., 2010; Meyer et al., 2011a,b; Müller and Schwarz,
2006, 2010; Müller et al., 2000; Steiner et al., 2010). Stimulated by
various epidemiological findings reporting elevated risk of schizo-
phrenia following prenatal exposure to infection (Brown, 2011;
Brown and Derkits, 2010), one line of current research aims to ex-
plore the potential contribution of immune-mediated disruption of
early brain development in the precipitation of long-term psychotic
disease (McAlonan et al., 2010; Meyer and Feldon, 2010; Meyer
et al., 2009a,b). One of the immunological mechanisms in this context
is developmental neuroinflammation, which may predispose the or-
ganism to schizophrenia-relevant brain and behavioral abnormalities
(Meyer et al., 2011a,c). The present article summarizes existing evi-
dence for this hypothesis and discusses the role of developmental
neuroinflammation in schizophrenia with regards to its impact on
early brain development, disease progression and possible preventive
interventions.

2. Epidemiological and translational studies of prenatal infection
and schizophrenia

A significant association between prenatal maternal infection and
increased risk of schizophrenia in the offspring has been demonstrat-
ed in a variety of retrospective epidemiological studies (reviewed in
Brown and Derkits, 2010; Brown, 2011; Brown and Patterson,
2011), even though negative reports also exist (e.g., Crow and Done,
1992; Mino et al., 2000; Morgan et al., 1997). Interestingly, the link
between prenatal exposure to infection and enhanced schizophrenia
risk does not seem to be pathogen-specific. Indeed, numerous viral
infectious agents have been implicated in this association, including
influenza (Brown et al., 2004a; Mednick et al., 1988), rubella
(Brown et al., 2001), measles (Torrey et al., 1988), polio (Suvisaari
et al., 1999), herpes simplex (Buka et al., 2001a), as well as bacterial
pathogens causing sinusitis, tonsillitis and pneumonia (Sørensen
et al., 2009), genital and/or reproductive infections (Babulas et al.,
2006), and the protozoan parasite Toxoplasma gondii (Brown et al.,
2005; Mortensen et al., 2007). Importantly, the establishment of pro-
spective epidemiological approaches has provided clear serologic ev-
idence for at least some of the infectious agents implicated in the
prenatal infectious etiology of schizophrenia (Brown et al., 2004a,b,
2005; Mortensen et al., 2007). Even though prenatal exposure to in-
fection per se appears to have relatively modest effects across large
populations (Morgan et al., 1997; Selten et al., 2010), it is likely to
be a relevant factor interacting with other schizophrenia risk factors,
including genetic predisposition. In support of this hypothesis, the ef-
fect of prenatal infection on elevating risk of schizophrenia is substan-
tially increased in offspring with a positive family history of psychotic
disorders (Clarke et al., 2009).

Epidemiological research is now also beginning to determine
whether prenatal exposure to infection confers vulnerability to spe-
cific features of schizophrenia neuropathology and psychopathology.
Brown and colleagues have recently provided a first line of evidence
showing that deficits in fine-motor coordination, verbal memory, ex-
ecutive functions and working memory are more pronounced in
schizophrenic cases with a positive history of prenatal infection com-
pared to schizophrenic cases without such a history (Brown et al.,
2009b, 2011). Furthermore, a significant association between in-
creased length of the cavum septum pellucidum and prenatal infec-
tion has been demonstrated in exposed schizophrenia cases
compared to unexposed cases, indicating that in-utero exposure to
infection may contribute to neurodevelopmental morphologic abnor-
malities frequently observed in schizophrenic patients (Brown et al.,
2009a).

Based on the reported association between prenatal influenza in-
fection and adult schizophrenia, Fatemi and colleagues have pio-
neered an experimental animal model of prenatal exposure to
human influenza virus in mice (Fatemi et al., 1998, 1999, 2000,
2002a,b, 2004, 2005, 2008), which has recently been adopted by
other laboratories (Moreno et al., 2011). In this model, pregnant
mice are infused intranasally with a sublethal dose of a neurotropic
strain of human influenza virus, and the long-term brain and behav-
ioral effects are then evaluated in the resulting offspring relative to
control offspring born to sham-treated mothers. Brain morphological
and neuroanatomical investigations in this model have shown that
maternal influenza infection leads to a variety of neuropathological
signs in the offspring's brains postnatally, some of which are critically
implicated in the neuropathology of schizophrenia (Fatemi et al.,
1998, 1999, 2000, 2002a,b, 2004, 2005, 2008, 2009; Moreno et al.,
2011; for a summary see Table 1). In addition to the identified neuro-
pathological alterations (Table 1), prenatal exposure to influenza
virus in mice also induces a set of behavioral and pharmacological
changes in adulthood, which are implicated in both the positive and
negative symptoms of schizophrenia (Moreno et al., 2011; Shi et al.,
2003). This includes deficits in sensorimotor gating, reduced spatial
exploration and social interaction, and enhanced sensitivity to phar-
macological treatment with NMDA-receptor antagonists and halluci-
nogens (summarized in Table 2). Importantly, the prenatal
infection-induced deficits in sensorimotor gating can be normalized
by acute treatment with typical or atypical antipsychotic drugs (Shi
et al., 2003), suggesting that at least some of the long-term behavioral
changes induced by prenatal influenza exposure are sensitive to phar-
macological compounds used in the symptomatic pharmacotherapy
of schizophrenia.

The findings derived from the prenatal influenza mouse model
have recently been completed with experimental investigations in
rhesus monkeys demonstrating the emergence of reduced gray and
white matter in distinct cortical and parieto-cortical brain regions of
neonates born to influenza-infected mothers (Short et al., 2010).
Notably, the extension of translational research to rhesus monkeys
is especially relevant in the present context because prenatal cortico-
genesis is more advanced in primate as compared to rodent species,
and therefore, primate models help to verify the relevance of the find-
ings in animal models to the human condition. Taken together, the
experimental data obtained in mouse and primate prenatal viral in-
fection models can readily be taken as causal evidence to support
human epidemiological studies suggesting that there may be a causal
relationship between in-utero exposure to infection and emergence
of postnatal brain dysfunctions pertinent to schizophrenic disease.

3. The role of inflammation in mediating the effects of maternal
infection on the offspring

In the event of maternal infection during pregnancy, at least some
infectious pathogens such as rubella are capable of penetrating the
placental barrier and infiltrating the fetal environment, thereby caus-
ing direct damage to the growing organism by interfering with cell
growth, protein synthesis and nutritional supply (Bale, 2009). Despite



Table 1
Summary of long-termmorphological and neurochemical brain abnormalities relevant to schizophrenia as identified in various animal models of prenatal infection and/or inflammation. The models are based on prenatal exposure to human
influenza virus, the viral mimic polyriboinosinic–polyribocytidilic acid (polyI:C), the bacterial endotoxin lipopolysaccharide (LPS), the pro-inflammatory cytokine interleukin-6 (IL-6), and the locally acting inflammatory agent turpentine.
The table specifies the precise timing of the prenatal maternal infection and/or immune challenge as well as the rodent species used for the experimental investigations. Downward and upward arrows indicate an impairment or enhance-
ment of the particular morphological or neurochemical parameter, respectively; the hyphens indicate that no changes were detected relative to the corresponding control treatment. ND = not determined. DA, dopamine; DA-R, dopamine
receptor; GABAA-R, γ-aminobutyric acid receptor subtype A; NMDA-R, N-methyl-D-aspartate receptor; PV, parvalbumin; TH, tyrosine hydroxylase.

Immunogen Species Gestational
period

Morphological/neurochemical brain abnormalities in adolescent or adult offspring born to immune-challenged mothers

Cortico-/
neurogenesis

Neuronal morphology Dendritic/synaptic
structure and function

Lateral
ventricles

Reelin PV TH DA DA-
R

GABAA-
R

NMDA-
R

References

Influenza Mouse Early/
middle

↓a,b Increased pyramidal and
non-pyramidal cell density,
pyramidal cell atrophya,b;
reduced Purkinje cell densityc

ND ↓ ↓a,b,d ND ND − ND ND ND Fatemi et al. (1998, 1999, 2002a,b, 2004);
Winter et al. (2008); Shi et al. (2009).

Mouse Late ND Reduced brain volumec,e,f;
lower fractional anisotropy
of corpus callosum

ND − ND ND ND − ND ND ND Fatemi et al. (2008, 2009).

PolyI:C Mouse Early/
middle

↓b Reduced Purkinje cell densityc;
lower fractional anisotropy
throughout fronto-striatal-limbic
circuits

Delayed postnatal
myelinationb

↑ ↓a,b ↓a ↑g ↑a,
h

↑g;
↓a

↑b,i − Meyer et al. (2006b, 2008c); Nyffeler et al.
(2006); Ozawa et al. (2008); Makinodan et al.
(2008); Li et al. (2009, 2010); Winter et al.
(2009); Shi et al. (2009); Wolf et al. (2011);
Soumiya et al. (2011a,b).

Mouse Late ↓b − ND − ↓a,b ↓a,
b

ND ↓a,
b

ND ↑b ↓b Meyer et al. (2006b, 2008c); Li et al. (2009);
Bitanihirwe et al. (2010a).

Rat Middle/
late

ND Abundance of pyknotic
neuronal cellsb; reduced
volume of hippocampus
and prefrontal cortex

Abnormal long-range
neural synchronya,b

↑ ND ND ND ↑g,j ND ND ND Zuckerman et al. (2003); Piontkewitz et al.
(2009, 2011a, 2011b); Dickerson et al.
(2010).

LPS Rat Early
→ late

ND ND ND ND ND ↑g ↑g ND ND ND Borrell et al. (2002); Romero et al. (2007,
2010).

Rat Middle/
late

↓b ND Reduced dendritic arborization
and lengtha,b; reduced spine
densitya; abnormal excitatory
postsynaptic potentialsb;
impaired short-term
potentiationb

ND ND ND ND ND ND ND ND Lowe et al. (2008); Baharnoori et al. (2009);
Cui et al. (2009); Graciarena et al. (2010).

Mouse Late ND Increased density; shrinkage
of neuronal cellsb

ND ND ND ND ND ND ND ND ND Golan et al. (2005).

IL-6 Rat Early
→ late

ND Abundance of pyknotic neuronal
cellsb; neuronal cell lossb

ND ND ND ND ND ND ND − − Samuelsson et al. (2006).

Rat Middle
→ late

ND Abundance of pyknotic neuronal
cellsb; neuronal cell lossb

ND ND ND ND ND ND ND ↑b ↑b Samuelsson et al. (2006).

Turpentine Rat Middle/late ND ND ND ND ND ND ↑g ↑g ND ND ND Aguilar-Valles et al. (2010).

a Frontal cortex.
b Hippocampus.
c Cerebellum.
d In neonatal offspring.
e Whole brain.
f Present only in peri-pubertal but not in adult offspring.
g Striatum.
h Globus pallidus.
i Amygdala.
j Only following KCl-induced stimulation.
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Table 2
Summary of long-term behavioral, cognitive and pharmacological dysfunctions relevant to schizophrenia as identified in various animal models of prenatal infection and/or inflam-
mation. The models are based on prenatal exposure to human influenza virus, the viral mimic polyriboinosinic–polyribocytidilic acid (PolyI:C), the bacterial endotoxin lipopolysac-
charide (LPS), the pro-inflammatory cytokine interleukin-6 (IL-6), and the locally acting inflammatory agent turpentine. The table specifies the precise timing of the prenatal
maternal infection and/or immune challenge as well as the rodent species used for the experimental investigations. Downward and upward arrows indicate an impairment or en-
hancement of the particular phenotype, respectively; the hyphens indicate that no changes were detected relative to the corresponding control treatment; ND = not determined.
DA-R, dopamine receptor; NMDA-R, N-methyl-D-aspartate receptor.

Immunogen Species Gestational
period

Behavioral, cognitive and pharmacological abnormalities in adult offspring born to immune-challenged mothers

Prepulse
inhibition

Latent
inhibition

Social
behavior

Exploratory
behavior

Working
memory

Cognitive
flexibility

Sensitivity
to DA-R
agonists

Sensitivity
to NMDA-R
agonists

References

Influenza Mouse Early/middle ↓ ND ↓ ↓ ND ND ND ↑ Shi et al. (2003); Moreno et al. (2011)
PolyI:C Mouse Early/middle ↓ ↓ ↓ ↓ ↓ − ↑ ↑ Shi et al. (2003); Meyer et al.

(2005, 2006a,b,c, 2008b,c,d, 2010b);
Smith et al. (2007); Makinodan et al.
(2008); Li et al. (2009); Vuillermot
et al. (2010, 2011).

Mouse Middle or
middle→ late

↓ ND ND ↓ ↓ ND ↑ ND Ozawa et al. (2008); Cardon et al.
(2010); De Miranda et al. (2010);
Wolf et al. (2011)

Mouse Late − −/↑ ↓ − ↓ ↓ ↑ ↑ Meyer et al. (2006b, 2006c, 2008c,
2010a, 2010b); Li et al. (2009);
Bitanihirwe et al. (2010a,b).

Rat Middle/late ↓ ↓ ND − ↓ ↓/↑ ↑/↓ ↑/↓ Zuckerman et al. (2003); Zuckerman
and Weiner (2003, 2005); Wolff and
Bilkey (2008); Piontkewitz et al.
(2009, 2011a, 2011b);
Dickerson et al. (2010); Bronson et al.
(2011); Han et al. (2011); Richtand
et al. (2011); Wolff et al. (2011);
Zhang et al. (2011, in press).

LPS Rat Early→ late ↓ ND ND ND ND ND ND ND Borrell et al. (2002); Romero et al.
(2007, 2010).

Rat Middle ↓ ND ND ND ND ND ND ND Fortier et al. (2007).
Rat Middle→ late

or late
↓ ND ND ND ↓ ND ↑ ND Fortier et al. (2004a, 2007);

Graciarena et al. (2010).
Mouse Early/middle ND ND ND − ↓ ND ND ND Coyle et al. (2009).
Mouse Late ND ND ↓ − ND ND ND ND Golan et al. (2005).

IL-6 Mouse Early/middle ↓ ↓ ↓ ↓ ND ND ND ND Smith et al. (2007)
Turpentine Rat Middle/late ↓ ND ND ND ND ND ↑ ND Fortier et al. (2007); Aguilar-Valles

et al. (2010); Aguilar-Valles and
Luheshi (2011).

Rat Late − ND ND ND ND ND − ND Aguilar-Valles and Luheshi (2011).
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this, converging evidence from several lines of research indicates that
the deleterious effects of maternal infection on the offspring are likely
to be attributable to maternal/fetal inflammatory responses rather
than direct viral effects on the developing fetus (Gilmore and
Jarskog, 1997; Meyer et al., 2009b; Patterson, 2002). This issue is dis-
cussed in detail in subsequent sections (Sections 3.3 and 3.4) follow-
ing a summary of the main components of the inflammatory response
system (Section 3.1) and of known neurodevelopmental effects of cy-
tokines (Section 3.2).

3.1. Main components of the inflammatory response system

Inflammation is one of the first defense mechanisms of the innate
immune system to infection and other physiological insults such as
tissue damage or stress (Gallin et al., 1999). Typically, it is character-
ized by redness and swelling of infected/wounded tissue and is pro-
moted by a number of secreted pro-inflammatory factors, including
prostaglandins, leukotrienes, pro-inflammatory cytokines and che-
mokines. Prostaglandins are import mediators of the febrile response
and of blood vessel dilation, whereas leukotrienes together with che-
mokines are critical for attracting leukocytes to sites of infection and/
or tissue damage (Gallin et al., 1999). Cytokines have wide-ranging
roles in the innate and adaptive immune systems, where they help
regulate the recruitment and activation of lymphocytes as well as im-
mune cell differentiation and homeostasis (Curfs et al., 1997). In addi-
tion, some cytokines possess direct effector mechanisms, including
induction of cell apoptosis and inhibition of protein synthesis (Curfs
et al., 1997). Members of the pro-inflammatory cytokine family, in-
cluding interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α,
are essential to the inflammatory response by contributing to febrile
reactions, activating phagocytotic cells such as macrophages or den-
dritic cells, facilitating vascular permeability, and promoting the re-
lease of plasma-derived inflammatory mediators such as bradykinin
and components of the complement system. In the periphery, pro-
inflammatory cytokines are produced and released to a great extent
by activated endothelial cells and cells of the mononuclear phagocyte
system (monocytes, macrophages and monocyte-derived dendritic
cells). The synthesis of pro-inflammatory molecules is strongly stim-
ulated upon activation of the innate immune system. This most often
occurs upon binding of microbe-specific components by a special
class of receptors known as pathogen recognition receptors, or
when damaged or infected cells send out alarm signals, many of
which are recognized by the same receptors as those that recognize
pathogens (Janeway and Medzhitov, 2002). Table 3 summarizes the
major cellular sources and main biological activities of pro- and
anti-inflammatory cytokines.

Under normal conditions, inflammation is controlled by various
homeostatic processes that limit or counteract inflammation once it
has been induced by a pro-inflammatory stimulus such as infection
(Serhan and Savill, 2005). Such control mechanisms ensure that in-
flammatory processes efficiently remove invading pathogens and
contribute to tissue repair and wound healing without inducing col-
lateral damage to non-infected, healthy and unwounded tissue. Dys-
function of such surveillance mechanisms may lead to persistent



Table 3
Major immunological effects and known neurodevelopmental effects of selected inflammatory cytokines. The table summarizes the major cellular sources and immunological
effects of selected pro- and anti-inflammatory cytokines (adapted from Curfs et al., 1997 and Meyer et al., 2011b) and illustrates some of the known neurodevelopmental effects
(corresponding references in the table).

Cytokine Main cellular source Main immunological effects Known neurodevelopmental effects References

IL-1β Activated monocytes/
macrophages;
endothelia cells;
microglia.

Promotion of fever (endogenous pyrogen);
stimulation of other pro-inflammatory
cytokines and hematopoietic growth factors;
induction of acute-phase proteins;
stimulation of HPA axis; activation of T-,
B- and endothelial cells.

Conversion of midbrain progenitor cells
into dopaminergic phenotype;
promotion of fetal midbrain dopamine
cell survival; disruption of neuron
dendrite development and outgrowth.

Kushima et al. (1992); Akaneya
et al. (1995); Ling et al. (1998);
Potter et al. (1999); Gilmore
et al. (2004).

sIL-1RA Activated monocytes/
macrophages; endothelia
cells; fibroblasts, astroctyes.

Inhibition of IL-1 activity; homeostatic
control of inflammation through
anti-inflammatory actions.

Inhibition or promotion of neurogenesis
depending on specificity of neuroinflammatory
milieu and maturational stage.

Goshen et al. (2008);
Ben Menachem-Zidon et al.
(2008); Spulber et al. (2008).

IL-6 Activated monocytes/
macrophages; T cells
(TH2 and TH17 cells);
hepatocytes; osteoclasts;
fibroblasts; astrocytes.

Promotion of fever (endogenous pyrogen);
induction of acute-phase proteins; stimulation
of immunoglobulin-G production; activation
of T cells; stimulation of HPA axis.

Decreasing survival of fetal serotonin neurons;
disruption of neuron dendrite development
and outgrowth; promotion of fetal midbrain
dopamine and dorsal root ganglion cell survival.

Kushima et al. (1992); Akaneya
et al. (1995); Jarskog et al.
(1997); Edoff and Jerregård
(2002); Gilmore et al. (2004).

sIL-6R Activated monocytes/
macrophages; hepatocytes;
osteoclasts.

Augmentation of IL-6 responses by acting
as an IL-6 agonist.

Enhancement of neuronal survival during
development.

Edoff and Jerregård (2002).

IL-8 Activated monocytes/
macrophages; endothelia
cells; fibroblasts.

Activation of neutrophils; chemotactic for
neutrophils, T cells and basophils.

Largely unknown.

IL-10 Activated monocytes/
macrophages; T cells
(TH2 cells); B cells.

Inhibition of pro-inflammatory cytokine
synthesis; inhibition of sepsis; promotion
of humoral immune responses involving
antibody secretion.

Promotion of neuronal survival;
trophic support to developing neurons.

Zhou et al. (2009a,b).

TNF-α Activated monocytes/
macrophages; T cells
(TH1 cells); natural killer
cells; endothelia cells;
microglia.

Promotion of fever (endogenous pyrogen)
and sepsis; direct cytotoxic effects by
inducing apoptosis; activation of monocytes,
lymphocytes, and endothelial cells.

Neuronal apoptosis; disruption of neuron
dendrite development and outgrowth.

Barker et al. (2001); Neumann
et al. (2002); Gilmore et al.
(2004); Doherty (2007).

sTNFR Virtually all nucleated cells. Inhibition of TNF activity; homeostatic
control of inflammation through
anti-inflammatory actions.

Blocking neuronal apoptosis
(mediated by TNF-α).

Yang et al. (2002).

TGF-β Megakaryocytes;
T cells (TH3 cells).

Inhibition of pro-inflammatory cytokine
synthesis; inhibition of natural killer cell
activity and growth of T- and B-cells; in the
presence of IL-6 stimulation of TH17 cells.

Ventral midbrain dopaminergic development
by promotion of tyrosine hydroxylase
expression; regulation of (neuromuscular)
synapse formation.

Roussa et al. (2006);Feng
and Ko (2008).
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inflammation, known from numerous pathological conditions such as
rheumatoid arthritis, atherosclerosis, inflammatory bowel disease,
and Crohn's disease (Briand and Muller, 2010; Serhan and Savill,
2005).

In the central nervous system (CNS), microglia and astrocytes are
the major immunocompetent cells regulating both the induction as
well as limitation of inflammatory processes (Ransohoff and
Cardona, 2010; Ransohoff and Perry, 2009; Seth and Koul, 2008).
This is achieved through the synthesis of cytokines, up- or down-
regulation of various cell surface receptors such as pathogen recogni-
tion receptors, cytokine receptors, and numerous receptors crucial for
antigen presentation. Acting as the first and main form of active im-
mune defense in the brain, microglia are considered to be the resident
macrophages of the CNS, which constantly scavenge the CNS for dam-
aged neurons, plaques, and infectious agents (Ransohoff and Cardona,
2010; Ransohoff and Perry, 2009). Microglia appear to play crucial
roles in both neuronal protection and pathology, and are often re-
ferred to as a “double-edged sword” (Block et al., 2007). On the one
hand, they secrete neurotrophic factors pivotal for cellular repair,
and recruit immune cells into the brain for clearance of infection or
cellular debris. On the other hand, chronic or exaggerated microglial
activation is linked to excessive secretion of pro-inflammatory factors
and has been linked to (progressive) neurodegenerative processes
(Block et al., 2007). With regards to astroctyes, it has been considered
for long that the main roles of these glial cells are related to neuronal
support functions. However, accumulating evidence suggests that as-
trocytes exert a much wider spectrum of functions, including regula-
tion of neuronal differentiation, axonal guidance, synapse formation,
and brain plasticity (Seth and Koul, 2008). Of note, astrocytes have
also become the focus of attention due to their modulatory effects
on microglia cells. They seem to have noticeable inhibitory as well
as stimulatory influences on microglia functions depending on the
precise immune milieu in which astroctye–microglia interactions
take place (Bianchi et al., 2011; Wang, 2010; Zhang et al., 2011, in
press).

3.2. Neurodevelopmental effects of cytokines

Many cytokines and cytokine receptors are constitutively
expressed during fetal brain development (Burns et al., 1993;
Mehler and Kessler, 1997; Mousa et al., 1999; Pousset, 1994), suggest-
ing essential roles for these molecules in the regulation and modula-
tion of normal brain development. Indeed, besides their various roles
in the peripheral immune system, cytokines have been recognized to
exert a number of essential neurodevelopmental effects, including
neuronal induction, proliferation, migration and survival. These ef-
fects have recently been reviewed in several excellent articles (Bauer
et al., 2007; Deverman and Patterson, 2009; Jonakait, 2007), and
some of the major neurodevelopmental effects of selected inflamma-
tory cytokines are also summarized in Table 3. In view of the essential
roles of cytokines during normal brain development, it can readily be
expected that abnormal levels of these molecules during critical pe-
riods of early brain development adversely affect neurodevelopmen-
tal processes and contribute to a higher susceptibility for complex
brain disorders of developmental origin such as schizophrenia.

Notably, distinct classes of cytokines can exert differing effects in
the developing CNS. For instance, among the variety of pro- and
anti-inflammatory cytokines, IL-1β is the most capable in inducing
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the conversion of rat mesencephalic progenitor cells into a dopami-
nergic phenotype (Ling et al., 1998; Potter et al., 1999) and IL-6 is
highly efficacious in decreasing the survival of fetal brain serotonin
neurons (Jarskog et al., 1997). In contrast, IL-1β and IL-6 (and to a
lesser extent TNF-α) appear to have an equivalent capacity to nega-
tively regulate the survival of fetal midbrain dopaminergic neurons
at low to medium concentrations (Jarskog et al., 1997), whereas the
same cytokines can promote survival of these cells at higher concen-
trations (Akaneya et al., 1995; Kushima et al., 1992). A similar depen-
dency on cytokine specificity and/or concentration has also been
found in a recent in vitro study by Gilmore et al. (2004) who have
demonstrated that TNF-α can disrupt cortical neuron's dendrite de-
velopment at low concentration while the same effects can be
achieved by exposure of fetal cortical neurons to higher concentra-
tions of IL-1 β, IL-6, or TNF-α.

The responsiveness and/or sensitivity of developing cells to many
signaling cues, including cytokines, can also vary considerably as neu-
rodevelopment progresses. For example, while TNF-α is neurotrophic
to dopaminergic ventral mesencephalic neurons during early fetal de-
velopment, the same molecule can exert neurotoxic effects on these
cells at later stages of fetal brain development (Doherty, 2007). Sim-
ilarly, embryonic cells cultured as progenitor neurospheres prolifer-
ate more robustly in response to basic fibroblast growth factor
(bFGF) than to epidermal growth factor (EGF), whereas proliferation
of postnatal and adult progenitor cells is enhanced more effectively
by EGF than bFGF (Zhu et al., 1999). In the context of maternal infec-
tion during pregnancy, this highlights that the eventual neurodeve-
lopmental impact of abnormal maternal/fetal cytokine expression is
likely to be determined also by the precise stage of brain develop-
ment (Meyer et al., 2006b, 2007, 2008c).

3.3. Epidemiological evidence for a role of inflammation in mediating the
effects of maternal infection on the offspring

It has been widely recognized that intrauterine infection and sub-
sequent maternal/fetal inflammatory responses are major contribu-
tors to periventricular leukomalacia (i.e., white matter damage)
(Dammann and Leviton, 1997,2000; Hagberg et al. 2005; Leviton
et al., 2010; Shatrov et al., 2010). Periventricular leukomalacia is caus-
ally linked to subsequent development of cognitive and neurological
disabilities, especially cerebral palsy (Leviton et al., 2010; Shatrov
et al., 2010), and is characterized by enhanced pro-inflammatory cy-
tokine secretion and microglial activation causing loss of oligoden-
drocyte progenitor cells and immature neurons in periventricular
regions (Deng, 2010; Leviton and Gressens, 2007).

The fact that numerous infectious pathogens have been implicated
in the association between prenatal infection and schizophrenia has
led to the hypothesis that common immunological factors in general,
and pro-inflammatory cytokines in particular, are the candidate me-
diators of this association (Gilmore and Jarskog, 1997). However, in
contrast to the broad literature implicating inflammatory processes
in the development of neonatal white matter damage and cerebral
palsy (Dammann and Leviton, 1997, 2000; Deng, 2010; Hagberg
et al. 2005; Leviton and Gressens, 2007), direct epidemiological evi-
dence linking enhanced maternal/fetal expression of inflammatory
markers and later development of schizophrenia is thus far limited
to a small number of investigations. These include reports of a signif-
icant association between high maternal levels of the pro-
inflammatory cytokines TNF-α (Buka et al., 2001b) and IL-8 (Brown
et al., 2004b) and elevated risk of schizophrenia spectrum disorder
in the offspring. In addition, Ellman et al. (2010) have recently pro-
vided a first line of evidence implicating increased prenatal maternal
IL-8 levels with exacerbation of structural brain changes in schizo-
phrenic offspring. More specifically, this study reported for the first
time a significant association between higher prenatal IL-8 levels in
the second/third trimester of pregnancy and greater ventricular
cerebrospinal fluid volume in adult schizophrenia spectrum cases
(Ellman et al., 2010). In addition, higher prenatal IL-8 levels were cor-
related with lower volumes in the left entorhinal cortex and right
posterior cingulate (Ellman et al., 2010). Even though these findings
may be indicative of abnormal expression of specific inflammatory
markers in the developmental course of schizophrenia and related
disorders, such valuable epidemiological data need to be interpreted
with some points of caution. First, all epidemiological studies are ob-
servational in nature and thus cannot prove causality. Second, the
available epidemiological studies reporting a significant association
between enhanced maternal cytokine levels and increased schizo-
phrenia risk in the offspring have so far not been able to delineate
the source of inflammatory mediators. Hence, they readily fall short
in identifying whether the presence of enhanced maternal cytokine
levels is attributable to prior or ongoing infectious processes, or to
other adverse maternal conditions, such as preeclampsia, obesity
and anemia. As discussed in the next section (Section 3.4), experi-
mental research in animals provides a unique opportunity to over-
come these limitations.
3.4. Experimental evidence for a role of inflammation in mediating the
effects of maternal infection on the offspring

Several experimental approaches have been established with the
aim to test the hypothesis that the detrimental long-term effects of
prenatal infection on offspring brain and behavioral development
may be mediated indirectly by effects associated with activation of
the maternal/fetal inflammatory response systems (for recent re-
views see Meyer et al., 2009a,b; Boksa, 2010; Meyer and Feldon,
2010). Two of the best established models are based on maternal ex-
posure to the bacterial endotoxin, lipopolysaccharide (LPS), and the
synthetic analog of double-stranded RNA, polyriboinosinic–polyribo-
cytidilic acid (polyI:C). LPS is recognized by toll-like receptor (TLR)
4, whereas polyI:C is recognized primarily by TLR3 (Alexopoulou
et al., 2001; Takeuchi and Akira, 2007; Triantafilou and Triantafilou,
2002). TLRs are a class of pathogen recognition receptors, which rec-
ognize invariant structures present on virulent pathogens. Upon
binding to TLRs, LPS and polyI:C both stimulate the production and
release of many pro-inflammatory cytokines, including IL-1β, IL-6,
and TNF-α, (Cunningham, et al., 2007; Fortier et al., 2004b; Meyer
et al., 2006a,b). In addition, polyI:C is a potent inducer of the type I in-
terferons IFN-α and IFN-β (Alexopoulou et al., 2001; Takeuchi and
Akira, 2007). Therefore, whereas LPS exposure leads to a cytokine-
associated innate immune response that is typically seen after infec-
tion with Gram-negative bacteria (Triantafilou and Triantafilou,
2002), administration of polyI:C mimics the acute phase response to
viral infection (Traynor et al., 2004).

Notably, maternal exposure to LPS or polyI:C during pregnancy is
capable of enhancing pro-inflammatory cytokine levels in the three
maternal–fetal compartments, namely, the placenta, the amniotic
fluid, and the fetus, including the fetal brain (e.g., Cai et al., 2000;
Urakubo et al., 2001; Paintlia et al. 2004; Ashdown et al., 2006;
Meyer et al., 2006b, 2008b; Graciarena et al., 2010; reviewed in
Boksa, 2010). In-utero exposure to such immunogens further leads
to microglia activation and expression of pro-inflammatory transcrip-
tion factors such as nuclear factor-κB (NF-κB) in fetal and neonatal
brains (Briscoe et al., 2006; Hutton et al., 2008; Nitsos et al., 2006;
Roumier et al., 2008; Saadani-Makki et al., 2008), and this is paral-
leled by white matter injury (as evident by oligodendrocyte precursor
cell loss and hypomyelination) and neuronal apoptosis during fetal
and neonatal brain development (Bell and Hallenbeck, 2002; Dean
et al., 2009; Hagberg et al., 2002; Kumral et al., 2007; Nitsos et al.,
2006; Svedin et al., 2005; Wang et al., 2006). Taken together, animal
models using inflammatory agents such as LPS or polyI:C provide
multiple lines of evidence that in-utero inflammation induces wide-
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spread neuroinflammation during critical stages of fetal and neonatal
brain development.

Furthermore, numerous behavioral, cognitive, neurochemical, and
brain morphological abnormalities have been detected in adult animals
following maternal gestational exposure to LPS or polyI:C. These long-
term effects have been extensively reviewed elsewhere (Boksa, 2010;
Meyer and Feldon, 2009a,b, 2010; Meyer et al., 2007, 2009a,b;
Patterson, 2009) and are summarized in Tables 1 and 2. Importantly,
many of the behavioral, cognitive and pharmacological dysfunctions
in adult animals born to LPS- or polyI:C- exposed mothers are directly
implicated in schizophrenia and other psychosis-related disorders, in-
cluding abnormalities in sensorimotor gating, selective attention,work-
ingmemory and sensitivity to psychotomimetic drugs (Tables 1 and 2),
and at least some of these functional abnormalities can be normalized
by acute and/or chronic antipsychotic drug treatment (Tables 1 and 2;
reviewed in Meyer et al., 2007, 2009a,b; Meyer and Feldon, 2009a,b,
2010; Patterson, 2009; Boksa, 2010). Taken together, the efficacy of pre-
natal exposure to cytokine-releasing agents such as LPS or polyI:C to in-
duce fetal and neonatal brain inflammation, togetherwith its long-term
impact on brain and behavioral abnormalities relevant to schizophre-
nia, strongly underscores the essential role of prenatal cytokine-
associated inflammation in mediating the effects of maternal infection
on the offspring. This notion is further supported by the findings that
blocking the actions of the pro-inflammatory cytokine IL-1β or IL-6 in
the pregnant maternal host by genetic or pharmacological interven-
tions prevents the long-termbrain and behavioral consequences of pre-
natal polyI:C or LPS treatment (Girard et al., 2010; Smith et al., 2007),
and that over-expression of the anti-inflammatory cytokine IL-10 pre-
vents the emergence of multiple behavioral and pharmacological ab-
normalities typically seen after prenatal polyI:C-induced immune
challenge (Meyer et al., 2008b).

Another valuable model to study the relative contribution of prena-
tal inflammation to the development of schizophrenia-related brain
disease is based on maternal intramuscular injection of turpentine oil
(Aguilar-Valles and Luheshi, 2011; Aguilar-Valles et al., 2010; Fortier
et al., 2007). Following its intramuscular injection, turpentine remains
confined at the site of administration and locally causes tissue damage,
recruitment and activation of immune cells, and secretion of pro-
inflammatory cytokines (Aguilar-Valles et al., 2007; Luheshi et al.,
1997). This experimental approach offers the opportunity to study of
the effects of circulating inflammatory mediators that are solely pro-
duced by the maternal immune system. Hence, in contrast to the sys-
temic LPS and polyI:C models (Ashdown et al., 2006; Hsiao and
Patterson, 2011), placental secretion of inflammatory markers is mini-
mal, and this readily facilitates the delineation of the relative contribu-
tion of maternally produced versus placenta-derived inflammatory
factors in the link prenatal inflammation and abnormal brain and be-
havioral development (Aguilar-Valles and Luheshi, 2011; Aguilar-
Valles et al., 2010; Fortier et al., 2007). Importantly, prenatal turpentine
treatment is efficacious in inducing long-term behavioral, pharmaco-
logical and neurochemical changes implicated in schizophrenic disease,
including prepulse inhibition deficiency, amphetamine hypersensitivi-
ty, deficits in spatial memory, and dopaminergic imbalances in striatal
structures (Fortier et al., 2007; Aguilar-Valles et al., 2010; Aguilar-
Valles and Luheshi, 2011; summarized in Tables 1 and 2). The findings
from the prenatal turpentinemodel thus provide further strong support
for the hypothesis that induction of maternal inflammatory responses
assumes a key role in mediating the association between maternal in-
fection during pregnancy and enhanced risk of schizophrenia-related
brain pathology in the offspring.

3.5. The roles of oxidative stress, hypoferremia, and zinc deficiency

The preceding sections have emphasized a critical role of abnor-
mal maternal/fetal pro-inflammatory cytokine expression in the dis-
ruption of normal brain and behavioral development following
prenatal infection/inflammation. Even though evidence for this no-
tion is manifold, it should be noted that several alternative (but not
mutually exclusive) mechanisms seem feasible in this context. In ad-
dition to its effects on pro-inflammatory cytokine secretion, infection
and subsequent induction of inflammatory responses are strongly as-
sociated with numerous other pathophysiological effects, including
oxidative stress, iron deficiency (hypoferremia), and (temporary)
zinc deficiency (Ferré and Clària, 2006; Ganz and Nemeth, 2009;
Prasad, 2009; Scrimgeour and Condlin, 2009). Oxidative stress is re-
ferred to as an imbalance between the production and elimination
of reactive oxygen species (ROS), some of which are highly cytotoxic
and promote tissue injury (Kohen and Nyska, 2002). Upon activation,
innate immune cells secrete ROS and reactive nitrogen species (RNS)
as a central part of killing invading pathogens (Nathan and Shiloh,
2000). Production of ROS and RNS is thus an important downstream
mechanism of inflammation-mediated immune responses. For these
reasons, it has been speculated that at least parts of the detrimental
neurodevelopmental effects associated with prenatal infection/in-
flammation could be accounted for by the cytotoxic effects of excess
ROS and RNS in the course of fetal brain development. In support of
this hypothesis, it has been shown that treatment of pregnant mice
with N-acetylcysteine (NAC), a glutathione precursor with potent
anti-oxidant (and additional anti-inflammatory) properties protects
against LPS-induced adverse developmental outcomes including in-
trauterine fetal death and preterm labor (Buhimschi et al., 2003). Ma-
ternal NAC treatment has also been shown to prevent LPS-induced
elevation of cytokines in maternal and fetal compartments, and to at-
tenuate the deleterious effects of prenatal LPS exposure on hypomye-
lination in the developing rat brain (Beloosesky et al., 2006;
Buhimschi et al., 2003; Lanté et al., 2007; Paintlia et al., 2004,2008;
Xu et al., 2005). In addition, maternal NAC administration in rats pre-
vents prenatal LPS-induced impairments in spatial memory and hip-
pocampal long-term potentiation in the offspring (Lanté et al., 2008).

In addition to the induction of oxidative stress, activation of the in-
nate immune system also induces hypoferremia. This process ismediat-
ed to a great extent by the pro-inflammatory cytokines IL-1β and IL-6
(Lee et al., 2005; Nemeth et al., 2004) and serves to reduce the availabil-
ity of this essential nutrient to the invading pathogens as part of the
host's inherent defense system (Kluger and Rothenburg, 1979). Since
iron is also pivotal for normal brain development (Kwik-Uribe et al.,
2000a,b; Unger et al., 2007), inflammation-induced hypoferrmia may
readily contribute to neurodevelopmental abnormalities caused by pre-
natal infection/inflammation. In an elegant recent study, Aguilar-Valles
et al. (2010) have provided direct experimental support for this hypoth-
esis by showing that maternal iron supplementation prevents the long-
term brain and behavioral effects of prenatal inflammation using a
model of maternal turpentine administration.

As part of the acute phase response to infection, pro-inflammatory
cytokines also trigger the induction of the zinc-binding protein metal-
lothionein (Vallee and Falchuk, 1993). In the course of pregnancy, this
process leads to maternal and fetal zinc deficiency, which has further
been associated with teratogenicity and abnormal brain development
(Daston et al., 1994; Taubeneck et al., 1995). It can thus be expected
that inflammation-induced zinc deficiency may, similarly to the
aforementioned effects of hypoferremia, contribute to altered brain
and behavioral development following prenatal infection. Indeed, re-
cent work by Coyle et al. (2009) supports this notion: Using a mouse
model of prenatal maternal LPS exposure, the authors found that ma-
ternal dietary zinc supplementation was efficient in preventing the
emergence of long-term cognitive abnormalities typically seen fol-
lowing prenatal LPS treatment.

4. Fetal brain development in the event of inflammation

As summarized in Tables 1 and 2, a plethora offindings have emerged
with respect to long-term behavioral, cognitive, neurochemical, and
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brain morphological abnormalities induced by prenatal infection or im-
mune challenge. In contrast, there has so far been considerably less effort
to study the effects of prenatal inflammation in terms of early alterations
in fetal brain development. Using the mouse prenatal polyI:C model,
neuroanatomical investigations have recently provided evidence that
early prenatal immune challenge disrupts perinatal cortical laminar for-
mation and comprises the normal development of upper-layer (but not
deeper-layer) cortical neurons (Soumiya et al., 2011a). In addition, ex-
perimental work in this model shows that prenatal immune activation
impedes the normal course of neurogenesis during fetal development
(Soumiya et al., 2011b). The latter findings are especially intriguing in
viewof the fact that the effects of prenatal immune activation on reduced
(hippocampal) neurogenesis persist postnatally and are even evident at
adult stages of development (Cui et al., 2009; Graciarena et al., 2010;
Meyer et al., 2006b; 2010a; Wolf et al., 2011). Together, it appears that
the persistent impairments in postnatal neurogenesis following prenatal
immune challenge are likely to be of developmental origin starting early
in fetal life.

Our laboratory has recently begun to study the short-term effects
of polyI:C-induced maternal immune challenge on the fetal develop-
ment of the dopamine system, a neurotransmitter system highly im-
plicated in schizophrenia and related psychotic disorders (Howes and
Kapur, 2009). We have found that maternal immune stimulation by
polyI:C in early/middle gestation (gestation day [GD] 9) increases
the number of dopamine neurons in the fetal midbrain at middle/
late (GD 13) and late (GD 17) stages of prenatal development
(Meyer et al., 2008a; Vuillermot et al., 2010). This effect is paralleled
by changes in fetal expression of several genes known to be involved
in dopamine neuron development, including the inductive signals
sonic hedgehog (Shh) and fibroblast growth factor 8 (FGF8), as well
as the transcription factors Nurr1 and Pitx3 (Meyer et al., 2008a). No-
tably, these findings do not provide a direct link between altered fetal
dopaminergic development and the emergence of the well described
dopamine-associated structural and functional abnormalities in the
postnatal period (Tables 1 and 2). However, these results highlight
that postnatal dopaminergic abnormalities emerging after prenatal
immune challenge are developmentally regulated and start early in-
utero. In view of this, it seems that prenatal inflammation-induced
abnormalities in fetal midbrain dopamine development may repre-
sent an important primary mechanism for the postnatal emergence
of functional and structural changes associated with imbalances in
the mescorticolimbic dopamine system (Meyer and Feldon, 2009b).

In addition to its effects on the central dopamine system, the long-
term neuropathological deficits induced by prenatal infection and/or
inflammation include pre- and post-synaptic changes in various
other neurotransmitter systems such as the γ-aminobutyric acid
(GABA), glutamate, and serotonin systems, together with alterations
in neuronal and glial cell number, structure and positioning
(reviewed Meyer and Feldon, 2009a; Boksa, 2010; Table 1). In view
of these multiple effects, it is feasible that maternal/fetal inflamma-
tion and associated physiological insults could directly induce prima-
ry defects in the early fetal development of various neurotransmitter
systems and cell populations. However, direct evidence for this possi-
bility is still lacking, so that it remains essentially unknown how early
neurodevelopmental abnormalities induced by fetal neuroinflamma-
tion are converted into long-term brain and behavioral pathology in
adulthood (Boksa, 2010).

5. Priming of long-term neuroinflammation by prenatal infection
and inflammation

Oneof thepertinent questions iswhether exposure to prenatal infec-
tion or inflammation can permanently alter immune functions across
the postnatal life-span (Bilbo and Schwarz, 2009; Meyer et al., 2011b).
This issue seemsparticularly relevant in viewof the fact that schizophre-
nia is associated with various immunological abnormalities (Drexhage
et al., 2010; Müller and Schwarz, 2006, 2010; Müller et al., 2000;
Steiner et al., 2010), including peripheral low-grade inflammation
(Altamura et al., 1999; Fan et al., 2007; Miller et al., 2011; Potvin et al.,
2008) and signs of microglia and astrocyte over-activation (Bernstein
et al., 2009; Doorduin et al., 2009; Rothermundt et al., 2009; van
Berckel et al., 2008). Several lines of experimental evidence indicate
that prenatal exposure to infection or inflammation can indeed lead to
long-lasting immune abnormalities, including inflammatory changes
in the periphery and CNS. Persistent increases in peripheral levels of
pro-inflammatory cytokines, together with enhanced microglia and/or
astrocyte activation, have been demonstrated in rodent models of pre-
natal viral influenza exposure (Fatemi et al., 2002b, 2004), chronic ges-
tational LPS exposure (Borrell et al., 2002; Romero et al., 2007, 2010),
sub-chronic prenatal IL-6 treatment in mid-to-late gestation
(Samuelsson et al., 2006), and acute polyI:C treatment in early/middle
gestation (Han et al., 2011; Juckel et al., 2011). In addition, sub-chronic
maternal treatment with IL-2 from mid-to-late pregnancy in mice has
been shown to elevate B- and T-cell counts in response to antigenic
stimulation in the juvenile offspring (Ponzio et al., 2007).

Exposure to acute fetal inflammation may further induce latent
neuroinflammatory abnormalities that can be unmasked by exposure
to certain environmental stimuli throughout postnatal life (Meyer
et al., 2011a). This idea of multiple hits with either sensitizing or
priming effects is also central to several theories of prenatal immune
priming, which have been put forward in the context of peripheral
immunity, CNS inflammation and progressive neurodegeneration,
perinatal brain damage, retinopathy, and various forms of learning
and memory (Bilbo and Schwarz, 2009; Dammann et al., 2009;
Perry et al., 2007). According to this scenario, inflammatory exposure
in early (prenatal or neonatal) life causes the organism to respond
differently (and often more vigorously) to subsequent immunological
or non-immunological challenges such as stress (Bilbo et al., 2005;
Rousset et al., 2008; Wang et al., 2009). Priming of exacerbated neu-
roinflammatory responses has perhaps been best established in the
context of microglia biology, highlighting that microglia can be
primed by initial infectious or inflammatory stimuli to induce exag-
gerated pro-inflammatory responses to secondary environmental
stimuli such as peripheral inflammation (Cunningham et al., 2009;
Field et al., 2010; Palin et al., 2008; Perry et al., 2007). As discussed
in more detail in the next section (Section 6), such priming effects
seem also highly relevant in the context of schizophrenia because
the disorder's etiology most likely involves exposure to multiple envi-
ronmental and/or genetic insults at various stages of brain develop-
ment and maturation (Cannon et al., 2003; Keshavan, 1999;
Keshavan and Hogarty, 1999; Read et al., 2001; Walker et al., 1999).
6. (Latent) Neuroinflammation and disease progression

Longitudinal studies in rat and mouse models of prenatal immune
challenge demonstrate that many of the prenatal inflammation-
induced behavioral, pharmacological and cognitive disturbances are
progressive in nature: They are often dependent on maturational pro-
cesses and are pathologically manifest only once the offspring reach
adolescence or early adulthood (Meyer et al., 2006c, 2008c; Ozawa
et al., 2008; Vuillermot et al., 2010; Zuckerman and Weiner, 2003;
Zuckerman et al., 2003). This is consistent with the progression of
symptoms in schizophrenia, which tend to progress from premorbid
to prodromal signs and finally into overt psychotic disease. Recent
longitudinal neuroanatomical and in-vivo brain imaging studies in ro-
dent prenatal immune activation models have further shown that the
maturation-dependent functional brain abnormalities are develop-
mentally paralleled (and possibly also predicted) by progressive
changes in brain morphology and neurochemistry (Piontkewitz
et al., 2009, 2011a, 2011b; Romero et al., 2010; Vuillermot et al.,
2010). Taken together, it appears that early-life inflammatory events
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do not induce static effects on the brain, but instead, they cause pro-
gressive changes in brain and behavioral development.

The precise cellular and molecular mechanisms responsible for the
progressive brain and behavioral pathology induced by fetal brain in-
flammation remain largely elusive. However, it is intriguing to note
that in several models of prenatal immune challenge (Fatemi et al.,
2002b; Graciarena et al., 2010; Juckel et al., 2011; Romero et al., 2010;
Samuelsson et al., 2006), signs of activated central and peripheral in-
flammatory responses exist prior to the onset of the full spectrum of
schizophrenia-related behavioral, cognitive and pharmacological dys-
functions. For instance, prenatal polyI:C exposure in early/middle gesta-
tion in mice leads to increased microglia activation in pubescence (i.e.
on postnatal day 30) (Juckel et al., 2011), a maturational stage at
which prenatally polyI:C-exposed and control offspring do not differ
with respect to various schizophrenia-relevant behavioral and cognitive
functions (Meyer et al., 2006c, 2008c; Ozawa et al., 2008; for rats
see Zuckerman et al., 2003; Zuckerman and Weiner, 2003;
Piontkewitz et al., 2009, 2011a, 2011b). Likewise, increased peripheral
TNF-α levels have been shown to precede the onset of sensorimotor
gating deficiency in a rat model of prenatal LPS exposure (Romero et
al., 2010).

There are several important implications from these findings:
First, despite the capacity of prenatal immune challenge to cause pe-
ripheral and central inflammation that persist into the postnatal life
span, such inflammatory changes do not necessarily translate into
overt behavioral manifestations. Second and perhaps even more in-
triguingly, the presence of activated inflammatory responses such as
enhanced microglia activation or systemic pro-inflammatory cyto-
kine elevation may play an important role in the progression of
brain disease following prenatal exposure to infection and/or inflam-
mation. As schematically illustrated in Fig. 1, one may speculate on a
model in which exposure to prenatal immune challenge primes early
pre- and postnatal alterations in peripheral and central inflammatory
response systems, which in turn may promote developmental neu-
roinflammation and may disrupt the normal development and matu-
ration of neuronal systems from juvenile to adult stages of life. Such
developmental neuroinflammation may adversely affect processes
that are pivotal for normal brain maturation, including myelination,
synaptic pruning, and neuronal remodeling, all of which occur to a
great extent during peri-pubertal brain maturation (de Graaf-Peters
and Hadders-Algra, 2006; Paus et al., 2008). In this way, priming of
Fig. 1. Hypothetical model summarizing aspects of developmental neuroinflammation in sc
flammation and associated pathophysiological changes. The former is characterized by enha
glia activation, and the latter includes presence of oxidative stress, hypoferremia and zin
thereby inducing a neurodevelopmental predisposition to long-term brain pathology. Prena
cyte (AC) abnormalities, which developmentally coincide with (or even contribute to) premo
and astrocyte functions may per se, or upon additional exposure to postnatal stressors, cause
sive brain and behavioral pathology as seen in the proximity of overt psychosis (i.e., during
fetal brain inflammation and/or the functional consequences of persistent neuroinflammatio
brain and behavioral pathology following prenatal immune challenge.
postnatal neuroinflammation by prenatal immune challenge may
contribute to the development of progressive brain and behavioral
pathology following prenatal immune challenge (Fig. 1).

As already mentioned before (Section 5), early-life exposure to in-
fection and/or inflammation has also the potential to induce latent
neuroinflammatory abnormalities that can be unmasked and become
biologically relevant by additional exposure to certain environmental
stimuli throughout postnatal life (Meyer et al., 2011a). Such latent ef-
fects may also be relevant for the hypothetical model illustrated in
Fig. 1 because unleashing latent neuroinflammatory processes during
critical periods of brain maturation can also be expected to further in-
terfere with maturational trajectories of postnatal brain development
(Knickmeyer et al., 2010). Related to this, it is of note that patients
with schizophrenia frequently report phases of stress in the proximi-
ty of or during the transition to full-blown psychosis (Phillips et al.,
2006), and exposure to physical or psychological stressors is well
known to activate microglia cells and enhance the production and re-
lease of pro-inflammatory cytokines in the CNS (Frank et al., 2007;
García-Bueno et al., 2008). Psychosocial and/or physical stress in the
early-phase of schizophrenic disease may therefore be an important
factor with the potential to unmask latent neuroinflammatory effects,
and to unleash their detrimental impact on disease progression
(Fig. 1). This concept would be consistent with “multiple-hit” theories
of schizophrenia, suggesting that the disorder's etiology most likely
involves exposure to multiple environmental and/or genetic insults
at various stages of brain development and maturation (Cannon et
al., 2003; Keshavan, 1999; Keshavan and Hogarty, 1999; Read et al.,
2001; Walker et al., 1999).

According to the hypothetical model illustrated in Fig. 1, priming
of (latent) neuroinflammatory responses by prenatal infection and/
or inflammation may be relevant for the progressive reduction in
gray matter volume that occurs in the proximity of or during of the
onset of full blown psychosis (Hulshoff Pol and Kahn, 2008; Pantelis
et al., 2005; Wood et al., 2008). Such volume reduction seems to re-
semble an exaggeration of gray matter reduction occurring as a result
of normal adult development (Hulshoff Pol and Kahn, 2008; Wood
et al., 2008), and it is a matter of current debate whether or not this
process may involve (transient) neurodegenerative processes
(Archer, 2010; McGlashan, 2006; Pérez-Neri et al., 2006). A recent
study by de la Fuente-Sandoval et al. (2011) shows increased brain
glutamate levels in subjects with ultra-high risk for schizophrenia
hizophrenia. In-utero exposure to infection and/or inflammation leads to fetal neuroin-
nced levels of pro-inflammatory cytokines in the fetal brain together with fetal micro-
c deficiency. Early fetal neuroinflammation changes neurodevelopmental trajectories,
tal exposure to brain inflammation further primes postnatal microglia (MG) and astro-
rbid symptoms such as subtle neurological and psychomotor deficits. Altered microglia
neuroinflammation during postnatal brain maturation and may contribute to progres-

the prodromal phase) and thereafter. Immunomodulatory interventions targeting early
n in the postnatal life span may attenuate or even prevent the emergence of full-blown
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and first-episode patients. This has been taken as circumstantial evi-
dence to support the possibility of (transient) processes of neurode-
generation in the early stages of schizophrenia (Lahti and Reid,
2011), primarily because excess synaptic glutamate levels are highly
neurotoxic (Lau and Tymianski, 2010). In the present context it is
highly interesting to point out that activated microglia release sub-
stantial levels of glutamate (Barger and Basile, 2001; Barger et al.,
2007), and accumulating evidence suggests that such microglia-
mediated toxicity contributes to neuronal damage in the event of
neuroinflammation (Block et al., 2007; Perry et al., 2007; Ransohoff
and Perry, 2009).

Microglia over-activation also leads to elevated production of qui-
nolinic acid (QUIN) and 3-hydroxykynurenine (3-OHKY), both of
which have potent neurotoxic properties too (Müller et al., 2011;
Wonodi and Schwarcz, 2010). In a recent study, Condray et al.
(2011) showed that drug-naïve first-episode schizophrenic patients
displayed enhanced 3-OHKY levels, and that the levels of 3-OHKY
predicted clinical improvement following anti-psychotic drug treat-
ment in as much as the lowest concentrations of 3-OHKY were asso-
ciated with the greatest improvement in symptoms. Taken together,
the excess in glutamate and 3-OHKY release during the early (prodro-
mal) stages of schizophrenic disease would fit with the hypothetical
model illustrated in Fig. 1, which emphasizes a critical role of (prena-
tal infection/inflammation-induced) neuroinflammatory processes in
the progressive development of overt schizophrenic disease.

7. Developmental neuroinflammation as a possible target
for disease prevention

It has been proposed that prophylactic or symptomatic treatments
targeting maternal infection and associated inflammatory processes
may be efficient in reducing the incidence of schizophrenia and relat-
ed disorders (Brown and Patterson, 2011). According to estimations
put forward by Brown and Derkits (2010), such preventive efforts
could reduce the number of schizophrenia cases by as much as one-
third, depending on which infectious agents were to be considered
and what population studied. Current investigations in animal
models have already provided initial biological plausibility for this
possibility by showing that at least parts of the deleterious neurode-
velopment effects of prenatal infection/inflammation can be attenu-
ated or even fully prevented by appropriate interventions targeting
activated inflammatory response systems or associated physiological-
ly processes such as oxidative stress, hypoferremia and zinc deficien-
cy (Aguilar-Valles et al., 2010; Coyle et al., 2009; De Miranda et al.,
2010; Girard et al., 2010; Lanté et al., 2007, 2008; Pang et al., 2005;
Robertson et al., 2007).

Besides prophylactic or symptomatic treatments targeting the ma-
ternal host, anti-inflammatory interventions may have the potential
to attenuate progressive brain changes and development of psychosis
when applied during early-phases of the developmental course of
schizophrenia (Meyer et al., 2011b). Müller et al.(2010) have recently
provided clinical evidence for this hypothesis in a double-blind,
placebo-controlled clinical trial using the anti-inflammatory agent
celecoxib (a preferential cyclooxygenase-2 inhibitor) given in con-
junction with atypical antipsychotic drugs. The authors demonstrated
superior beneficial treatment effects of such anti-inflammatory add-
on therapy (as compared with treatment outcomes using antipsy-
chotic drugs alone) especially when the anti-inflammatory therapy
was initiated in the early-phase of schizophrenia as opposed to later
chronic stages (Müller and Schwarz, 2010; Müller et al., 2010,
2011). In another double-blind, randomized, placebo-controlled
study in the early-phase of schizophrenia, administration of the
broad-spectrum antibiotic minocycline in conjunction with standard
antipsychotic drugs has been shown to exert superior effects in im-
proving negative and cognitive symptoms compared with treatment
outcomes using antipsychotic drugs alone (Levkovitz et al., 2010). In
contrast, such anti-inflammatory strategies may exert no superior
effects in the treatment of schizophrenia when implemented in pa-
tients with a long duration of disease (Rapaport et al., 2005), suggest-
ing that neuroinflammatory processes are especially relevant for the
early-phase of the disease (Fig. 1).

It is also intriguing to point out that numerous antipsychotic drugs
are known to exert inhibitory effects on immune functions in general,
and on pro-inflammatory cytokine networks in particular (reviewed
in Pollmächer et al., 2000; Drzyzga et al., 2006). Of special interest
in the present context seem to be the recently identified microglia-
inhibiting effects of antipsychotic drugs (Bian et al., 2008; Kato
et al., 2007; Kato et al., 2008; Zheng et al., 2008). Hence, antipsychotic
drugs may add to the therapeutic (or even preventive) effects in the
pharmacotherapy of schizophrenia by dampening on-going inflam-
matory processes such as microglia over-activation.

8. Conclusions

In 1997, Gilmore and Jarskog proposed for the first time that “…cy-
tokines generated by the maternal immune system (and/or the pla-
cental or fetal immune system) in response to infection may in part
be responsible for the interaction between maternal infection during
pregnancy, altered neuronal development, and schizophrenia”
(Gilmore and Jarskog, 1997). Extensive epidemiological research and
remarkable advances in modeling prenatal immune activation effects
in animal models have since then provided strong support for this hy-
pothesis by underscoring the critical role of cytokine-associated in-
flammatory events, together with downstream pathophysiological
processes such as oxidative stress, hypoferremia and zinc deficiency,
in mediating the short- and long-term neurodevelopmental effects
of prenatal infection. Longitudinal studies in animalmodels further in-
dicate that developmental neuroinflammation induced by prenatal
immune challengemay be pathologically relevant beyond the antena-
tal period, and may contribute to disease progression associated with
the gradual development of full-blown schizophrenic disease. Un-
doubtedly, our understanding of the role of developmental neuroin-
flammation in progressive brain changes relevant to schizophrenia is
still in infancy. Identification of these mechanisms would be highly
warranted because they may represent a valuable target to attenuate
or even prevent the emergence of full-blown brain and behavioral pa-
thology, especially in individuals with a history of prenatal complica-
tions such as in-utero exposure to infection and/or inflammation.
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