
Developmental Programming of Energy Balance and

Its Hypothalamic Regulation

Floor Remmers and Henriette A. Delemarre-van de Waal

Institute of Physiological Chemistry (F.R.), University Medical Center of the Johannes Gutenberg University Mainz,

55128 Mainz, Germany; and Department of Pediatrics (H.A.D.-v.d.W.), Leiden University Medical Center, 2300 RC

Leiden, The Netherlands

Developmental programming is an important physiological process that allows different phenotypes to originate

from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the

limitsof itsgeneticbackground)that isbest suitedto itsexpectedenvironment. Inhumans, togetherwiththerelative

irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent

countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current

evidencefordevelopmentalprogrammingofenergybalance.Foraproperunderstandingofthesubject,knowledge

about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes

through which energy balance is regulated and their ontogeny. With this background, we then turn to the available

evidence for programming of energy balance by the early nutritional environment, in both man and rodent models.

A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment.

However, the direction of the effects of programming appears to vary considerably, both between and within

different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standard-

ization between studies seems essential to reach veritable conclusions about the role of developmental program-

ming in adult energy balance and obesity. (Endocrine Reviews 32: 272–311, 2011)
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I. Introduction

The concepts of “nutritional programming,” “fetal pro-

gramming,” “fetal origins of adult disease,” “devel-

opmental origins of health and disease,” “developmental

induction,” and “developmental programming” (1–5)

were all conceived to explain the same phenomenon: a

detrimental environment during a critical period of devel-

opment has persistent effects, whereas the same environ-

mental stimulus outside that critical period induces only

reversible changes. Many epidemiological studies have

shown an association between low birth weight and an

elevated risk of developing several chronic diseases in

adulthood (reviewed in Refs. 2 and 6–9). The Dutch fam-

ine, a unique “natural experiment” with a well-defined

period of food shortage in an otherwise well-nourished

population, has shown that maternal undernutrition dur-

ing gestation compromises health in later life and that

these long-term effects depend on its timing during gesta-

tion (10). It is assumed that low-birth-weight infants, who

are not small per se but rather are small for gestational age

(SGA), suffered from intrauterine growth restriction

(IUGR) due to a low availability of nutrients. As adults,

these subjects have an increased risk for insulin resistance,

hypertension, and cardiovascular disease, collectively
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called the “metabolic syndrome” or “syndrome X” (11).

How early malnutrition should lead to conditions nor-

mally related with affluent environments has been the sub-

ject of much debate. It is now believed that adaptations

that helped these IUGR or SGA infants survive during

pregnancy may become detrimental in later life when nu-

trients are no longer scarce. It is said that these individuals

are “programmed” for the metabolic syndrome. Whether

the obesity that is part of the metabolic syndrome is also

programmed has long been a matter of debate (12–15). In

addition to a low birth weight, high birth weight (e.g.,

through maternal obesity or maternal diabetes) is also as-

sociated with an increased risk of developing obesity in

later life (13, 16–19). In this review, developmental pro-

gramming will be discussed, followed by energy balance,

its regulation, its normal development, and what is known

about its programming.

II. Developmental Programming

The concept of developmental programming implies that

characteristics of the environment encountered during

early development can permanently alter physiology in

later life (20). The perinatal level of nutrition has been

proposed to be a particularly important feature (21). In

early development, there is a window of plasticity, a pe-

riod in which the organism can still develop in different

directions. During this period, the developing organism

has a large potential to adapt to its environment. Once the

window of plasticity has closed, many of these adaptations

will become fixed. Although epidemiological studies have

mainly concentrated on the detrimental consequences of

programming, it is notprincipally aharmfulphenomenon.

Being able to adjust your phenotype to the environment

encountered in early life can be “evolutionary” adaptive if

the environment is relatively stable (22, 23). A mismatch

between the environment in early life and adult life may

result in inappropriate adaptations in the organism.

This is thought to be the case for SGA infants in devel-

oped countries. The low nutrient availability during in-

trauterine development that causes these babies’ growth

restriction is usually not due to a low maternal energy

intake, but instead is due to other causes such as placental

insufficiency (24), drug use (including caffeine, alcohol,

and smoking), and stress or illness (25), and hence does not

give an adequate prediction of nutrient availability in post-

natal life. SGA subjects that develop the metabolic syn-

drome in later life are a good example of “developmental

programming gone bad” (2, 26). In contrast, in infants

born to obese mothers, the enhanced availability of nu-

trients to the fetus is thought to allow increased fetal ad-

ipogenesis and simultaneously alter the systems that reg-

ulate energy balance while they are still plastic (26, 27). It

is now well established that the perinatal environment can

program similar changes in experimental animals (re-

viewed in Refs. 28–31).

III. Energy Balance Regulation

Energy homeostasis, or the process whereby stable energy

reserves are maintained over long periods of time, is tightly

regulated. To maintain neutral energy balance, energy in-

take, thermogenesis, and activity need to be regulated.

These components of energy balance are regulated by at

least two separate, but interrelated systems: 1) a short-

term system that controls the initiation and termination of

meals depending on the contents of the gastrointestinal

tract; and 2) a long-term system that defends the stability

of the energy reserves and thereby that of body weight

(32). In addition, higher brain functions, such as motiva-

tion and reward, as well as environmental factors such as

social influences and food availability alter our food in-

take and activity levels (33, 34). It is the task of the short-

term and long-term regulatory systems to balance the en-

ergy reserves in the face of a changing environment.

Manipulations of the gastrointestinal peptides involved in

the short-term regulation of hunger and satiety were

mostly shown to have little effect on food intake and body

weight over a longer period, and therefore we rely pre-

dominantly on the long-term system to maintain neutral

energy balance.

The first indications that an important part of the long-

term regulatory system resides in the hypothalamus of the

brain came from early studies reporting severe anorexia or

obesity after lesions of distinct areas of the hypothalamus

(35, 36). The hypothalamus consists of several distinct

nuclei that produce specific neuropeptides and perform

different tasks in the homeostasis of temperature, water,

energy, sleep, reproduction, and other functions. In the

brain, there are extensive connections to, within, and from

the hypothalamus (37). The regulation of energy balance

by the hypothalamus is a complicated process, and the

following explanation is a simplified summary. It is also

important to keep in mind that in addition to energy bal-

ance, these nuclei and peptides are involved in other hy-

pothalamic functions as well. Although the majority of the

literature cited concerns research in rodents, most of this

discussion is also applicable to humans (38–43).

In short, neurons in the mediobasally located arcuate

nucleus (ARC) receive information about the status of the

energy reserves (e.g., adipose tissue) through peripheral

hormones that circulate in amounts related to body fat

stores; the information is integrated and passed on to sev-

eral other hypothalamic nuclei, including the paraven-
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tricular nucleus (PVN) and the lateral hypothalamic area

(LHA), and from there on to output functions. The process

is also influenced by satiety hormones from the gastroin-

testinal tract (44) (Fig. 1).

A. Peripheral signals

Several hormones provide the brain with information

on the status of energy balance. These can be divided into

two categories: 1) hormones that are produced by the gas-

trointestinal tract and signal on satiety and hunger, or

short-term information; and 2) hormones that signal the

status of fat reserves of the body, the long-term signals.

Leptin is the major peripheral hormone involved in long-

term energy homeostasis.

1. Leptin

Leptin was first identified as the product of the gene

that is defective in obese ob/ob mice and was named after

“leptos,” the Greek word for “thin” (45, 46). In both

humans and rodents, leptin is produced by adipose tissue,

in proportion to the body fat content, as an “adiposity

signal” (47–52). The leptin receptor (Ob-R) Ob-Rb is

highly expressed in the ARC and is also found in some

other hypothalamic areas (53–55). In addition, short

forms of the Ob-R (a, c–f), which probably act as leptin

transporters, exist in the choroid plexus and other areas

where substances may cross the blood-brain barrier

(53–56).

Leptin gene expression and serum levels decrease upon

negative energy balance in both humans and rodents (48,

51, 52, 57–59). However, its levels are disproportionately

reduced during acute depletion (60) to initiate immediate

action to restore these reserves. The central effects of leptin

include reductions in food intake and body weight gain

and increased energy expenditure (61–63).

2. Other peripheral signals

Insulin, produced by the �-cells of the pancreas, con-

trols blood glucose availability. In energy balance regula-

tion, it acts both as a short-term and as a long-term signal

(47). It is released upon acute changes in energy levels such

as meal ingestion, but its circulating levels are also directly

correlated with fat reserves. In the brain, it acts on recep-

tors in the ARC to reduce food intake and increase energy

expenditure (reviewed in Ref. 47).

Ghrelin, produced by the stomach, indicates negative

energy balance (64). Its levels rise before meal onset and

decrease with feeding. Over longer time periods, ghrelin

levels are inversely correlated to energy stores. Ghrelin

acts on receptors in the hypothalamus to influence ARC

neuron activity. Upon peripheral or central injection,

ghrelin stimulates food intake and decreases energy ex-

penditure (reviewed in 64).

Other peripheral signals, which are predominantly in-

volved in the short-term regulation of the initiation and ter-

mination of meals, are produced in different regions of the

gastrointestinal tract and include cholecystokinin, gluca-

gon-like peptide 1, oxyntomodulin, pancreatic polypep-

tide, and peptide YY (65, 66). These are mainly secreted

after eating and inhibit further food intake. Their actions

on food intake are exerted via the vagus nerve, the brain-

stem, and the hypothalamus. It has also been shown that

several of these peripheral signals interact with each other

to regulate food intake. Another important function of

these gut peptides is to control the proper processing of the

nutrients ingested in a meal (reviewed in Refs. 65 and 66).

B. Peptides from the arcuate nucleus

The ARC is located mediobasally in the hypothalamus,

close to the median eminence. This is a circumventricular

organ where the blood-brain barrier is incomplete and

blood-borne signals can easily reach the ARC neurons (67,

68). In addition, leptin, insulin, and ghrelin are actively

FIG. 1. A simplified overview of the regulation of energy balance.

Peripheral signals of energy reserves reach the hypothalamus and

brainstem via hormonal and neuronal pathways. The former pathway

is more important in transferring long-term adiposity signals, whereas

the latter handles the rapid transmission of short-term satiety signals,

mainly through the vagus nerve. Several brain areas, including the

hypothalamus and brainstem, then interact with each other to regulate

intake and expenditure of energy. This review will focus on the

interaction between long-term adiposity signals and the hypothalamus.

See the text for further information. CCK, Cholecystokinin; GLP-1,

glucagon-like peptide 1; OXM, oxyntomodulin; PP, pancreatic

polypeptide; PYY, peptide YY. [Adapted from G. Paxinos and C.

Watson: The rat brain in stereotaxic coordinates, Academic Press, New

York, 1997 (599). © Elsevier 1997].
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transported across the blood-brain barrier (69–71). Apart

from these direct inputs from the periphery, the hypothal-

amus also receives information concerning energy balance

from brainstem areas (66). The ARC integrates this infor-

mation and drives other hypothalamic areas such as the

PVN and the LHA (44).

The ARC contains two populations of neurons that are

strongly involved in the regulation of energy balance.

These two populations express different neuropeptides. A

medial population coexpresses the orexigenic peptides

neuropeptide Y (NPY) and agouti-related protein (AgRP)

(72–75). The anorexigenic peptides �-melanocyte-stimu-

lating hormone (�-MSH) and cocaine- and amphetamine-

regulated transcript (CART) are produced by a more

lateral population of ARC neurons (74, 76, 77). Both of

these populations coexpress receptors for peripheral

signals, including those for leptin (40, 78, 79), insulin

(80, 81), and ghrelin (82, 83). Both the NPY/AgRP and

the proopiomelanocortin (POMC)/CART neurons

project widely throughout the hypothalamus and the

brain (39, 72, 84, 85). Besides the ARC, CART is also

expressed in several other hypothalamic nuclei, includ-

ing the PVN and LHA (86).

These peptides exert their effects via various receptors.

In the rat, four subtypes of the NPY receptor have been

identified that have all been found in many different brain

areas, including most hypothalamic nuclei (87, 88).

Within the ARC, Y1R and Y5R mRNA and protein are

found in many �-MSH/CART neurons (89, 90), whereas

the mRNA and protein for Y2R, which is believed to be an

autoreceptor (91), was found in most NPY/AgRP neurons

(89, 90). Of the five identified melanocortin (MC) recep-

tors, the MC3 and MC4 receptors mediate the effects of

�-MSH in the regulation of energy balance (92–95), al-

though some debate previously existed over the involve-

ment of the MC3 receptor (93). Both are highly expressed

in hypothalamic nuclei, but MC4 is more widely expressed

throughout the brain (96, 97). AgRP is an inverse agonist

of the constitutively active MC receptors (98, 99). A

CART receptor has not been identified yet (100), but spe-

cific CART binding has been reported in cultured cells

from the hypothalamus, hippocampus, and nucleus ac-

cumbens (101).

1. Neuropeptide Y

NPY is one of the most abundant peptides in the brain

(84). Negative energy balance, as elicited by fasting, has

been shown to increase NPY peptide and expression levels

(102–106). Leptin injections, mimicking positive energy

balance, have been reported to lower NPY expression (62,

102, 106, 107), as well as the activity of NPY neurons (82),

NPY secretion by the hypothalamus (107), and NPY levels

in the PVN (108). In the hypothalamus, NPY stimulates

food intake and body weight gain (109–111), increases

white fat lipid storage, and reduces brown fat thermogen-

esis (112, 113). In contrast, NPY injections in most areas

outside the hypothalamus did not have any effect on food

intake (109).

2. Agouti-related protein

AgRP was discovered because of its resemblance to ag-

outi, which in mice causes severe obesity when overex-

pressed (114, 115). As with NPY, levels of AgRP expres-

sion, peptide, and activity are increased by fasting and

decreased by leptin (103, 106, 116–118). Administration

of AgRP or other antagonists of MC receptors were shown

to elevate food intake, body weight, and body fat and to

reduce energy expenditure and brown fat thermogenesis

(119–121). In contrast to the relatively short-lived effects

of NPY, a single injection of AgRP will increase food in-

take for up to 1 wk (122, 123). These long-lasting effects

of AgRP are proposed to be mediated by other routes than

the MC receptors (122, 124).

3. �-Melanocyte-stimulating hormone

�-MSH is cleaved from the precursor polypeptide

POMC, together with other peptides like �-endorphin and

ACTH (125). POMC gene expression is reduced by fasting

and stimulated by leptin (102–104, 106, 126, 127). In

addition, leptin stimulates activity of POMC neurons and

�-MSH release (76, 128, 129). Central administration of

�-MSH or its agonist melanotan II decreases food intake,

weight gain, and adiposity and increases energy expendi-

ture, brown adipose tissue activity, and body temperature,

but not locomotor activity (119, 120, 130–133). Within

the hypothalamus, it reduced food intake when injected in

the ARC, PVN, and LHA among others (134). In contrast

to �-MSH, �-endorphin has been shown to increase food

intake (133).

4. Cocaine-and amphetamine-regulated transcript

CART was identified when its expression levels were

shown to be increased after administration of cocaine or

amphetamine (135), although it was sequenced as a pep-

tide with unknown function long before that (136). ARC

CART mRNA levels are decreased by fasting and in-

creased by leptin (102, 103, 137, 138). In line with an

anorexigenic role, intracerebroventricular CART injec-

tions decreased food intake (137, 139, 140), and intrahy-

pothalamic injection increased gene expression of the ther-

mogenic uncoupling protein-1 in brown adipose tissue

(141, 142). Chronic injections also reduced body weight

gain and increased lipid oxidation (143, 144). Injections

into distinct hypothalamic nuclei, however, have pro-

duced either increased or decreased food intake (139–

142). These contradictory results and colocalization with

Endocrine Reviews, April 2011, 32(2):272–311 edrv.endojournals.org 275
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both orexigenic and anorexigenic neuropeptides have

been interpreted to suggest that CART may play a mod-

ulatory role, with different effects depending on its local-

ization (100).

C. Anorexigenic peptides from the paraventricular

nucleus

The PVN expresses the anorexigenic peptides CRH and

TRH in two distinct populations of parvocellular neurons

(145, 146). A subpopulation of the latter coexpresses

CART (40, 86). The PVN receives innervation from ARC

NPY/AgRP, POMC, and CART terminals (85, 137, 147).

In addition, receptors for these peptides are expressed in

the PVN (88, 96), providing all the “machinery” for sig-

naling from the ARC to the PVN. The PVN also receives

some input from the LHA, dense projections from the

dorsomedial nucleus (DMN), and indirect input from the

amygdala (37).

Both peptides exert their effects via two receptors: the

CRH1- and CRH2-receptors (148, 149) and the TRH1-

and TRH2-receptors (150–152), respectively. CRH1

(153, 154) and TRH2 (155) are both widely expressed in

different brain areas, whereas the expression of CRH2

(156, 157) and TRH1 (155) is mostly restricted to the

hypothalamus.

1. Corticotropin-releasing hormone

CRH, known for its role in the hypothalamic-pituitary-

adrenal (HPA) or stress axis, is also involved in the regu-

lation of energy balance (158). PVN CRH neurons project

to the median eminence, where CRH regulates the re-

lease of ACTH and �-endorphin from the pituitary

(146, 159), and to some cell groups in the brainstem and

spinal cord (160).

PVN CRH expression and peptide levels are decreased

by food deprivation and increased by leptin (62, 104, 127,

161, 162). Furthermore, CRH expression is increased by

injections of both �-MSH and CART (163, 164). Intra-

cerebroventricular CRH has been shown to decrease food

intake and body weight gain and to induce both locomotor

activity and activity of brown adipose tissue (165–168).

These data all point toward an anorexigenic and catabolic

role for CRH.

2. TSH-releasing hormone

TRH stimulates TSH release from the pituitary. TRH

terminals are found throughout the hypothalamus, in the

median eminence, and the pituitary (145). Via thyroid

hormone, which stimulates energy expenditure and ther-

mogenesis, this hypothalamic-pituitary-thyroid (HPT)

axis plays an important role in energy homeostasis (169).

TRH expression and release are reduced by fasting, NPY,

and AgRP, and increased by leptin, �-MSH, and CART

(129, 170–174). Central and peripheral injections of TRH

decrease food intake and increase body temperature (175–

177). Despite increased food intake (possibly a compen-

satory response), chronic oral TRH causes a reduction in

body weight (178). These data point toward an anorexi-

genic and catabolic role for TRH.

D. Orexigenic peptides from the lateral hypothalamic

area

The LHA was recognized early on as a “feeding center”

(35, 36). Two distinct cell populations express the orexi-

genic peptides melanin-concentrating hormone (MCH)

and the orexins (ORXs), the latter especially in the peri-

fornical area (179). Some MCH cells also contain CART

(40, 86). The LHA is innervated by nerve terminals con-

taining NPY, AgRP, and �-MSH (39, 179) and expresses

receptors for these peptides (88, 96, 97). Apart from this

input from the ARC, the LHA also receives input from the

hypothalamic PVN and DMN and from some higher brain

areas including anterior limbic cortical areas, the nucleus

accumbens, and indirectly from the hippocampus (37).

From the cell bodies in the LHA, MCH and ORX fibers

project throughout the hypothalamus and to many differ-

ent brain areas (180–182). MCH has been identified as the

ligand for an orphan receptor by several groups simulta-

neously (183–187). Humans, but not rodents, have an

additional MCH2-receptor (188). The distribution of

MCH1 and the ORX1- and ORX2-receptors corresponds

well with that of MCH (189, 190) and ORX (191, 192)

fibers, respectively.

1. Melanin-concentrating hormone

MCH was first discovered in fish, as the peptide that

causes melanosomes to contract and thereby has a skin-

lightening effect (193). Thereafter, a similar peptide was

found in rat brain (194), and the homologous peptide was

identified (195). MCH expression was either decreased (as

would be expected for an orexigenic peptide) or increased

by injections of leptin (196, 197). Fasting has been shown

to increase MCH expression (103, 197–199), but MCH

neurons appear to be inhibited by NPY (200). Most stud-

ies have reported increased food intake after MCH injec-

tions (199, 201–203), although the opposite has also been

reported (198). When injected chronically, the orexigenic

effect of MCH faded, and body weight was not affected

(204). Mice that lack MCH or its receptor show hyper-

activity (205, 206). This suggests that MCH suppresses

activity, in accordance with an orexigenic, anabolic role.

2. The orexins

ORX-A (or hypocretin 1) and ORX-B (hypocretin 2)

were discovered and named simultaneously by two groups

(207, 208). Negative energy balance has been shown to

276 Remmers and Delemarre-van de Waal Programming of Energy Balance Regulation Endocrine Reviews, April 2011, 32(2):272–311
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increase LHA ORX expression and peptide levels (208–

211), although unchanged expression levels were also re-

ported (103, 197, 212). Leptin lowers LHA ORX expres-

sion and ORX-A levels (210, 213, 214). Although AgRP

injections were shown to increase activity of ORX neurons

(215), NPY either decreased or failed to affect their activ-

ity in two different paradigms (216, 217). Nevertheless,

Y1R and Y5R antagonists suppress ORX-induced feeding,

which is again more in line with the orexigenic role of the

ORXs. Central ORX injections stimulate feeding (208,

218–220), supporting an orexigenic role. However, not

all ORX aspects fit the profile for a truly anabolic protein.

The results for ORX-B have been less consistent, and the

outcome generally depends on the time of day (221). Fur-

thermore, metabolic rate and activity seem to be stimu-

lated rather than decreased by ORX (222–225), and con-

tinuous infusion of ORX altered the circadian rhythm of

feeding without affecting total food intake or body weight

(219, 226). Apart from its complicated role in the regu-

lation of energy balance, ORX is also involved in the reg-

ulation of arousal and vigilance, and its primary function

in energy balance may be to synchronize feeding behav-

ior with other essential behaviors and the environment

(227–229).

E. Downstream events

There are basically three output pathways through

which hypothalamic signaling can eventually alter the in-

take and expenditure of energy. The first pathway influ-

ences behavior through integration of signals from many

brain areas and, ultimately, the activation of motor neu-

rons (33). A final effect of increased hypothalamic orexi-

genic activity may be the initiation of a meal. The second

pathway, the neuroendocrine route, influences energy bal-

ance through the secretion of hormones. The HPA and

HPT axes are part of this pathway. In the HPA axis, CRH

from the PVN stimulates the release of ACTH from the

pituitary, which in turn induces glucocorticoid release

from the adrenal glands (37). These can indirectly influ-

ence feeding behavior and energy expenditure (reviewed

in Ref. 230). In the HPT axis, TRH from the PVN, via the

release of TSH from the pituitary, induces the release of

thyroid hormone by the thyroid gland, which stimulates

energy expenditure and thermogenesis (reviewed in Ref.

169). The third pathway is via the autonomic nervous

system. Several hypothalamic nuclei, especially the PVN,

innervateneurons in thebrainstemand the spinal cord that

are part of the autonomic nervous system, both sympa-

thetic and parasympathetic (37). Via these sympathetic

and parasympathetic pathways, energy expenditure can

be regulated, for example by influencing the heart rate and

thermogenesis by adipose tissue and skeletal muscle (re-

viewed in Refs. 32, 231, and 232).

F. Mutual connections

When reflecting on the regulation of energy balance, it

is important to bear in mind that the pathways and pro-

cesses described above are much simplified. The main

route for information is from the periphery to the ARC

and in turn via the PVN or LHA to the output systems (Fig.

2A). However, other brain areas (hypothalamic and oth-

erwise) are involved in the routing of peripheral signals as

well, with ample feedback between the different brain ar-

eas. In several respects, the regulation of energy balance is

much more complex than the relatively straightforward

pathways described above. A few examples are given

below.

First, the different populations of cells in the ARC in-

fluence their own and each other’s activity. Both NPY/

AgRP and POMC/CART cells express receptors for NPY

and MCs, albeit different subtypes: NPY/AgRP neurons

express Y2R and the MC3 receptor, whereas POMC/

CART neurons express Y1R, Y5R, and the MC4 receptor

(89, 90, 233). Through these receptors, NPY inhibits the

POMC/CART cells (128, 234); NPY and AgRP stimulate

each other’s release and (at least in vitro) can be stimulated

by �-MSH and CART (235); whereas CART reduces

�-MSH release (140).

Second, the PVN and LHA may also receive peripheral

input directly, through leptin receptors in these nuclei,

although these receptors are not necessarily colocalized

with the four peptides of our interest: CRH, TRH, MCH,

and ORX (236–239). For example, leptin also influences

motivational brain areas directly, via receptors in these

areas (reviewed in Refs. 33 and 240).

Third, there is feedback within and between the PVN

and LHA. CRH and TRH neurons are contacted by each

other’s axons (241), as are MCH and ORX neurons (242),

and ORX stimulates both ORX and MCH neurons (200,

243). Furthermore, MCH and ORX have been shown to

stimulate CRH neurons and release (244, 245), whereas

MCH reduces TRH release (246). CRH, in turn, has been

shown to activate ORX neurons (247).

Fourth, besides this mutual influence of the PVN and

LHA peptides, they also project back onto the ARC neu-

rons. ORX axons, for example, terminate on both NPY

and POMC neurons (220, 248). Via these terminals, ORX

stimulates NPY neurons and inhibits POMC neurons (82,

220). MCH has been shown to have similar effects on the

ARC as ORX (201). Moreover, CRH receptors have been

identified in NPY neurons in the ARC (249), and a CRH

receptor agonist has been shown to inhibit medial ARC

neurons (250).

In addition, as mentioned before, there are many more

brain areas involved in the regulation of energy balance

than these three hypothalamic nuclei. Among these are the
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ventromedial nucleus (VMN), the DMN, and the medial

preoptic area (251–255). Furthermore, the caudal brain-

stem is not only a relay station between the periphery and

the hypothalamus; it is also known to be capable of per-

forming part of the regulation of food intake indepen-

dently of the forebrain (256). In addition, the higher brain

areas that deal with the reward, cognitive, and social as-

pects of food intake are not only output areas for the hy-

pothalamus, but also send information back to the hypo-

thalamus (33).

Lastly, although the peptides that have been mentioned

here do play an important role in the regulation of energy

balance, many other substances are involved. Some of

these are hypothalamic neuropeptides, such as galanin,

galanin-like peptide, malonyl-coenzyme A, neurotensin,

and neuromedin U (257–261). Naturally, the classical

neurotransmitters, glutamate and �-aminobutyric acid,

are also present and functional in the hypothalamus (262–

264). Moreover, the hypothalamic nuclei and peptides

discussed here are involved in many other processes be-

sides energy balance. These include the immune system

(leptin, the MCs), bone formation and remodeling (leptin,

NPY, CART, MCH), blood pressure and cardiovascular

regulation (leptin, NPY), kidney function (NPY), repro-

duction (NPY, MCH), stress (NPY, CART, CRH, MCH),

pigmentation and pain sensation (the MCs), reward and

addiction (CART, MCH),

anxiety (MCH), and the wake-

sleep cycle (MCH and ORX)

(100, 158, 227, 265–273).

This section is not meant to

be exhaustive, but intends

merely to give an impression of

the complexity of the regula-

tion of energy balance (sum-

marized in Fig. 3). However,

despite the many interconnec-

tions, the main pathway is be-

lieved to be from the periph-

eral input to the ARC (with

NPY, AgRP, POMC, and

CART), via the PVN (CRH

and TRH) and LHA (MCH

and ORX), to the output sys-

tems (as depicted in Fig. 2A).

Although at first sight these

peptides all seem to fulfill one

of two functions (orexigenic or

anorexigenic), subtle differ-

ences between these peptides

are revealed upon closer in-

spection. We have concen-

trated on evidence from ro-

dents. Although some variation in the details exists (38,

274), the regulation of energy balance is very similar in

different animal species, including humans.

G. Ontogeny

To program a certain system or function, an environ-

mental stimulus must occur during a period in develop-

ment when the system or function is still plastic. In ro-

dents, the energy balance-regulating system is structurally

and functionally immature at the start of postnatal life.

The basic anatomy of the rat hypothalamus is established

prenatally, with its nuclei expressing specific neuropep-

tides being recognizable before birth (275), but the ma-

jority of connections between the hypothalamus and its

input and output systems (276, 277), and those within the

hypothalamus itself (27, 278), develop only in the first

weeks after birth. This rapid postnatal development is also

reflected in overall brain growth: in neonatal rats, total

brain weight increases by a factor 5 between birth and

weaning (279).

Developing rat pups go through some major transi-

tions. Whereas the fetus receives mainly glucose, lactate,

and amino acids via the placenta, at birth the source of

energychanges tohigh-fatmother’smilk (280).Onlya few

weeks later, the pups are weaned and make a more gradual

transition to the high-carbohydrate, low-fat adult diet

FIG. 2. Simplified diagrams of the hypothalamic regulation of energy balance in adult (A) and juvenile

(B) life. A, The main pathway for energy balance regulation is from peripheral input (leptin) to the ARC

(with NPY, AgRP, POMC, and CART), via the PVN (CRH and TRH) and LHA (MCH and ORX), to the

output systems. B, Energy balance does not appear to be tightly regulated in the neonatal period. The

few connections that have been reported to be in place are summarized in this figure. The adult

connections are not yet present and/or active and are shown in light gray. Green arrow, Positive effect;

red inverted arrow, negative effect; solid line, direct connection; dashed line, indirect connection; green

(red) nodes lead to more positive (negative) energy balance when stimulated/active. See the text for

details.
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(280, 281). At the same time, the pups have to make the

transition from obtaining all energy and fluids from the

dam by suckling to the two separate processes of feeding

and drinking (282). As will be described below, different

mechanisms appear to regulate these different types of

ingestive behavior.

Rat pups as young as 1 d old already regulate their milk

intake according to how deprived they are (283, 284). The

only cue that suckling rats have been shown to use to

regulate their milk intake is the distension by gastrointes-

tinal fill (285, 286). This re-

sponse is mediated primarily

by vagus nerve activity (285,

287), and hence by the brain-

stem rather than by the hypo-

thalamus. Other signals that

influence food intake in adult

rats, such as the nutritional

value of the stomach contents,

serum leptin levels, and manip-

ulations of levels of glucose

and free fatty acids, do not af-

fect intake in suckling rats

(286, 288, 289). It appears

that the regulation of energy

balance in the suckling pup is

limited to optimizing energy

intake for growth, and intake

is only restricted by a full stom-

ach to prevent gross overeat-

ing. Therefore, in suckling

pups there seems to be only

short-term regulation of milk

intake, with no long-term reg-

ulation (290).

Thermoregulation and the

regulation of adult forms of in-

gestion then develop in the

early postnatal period. From d

1 on, pups can already regulate

their temperature by moving

toward or away from a heat

source (291), whereas mecha-

nisms for thermogenesis de-

velop over the first 2 wk of life

(288). In the first 10 d of life,

gastric distension is the only

cue that terminates intake.

From then on, the nutritive

value of the gastric content

starts to play a role (reviewed

in Refs. 276 and 290). At this

same age, pups first start to ad-

just their intake according to their level of fatty acids (re-

viewed in Ref. 282), whereas a similar response to glucose

levels does not appear until the age of 4 to 5 wk (284, 290).

Another major development event is the differentiation

between feeding and drinking; young pups simply increase

their intake when they are dehydrated, and only from

around the age of 20 d they will reduce their milk intake

when dehydrated, a phenomenon called dehydration an-

orexia (reviewed in Refs. 276 and 290).

FIG. 3. Simplified diagrams of the hypothalamic regulation of energy balance. Besides the main

pathway (see Fig. 2), these schematics show additional connections from leptin (A), the ARC (B), the

PVN (C), and the LHA (D). Note that in A, the connection to the LHA does not contact MCH or ORX

neurons directly. Green arrow, Positive effect; red inverted arrow, negative effect; blue crossed line,

unspecified effect; solid line, direct connection; dashed line, indirect connection; dotted line, probable

connection; green (red) nodes lead to more positive (negative) energy balance when stimulated/active.

See the text for details.
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The development of the regulation of energy balance is

accompanied by changes in mRNA and protein levels of

the reviewed peptides. The ontogeny of these peptides is

summarized in Sections III.G.1–4 and depicted in Fig. 2B.

1. Leptin

In rats, leptin can be detected in fetal plasma on d 19 of

gestation (292). In nearly full-term fetuses (d 20–21), lep-

tin levels strongly resembled those of the pregnant dams

(292, 293). Leptin mRNA is already expressed by rat ad-

ipose tissue at birth, and its expression and serum levels are

immediately regulated by the nutritional status of the neo-

natal pup (294). In addition, Ob-Rb, the leptin receptor,

has been shown to be expressed in the fetal brain as early

as d 14 of gestation (295, 296).

During the lactation period, leptin undergoes some ma-

jor changes. A first, relatively small increase in serum lep-

tin levels can be detected in rat pups 1 to 2 d old (293, 297),

followed by a second and larger peak around d 7 to 12

(297–299). Interestingly, this leptin surge is unrelated to

changes in body weight and fat content in the neonatal

period (297, 300). The high leptin levels do coincide with

elevated leptin mRNA in neonatal adipose tissue, suggest-

ing that the peak originates from the pups’ own leptin

production (301). Both the neonatal pituitary, which has

high leptin expression during this period (298), and the

dam’s milk (302) may contribute to the leptin surge. In

concert with the changes in leptin levels, hypothalamic

levels of Ob-Rb and its mRNA rise significantly between

birth and weaning (297, 303).

Leptin’s functionality in the regulation of energy bal-

ance appears to be partial in the neonatal period. In rats as

young as 1 wk old, leptin injections are found to reduce

gain in body weight and especially in fat mass, without any

effect on milk intake (289, 304–306). Instead, these effects

seem to be the result of an increase in energy expenditure

(306, 307). Leptin is effective in increasing POMC and

decreasing NPY mRNA in the ARC of rats in this neonatal

period (305), and a robust positive relation between leptin

levels and fat mass has been reported on d 10 (308). The

exact timing of the development of this system seems to

differ between mice and rats. In mice, serum leptin levels

were not altered after milk deprivation on d 8 (300), en-

ergy expenditure was not yet increased by leptin injections

on d 9 (309), and daily leptin injections in the second week

of postnatal life were not found to affect hypothalamic

neuropeptide expression (310).

During the period of partial functionality in energy bal-

ance regulation, leptin has a neurotrophic role. In the ab-

sence of leptin, general brain development and that of the

hypothalamic circuitry specifically are impaired (311,

312). Leptin shares this property with insulin, which is

also implicated in brain development. The neurotrophic

actions of insulin include stimulation of neurite out-

growth, protein synthesis, and neuronal survival (313–

315). Leptin’s neurotrophic effects may actually persist

until adulthood because leptin administration in ob/ob

mice significantly alters the synaptic input on both NPY

and POMC neurons in the ARC (316). Furthermore, the

lining of the third ventricle has been shown to contain

neural progenitor cells that can be induced by neu-

rotrophic factors to proliferate and differentiate into func-

tional hypothalamic neurons (317, 318). This residual

plasticity of the hypothalamic circuitry in adulthood pro-

vides an additional route by which environmental signals

(including leptin) can regulate energy balance (319).

2. ARC peptides

The four reviewed peptides that are expressed by the

ARC (NPY, AgRP, POMC, and CART) are already ex-

pressed in the prenatal rat brain (295). However, ARC

projections to other hypothalamic nuclei only develop

during the early postnatal period (320). During this pe-

riod, there are also dynamic changes in the levels of the

peptides and their gene expression.

a. Orexigenic ARC peptides. NPY peptide is detected in the

rat fetal midbrain as early as d 13 or 14 of gestation (321–

323). NPY mRNA levels rise during gestation to reach

near adult levels around birth (75, 324). Like leptin, NPY

gene expression is elevated during the lactation period,

with a peak around d 16 (324, 325). At the same time,

NPY mRNA is transiently expressed in hypothalamic ar-

eas that do not produce NPY in adulthood. Suckling rat

pups express NPY mRNA in the DMN, PVN, LHA, and

perifornical area, albeit at lower levels than in the ARC

(324, 326). Alongside the developmental changes in NPY

mRNA, NPY peptide levels show a rapid postnatal rise

and in the ARC reach adult levels by the time of weaning

(327, 328). Immunohistochemistry studies have shown

that the number of cell bodies containing NPY peptide

rises gradually until birth, with declining numbers after-

ward (321, 323). After d 10, NPY cell bodies can only be

visualized when axonal transport is chemically blocked by

colchicine administration—a finding that is consistent

with the simultaneous increase in NPY-immunoreactive

fibers throughout the hypothalamus (321–323). In a more

recent study, by staining for NPY and AgRP peptide si-

multaneously, the origin of these postnatally developing

fibers was proven to be the ARC (329). Indeed, the devel-

opmental pattern of AgRP resembles that of NPY, with

increasing expression during the first postnatal weeks and

a peak around d 16 (329, 330).

In the neonatal period, NPY and AgRP already appear

to have some functionality. Maternal deprivation has been

shown to increase expression in the ARC already on d 2
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(NPY) and at least from d 11 (AgRP) (326, 331). Further-

more,NPYinjections into thePVNincreased intakeofwater

and milk as early as d 2; on d 15 the pups showed a prefer-

ential increase in milk intake (332). As mentioned, intrahy-

pothalamic fibers in the neonatal rat are still incomplete, and

NPY is expressed in several hypothalamic nuclei. Therefore,

NPY may exert most of its actions locally at the site of ex-

pression, rather than after being axonally transported from

the ARC to other hypothalamic regions.

b. Anorexigenic ARC peptides. POMC mRNA is first de-

tected in the midbrain on d 13 of gestation (333). During

the lactation period, hypothalamic POMC expression is

either stable (334) or increases toward weaning (310).

ARC POMC expression then increases significantly be-

tween weaning and young adulthood (335, 336). Hypo-

thalamic POMC peptide has been detected as early as d 12

of gestation (337, 338), with �-MSH, the cleaved product,

only appearing between d 15 and d 19.5 of gestation (337,

339, 340). Postnatally, POMC and �-MSH protein in the

ARC go through a rapid increase, to peak around d 21 to

28 (337, 340). There is only limited information about

early CART ontogeny. One study in mice has reported low

levels of hypothalamic mRNA on postnatal d 5, with near

adult levels on d 10 and 22 (310). However, the develop-

mental patterns reported by this study for NPY, AgRP,

and POMC were different from those found in most other

studies.

In contrast to NPY, �-MSH does not seem to have

much functionality early in life. In 1-wk-old rat pups,

many PVN neurons are responsive to NPY, whereas only

a few show a response after administration of an �-MSH

agonist (341). At the age of 4 to 5 wk, however, the num-

ber of PVN neurons responsive to NPY has decreased,

whereas the number of neurons responsive to melanotan

II has increased dramatically (341). This phenomenon

may ensure a high intake in neonatal life by minimizing

anorexigenic signaling in early life.

3. PVN and LHA peptides

Less detailed information is available about the devel-

opmentof thepeptidesof interest in thePVNand theLHA:

CRH, TRH, MCH, and ORX. Gene expression is detected

in the fetal rat brain for all four peptides (342–346). The

peptide is generally also detected in the hypothalamus be-

fore birth (343, 346–348). Neonatally, there is a gradual

increase in expression and protein levels of most peptides,

and adult levels are generally reached around the time of

weaning (207, 344–346, 349–353), although ORX and

TRH peptide levels may keep on rising between weaning

and young adulthood (347, 354).

Functional tests are reported for ORX. In the neonatal

period, leptin administration increases ORX mRNA in the

LHA (353), where the normal effect in adults would be

inhibition of expression (210). Interestingly, the neonatal

leptin administration that increases ORX expression does

not affect body weight and blood glucose levels, whereas

24 h of milk deprivation reduces body weight and blood

glucose levels but does not affect ORX expression levels

(353). Therefore, the neonatal leptin effect on ORX

mRNA may be interpreted to reflect a developmental role,

rather than an effect on energy balance regulation (353).

4. Development in humans and rats

If we want to extrapolate data and conclusions from

animal studies to the human situation, it is important to

consider the respective timing of the ontogeny of the rel-

evant systems in humans and rats. At birth, humans are

further in their development, and many developmental

events that occur in the early postnatal period in rats take

place in the third trimester of human pregnancy (27, 355–

357). NPY immunoreactivity is first detected in the human

ARC at about 21 wk gestation (41), and in nonhuman

primates, NPY/AgRP projections to the PVN increase dra-

matically during the third trimester of gestation (358) and

seem to be nearly complete by birth (27, 278). Therefore,

caution is needed in extrapolating findings from one spe-

cies to another.

IV. Energy Balance Programming

As has been shown in Section III.G, a large part of the

development of the energy balance-regulating system oc-

curs in the perinatal period in both man and rat, although

the exact timing of developmental events differs between

the two species. With the knowledge of the previous sec-

tion, one can imagine that the perinatal period with its

rapid development may be a critical period and that during

this critical time-window, the organism is vulnerable to

environmental influences. One can also imagine that dif-

ferent timing of an external stimulus, relative to the stage

of development of the organism, can produce different

outcomes. Also, different types of stimulus (e.g., under-

nutrition vs. overnutrition, global vs. specific nutrients,

maternal vs. fetal/neonatal) may produce different out-

comes. Therefore, in this section, we will discuss develop-

mental programming of energy balance according to the

type and timing of the stimulus.

A. Indicators of developmental programming of

energy balance

To identify programming of energy balance, different

approaches have been taken. There are basically three

types of outcome that can be measured to investigate this

phenomenon. An indirect way of looking at energy bal-
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ance is to measure body dimensions and body composi-

tion. Because positive energy balance results in fat depo-

sition and allows growth, these measurements can give an

indication of enduring positive or negative energy balance

in the (recent) past. Relevant parameters are body weight,

body length, body mass index (BMI), fat mass and lean

mass, and whether or not there is complete catch-up

growth. These parameters are most apparent, and in hu-

mans are often the first indication that energy balance may

be disturbed. Another way of investigating energy balance

programming is to examine components of energy balance

directly. Energy intake, resting energy expenditure, and

activity-related energy expenditure together determine en-

ergy balance. These parameters may be somewhat less ex-

plicit in everyday life, but they can be studied relatively

easily, also in the human situation. The third approach to

investigate energy balance programming is to study the

peptides and hormones that are responsible for the regu-

lation of energy balance. Properties like gene expression,

peptide levels, epigenetic modifications, and functional

changes can be studied. Because these measurements re-

quire invasive techniques, this approach is less suitable for

use in the human situation.

Naturally, a combination of the three approaches will

generate the most complete description of the phenome-

non of developmental programming of energy balance.

With many new studies on the subject, our understanding

of this phenomenon has much advanced in recent years.

Now, various influences of the perinatal environment on

energy balance parameters will be discussed—first, briefly

for the human situation, and then in different rat models.

B. Programming of energy balance in humans

Epidemiological evidence suggests that the early envi-

ronment can have a profound influence on energy balance.

With these studies, it must be kept in mind, however, that

in the human situation, the underlying cause of low birth

weight or restricted fetal growth varies and is often un-

known (25, 359). In addition, there are many confounding

factors (e.g., the living conditions) that may obscure the

real effects of the early environmental influence.

1. Body dimensions and body composition

Although higher adult body weight and BMI have re-

peatedly been reported with increasing birth weight (13,

16–19), the notion that low birth weight and impaired

fetal growth may also program increased adiposity is gain-

ing recognition. Over the last decade or so, researchers

have increasingly investigated effects on more refined in-

dicators of obesity, such as body composition (lean vs. fat

mass) and fat distribution (e.g., waist-to-hip ratio, skin-

fold ratios). These studies have shown that the positive

relationship between birth weight and adult BMI results

mostly from a positive relationship with lean mass, but not

with fat mass (18, 360–365). Moreover, low birth weight

and impaired fetal growth have now been shown to be

associated with a higher fat percentage in later life (10,

365–369) and with a detrimental distribution of fat (i.e.,

more central, abdominal, and visceral) (363, 370–380).

The fact that these studies were performed in diverse pop-

ulations [from different European countries (Belgium,

Finland, France, The Netherlands, Spain, and the United

Kingdom), the United States (non-Hispanic white, non-

Hispanic black, and Mexican-American), Brazil, Guate-

mala, and Jamaica], with different ages (from young chil-

dren to old age), and in both sexes underlines the

robustness of these associations. It is becoming more and

more clear that low birth weight is not always a reliable

proxy for impaired fetal growth. When, for example, ear-

ly-gestation growth impairment is followed by prenatal

catch-up growth, adult health can be affected without an

effect on birth weight (see Ref. 10). Furthermore, the sig-

nificance of the rapid postnatal catch-up that often follows

perinatal undernutrition, rather than that of the undernu-

trition per se, has been stressed in recent years. Several

studies have shown that rapid early growth (with the def-

inition of early ranging from the first week of postnatal life

to about 3 yr) increases the risk for later adiposity and

obesity (364, 381–385). This at least partly removes the

apparent paradox of the association of both low and high

birth weight with metabolic syndrome and obesity. When

both situations are characterized by perinatal overfeeding

(even if this is postnatal-only in the case of SGA subjects

and may be both pre- and postnatal after maternal obe-

sity), the underlying mechanisms may also share some

similarities.

Maternal obesity and gestational diabetes are increas-

ingly common problems (386, 387). The newborns of

those affected usually have greater birth weights than in-

fants born to control mothers (388–392). Greater gesta-

tional weight gain is also associated with higher birth

weight (393, 394). Even when their birth weight is not

altered, the offspring of diabetic mothers often have an

increased fat percentage (395). In older children, ranging

from 2 to 10 yr of age in the different studies, more obesity

was found in those that were born to obese or diabetic

mothers (393, 396–401). Interestingly, this obesity-prone

profile improved dramatically after bariatric weight loss

surgery. Children that were born to obese mothers with

substantial weight loss after surgery had lower birth

weights without a higher risk for SGA, and their obesity

rates in the ages of 2 to 25 yr were reduced to normal

population levels (402). To summarize, more obese phe-
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notypes with detrimental adiposity have been found after

both prenatal undernutrition and overnutrition.

2. Energy intake and expenditure

Relatively few studies have directly assessed energy bal-

ance parameters in low- and high-birth-weight subjects.

For energy expenditure, mostly neonatal data are avail-

able. These suggest that infants that are born SGA have

higher energy expenditure than both premature appro-

priate-for-gestational-age very low-birth-weight infants

(403–406) and at-term appropriate-for-gestational-age

infants (407, 408). In a study on prepubertal children on

the other hand, SGA subjects were reported to have re-

duced resting energy expenditure compared with at-term

appropriate-for-gestational-age children (409). Energy in-

take was generally similar to that of premature infants of

the same body weight (403, 405, 406). One study reported

a higher intake per kilogram body weight in SGA infants,

whereas those large for gestational age had a lower relative

intake compared with control infants of the same postna-

tal age (410). In a more long-term study, a sample of pre-

pubertal SGA children that did not catch up had a food

intake below the recommended energy intake for their age

(411). After gestational famine exposure, middle-aged

subjects had a higher energy intake, consumed diets with

a higher fat density, and had lower levels of physical ac-

tivity than nonexposed persons (412, 413).

3. Peptides and hormones

In humans, measurements of the third category (that of

the peptides and hormones that are involved in the regu-

lation of energy balance) have largely been limited to the

circulating hormones. Serum leptin levels have been in-

vestigated most thoroughly.

In neonates, several studies have found positive corre-

lations of leptin with birth weight, birth length, and BMI

(414–419). Because the strongest correlation was usually

found with BMI, these associations most likely reflect the

deficit in fat deposition in low-birth-weight infants and the

excess in those born after fetal hypernutrition, respec-

tively. However, a programming effect is suggested by the

fact that subjects that were born with a low birth weight

were found to have high leptin levels with respect to their

BMI at several different ages (ranging from 4 months to

adulthood) (420–423). Another report that suggests pro-

gramming of leptin levels studied the influence of early

nutrition in preterm infants (424). It was shown that ad-

olescents that had received preterm formula had more lep-

tin per kilogram fat mass than adolescents that had re-

ceived a control diet in infancy (424). Besides altered leptin

levels, a few studies have shown increased ghrelin levels in

SGA subjects at birth (417, 425, 426) but not at the age of

1 yr (427). In contrast, high-birth-weight newborns were

reported to have normal ghrelin levels (425). Children 2 to

25 yr of age that were born to obese mothers after bariatric

weight loss surgery had higher ghrelin levels and lower

leptin levels than those born before such surgery, a bene-

ficial profile that corresponded to their improved body

composition (402). Lastly, there is also some evidence (in

neonates and children) that the HPT axis may be disturbed

in SGA subjects (428, 429).

4. Evidence for developmental programming

Summarizing, there is quite some evidence that the

early nutritional environment can have a permanent

effect on the body dimensions of humans. The long-term

effects observed at both sides of the birth weight spec-

trum seem to share their general direction: after the

initial period of catch-up growth after perinatal under-

nutrition, both are associated with more obese pheno-

types. Although direct measurements of energy balance

and its regulation are still scarce, disturbances have

been found, some of which seem to persist into adult

life. Because these kinds of measurements are more in-

vasive and some can only be performed postmortem,

they are obviously not employed in humans on a large

scale. That is why different animal models were de-

signed to study these effects more closely.

C. Programming of energy balance in animal models

The use of experimental animal models has some sub-

stantial advantages over studies in humans. In contrast to

the human situation, with animal models for perinatal

restriction of growth and nutrition, the exact cause of the

observed symptoms is known, and the degree of control

over the subsequent environment is far greater. In addi-

tion, animal models permit the use of more invasive meth-

ods than in humans.

Experimental animal models for developmental pro-

gramminghavebeendesigned invarious species, including

primates, sheep, guinea pigs, and rats (28, 31, 387, 430).

In this review, we will focus on studies in the rat, although

a few studies in mice are also included. In rats, both pre-

natal and postnatal manipulations of nutrition have been

used to induce developmental programming of energy bal-

ance, including ligation of the uterine arteries; maternal

diets with altered protein, fat, or energy content; and ma-

nipulations of litter size (28, 31, 387, 430). These different

models produce different phenotypes. Here, we will first

describe effects on the body dimensions and body com-

position of the major models that have been used in ro-

dents. Then, the effects on energy balance and its regula-

tion will be discussed.

Endocrine Reviews, April 2011, 32(2):272–311 edrv.endojournals.org 283

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/3

2
/2

/2
7
2
/2

3
5
4
7
7
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1. Body dimensions and body composition

a. Nutritional manipulation of the dam. Prenatal manipula-

tions of fetal nutrition, via the diet of the pregnant dam,

exert long-term effects on the body dimensions of the off-

spring, with or without an immediate effect on birth

weight of the pups. Two major types of this kind of ma-

nipulation are maternal low-protein diets and global ma-

ternal food restriction to different degrees (ranging from

30 to 70% of control intake). Perinatal overfeeding, on the

other hand, can be induced by feeding the dams high-fat or

high-energy (high on both fat and sugar) diets.

Whether a maternal low-protein diet actually reduces

birth weight of the pups appears to depend on the exact

composition of the diet and other details in the method-

ology because some studies (mostly using a low-protein

Hope Farms diet) report lower birth weights (431–435),

whereas others (mostly using the Southampton diet) have

reported normal birth weight after maternal low-protein

diet during gestation (436–439). After a maternal low-

protein diet, body weight either stays reduced or normal-

izes to control levels, with the outcome apparently inde-

pendent of birth weight and the experimental diet used

during pregnancy (431–437, 439–442). Two studies

have reported rapid catch-up growth with increased body

weight (438, 443). Adult body composition after a ma-

ternal low-protein diet has mostly been reported to be

normal (439–442), although some of these studies did

report an altered fat percentage in either males or females.

One study found increased leptin and triglyceride levels in

males, but not females, with otherwise normal body

weight and fat mass (442). This suggests that, although the

body composition may be normal, its regulation can still

be disturbed in these animals.

Maternal food restriction usually reduces birth weight

of the resulting pups (301, 444–451), except when the

food restriction is limited to the first 2 wk of pregnancy or

in some cases when intake is only mildly restricted to 70%

of control intake (452–455). After maternal food restric-

tion, rats show either complete or incomplete catch-up

growth (446–448, 452, 456) so that in rats with a low

birth weight, adult body weight was reduced, normal, or

elevated compared with that of controls (445, 449, 450,

457). Several studies have found normal body composi-

tion after prenatal maternal food restriction (301, 445–

447, 453–455, 458–460). However, increased and de-

creased adiposity has also been reported. Within studies,

these different outcomes can be attributed to sex differ-

ences, different effects at different ages, strain differences,

and timing of the food restriction (445, 452, 453, 455,

458, 460). Between studies, the method of determining

body composition (e.g., BMI, weight of different fat pads,

total lipid determination by carcass analysis, dual-energy

x-ray absorptiometry) and the severity of the food restric-

tion may explain a large part of the variation in outcome.

One group that uses severe maternal food restriction (to

30% of control levels) has consistently found a persistent

lower body weight, combined with increased fat mass and

leptin levels in both males and females (449–451, 456,

457). Leptin levels usually reflected body composition

(301, 445, 447, 449–451, 457, 459, 460), although in one

study increased leptin levels appeared to precede the in-

creased fat percentage (445). In summary, although stud-

ies using the Vickers model present a constant exception,

most studies have found normal body composition after

prenatal maternal food restriction.

Because a considerable part of the developmental

events that occur in utero in humans take place after birth

in rats, postnatal manipulations are also frequently used as

a model. When the same maternal dietary manipulations

that are used prenatally are either started or continued in

the lactation period, the reductions in body weight are

generally longer lasting, and less catch-up growth is re-

ported (15, 431, 433, 434, 442–447, 461–467). Concom-

itantly, an obese phenotype is observed less frequently

than with strictly prenatal manipulations (434, 442, 445–

447, 460–462). There may be less catch-up growth after

these postnatal manipulations because the condition is too

severe to recover from (especially when prenatal and post-

natal malnutrition are combined), or at weaning the ani-

mals may have reached the end of the time-window in

which complete catch-up is possible. Alternatively, the

fact that these animals do not seem to be “programmed for

obesity” may reflect a different type of programming than

with exclusive prenatal maternal dietary manipulation.

Besides maternal underfeeding paradigms, maternal

overfeeding and gestational diabetes have also been in-

duced in rodents. After maternal overfeeding before

and/or during gestation, birth weight in the offspring can

be either higher (468) or lower (469) than in control an-

imals, but it is more often found to be unchanged (470–

476). Interestingly, one study reported a lower birth

weight specifically after a pregestational-only cafeteria

diet (477). With maternal overfeeding continued into lac-

tation, a substantial number of studies reported increased

body weight by the time of weaning (468–471, 476, 478–

480), although a reduced body weight was found in a

study where the high-fat-fed dams lost more weight during

lactation than the control dams (472). In later life, animals

born to overfed dams had normal (475, 479, 481, 482) or

elevated (469, 471, 476, 478, 480, 483, 484) body weight

when fed on chow. A higher body weight was usually

accompanied by increased adiposity (469–471, 476, 479,

480, 483, 484). In one study, the development of over-

weight was specific to animals that were born to control
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dams but then cross-fostered to dams fed on hypercaloric

diets (485). When transferred to an obesogenic diet them-

selves, some (471, 475, 481, 482), but not all (476, 478,

481, 482), of these animals showed an increased suscep-

tibility to diet-induced obesity. In the studies by Levin and

colleagues (481, 482), the adverse consequences of the

maternal diet were mostly specific to animals from a strain

bred for diet-induced obesity, demonstrating the impor-

tance of the interaction between perinatal nutrition and

genetic factors.

In rodents, gestational diabetes can be induced by glu-

cose injections in early pregnancy or injections of the pan-

creatic islet toxin streptozotocin, but it also occurs in the

female offspring of rats that underwent uterine artery li-

gation (see Section IV.C.1.b) and in db/� mice that are

heterozygous for a silencing mutation in the leptin recep-

tor (486–489). Mostly, birth weight is found to be in-

creased in these models (486, 487, 489), although normal

birth weight has been reported after maternal streptozo-

tocin injections (488). Around weaning, body weight re-

mained higher in the offspring of ligated dams (486), re-

mained normal, or increased slightly after streptozotocin

injections (488, 490). Cross-fostering to normal dams af-

ter birth did not influence growth (486), but normal pups

that were cross-fostered to diabetic dams had lower body

weights (491). Offspring of diabetic mothers was reported

to be overweight with increased adiposity in adulthood

(489, 492, 493).

b. Nutritional manipulation of the offspring. Uterine artery li-

gation in the pregnant dam reduces the blood flow to the

fetuses (494) and is frequently used as a model for pla-

cental insufficiency, the most common cause of low birth

weight in westernized countries (24). To approach the

human IUGR situation as closely as possibly, often only

pups that are growth restricted according to similar cri-

teria as those used in humans are selected for studies (495).

This obviously results in a birth weight that is by definition

reduced (496–500). Nevertheless, studies that did not use

pup selection have also reported a lower birth weight in

rats born after uterine artery ligation (494, 500–502). The

long-term effects on body weight seem to be dependent on

the exact timing of the ligation. When performed on d 17

of gestation, the weight deficit is usually persistent (496,

503–506), whereas after ligation on d 19 of gestation,

complete catch-up growth has been reported (498, 507,

508). Some studies also found a return to normal body

weight after ligation on d 16 or 17 (500, 509). Newborn

pups that were growth restricted by uterine artery ligation

were shown to have a fat percentage that was either re-

duced or comparable to that of control pups (497, 501).

Juveniles and adults that do not completely catch up in

body weight have been shown to have normal BMI, fat

percentage, and serum leptin levels (496, 510). The ones

that do catch up to control body weight also have normal

leptin levels when young (at an age when their body weight

is still reduced) (498, 511). Rats that stay at the same body

weight as control rats after catch-up have elevated leptin

levels and increased fat mass in adulthood (498). The

group that reported overweight in adulthood found nor-

mal or increased fat mass at the age that body weights were

similar to those of controls (508, 512) and increased fat

mass afterward (512, 513). In summary, when there is

complete (or even overcomplete) catch-up in body weight,

the animals’ body composition is disturbed and shifted

toward a more obese phenotype. If the catch-up growth

stays limited, however, body composition remains nor-

mal. It seems likely that the capacity for true growth of

organs and other lean tissue is curbed by the early growth

restriction, and if there is catch-up beyond a certain point,

any additional “growth” is in fat only.

A method to manipulate early postnatal nutrition that

targets the offspring directly (rather than indirectly via the

diet of the dam) is to manually adjust the number of pups

nursed in a litter (514, 515). In this way, both neonatal

under- and overnutrition can be achieved. By definition,

birth weight is not affected by these manipulations be-

cause they take place after birth. Shortly after redistribu-

tion into litters of different sizes, differences in body

weight become apparent. Rats that are raised in a small

litter of only two to five pups receive more milk, resulting

in a higher growth rate and body weight before weaning

(250, 516–525). Although a few studies report normal-

ization of body weight (518, 519, 526–528), this elevated

body weight is generally found to persist into adulthood

and middle-age (250, 516, 520, 521, 523, 526, 529–543).

The opposite is true for rats that are raised in a large litter

of 14 to 24 pups, which has less milk available per pup.

These rats grow much slower during the lactation period

and have a significantly lower body weight (496, 503,

516–522, 544, 545). Again, some studies report normal-

ization (519, 526, 546), but most researchers find that

body weight is persistently reduced (496, 504, 516, 518–

521, 526, 533, 535, 539, 540, 542, 544, 545, 547). Al-

ready during the lactation period, the two models show

marked effects on body composition: overfed small-litter

pups have an increased fat percentage and leptin levels,

whereas these are both decreased in underfed large-litter

pups (517, 519, 520, 522, 524, 525, 545). Thus, a dis-

proportionate part of the added growth in small-litter

pups can be ascribed to adipose tissue. After weaning,

when all animals are transferred to a normal feeding re-

gime, body composition remains disturbed. In most small-

and large-litter rats with persistent changes in body
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weight, fat percentage and leptin levels also remain altered

into adulthood and middle-age (496, 510, 516, 518, 520,

527, 529, 533–535, 537, 538, 540–543, 545). One study

even reported an increased fat percentage in small-litter

rats at an age when their body weight was no longer ele-

vated (527). Apart from a few exceptions, the effects of

neonatal litter manipulations are long-lasting and also

rather consistent between studies. Neonatal overfeeding

by raising rats in small litters causes an immediate rise in

growth velocity, with persistent higher body weight and

fat mass in adulthood, resulting in an obese phenotype.

Neonatal underfeeding by raising rats in large litters, on

the other hand, acutely reduces growth rate and causes a

permanently lower body weight and fat mass, resulting in

a leaner phenotype.

c. Response to a dietary challenge. This section has demon-

strated that diverse manipulations of perinatal nutrition

can bring forth different phenotypes. Even seemingly com-

parable manipulations have been shown to generate dif-

ferent long-term effects on body dimensions and body

composition. What’s more, some of these manipulations

have been shown to alter the animals’ susceptibility to

diet-induced obesity (which is induced by feeding a hy-

percaloric diet, usually a high-fat diet). Again, there is

considerable variation in the reports on this effect. A ma-

ternal low-protein diet either did not affect (548) or in-

creased (15, 549, 550) the susceptibility to diet-induced

obesity when the manipulation was prenatal. When the

manipulation was restricted to the lactation period, less

obesity was observed on a highly palatable diet (15). Sev-

eral studies have reported a higher susceptibility to diet-

induced obesity after prenatal maternal food restriction

(301, 453, 454, 456, 457, 459, 551, 552), but unchanged

obesity has also been reported (450, 451, 453, 454, 551,

553). Here, there seems to be a difference in susceptibility

between the sexes, although this sex difference may be

strain-dependent; Jones (453, 454, 551) reported in-

creased diet-induced obesity in Sprague-Dawley males but

not females, whereas Vickers (450, 451, 456, 457, 459,

552, 553) found higher susceptibility in Wistar females

but not males. In rats that were neonatally overfed or un-

derfed by raising them in small or large litters, conflicting

results have also been reported. In rats with persistent

differences in body weight, some studies found no differ-

ence between the two models in their susceptibility to diet-

induced obesity (518, 533). One study, however, reported

that diet-induced obesity was augmented in small-litter

rats and diminished in large-litter rats (540). From these

data, we can conclude that the effects of a dietary challenge

are mostly consistent with the general phenotype. More

diet-induced obesity is observed in those models that un-

der baseline conditions showed more catch-up growth and

increased adiposity.

2. Energy intake and expenditure

In the above-mentioned rodent models, energy intake

and energy expenditure have been studied using a range of

different parameters. Expenditure-related parameters in-

clude resting and total energy expenditure, (locomotor)

activity, body temperature, and measurements of thyroid

function and cellular metabolism. For energy intake, the

variety is more in how the data are represented. Daily food

intake is given per animal (raw data), per kilogram body

weight (or some other approximation of body size), or

adjusted for body size in a statistical test. The results of

these different representations are not always easily com-

pared. Especially when intake is divided by body size, the

results can be distorted. Because energy requirements per

kilogram body weight fall with increasing body size, this

calculation systematically underestimates energy utiliza-

tion by larger individuals (554). Therefore, such studies

are excluded from this review; only studies that report raw

food intake data or intake adjusted for body size in a sta-

tistical test are included.

a. Nutritional manipulation of the dam. One study that in-

duced prenatal underfeeding by a maternal low-protein

diet reported normal food intake in the adult offspring

(442).The samestudy foundreduced food intakewhen the

underfeeding was (continued) during the lactation period.

This was confirmed by others (433, 467), although some

have also reported normal levels of food intake in these

(prenatally and) postnatally malnourished rats (432, 461,

464). These data suggest a subtle decrease in food intake

after protein malnutrition in the lactation period, whereas

prenatal-only malnutrition probably does not affect long-

term energy intake. On the expenditure side, in rats with

postnatal exposure, increased thyroid function (pointing

to increased basal metabolism) was found (463, 465), and

normal-to-low activity levels have been reported after pre-

natal exposure (441). Taken together, these studies sug-

gest that in prenatally malnourished animals normal levels

of intake and reduced activity may lead to positive energy

balance, whereas in postnatally malnourished animals a

negative balance may result from their lower food intake

and increased basal metabolism.

After maternal food restriction, food intake was usually

found to be similar to that of control animals. However,

when body size is taken into account, the effects on energy

intake differ according to the timing of the malnutrition:

prenatally or postnatally. When pups were exposed to the

maternal diet postnatally, they often had reduced body

size combined with normal food intake (445, 447, 464,

467), which results in an elevated relative energy intake.
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With prenatal-only maternal food restriction, both body

size and food intake were usually normal (301, 447, 452–

454, 458), leading to a normal relative food intake. In a

few cases, both body size and food intake were elevated

(445, 453, 454), which also may point to a fairly normal

relative energy intake. Measurements of energy expendi-

ture were mostly performed in prenatally underfed rats; in

postnatally underfed rats, one study reported a normal

thyroid function (463). Using the Vickers’ model of pre-

natal maternal undernutrition, female rats (that have a

low body weight and high fat mass) were found to have

reduced activity levels in adulthood (552, 555). Other

studies using prenatal undernutrition have reported nor-

mal levels of activity (453) and normal body temperature

and resting energy expenditure (301). These data are sug-

gestive of normal total energy expenditure, which together

with an unaltered food intake points to a normal energy

balance for these rats that are prenatally exposed to ma-

ternal undernutrition.

In juvenile pups born after maternal overfeeding, food

intake may be normal (476, 480, 484), although dramatic

overfeeding has also been reported (468). In adulthood,

these animals are usually hyperphagic (469, 471, 476,

478, 480, 484). Moreover, rats born to cafeteria-diet-fed

mothers showed a stronger preference to fatty and sugary

foods themselves (483). In offspring of high-energy diet-

fed dams, reduced activity levels and slightly increased

diet-induced thermogenesis have been reported (479,

484). This will probably lead to lower total energy expen-

diture, with the reduction in locomotor activity only en-

hancing the obesogenic effects of the elevated food intake.

An elevated food intake was also reported in rats born

after gestational diabetes (493).

b. Nutritional manipulation of the offspring. Food intake was

not widely studied after uterine artery ligation; one study

reported decreased food intake (498), whereas another

found an unaltered intake per kilogram body weight

(508). In both studies, the experimental animals had sim-

ilar body weight as controls (which nullifies the interpre-

tational problems of the per kilogram representation). In

both juvenile and adult rats, cellular metabolism was re-

duced (513, 556, 557), whereas locomotor activity has

been reported to be normal (499, 500). Taken together, a

reduced or normal food intake, lower basal metabolic

rate, and probably normal activity-related energy expen-

diture suggest that energy balance may be either approx-

imately normal (intake and expenditure both reduced) or

more positive than in control animals (normal intake with

reduced expenditure), respectively.

In virtually all small-litter rats that were heavier than

controls, food intake was reported to be elevated through-

out life (523, 526, 529–532, 536, 538, 539, 541, 543)

although this was not always the case (537). In rats that

would later lose their overweight, unchanged food intake

was found in juvenile life (519, 527). Fewer studies have

reported on the expenditure side of the balance. Rats

raised in small litters were found to have a higher body

temperature and resting expenditure (521), and in young

animals, elevated total energy expenditure was reported

(543). The latter study found that the elevation in energy

expenditure was appropriate for the larger body size of the

small-litter rats. Because both energy intake and expen-

diture are increased in these animals, the overall effect on

energy balance depends on the relative sizes of the effects

on intake and expenditure. These are difficult to compare

between studies. On the other hand, large-litter rats were

generally reported to have lower energy intake and ex-

penditure than controls (521, 526, 539, 545, 558). Again,

the fact that these measurements were taken in separate

studies complicates interpretations about the overall effect

on energy balance in these animals.

The foregoing paragraphs have shown that different

models of perinatal malnutrition can have different effects

on adult energy balance. They have also shown that, al-

though there is a lot of information about the effects of

these manipulations on components of the energy balance,

the exact information needed to assess a directional

change in energy balance is not always available. Further-

more, in the interpretation of these studies, it is vital to

distinguish absolute measurements from adjusted data.

Comparisons should only be made between data that are

expressed in the same dimensions.

c. Response to leptin administration. Arelatedparameter that

marks the transition to the subject of the next paragraph

is the anorexigenic effect of leptin. Peripheral leptin ad-

ministration acutely reduces food intake in control ani-

mals, but not in adult rats that were previously subjected

to prenatal or postnatal maternal food restriction or a

postnatal maternal low-protein diet (456, 464, 559). In

young adult small-litter rats, central injections of leptin are

effective, in contrast to peripheral injections (537). This

suggests that this leptin resistance may be due to impaired

leptin transport, rather than an altered hypothalamic re-

sponse (537).

3. Hypothalamic regulation

It has been known for quite some time that perinatal

malnutrition can have profound effects on brain develop-

ment (560). Nevertheless, studies investigating program-

ming effects on the hypothalamic peptides that regulate

energy balance are relatively scarce (compared with the

other two categories of measurements discussed above).

Most of these have studied relatively short-term effects.
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a. Nutritional manipulation of the dam. Weanling rats sub-

jected to a maternal low-protein diet during gestation and

lactation were shown to have a reduced number of NPY

immunoreactive cells in the ARC (561). This was com-

bined with an increase of the concentration of NPY pro-

tein in the PVN and LHA and a tendency for an increased

concentration in the ARC, whereas the NPY content of

other hypothalamic nuclei was unaltered (562). This is

suggestive of an increased orexigenic drive in these ani-

mals, provided that the PVN and LHA are fully responsive

to NPY. In view of the slightly hypophagic phenotype of

these animals (see Section IV.C.2.a), the responsiveness of

these areas (or other regions further downstream) is prob-

ably reduced. Rats that were only exposed to a low-pro-

tein diet prenatally did not show changes in ARC gene

expression of Ob-Rb, NPY, AgRP, POMC, and CART at

weaning (563). In contrast, weanling pups that were sub-

jected to the diet postnatally had increased expression of

Ob-Rb, NPY, and AgRP and decreased expression of the

anorexigenic POMC and CART (563), again suggesting

an increased orexigenic drive. After fasting, NPY and

AgRP mRNA were increased relative to control levels in

weanling rats that were exposed either prenatally only or

both pre- and postnatally, although the effects were stron-

ger in the latter group (432). In adulthood, CART mRNA

was found to be increased in animals that were exposed

prenatally (but not in those exposed both pre- and post-

natally), with no changes in expression of NPY, AgRP,

and POMC (432).

Prenatal maternal food restriction has been shown to

drastically increase hypothalamic mRNA levels of Ob-Rb

at birth (559), an effect that was reversed by weaning to

levels below normal (559, 564). In adulthood, hypotha-

lamicOb-Rbexpressionhadnormalized (459), butOb-Ra

expression was lower than in control animals (301), which

points to a reduction in leptin transport. The latter is sup-

ported by a normal reaction to central injections of leptin,

with a reduced reaction to peripheral leptin (301). In

weanling rats, reductions in leptin, ghrelin, NPY, and

�-MSH peptide levels, as well as NPY and POMC mRNA

levels have been reported (564). Adult hypothalamic ex-

pression of the ARC peptide AgRP was reduced, whereas

that of NPY and POMC was normal (459). Despite this,

the PVN in these adult animals did receive a larger number

of NPY and CART terminals (301). This was not reflected

in a change in PVN CRH expression (565), although the

PVN in juvenile rats did show increased neuronal activity

and CRH mRNA levels (448, 566). When the maternal

diet was continued postnatally, juvenile pups showed very

low serum levels of leptin (567). This was accompanied by

reduced POMC expression and axons, but surprisingly,

hypothalamic NPY expression and its protein levels in the

PVN were normal (567). There does not seem to be a

predominant direction in which energy balance regulation

is shifted, which is in line with the variation in the general

phenotype described above for these animals.

After perinatal maternal overfeeding, changes have

also been found in energy balance regulation. In two stud-

ies that found normal birth weight after maternal high-fat

diet, serum leptin levels and hypothalamic gene expression

for Ob-R, NPY, and POMC were either up-regulated or

down-regulated at birth (473, 474). In the former case,

hypothalamic Ob-R peptide and AgRP and MC4 receptor

mRNA were also elevated (473). After a maternal cafete-

ria diet, a much more pronounced neonatal leptin surge

was reported (480). By the time of weaning (when these

animals were heavier than controls), serum leptin levels

were increased (468, 470, 476, 478). In the hypothalamus,

this resulted in down-regulated Ob-Rb mRNA (468), with

normal to reduced NPY and AgRP and increased POMC

expression (468, 470). But although the ARC response to

elevated leptin signaling seemed roughly normal, the

VMN showed reduced responsiveness (568). Fasting re-

vealed more changes that were not seen under basal con-

ditions: pups born to high-fat diet-fed dams showed in-

creased elevations in mRNA levels of NPY, AgRP, and the

Y1 receptor but lacked the decrease in MC4 receptor ex-

pression that is found in control animals upon fasting

(468). From weaning on, leptin levels in these animals

were found to be normal to elevated (469, 471, 476, 478,

484), where the larger increases in leptin were usually in

more overweight animals. Shortly after weaning, at a

point that the rats born to overfed mothers had normal

body weights, the number of projections from the ARC to

the PVN containing AgRP was reduced, whereas projec-

tions containing �-MSH were normal (480). In addition,

gene expression for the MC4 receptor was up-regulated in

the VMN, and that for the leptin receptor Ob-R was

down-regulated in the ARC (479), accompanied by a re-

duction in leptin sensitivity that remained at least until the

age of 3 months (480). In adulthood, offspring of high-

energy-fed dams showed enlargement of the VMN and

DMN nuclei (482). In addition, hypothalamic gene ex-

pression was either reported to be normal for Ob-R and

NPY and reduced for AgRP and POMC (471), or was

up-regulated for NPY with normal expression of AgRP

and POMC (476). Because in the former study, the reduc-

tion of POMC expression seemed stronger than that of

AgRP, despite the conflicting details, both profiles could

be expected to lead to more orexigenic signaling.

Hypothalamic alterations have also been found in pups

born to or cross-fostered to dams with gestational diabetes

due to streptozotocin injections. At weaning, despite nor-

mal serum leptin levels, postnatal-only exposure increased
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the size of the PVN (491), whereas combined pre- and

postnatal exposure led to a reduction in PVN and VMN

size (490). At the same time, ARC peptide levels of NPY

and AgRP were elevated, and those of POMC and �-MSH

were reduced (488, 491), suggestive of increased orexi-

genic signaling. The up-regulation of NPY levels was also

found in middle-aged animals (493).

b. Nutritional manipulation of the offspring. In rats that were

prenatally growth restricted by uterine artery ligation,

NPY mRNA and protein were both increased at weaning,

whereas CRH levels were unaffected (511). In young

adulthood, the number of ARC cells expressing NPY

mRNA was normal, but the levels of expression were re-

duced (504). This suggests an increased orexigenic drive in

the juvenile animals, which is in accordance with the com-

plete catch-up growth reported for these animals (see Sec-

tion IV.C.1.b). Lower NPY expression in the adult rats is

concurrent with the incomplete catch-up growth that

these animals display (see Section IV.C.1.b).

Weanling small-litter rats were shown to have reduced

Ob-Rb expression (520), which is in agreement with the

high serum leptin levels found in these rats. ARC NPY,

AgRP, and CART mRNA levels were all increased, but this

predominantly orexigenic signal did not seem to reach the

PVN and LHA because expression of TRH, MCH, and

ORX was unaltered (520). This was also suggested by the

fact that NPY peptide levels in both the ARC and the PVN

were normal (522). In young adulthood, expression of the

ARC peptides NPY, AgRP, and CART is normal, as well

as CRH and TRH expression in the PVN and MCH and

ORX expression in the LHA (529, 537). At this age, leptin

transport across the blood-brain barrier appears to be im-

paired (537), which indicates a state of leptin resistance.

This leptin resistance seems to develop only after weaning

because weanling small-litter rats are still responsive to

peripheral injections of leptin (524). Taken together, these

studies suggest that the obese phenotype of adult small-

litter rats (see Section IV.C.1.b) may be at least partly

attributable to central leptin resistance caused by high

neonatal leptin levels and the resulting hyperproductivity

of the ARC. Additionally, studies by Davidowa and col-

leagues (reviewed in Refs. 27, 278) suggest that in these

rats, neurons of several hypothalamic nuclei have an al-

tered response to many of the orexigenic and anorexigenic

signals.

Interestingly, juvenile large-litter rats also show more

orexigenic signaling. In the ARC, the balance between

orexigenic and anorexigenic gene expression was shifted

(569), or AgRP and NPY expression and NPY peptide

levels were increased with unchanged CART expression

(520, 522). This resulted in elevated PVN NPY peptide

levels (522), but did not affect its expression of CRH or

TRH, nor LHA ORX expression (520, 569). LHA MCH

gene expression was shown to be transiently increased,

with elevated levels at d 10, but not at 25 d of age (569).

Unlike small-litter rats, juvenile rats raised in large litters

had normal hypothalamic Ob-Rb expression (520). In-

stead, some of the short forms of Ob-R were expressed at

increased levels (520). One study suggested that ARC

NPY mRNA was no longer elevated in young adulthood

(504), although there still seemed to be a small tendency

toward higher expression levels. These results generally

appear to be in agreement with the phenotype described

above. The acute effects of juvenile food restriction seem

to be mostly orexigenic, although apparently not enough

to achieve full catch-up growth. Information on the long-

term effects of this model is still largely missing.

Although the studies described here have all used nu-

tritional manipulations, perinatal nonnutritional manip-

ulations have also been shown to program hypothalamic

(an)orexigenic signaling. One example is neonatal stress,

which has been shown to have long-term effects on levels

of POMC, CRH, ORX, and ORX receptors (570, 571).

c. The neonatal role of leptin. As has been mentioned in Sec-

tion III.G.1, leptin is not fully functional in the regulation

of energy balance during the neonatal period. Instead, it

seems to play a more developmental role. It is responsible

for the proper development of intrahypothalamic connec-

tions (312, 572) that occurs during the early postnatal

period (320). Even general brain development seems to

depend on leptin because the brains of leptin-deficient

mice show a variety of abnormalities that can be rescued

by juvenile leptin treatment (311). In recent years, several

researchers have hypothesized that altered neonatal leptin

levels may play a key role in developmental programming

(12, 15, 573–578). This hypothesis is supported by several

recent studies that manipulated perinatal leptin levels.

Interestingly, the direction of the reported effects dif-

fered between these studies. Some researchers have found

a beneficial effect of perinatal leptin administration on

adult body adiposity (579, 580). Moreover, one study re-

ported the absence of an anorexigenic reaction to periph-

eral leptin in adulthood when leptin action was blocked

neonatally (581). In contrast, others have reported in-

creased fat mass, leptin levels, and/or food intake (451,

582–584) and leptin resistance (301, 583, 584) in adult

rodents subjected to perinatal leptin administration. Sim-

ilarly, different effects of perinatal leptin on susceptibility

to diet-induced obesity were reported. Some studies

found perinatal leptin to be protective against diet-in-

duced obesity (581, 585), whereas others reported in-
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creased weight gain on a high-fat diet after neonatal

leptin injections (301, 451).

Based on some of the positive effects mentioned above,

several groups have investigated whether perinatal leptin

administration might rescue the obesity-prone phenotype

of rats that were programmed by perinatal nutritional ma-

nipulations. Their results have been mixed. Rats that were

malnourished by a maternal low-protein diet throughout

gestation and lactation had lower body weight in adult-

hood, similar leptin levels, and similar susceptibility to

diet-induced obesity as controls (466). When the low-pro-

tein dams were infused with leptin during the perinatal

period, weight gain on the high-fat diet was abolished

(466). The effect of perinatal leptin on control rats was not

investigated in this study, which hampers the interpreta-

tion of the results. Notably, the body weight of saline-

treated low-protein pups appears to reach normal control

levels on the high-fat diet. Another group has investigated

the effects of neonatal leptin injections on the obese phe-

notype of rats subjected to prenatal maternal food restric-

tion. These underfed rats have a higher baseline adiposity

(at least the males), and both sexes are more susceptible to

diet-induced obesity than control rats (451, 552). When

prenatal undernutrition was followed by neonatal leptin

injections, baseline adiposity was reduced in males, with

no effect on diet-induced obesity (451), whereas in fe-

males, neonatal leptin reduced the effects of the high-fat

diet to that found in controls, without an effect on baseline

adiposity (552). Notably, neonatal leptin injections ag-

gravated diet-induced obesity in control males, but not in

control females. A third group attempted to rescue the

obese phenotype of weanling rats raised in small litters by

using neonatal leptin injections. In female small-litter rats,

leptin injections reduced the fat percentage to that of con-

trol females raised in normal litters (524). In male rats,

however, the fat percentage at weaning was not altered by

leptin injections in small-litter animals, whereas it was

significantly reduced by leptin in normal-litter males

(525). Thus, neonatal leptin rescued the obese phenotype

in weanling female small-litter rats, but not in males.

Summarizing, perinatal leptin supplementation can

have beneficial or detrimental effects on energy balance

and body composition in both normal and programmed

rats. The outcome is probably determined by the exact

timing and levels of leptin, as well as the phenotypic back-

ground of the animal. Therefore, we recommend extreme

caution when investigating the option of providing infants

with supplemental leptin as a proposed obesity-protective

agent (586). An additional concern is the reduction in skel-

etal growth that was reported in some of the studies, re-

sulting in reduced body length (451, 579), which is usually

undesirable in the human situation.

d. Other programming candidates. Of course, leptin cannot

be the sole factor responsible for programming. For that,

the phenomenon is too widespread and its consequences

too diverse. Examples of other proposed candidates are

thyroid hormone, the IGFs, insulin, and glucocorticoids

(587–589). These hormones are important regulators of

fetal growth and metabolism, and their levels in the fetus

depend on environmental conditions. Besides their own

effects on fetal development, levels of thyroid hormone

and the IGFs have been shown to be affected by IUGR

(587, 588).

In the fetus, insulin correlates strongly with nutrient

supplies and is mostly produced by the fetus itself in re-

sponse to maternal glucose. The effects on the develop-

ment of energy balance regulation in offspring of diabetic

mothers mentioned earlier indicate a developmental role

for insulin. Together with its previously mentioned neu-

rotrophic actions (313–315) and the observation that

early postnatal intrahypothalamic insulin administration

induces altered hypothalamic organization (590), these

data have identified insulin as an important candidate for

developmental programming (591–593).

In normal pregnancy, the fetus is protected from ma-

ternal and environmental glucocorticoids by the placental

11�-hydroxysteroid dehydrogenase type 2, which cata-

lyzes the transition of the biologically active cortisol into

inactive metabolites (594, 595). Many factors that have

been associated with low birth weight and later disease

risk (such as hypoxia and stress) also reduce the placental

activity of this enzyme and hence increase fetal exposure

to glucocorticoids. Many studies have now found pro-

gramming effects after excess glucocorticoid exposure

(594, 595).

In addition to environmental factors that can influence

programming, genetic factors have long been suggested to

be causal in both low birth weight and later-life disease

risks (596). Because of the technical difficulties of such

studies, finding evidence for this hypothesis has been prob-

lematic. Recently however, large-scale studies have pro-

vided compelling support for a common genetic origin of

alterations in birth weight and in later health (597, 598).

Moreover, as we have seen above in the rare studies that

have used animal models with different genetic back-

grounds (482), the phenotype observed after nutritional

manipulations can be modulated considerably by genetic

factors.

In conclusion, leptin is an important candidate, but cer-

tainly not the only one, for the mechanistic underpinnings

of developmental programming. It seems likely that the

relative importance of the different candidates varies ac-

cording to the environmental conditions. Whether exper-

imental manipulation or naturally occurring, each set of
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conditions is likely to elicit specific responses of the dif-

ferent candidates and hence bring about its specific phe-

notypical outcome.

4. Summary and implications

In this section, we have seen ample evidence for devel-

opmental programming of energy balance and its hypo-

thalamic regulation in experimental animals. Studies have

investigated outcomes in all three categories of measure-

ments of energy balance (i.e., body size and composition,

energy intake and expenditure, and hypothalamic neuro-

peptides). Persistent changes have been found in all of

these parameters in various rodent models with perinatal

manipulations of nutrition. Nevertheless, the precise ef-

fects that have been reported differed considerably, not

only between the models, but also between studies using

similar models. Many of these apparent discrepancies can

be explained by (small) differences between studies in the

timing, nature, and severity of the manipulation or other

subtle variations in their methods, such as the genetic

background, sex, and age of the experimental animals.

When we focus on the similarities between the studies

discussed in this section, rather than their inconsistencies,

a few generalizations can be made.

The long-term effects initiated by perinatal overnutri-

tion seem to be quite consistent, independent of whether

the exposure to overfeeding starts prenatally (e.g., mater-

nal diet) or postnatally (small litter size). Although the

details vary, when an effect is found, it is generally a shift

toward overweight, higher adiposity, more food intake,

and more orexigenic signaling.

In the case of undernutrition, the exact perinatal timing

combined with the degree of undernutrition seems to play

an important role. Overweight in adulthood is seen more

often after prenatal-only than after postnatal undernutri-

tion. The thrifty phenotype, with a higher food intake,

energy storage, and concomitant susceptibility to obesity,

is proposed to be the result of an inappropriate “adaptive”

response to an adult environment that turns out to be

richer than expected (2, 6). There are several possible rea-

sons why this thrifty phenotype is seen less often after

postnatal undernutrition. First, postnatal underfeeding

may fail to induce a predictive adaptive response, because

of an insufficient degree of undernutrition to elicit such a

response or maybe because the degree of undernutrition is

so severe that it abolishes any adaptive response by dis-

ruption of developmental processes in the pups (such

severe damage can also be imagined when prenatal un-

dernutrition is continued into the neonatal period). Alter-

natively, it might be that in rodents the critical time-win-

dow of plasticity already closes before the postnatal

undernutrition could induce any adaptive response. In

case of prenatal malnutrition, postnatal growth may show

either catch-up or lack of catch-up, presumably dependent

on the adaptation of the organism to the insult. Unfortu-

nately, in epidemiological and experimental studies alike,

it is difficult to identify the contributions of different un-

derlying causes to the observed phenotype.

The obesogenic effect of rapid catch-up growth and of

perinatal overfeeding models may originate from pro-

gramming of the set-points of energy balance regulation

according to the circulating (high) levels in perinatal life of

regulators such as insulin and leptin (589, 592). In most

models of perinatal underfeeding, the hypothalamic ef-

fects observed in juvenile life (despite variations in the

details) seem to be directed at promoting positive energy

balance, and hence may be aimed at catch-up growth.

These hypothalamic adaptations are also seen in the ab-

sence of adult overweight. The lack of obesogenic effects

of this increased orexigenic signaling might be the result of

irreversible damage to the hypothalamic or downstream

circuitry that interferes with the putative predictive adap-

tive response. This could also be true for the disagreement

between the studies using uterine artery ligation, where

later ligation (i.e., milder damage) results more often in an

obese phenotype than ligation at an earlier time-point (i.e.,

stronger damage) in gestation.

Although developmental events in the early postnatal

period in rats resemble those in the third trimester of hu-

man pregnancy (355), rapid neonatal growth seems to

program for later obesity in both species. Therefore, it

might be postulated that the time-windows for hypotha-

lamic plasticity may be similar (or at least extend until

similar time-points) for both species. A striking difference

between the evidence in humans and rodents is that in

humans both extremes of perinatal nutrition (under- and

overfeeding) seem to elicit consistent obesogenic effects,

whereas in rodents the directions of long-term effects vary

between higher and lower rates of overweight and obesity.

This species difference may result from (interaction with)

the obesogenic environment that most humans (unlike

most experimental animals) encounter in later life. How-

ever, the fact that not all perinatally over- or underfed

rodents are more susceptible to diet-induced obesity sug-

gests that other factors must also play a role. Experiments

by Levin and colleagues (482) suggest that the three-way

interaction between perinatal nutrition, later obesogenic

environment, and genetic background may explain many

of the observed effects.

Because of its distinct role during development, leptin

has been hypothesized to play a major role in program-

ming of energy balance regulation. Evidence supporting

this hypothesis has been published in recent years, but

there is also strong evidence for the involvement of other

factors besides leptin. With regard to the effects of neo-
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natal leptin injections, the direction of its effects seems

to vary strongly with a number of factors, some of which

may even be unknown at present. Among these, the

exact timing of administration, the initial state of energy

balance, and the genetic background may be especially

important. With so many aspects still unknown, pro-

posals to supplement leptin as an obesity-protective

agent seem rather premature and should be considered

with extreme caution.

V. Concluding Remarks

In this review, we have presented the concept of develop-

mental programming. It explains how changes in the en-

vironment during a critical time-window in early devel-

opment can permanently alter the phenotype of an

organism. In this manner, individuals can be “fine-tuned”

to their expected future environment. Although there has

been controversy on this subject, it is now generally be-

lieved that energy balance and its regulation can also be

programmed. We have discussed a substantial number of

studies that have investigated developmental program-

ming of energy balance in different species, using different

techniques, and from different angles. From these studies,

we can conclude that early nutrition can truly program

energy balance and its regulation in both humans and an-

imals. The direction of the programming effects that were

reported appears to be variable and dependent on the

environment—both the perinatal and the adult environ-

ment. One thing that becomes apparent from the discussed

animal studies is that developmental programming of en-

ergybalancedoesnotnecessarily entail detrimental chang-

es; in some cases, the programmed changes were favor-

able, such as reductions in fat mass. In contrast, mostly

adverse effects on adult body composition were reported

in humans. This striking disparity, between metabolic ef-

fects with different directions in animal models on one

hand and consistent detrimental effects in humans on the

other, may result from (interaction with) the obesogenic

environment that most humans (unlike most experimental

animals) encounter in later life.

With the inconsistencies between animal studies, a

comprehensive picture of the impact of perinatal nutri-

tion on energy balance in later life has thus far remained

elusive. If we intend to extrapolate conclusions between

studies, and from animal models to the human situa-

tion, it is vital to identify the exact circumstances lead-

ing to each outcome and to standardize the variable

methodology that researchers have used to investigate

this subject.
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237. Hâkansson ML, Brown H, Ghilardi N, Skoda RC, Meister
B 1998 Leptin receptor immunoreactivity in chemically
defined target neurons of the hypothalamus. J Neurosci
18:559–572

238. Harris M, Aschkenasi C, Elias CF, Chandrankunnel A,
Nillni EA, Bjøorbaek C, Elmquist JK, Flier JS, Hollenberg
AN 2001 Transcriptional regulation of the thyrotropin-
releasing hormone gene by leptin and melanocortin sig-
naling. J Clin Invest 107:111–120

239. Leinninger GM, Jo YH, Leshan RL, Louis GW, Yang H,
Barrera JG, Wilson H, Opland DM, Faouzi MA, Gong Y,
Jones JC, Rhodes CJ, Chua Jr S, Diano S, Horvath TL,
Seeley RJ, Becker JB, Münzberg H, Myers Jr MG 2009
Leptin acts via leptin receptor-expressing lateral hypotha-
lamic neurons to modulate the mesolimbic dopamine sys-
tem and suppress feeding. Cell Metab 10:89–98

240. Figlewicz DP, Benoit SC 2009 Insulin, leptin, and food
reward: update 2008. Am J Physiol Regul Integr Comp
Physiol 296:R9–R19

241. Hisano S, Fukui Y, Chikamori-Aoyama M, Aizawa T,
Shibasaki T 1993 Reciprocal synaptic relations between
CRF-immunoreactive- and TRH-immunoreactive neu-
rons in the paraventricular nucleus of the rat hypothala-
mus. Brain Res 620:343–346

242. Guan JL, Uehara K, Lu S, Wang QP, Funahashi H, Sakurai
T, Yanagizawa M, Shioda S 2002 Reciprocal synaptic re-
lationships between orexin- and melanin-concentrating
hormone-containing neurons in the rat lateral hypothala-
mus: a novel circuit implicated in feeding regulation. Int J
Obes Relat Metab Disord 26:1523–1532

243. Li Y, Gao XB, Sakurai T, van den Pol AN 2002 Hypocre-
tin/orexin excites hypocretin neurons via a local glutamate
neuron-A potential mechanism for orchestrating the hy-
pothalamic arousal system. Neuron 36:1169–1181

244. Kennedy AR, Todd JF, Dhillo WS, Seal LJ, Ghatei MA,
O’Toole CP, Jones M, Witty D, Winborne K, Riley G,
Hervieu G, Wilson S, Bloom SR 2003 Effect of direct in-
jection of melanin-concentrating hormone into the para-
ventricular nucleus: further evidence for a stimulatory role
in the adrenal axis via SLC-1. J Neuroendocrinol 15:268–
272

245. Sakamoto F, Yamada S, Ueta Y 2004 Centrally adminis-
tered orexin-A activates corticotropin-releasing factor-
containing neurons in the hypothalamic paraventricular
nucleus and central amygdaloid nucleus of rats: possible
involvement of central orexins on stress-activated central
CRF neurons. Regul Pept 118:183–191

246. Kennedy AR, Todd JF, Stanley SA, Abbott CR, Small CJ,
Ghatei MA, Bloom SR 2001 Melanin-concentrating hor-
mone (MCH) suppresses thyroid stimulating hormone
(TSH) release, in vivo and in vitro, via the hypothalamus
and the pituitary. Endocrinology 142:3265–3268

247. Winsky-Sommerer R, Yamanaka A, Diano S, Borok E,
Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea
L 2004 Interaction between the corticotropin-releasing
factor system and hypocretins (orexins): a novel circuit
mediating stress response. J Neurosci 24:11439–11448

248. Guan JL, Saotome T, Wang QP, Funahashi H, Hori T,
Tanaka S, Shioda S 2001 Orexinergic innervation of
POMC-containing neurons in the rat arcuate nucleus.
Neuroreport 12:547–551

249. Campbell RE, Grove KL, Smith MS 2003 Distribution of
corticotropin releasing hormone receptor immunoreactiv-
ity in the rat hypothalamus: coexpression in neuropeptide
Y and dopamine neurons in the arcuate nucleus. Brain Res
973:223–232

250. Davidowa H, Plagemann A 2004 Hypothalamic neurons
of postnatally overfed, overweight rats respond differen-
tially to corticotropin-releasing hormones. Neurosci Lett
371:64–68

251. Bingham NC, Anderson KK, Reuter AL, Stallings NR,
Parker KL 2008 Selective loss of leptin receptors in the
ventromedial hypothalamic nucleus results in increased
adiposity and a metabolic syndrome. Endocrinology 149:
2138–2148

252. Kawano H, Masuko S 2000 �-Endorphin-, adrenocorti-
cotrophic hormone- and neuropeptide Y-containing pro-
jection fibers from the arcuate hypothalamic nucleus make
synaptic contacts on to nucleus preopticus medianus neu-
rons projecting to the paraventricular hypothalamic nu-
cleus in the rat. Neuroscience 98:555–565
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427. Iñiguez G, Ong K, Peña V, Avila A, Dunger D, Mericq V
2002 Fasting and post-glucose ghrelin levels in SGA in-
fants: relationships with size and weight gain at one year of
age. J Clin Endocrinol Metab 87:5830–5833

428. Mahajan SD, Aalinkeel R, Singh S, Shah P, Gupta N,
Kochupillai N 2005 Thyroid hormone dysregulation in
intrauterine growth retardation associated with maternal
malnutrition and/or anemia. Horm Metab Res 37:633–
640

429. Radetti G, Renzullo L, Gottardi E, D’Addato G, Messner
H 2004 Altered thyroid and adrenal function in children
born at term and preterm, small for gestational age. J Clin
Endocrinol Metab 89:6320–6324

430. McMillen IC, Robinson JS 2005 Developmental origins of
the metabolic syndrome: prediction, plasticity, and pro-
gramming. Physiol Rev 85:571–633

431. Bieswal F, Hay SM, McKinnon C, Reusens B, Cuignet M,
Rees WD, Remacle C 2004 Prenatal protein restriction
does not affect the proliferation and differentiation of rat
preadipocytes. J Nutr 134:1493–1499
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