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Abstract

Childhood obesity has reached pandemic proportions, and youth-onset type 2 diabetes is following suit. This review summarises

the literature on the influence of developmental overnutrition, resulting from maternal diabetes, obesity, maternal dietary intake

during pregnancy, excess gestational weight gain, and infant feeding practices, on the aetiology of obesity and type 2 diabetes risk

during childhood and adolescence. Key goals of this review are: (1) to summarise evidence to date on consequences of

developmental overnutrition; (2) describe shared and distinct biological pathways that may link developmental overnutrition

to childhood obesity and youth-onset type 2 diabetes; and (3) to translate current knowledge into clinical and public health

strategies that not only target primary prevention in youth, but also encourage primordial prevention during the perinatal period,

with the aim of breaking the intergenerational cycle of obesity and diabetes.

Keywords Developmental programming . Lifecourse development . Obesity . Overnutrition . Review . Type 1 diabetes . Type 2

diabetes

Abbreviations

EPOCH Exploring Perinatal Outcomes in Children

GDM Gestational diabetes mellitus

GUTS Growing Up Today Study

GWG Gestational weight gain

HAPO Hyperglycemia and Adverse Pregnancy Outcomes

HEI Healthy Eating Index

Introduction

The obesity pandemic has spared no age group, including

young children [1]. Following in its footsteps is youth-onset

type 2 diabetes, a novel paediatric condition on the rise in the

USA [2] and worldwide [3]. The existence and rise in preva-

lence of paediatric type 2 diabetes is undoubtedly related to

trends in childhood obesity given that excess adiposity is the

leading risk factor for type 2 diabetes [4, 5] and emerging

evidence suggest that both conditions have origins in utero

[6–9]. Little remains known of specific pathways and mecha-

nisms underlying development of youth-onset type 2 diabetes,

an important first step to stemming the tide of type 2 diabetes

among children and adolescents.

As depicted in Fig. 1, this review expands upon the litera-

ture surrounding developmental overnutrition, resulting from

maternal diabetes, obesity, diet during pregnancy, and excess

gestational weight gain, and infant feeding practices, in rela-

tion to childhood obesity and youth-onset type 2 diabetes. We

start by summarising and appraising the evidence on
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consequences of developmental overnutrition and discussing

shared and distinct biological pathways that may link devel-

opmental overnutrition to obesity and type 2 diabetes in youth.

We then translate current knowledge into clinical and public

health strategies that not only target primary prevention in

youth, but also encourage primordial preventions during the

perinatal period, with the aim of breaking the intergenerational

cycle of obesity and diabetes [8, 10].

Developmental overnutrition

In utero overnutrition

Maternal diabetes

Longstanding evidence links maternal diabetes to larger off-

spring birth size and adiposity across life, and these associations

are thought to be driven by maternal fuels: hyperglycaemia and

altered lipid and/or amino acid metabolism.While earlier studies

evaluated maternal diabetes as a combination of type 1, type 2

and/or gestational diabetes mellitus (GDM), more recent investi-

gations consider diabetes subtypes and degree of

hyperglycaemia, which may be more appropriate.

Maternal diabetes, fetal growth and neonatal adiposity In the

1950s, Pedersen proposed the fuel-mediated teratogenesis hy-

pothesis, which postulated that intrauterine exposure to

hyperglycaemia leads to higher birthweight and future obesity

and type 2 diabetes risk [6]. This hypothesis is supported by

studies showing that women with pre-existing diabetes and

those who develop GDM deliver infants with higher

birthweight [11–13] and fat mass [14, 15]. In a study of 195

women with GDM and 220 control individuals [15], mid-

pregnancy fasting glucose was the strongest correlate of new-

born fat mass, in comparison with demographic characteristics,

family history and maternal anthropometry [15]. Several other

studies have since identified associations of maternal

hyperglycaemia with offspring adiposity at birth and beyond:

(1) maternal glucose levels across all of pregnancy and in the

absence of diagnosed diabetes were associated with directly

measured neonatal fat mass in the Colorado-based Healthy

Start Study (n = 804) [16]; (2) mid-pregnancy oral glucose chal-

lenge test glucose levels correlated with higher birthweight

among 6854 non-diabetic pregnancies in a study conducted in

Texas [17]; (3) higher mid-pregnancy oral glucose tolerance

test glucose levels were associated with higher birthweight

among >25,000 mother–infant pairs in the Hyperglycemia

and Adverse Pregnancy Outcomes (HAPO) study [18]; and

(4) late pregnancy dysglycaemia among non-GDMpregnancies

(HbA1c ≥39 mmol/mol at delivery) predicted greater offspring

weight gain during early childhood and higher BMI at age

4 years among 898 mother–child pairs in Germany [19].

Together, these findings emphasise the relevance of both degree

and timing of maternal hyperglycaemia—even in the absence

of frank diabetes—as determinants of offspring adiposity.

Type 1 diabetes, type 2 diabetes and GDM are each asso-

ciated with altered lipid metabolism [20–22], another fuel-

mediated pathway through which maternal diabetes may in-

fluence newborn adiposity [23]. In the context of GDM, ma-

ternal serum NEFA and/or triacylglycerols are associated with

higher birthweight [24–26]. Findings in the general popula-

tion have been mixed, with some studies suggesting that the

relationship between maternal lipids and neonatal outcomes

differs by pre-pregnancy weight status [27–30]. In the Healthy

Heart Study [16] there was a positive association of NEFA

during the second half of pregnancy with birthweight inde-

pendent of pre-pregnancy BMI, but not with newborn fat
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Fig. 1 Pathways through which exposure to developmental overnutrition

during pregnancy (obesity, maternal diabetes, gestational weight gain,

diet during pregnancy, and infant feeding) may influence the

development of obesity and type 2 diabetes across the life course.
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mass, among 804 mother–infant pairs. There was also a pos-

itive relationship between late pregnancy cholesterol and new-

born fat mass in overweight/obese women, but not among

lean women. Such findings emphasise a need to better under-

stand how specific maternal fuels, singly and in combination

with other aspects of maternal health and metabolism, may

trigger fuel-mediated overnutrition.

Not surprisingly, given the interplay between lipid and ami-

no acid metabolism [31], altered maternal serum amino acid

concentrations have been observed in concomitance with ma-

ternal hyperglycaemia. In a study of 67 HAPO participants,

targeted metabolomics profiling of maternal serum revealed

differences in concentrations of metabolites on amino acid and

macronutrient degradation pathways between BMI-matched

women with high (>90th percentile) vs low fasting glucose

(<10th percentile) at 28 weeks’ gestation [32]. In light of the

interrelationships among biochemical mechanisms of nutrient

metabolism, future studies interrogating comprehensive me-

tabolite profiles of maternal blood during pregnancy will shed

light on cohesive biological pathways linking maternal

hyperglycaemia to offspring health.

Maternal diabetes and offspring obesity The relationship be-

tween maternal diabetes and offspring adiposity starts at birth

and tracks across the life course. In a survey-based analysis of

>14,000 US youth in the Growing Up Today Study (GUTS)

[33], maternal GDM correlatedwith 40% higher odds of being

overweight during adolescence (OR 1.4, 95% CI 1.2, 1.6).

The estimate was attenuated after accounting for maternal

pre-pregnancy BMI (OR 1.2, 95% CI 0.8, 1.7). In the

Project Viva pre-birth cohort, among 366 boys aged 6–

10 years old, the difference in fat mass between those born

to mothers with GDM vs those born to normoglycaemic

mothers was attenuated from 2.6 kg (95% CI 1.0, 4.2) to

2.0 kg (95% CI 0.4, 3.6) after adjusting for pre-pregnancy

BMI [34]. Similarly, in 461 participants of the Exploring

Perinatal Outcomes in CHildren (EPOCH) cohort, GDM ex-

posure correlated with higher BMI, waist circumference, vis-

ceral and subcutaneous adipose tissue in offspring at age 6–

13 years [35]. The investigators noted modest attenuation (i.e.

by 14–42%) in estimates of interest after accounting for pre-

pregnancy BMI, with some associations retaining statistical

significance [35]. A recent investigation of >5000 youth in

The Environmental Determinants of Diabetes in the Young

(TEDDY) study reported higher odds of being overweight in

5-year-old offspring exposed to maternal GDM (OR 1.48,

95% CI 1.14, 1.92), type 1 diabetes (OR 1.60, 95% CI 1.16,

2.20) and type 2 diabetes (OR 7.39, 95% CI 2.46, 22.23)

compared with their unexposed counterparts [36]; adjustment

for maternal pre-pregnancy BMI attenuated all three esti-

mates. Similarly, three meta-analyses reported that adjustment

for maternal BMI attenuated, but did not completely abolish,

associations of GDM with offspring obesity and abnormal

glucose tolerance during childhood [37–39]. Taken together,

the evidence suggests an independent effect of exposure to

diabetes in utero on future adiposity and type 2 diabetes risk.

We note that although inclusion of maternal pre-pregnancy

BMI in regression models exploring associations between

GDM and offspring adiposity may partly account for genetic

predisposition, such adjustment may also control for shared

intrauterine mechanisms that lead to fetal overnutrition, since

maternal glucose is elevated among overweight/obese wom-

en, even if they do not qualify as having diabetes. Use of

appropriate analytical approaches (i.e. inverse probability

weighting [40] to balance the distribution of pre-pregnancy

BMI among women with and without GDM rather than sim-

ple adjustment, which may inadvertently block the effect of

shared aetiology) and mechanistic studies, will help to ascer-

tain the extent to which accounting for maternal BMI isolates

associations of interest.

Maternal diabetes and offspring type 2 diabetes The longitu-

dinal study of Pima Indians in the Gila River Indian

Community [41] was one of the first studies to explore asso-

ciations of in utero exposure to maternal diabetes (combined

pre-existing type 2 diabetes and GDM)with subsequent type 2

diabetes in offspring. In this high-risk population, offspring of

women with diabetes not only had higher birthweight [41],

but also continued on a trajectory of higher weight-for-height

through adolescence [42, 43] and had a tenfold greater risk of

developing type 2 diabetes in adolescence and young adult-

hood [10]. Moreover, exposure to maternal diabetes was the

single strongest risk factor for youth-onset type 2 diabetes

(OR 10.4, 95% CI 4.3, 25.1) and accounted for most of the

dramatic increase in youth-onset type 2 diabetes in this popu-

lation over the last 30 years [44].

Investigations in lower-risk, racially diverse populations

support findings from the Pima Indians. In the SEARCH for

Diabetes in Youth Case–Control Study, the odds of type 2

diabetes was 7.3 (95% CI 3.2, 16.8) greater in participants

whose mothers were diagnosed with diabetes during pregnan-

cy (n = 79; with >90% GDM cases) than in their unexposed

counterparts (n = 190) [45]. In addition, in utero exposure to

maternal diabetes in conjunction with obesity contributed to

47% of type 2 diabetes cases in adolescent offspring of various

race/ethnicities (non-Hispanic White, African American,

Hispanic), suggesting that the transgenerational cycle of dia-

betes begetting diabetes at increasingly younger ages operates

in diverse populations and race/ethnic groups. While such

findings also reflect the genetic component of type 2 diabetes,

the relationship between in utero exposure to maternal diabe-

tes and future risk of type 2 diabetes is robust to adjustment for

paternal diabetes and age at onset of diabetes for either parent

[46]. Dabelea et al [47] showed further support for a specific

intrauterine effect of maternal diabetes on offspring type 2

diabetes risk above and beyond genetics via a discordant
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sibship analysis wherein the sibling born after maternal diag-

nosis of diabetes had threefold greater odds of type 2 diabetes

than those born before diagnosis.

Pathways linking in utero overnutrition to type 2 diabetes

Although excess adiposity is the leading risk factor for type

2 diabetes in adults [4, 5], whether the relationship between in

utero overnutrition and youth-onset type 2 diabetes is a sole

consequence of childhood obesity has garnered interest. In the

Pima Indian study, acute insulin response to infused glucose

was 40% lower in adults whose mothers had diabetes during

pregnancy than in those whose mothers developed diabetes

after delivery, despite no differences in per cent fat mass [48].

In lower-risk populations, maternal GDM has been associated

with precursors of type 2 diabetes in offspring even after ac-

counting for offspring BMI, including higher estimated insu-

lin resistance (HOMA2-IR) among youth in EPOCH [49], and

higher fasting glucose among adolescents in the Danish

National Birth Cohort [50]. Similarly, in an analysis of 587

mother–offspring dyads in Denmark, Kelstrup et al found that

adult offspring exposed to maternal type 1 diabetes or GDM

had impaired insulin sensitivity and lower disposition index

compared with adult offspring of normoglycaemic women,

even after adjustment for BMI [51].

In addition to the effect of overt maternal diabetes on type 2

diabetes in offspring, a recent analysis of 4832 mother–child

pairs in the HAPO Follow-Up Study revealed that the entire

spectrum of maternal glycaemia (based on maternal fasting

glucose levels, as well as plasma glucose levels at 1 h and

2 h post 7 g oral glucose tolerance load) was positively asso-

ciated with offspring fasting glucose levels and insulin resis-

tance at age 10–14 years, independent of maternal and child

BMI and family history of diabetes [9].

Mechanisms underlying the relationship between in utero ex-

posure to maternal diabetes and type 2 diabetes risk in offspring

have been gleaned from rodent studies showing a specific detri-

mental effect of maternal diabetes or hyperglycaemia on off-

spring pancreatic beta cell development and function [52–54].

In addition, small case–control studies of mother–infant pairs

with vswithoutGDMhave noted differential expression of genes

encoding the insulin receptor [55] and adiponectin [56] in cord

blood, independent of maternal BMI, pointing towards epigenet-

ic modifications of specific genes involved in glycaemic regula-

tion as another mechanistic pathway. Further research to identify

the exact mechanisms by which in utero exposure to diabetes

influences risk of type 2 diabetes in offspring is needed to devel-

op and implement effective prevention.

Maternal obesity

Vohr et al reported that maternal pre-pregnancy weight status

and gestational weight gain predicted offspring fat mass at

birth [57] and age 1 year [58], even among women without

GDM. This positive relationship betweenmaternal weight and

offspring adiposity at birth [59] and beyond [49, 60–64] has

been confirmed in numerous settings. Moreover, the conse-

quences of pregravid adiposity are detectable across the con-

tinuum of maternal BMI and can influence offspring metabol-

ic risk independent of offspring adiposity [64–67].

The concordance between maternal and offspring obesity

can stem from genetics [68], shared environment and lifestyle

[69, 70], as well as intrauterine mechanisms. The intrauterine

effect of maternal obesity on offspring obesity is difficult to

isolate in human studies, but animal experiments support bio-

logical plausibility. Diet-induced obesity among pregnant ro-

dents altered offspring adipocyte metabolism to favour hyper-

trophy via epigenetic modifications [71–74]. Other pathways

include the effect of maternal obesity on placental function

[75], glycaemic regulation [76] and stem cell differentiation

[77–81]. We include a brief discussion on mechanistic studies

using mesenchymal stem cells in the section ‘Mechanistic

studies nested within existing cohorts’; other mechanisms

are reviewed elsewhere in this issue.

Maternal diet during pregnancy

Macronutrient intake Studies of maternal macronutrient in-

take during pregnancy generally indicate that higher energy

and carbohydrate intakes and lower protein intakes are asso-

ciated with higher neonatal adiposity. Specifically, greater car-

bohydrate intake during late pregnancy was associated with

higher neonatal fat mass in a study of 222 Danish mother–

child pairs [82], whereas higher protein intake during mid-to-

late pregnancy was associated with lower birthweight (Project

Viva [83]), neonatal abdominal adiposity (the GUSTO Study

[84]) and abdominal fat mass during adolescence (a Danish

cohort [85]). In the Healthy Start Study, maternal intake of all

energy-providing macronutrients (total fat, saturated fat, un-

saturated fat, carbohydrates) except protein was associated

with higher neonatal adiposity [86].

Dietary patterns The field of nutritional epidemiology recent-

ly shifted towards evaluating dietary patterns, rather than in-

dividual foods or nutrients, to reflect real-life dietary intake

[87]. In the Healthy Start Study, poor diet quality during mid-

pregnancy, defined as Healthy Eating Index (HEI) score ≤57,

corresponded to 0.58% (95% CI: 0.07%, 1.10%) higher fat

mass in newborns [88]. A pooled analysis of two cohorts

(Project Viva in the USA and the Rhea cohort in Greece)

found that adherence to aMediterranean dietary pattern during

mid-pregnancy predicted lower BMI, waist circumference and

skinfold thicknesses in offspring across childhood [89]. Yet, a

recent study of 721 overweight/obese pregnant women report-

ed no consistent relationship of diet quality indicators, includ-

ing the HEI, carbohydrate and protein intake and total energy

intake, with fetal ultrasound measurements of adiposity at 28–
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36 weeks’ gestation [90]. While the utility of fetal ultrasounds

for assessing neonatal adiposity requires validation, these

findings suggest the importance of maternal pre-pregnancy

weight status beyond that of diet during pregnancy.

Gestational weight gain While gestational weight gain

(GWG) is not a dietary factor per se, it is a consequence of

dietary intake that contributes to the gestational milieu

[91–93], albeit in conjunction with the influence of pre-

pregnancy weight status, and the social, genetic and physio-

logical changes that occur during pregnancy, discussed else-

where [94]. Both higher GWG on a continuous scale, as well

as excess GWG according to current Institute of Medicine

guidelines [94], have been consistently related to greater off-

spring adiposity from birth [95, 96] through adulthood [66,

97, 98]. Many of these studies established this association

independent of pre-pregnancy BMI and shared environment/

lifestyle factors [64, 97, 98]. GWG is also positively correlat-

ed with type 2 diabetes-related metabolic biomarkers in off-

spring, including insulin resistance and adipocytokine profile

[99, 100]. In some cases, the metabolic alterations occurred in

the absence of offspring obesity [64, 76].

In addition to the impact of total GWG on offspring adi-

posity and metabolic profile, the timing of weight gain has

repercussions. Greater weight gain assessed continuously dur-

ing early pregnancy has been linked to higher offspring BMI

and fat mass during childhood [101, 102], whereas GWG

exceeding current guidelines during the second and third tri-

mesters correlated with greater odds of delivering a large-for-

gestational age infant [103]. These discrepancies suggest a

need to examine associations of GWG timing with growth

trajectories rather than weight status at distinct time points.

Of note, while it is tempting to compare the effects of pre-

pregnancy BMI with those of GWG on offspring health, as

was done in a recent meta-analysis [104], Gillman [105] right-

ly pointed out that doing so may not be appropriate given that

their relationships with offspring health reflect contributions

from different factors at different times across a woman’s

lifespan. GWG occurs during pregnancy, exerting influences

on offspring health through the intrauterine environment. On

the other hand, pre-pregnancy BMI represents the impact of

shared genes and environmental factors between mother and

child, as well as a direct influence of the in utero environment

and postnatal behaviours.

Postnatal overnutrition

Breastfeeding

Exclusive breastfeeding for the first 6 months of life is recom-

mended by the World Health Organization for its protection

against infant morbidity [106], benefits to maternal health

[106] and potential to reduce childhood obesity [107, 108].

Although some have expressed concern regarding the safety

of breastfeeding among diabetic women given the potential

for higher levels of insulin and glucose in breast milk [109],

studies in diverse populations (e.g. the Pima Indian study [110]

and GUTS [111]) reported protective effects of breastfeeding

on offspring fat distribution, metabolic traits and type 2 diabetes

risk in diabetic and non-diabetic women. Beyond supporting

the safety of breastfeeding, Crume et al [112] showed that

breastfeeding ≥6 months mitigated the effects of GDM expo-

sure on adiposity at age 6–13 years, suggesting a specific pro-

tective effect of breastfeeding among high-risk offspring.

Moving from association to causation
to inform clinical care and public health
practice

Life course approach

The long latency period between exposure to developmental

overnutrition and future obesity/type 2 diabetes necessitates

thoughtful study designs and analytical approaches to study

disease aetiology, to test mechanisms and to identify opportu-

nities for intervention. Life course epidemiology conceptual

models [113] are a valuable tool for these purposes.

Conceptual models not only encourage researchers to consider

the web of causation among key variables, but also drive the

analytical strategy. By accomplishing these tasks, researchers

will better understand aetiology and mechanisms, and gain

insight into modifiable determinants of type 2 diabetes across

the lifespan that both coincide with and occur independently

of excess adiposity.

Clever study designs and analytical strategies

Certain study designs can enhance our ability to draw causal

conclusions from observational data. For instance, one could

minimise the impact of genetics by comparing effect sizes for

maternal vs paternal BMI [114], and/or leverage within- vs

between-family comparisons [115] and sibship analyses [47,

116]. In addition, new developments in statistical techniques

(i.e. inverse proportional weighting of marginal structural

models [117, 118]) can enhance causal inference.

Mechanistic studies nested within existing cohorts

In the Healthy Start cohort, in vitro studies of mesenchymal

stem cells harvested from cord blood in a sample of study

participants provided evidence that alterations in β-catenin

pathways, expression of genes involved in myocyte growth,

amino acid synthesis and oxidative stress link maternal obesi-

ty to newborn adiposity and weight gain during infancy

[77–81]. Such findings support biological plausibility of
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observational findings of the positive correlation between ma-

ternal and child obesity in this and other cohorts.

Randomised clinical trials

Most randomised clinical trials comprising interventions fo-

cused on obesogenic conditions during pregnancy have not

been effective in mitigating/reducing GDM or excess GWG

[119], or preventing macrosomia [119, 120]. The limited suc-

cess of these trials point towards a need for interventions prior

to conception or earlier in pregnancy. Pre-conception interven-

tions may be difficult to implement among first-time mothers

given that half of pregnancies are unplanned [121], and early

pregnancy interventions may be similarly challenging given

that most women seek prenatal care midway through the first

trimester. A potential strategy is to focus on women with a

history of obesity, GDM and/or excessive GWG for surveil-

lance and interventions prior to the next pregnancy [122]. In

light of several recent studies indicating the importance of the

first trimester to both maternal [123] and offspring health [101,

102], interventions on maternal behaviours to moderate weight

gain during the first trimester seem promising.

There is also room for improvement in the endpoints

targeted by pregnancy trials. For example, directly measured

neonatal fat mass rather than birthweight is likely to be more

relevant to the development of obesity and type 2 diabetes.

Furthermore, longer follow-up of health outcomes beyond

birth is warranted to better understand the efficacy of pregnan-

cy trials on chronic disease risk prevention.

Finally, following findings that adequate breastfeeding

limits the detrimental effects of GDMexposure [112], promot-

ing breastfeeding among diabetic women may help to reduce

obesity-related conditions in high-risk offspring, hopefully

breaking the intergenerational cycle of disease.

Summary and conclusions

Youth-onset type 2 diabetes is on the rise, and trends in child-

hood obesity only partially explain the recent appearance of a

condition that was previously confined to adults. Higher ma-

ternal BMI entering pregnancy (not simply maternal obesity),

maternal hyperglycaemia (even in the absence of overt diabe-

tes), greater GWG (not only excessive GWG according to

current guidelines), and greater energy intake during pregnan-

cy are important early-life correlates of excess adiposity and

youth-onset type 2 diabetes. Importantly, maternal

hyperglycaemia and GDM are associated with precursors of

type 2 diabetes (e.g. insulin resistance, reduced disposition

index) in offspring, starting as early as late childhood, even

after accounting for current body size and/or adiposity, sug-

gesting a specific effect of maternal hyperglycaemia on pan-

creatic beta cell development and function. Given the

overlapping nature of these aspects of developmental overnu-

trition, and the shared aetiology of obesity and type 2 diabetes,

future studies are warranted to disentangle pathways linking

specific aspects of developmental overnutrition to obesity and

type 2 diabetes risk. Accomplishment of these tasks will in-

form timing and targets for early interventions with potential

to make measurable impacts on population health.
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