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A hand-designed internal representation of the world cannot deal with unknown or
uncontrolled environments. Motivated by human cognitive and behavioral development,
this paper presents a theory, an architecture, and some experimental results for devel-
opmental robotics. By a developmental robot, we mean that the robot generates its
“brain” (or “central nervous system,” including the information processor and controller)
through online, real-time interactions with its environment (including humans). A new
Self-Aware Self-Effecting (SASE) agent concept is proposed, based on our SAIL and Dav
developmental robots. The manual and autonomous development paradigms are formu-
lated along with a theory of representation suited for autonomous development. Unlike
traditional robot learning, the tasks that a developmental robot ends up learning are
unknown during the programming time so that the task-specific representation must be
generated and updated through real-time “living” experiences. Experimental results with
SAIL and Dav developmental robots are presented, including visual attention selection,
autonomous navigation, developmental speech learning, range-based obstacle avoidance,
and scaffolding through transfer and chaining.
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1. Introduction

In his pioneering paper published in 1950 titled “Computing Machinery and

Intelligence,”46 Alan Turing envisioned a machine that can learn like a child, which

he called “child machine.” Due to a severe lack of computer-controlled machinery at

that time, Turing suggested in that paper a disembodied abstract machine and pro-

posed an “imitation game,” now called the Turing Test, to test machine intelligence.

Not until the 1980s had the importance of embodiment received sufficient

recognition in the AI community. The behavior-based approach, popularized by
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Rodney Brooks7 and others,3 put situated embodiment back on the AI stage as it

deserves.

However, robot autonomous mentala development did not receive sufficient

attention, until the late 1990s when the SAILb robot51,55 and the Darwin V robot1

started experiments on autonomous cognitive development. A 2001 article57 in

Science summarized the pivotal role that autonomous mental development (AMD)

should play in both AI and our understanding of natural intelligence.

Traditional research paradigms in machine learning have been fruitfully informed

by models of human learning. However, existing behavior-based learning techniques

that are typically applied to robot learning20 differ fundamentally from human

mental development. For example, a task-specific representation is designed by

the human programmer and only hand-designed parameters are learned by the

machine. This greatly limits the power of machine capabilities in dynamic uncon-

trolled environments, such as vision, audition and language understanding. In con-

trast, a human child can learn concepts that none of his ancestors knew about (e.g.

the concept of the Internet). Thus, it is unlikely that the representation of these

new concepts (e.g. the Internet) are predesigned by the genes.

This and other many differences are still not widely understood. Further, there

is a need for basic theoretic frameworks for the new paradigm of autonomous mental

development.

This article takes up some basic theoretical issues and describes the develop-

mental robots SAIL and Davc that implement the theory. It does not describe

algorithmic details but provides references to our prior publications where these

details are available. We first introduce a new kind of agent, the Self-Aware Self-

Effecting (SASE) agent, for autonomous mental development. Section 3 presents

the paradigm of autonomous mental development (AMD). Section 4 introduces the

software architecture of the SAIL and Dav developmental robots. Section 5 deals

with the issue of representation, and argues for the inapplicability of symbolic rep-

resentation to mental development. Section 6 briefly describes some experimental

results with the SAIL and Dav developmental robots, which support the theory.

Section 7 discusses some other related experimental studies. Section 8 provides con-

cluding remarks.

2. SASE Agents

Defined in the standard AI literature (see, e.g. an excellent text by Russell and

Norvig39 and a survey by Franklin16), an agent is something that senses and acts,

whose abstract model is shown in Fig. 1. As shown, the environment E of an agent

is the world outside the agent.

aThe term “mind” is used for a developmental robot, but we do not claim that the mind of a
developmental robot is similar to a biological one.
bStands for Self-Organizing Autonomous Incremental Learner.
cA variant of “development.”



Developmental Robotics: Theory and Experiments 201

?

agent

percepts

sensors

actions

effectors

environment

Fig. 1. The abstract model of a traditional agent, which perceives the external environment and
acts on it (adapted from Ref. 39). The source of perception and the target of action do not include
the agent’s brain representation.

A context c(t) of an agent is a stochastic process.d It consists of two parts

c(t) = (x(t), a(t)), where x(t) denotes the sensory vector at time t which collects

all signals (values) sensed by the sensors of the agent at time t, and a(t) denotes

the effector vector consisting of all the signals sent to the effectors at time t. The

context of the agent from the previous time t1 (after the agent is turned on) up to a

later time t2 is a realization of the stochastic process {c(τ) | t1 ≤ τ ≤ t2}. Typically,

at any time t the agent uses only a subset of the context c(t), since only a subset is

most related to the required cognition and behavior.

Definition 1. The internal environment of an agent is the “brain” (or “the cen-

tral nervous system”) of the agent. The external environment consists of all the

remaining parts of the world, including the agent’s own body (excluding the brain).

The model in Fig. 1 is for an agent that perceives only the external environ-

ment and only acts on the external environment. Such agents range from a simple

thermostat to a complex space shuttle. This well accepted model has played an

important role in agent research and applications. Unfortunately, this model has a

fundamental flaw: it does not sense its internal “brain” activities. In other words,

its internal decision process is neither a target of its own cognition nor a target for

it to modify.

The human brain allows the thinker to sense what he is thinking about without

performing an overt action. For example, visual attention is a self-aware and self-

effecting internal action (see, e.g. Ref. 24, pp. 396–403). Motivated by neuroscience,

it is proposed here that a highly intelligent being must be self-aware and self-

effecting (SASE), as shown in Fig. 2.

Definition 2. A self-aware and self-effecting (SASE) agent has internal sensors

(IS) and internal effectors (IE) for the internal environment (brain), in addition to

external sensors (ES) and external effectors (EE) for external environment (outside

dA stochastic process is a series of random numbers or vectors c(t), where for each fixed t, c(t) is
a random variable or vector.
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Fig. 2. A self-aware self-effecting (SASE) agent. It interacts with not only the external environment
but also its own internal (brain) environment: the representation of the brain itself.

the brain). Both the internal and external environments are used (via IS and ES,

respectively) as context of perception and cognition and the result of such percep-

tion and cognition is used to generate internal and external actions (via IE and EE,

respectively). In order to be aware of a task in the (internal and external) environ-

ment, the agent experiences the distribution of contexts in the environment, learns

to take alternative actions and memorizes their associated effects. The distribution

of contexts and actions is across the environment (i.e. both related and unrelated

to the task).

For example, attention selection and action release are internal actions and the

senses of these actions are internal senses. Internally sensing what could be done

(planning without actually doing) is internal sensing and deciding whether it is

good to do now is an internal action (releasing the planned action to the effector).

A traditional non-SASE agent does use internal representation R to make deci-

sions. However, this decision process and the internal representation R is not

included in what is to be sensed, perceived, recognized, discriminated, understood

and explained by the agent itself. Thus, a non-SASE agent is not self-aware of its

internal decision rules. Further, the behaviors that it generates are for the external

world only, not for the brain itself. Thus, it is not able to modify its programmed-in,

task-specific decision rules based on its new experience about what is good and what

is bad.

Without experiencing contexts beyond those related to a task, the agent is not

able to “step back” (from what it does) to examine and improve what it does. It is

important to note that not all the internal brain representations are sensed by the

brain itself (e.g. we have interesting visual illusions).

3. Machine Development Paradigms

An agent can perform one, multiple or an open number of tasks. The task here is

not restricted by type, scope, or level. Therefore, a task can be a subtask of another.

For example, making a turn around a corner or navigating around a building both

can be a task.
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3.1. Manual development

The term “manual” refers to developing task-specific architecture, representation

and skills by human hands. The manual paradigm has two phases, the manual devel-

opment phase and the automatic execution phase (see Fig. 3(a)). In the first phase,

a human developer H is given a specific task T to be performed by the machine and

a set of ecological conditions Ec about the operational environment. The human

developer first understands the task. Next, he designs a task-specific architecture

and representation and then programs the agent A. If the human cannot determine

all the parameters of his designed representation, he may use traditional machine

learning during which he uses the sensory data to determine the parameters. In

mathematical notation, we consider a human as a (time varying) function that

maps the given task T and the set of ecological conditions Ec to agent A:

A = H(Ec, T ). (1)
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Fig. 3. (a) Manual development paradigm and (b) autonomous development paradigm.
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In the second (automatic execution) phase, the machine is placed in a simi-

lar task-specific setting. It operates by sensing and acting. During this phase, the

traditional machine learning may be conducted which further changes the human

designed parameters using sensory data.

3.2. Autonomous development

The autonomous development paradigm has two phases, first the construction and

programming phase and second the autonomous development phase (see Fig. 3(b)).

In the first phase, tasks that the agent will end up learning are unknown to

the robot programmer. The programmer might speculate some possible tasks, but

writing a task-specific representation is not possible without actually being given a

task. The ecological conditions Ec under which the robot will operate, e.g., land-

based or underwater, are provided to the human constructor so that he can design

the agent body (e.g. sensors and effectors) appropriately. However, the given eco-

logical conditions Ec are not useful for internal representation (since the specific

environments are unknown and unpredictable). The human programmer writes a

task-nonspecific program called a developmental program, which controls the pro-

cess of autonomous mental development. Thus, the newborn agent A(t) is a function

of a set of ecological conditions only, but not the task:

A(0) = H(Ec), (2)

where we consider the agent to be time varying A(t) with birth time t = 0.

After the robot is turned on at time t = 0, the robot is “born” and starts to

interact with the physical environment in real-time by continuously sensing and

acting. Human teachers can affect the developing robot only as a part of the envi-

ronment, through the robot’s sensors and effectors. After the birth, the internal

representation is not accessible to the human teachers.

Various learning modes are available to a teacher during autonomous develop-

ment. He can use supervised learning by directly manipulating (compliant) robot

effectors,55 like how a teacher holds the hand of a child while teaching him to draw

a shape. He can use reinforcement learning by letting the robot try on its own

while the teacher encourages or discourages certain actions by pressing the “good”

or “bad” button in the right context56,67. The environment itself can also produce

rewards directly (e.g. “sweet” or “bitter” objects1).

A more powerful learning mode, communicative learning, is introduced here:

Definition 3. Communicative learning is a type of learning mode that requires

two processes, which can be interleaved through development: (i) Grounded lan-

guage acquisition (using any mode of learning) and (ii) teaching using the acquired

language.

Since the language is acquired through grounded experience, the meaning of the

language is directly linked to physical senses and actual actions. Depending on the
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sophistication of the meaning of the language used (words, phrases, or a full natural

language), teaching using language is often significantly more effective than both

supervised learning and reinforcement. For example, we will see in Sec. 6.6 how the

SAIL robot acquired grounded meaning of each verbal command first and then used

acquired language (verbal commands) to learn how to draw a flower in a new task

setting. Of course, the learner also plays an active role in learning.42

3.3. Relation between SASE and AMD

We consider two issues: (i) the capability to try alternatives (e.g. task rules) and

(ii) the number of alternatives.

First, if a task-specific internal rule is hand-designed as in a manual develop-

ment paradigm, the agent does not have the option and capability of construct-

ing the rules autonomously and, thus, it is unable to understand the rules. For

example, if a program runs only a hand-designed binary search algorithm with-

out a chance to compare other search algorithms, it does not understand the pros

and cons of binary search compared with other search algorithms. Only if the

agent has the experience of autonomously constructing and trying (or being told

about) various alternative internal rules according to the internal and external con-

texts (sensing experience) and sensing (or being told about) the effects of such a

construction (effecting experience), can it understand the involved internal rules.

In other words, no alternatives, no understanding. Without understanding, an agent

is not able to select rules when new situations arise, e.g. in uncontrolled environ-

ments. Therefore, the SASE agent model is required by not only the developmental

paradigm, but also the conventional non-developmental paradigm, as long as hand-

designed rules are not sufficient for the uncontrolled environment (which is typically

the case).

Second, the degree of understanding of a rule depends on the degree of detail in

the autonomous rule construction. The less the detail, the coarser the understand-

ing. The required granularity of real-time cognition and behavior generation is very

fine spatially (e.g. image resolution with attention selection, multi-modality, inter-

nal and external sensing) and temporally (e.g. each mental cycle takes 30 ms). For a

complex task, the number of steps of task execution and the number of alternatives

in each step are both very large. Therefore, the number of possible rules required

by the task execution in an uncontrolled environment is astronomical.

If a non-developmental learning scheme is used, a hand-designed task-specific

representation (e.g. Markov decision model) is required and then a model fitter is

required to fit the hand-designed model to data. Specifying the meaning of all the

components of the hand-designed representation (e.g. the meaning of all the states)

is manually intractable in uncontrolled environments (too many states and a large

proportion is unpredictable), let alone the parameters of the representation (e.g. the

initial rough estimates of the prior and transition probabilities of all the states,

which are required for a learning algorithm to start). Thus, a non-developmental
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(task-specific) learning paradigm seems unsuited for the SASE agent, except for

some small tasks in a controlled environment.

In contrast, a developmental program is not a model fitter for a hand-designed

task-specific model, it is a model generator. It automatically generates a task-specific

model with a large number of internal states (e.g. vector clusters) in controlled or

uncontrolled environments. Further, the autonomous mental development paradigm

provides an autonomous way to conduct simple to complex shaping of the internal

model being autonomously generated. By shaping, we mean that the (human) envi-

ronments enable the developmental program to generate mostly desirable cognitive

behaviors (local models around the experienced events, not too far in the space of

all possible events) in a simple to complex manner (similar to a constrained search).

Desirable ones for simple cognitive behaviors are developed first before more com-

plex ones (i.e. scaffolding). It is also a self-aware and self-effecting search because

near alternatives (slight deviations from the desired ones) have mostly been con-

structed autonomously and tried by the agent itself to see the effects. This develop-

mental process is not totally random either, because the physical world and human

teachers are in the loop (similar to an “intelligently guided search”).

In summary, true intelligence, especially the capability to act intelligently in

uncontrolled environments, requires a SASE agent. This is true for both devel-

opmental and non-developmental paradigms. However, only the developmental

paradigm seems suited for realizing complex SASE agents.

3.4. Cognitive development in continuous context

Aristotle (384–322 BC) insisted that the mind is a “blank slate” at birth, a tabula

rasa, which is, as we know now, not accurate according to studies in developmen-

tal psychology.15 He is right, however, in recognizing that the experiences of an

individual are of paramount importance and in identifying the basic principle of

association. Decartes’s “rational approach” in the mid-1800s has been discarded by

modern scientists, in favor of observational or empirical methods of studying the

mind. How do we define and measure cognitive capabilities of our robots? Here, we

do not adopt a definition of intelligence in terms of “rationality.” Our formulation of

cognitive development follows the scientific tradition of careful quantification, clear

definition and empirical observation.

First, cognition requires a discrimination among sensory inputs and a display of

the discrimination through actions. The latter is required for the actual use of the

cognitive and behavioral capabilities as well as a measurement of such capabilities.

Thus, we must address the concept of discriminative capability.

Definition 4. Given a developmental agent at time t1, suppose that the agent

produces two different action contexts a1 and a2, from two different contexts

C1 = {c(t) | t1 ≤ t ≤ t2} and C2 = {c(t) | t1 ≤ t ≤ t3}, respectively. If a1

and a2 are considered different by a social group (human or robot), conditioned on

C1 and C2, then we say that the agent discriminates two contexts C1 and C2 in the
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society. Otherwise, we say that the agent does not discriminate C1 and C2 in the

society.

The above definition allows for a variation of action context a from the same con-

text C. In other words, even if different robots produce different actions in the same

test, they are considered correct if the actions are considered socially equivalent.

For example, no two humans have exactly the same voice, but they can pronounce

semantically equivalent words. Human categorical perception and equivalence of

stimuli, have been extensively studied in psychology (see, e.g. Refs. 18 and 40). A

field called psychometrics5 has developed systematic scales for measuring cognitive

capabilities.

We desire an agent to produce only equivalent actions from all the equivalent

contexts. There is a special, but very large, class called the unknown class which

includes all of the contexts that the agent at this age is not expected to understand.

Unlike a traditional classifier, we require a developmental robot to be able to deal

with all possible contexts, according to its cognitive maturity. This is in contrast

to a traditional robot which deals with only a controlled environment. That is, a

developmental agent is supposed to produce a correct action even for contexts that

it cannot deal with confidently. For example, if the context means “what is this?”

the correct action for a baby robot can be “doing nothing” or, for a more mature

robot, saying “I do not know” or anything else that is equivalent socially. Of course,

human parents may tend to shelter their children from coming into contact with too

much of the human adult world, but a developmental program should not assume,

exclusively, a pure child’s world during the early development stage.

Definition 5. Given a context domain D and a set of possible action contexts A,

a norm is a mapping N from D to A, denoted by

N : D �→ A,

and it is defined by a social group. The agent mapping of an agent at time t is also

a mapping, denoted by

A(t): D �→ A. (3)

A test for an agent A(t) is to let the agent experience multiple contexts. An evalu-

ation of the performance is a measure that characterizes the agreement of the two

mappings N and A(t) through tests.

A mentally developing robot, or developmental robot for short, is an embodied,

SASE agent that runs a developmental program following the autonomous devel-

opmental paradigm.

Different age groups of developmental robot have corresponding norms. If a

developmental robot has reached the norm of a human group of age k, we can say

that it has reached equivalent human mental age k.
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4. Architecture of the Developing “Brain”

Neisser33 pointed out that any model of vision that is based on spatial computa-

tional parallelism alone is doomed to failure. He proposed a two-stage visual process,

which consists of a pre-attentive phase followed by an attentive phase. However, he

did not propose a computational architecture for vision. Feldman and Ballard14

proposed a “100-step rule,” based on the known facts that most neurons compute

at a speed of a few milliseconds and that simple visual perceptual phenomena occur

in a few hundred milliseconds. Therefore, a biologically plausible algorithm for pre-

attentive vision can require no more than 100 steps. A biological vision algorithm is

“shallow” and parallel. In the field of computer vision, traditional vision systems are

designed for visual perception in a particular environment for a particular visual

problem, instead of a general visual capability, although they address the archi-

tecture and algorithm levels of detail. John Tsotsos’ study44,45 on the complexity

of pre-attentive (immediate) vision is a remarkable exception in that it proposed

a coarse architecture for a biologically plausible general-purpose vision architec-

ture (for pre-attentive vision). Since the study is meant for complexity analysis, it

does not address how his proposed architecture is implemented by an algorithm for

general visual environments.

In this section, we will discuss the architecture of the information processor

(the “brain” or central nervous system) of SAIL and Dav developmental robots.

The key architecture component for AMD is the sensorimotor subsystem. It is a

traditional view that higher mental activities require an architecture that is very

different from a sensorimotor system, but this author is not convinced by this view.

There does not seem to be fundamental limitation in the proposed architecture of

the sensorimotor system that prevents it from effectively dealing with “higher” men-

tal activities. When co-developed with other sensorimotor systems, an integrated

network of sensorimotor systems has the potential to deal with high-level cogni-

tive behaviors such as abstract reasoning and planning. This can be considered a

hypothesis for now, since future work is required to demonstrate such a potential.

However, our experimental results have shown that simple language skills can be

developed from such sensorimotor systems. It is our assertion that complex language

skills can be developed from the same sensorimotor architecture (probably with dif-

ferent architecture parameters). The distributed numeric representation in context

is essential in scaling up the language (and other) complexity without requiring a

different architecture by each different syntax structure.

4.1. Sensory and cognitive mappings

Figure 4 provides a simplified architecture of a multi-level sensorimotor system for

development, using visual sensing as an example. This architecture consists of two

parallel sensorimotor pathways mediated by subsumption. Each sensorimotor path-

way handles a complete mapping from sensory input all the way to motor output.

The central pathway (the middle vertical pathway in Fig. 4) from the entire retina,
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Fig. 4. The flow diagram of a developmental vision system. The responses from black cells are
inhibited by the attention control but those from the white cells are passed at this time instance.

through the sensory mapping and the cognitive mapping to the motor mapping

(bottom-up) and back to the sensory mapping (top-down) is a major sensorimotor

pathway. The innate behavior vertical pathway (shown in Fig. 4 as the “Innate

behaviors” block on the right side) is another but simpler sensorimotor pathway.

These two pathways are mediated by the subsumption in the motor mapping.

The innate behaviors include simple reflexes (e.g. pain avoidance) and

some mechanisms of value-guided exploration (e.g. trials in learning attention

selection).21,41 A very large proportion of adult cognitive and behavioral capabilities

are acquired through, and shaped by, experience. They can also override the innate

behaviors, e.g. fighting physical fatigue for a career goal. The subsumption module

mediates the action outputs from different sources so that the action from a pathway

that is positioned higher (the middle vertical pathway) has a higher priority.7

In psychology, there has been a growing literature on the connectionist perspec-

tive to the issues of nature-nurture interaction during development (e.g. Ref. 27),

the innateness and plasticity (e.g. Ref. 13), as well as more specific issues such as

nonlinear developmental trajectories, critical periods, and functional specificity of

cortical regions (see, e.g. Ref. 31).

We model the function of a biological cortical region by a (time-varying) mathe-

matical concept called mapping ft: X �→ Y, where X is the space of input (nervous

inputs) and Y is the space of output (nervous outputs). Given any vector x(t) ∈ X ,

y(t) = ft(x(t)) is a vector in Y, called the response to x(t). The function ft itself

typically is also updated as a consequence of computing response y(t) from x(t).
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A sensory mapping shown in Fig. 4 has two major functions: (i) it provides

parallel responses for all possible receptive fields, which are fed into a cognitive

mapping for learning, (ii) it executes attention selection control (internal control)

signals from the cognitive mapping by suppressing the responses from unattended

receptive fields. The attention control is a top-down control from cognitive mapping

back to the sensory mapping. The initial receptive field range of each neuron (a unit

node in Fig. 4, for feature detection) is hand-designed but is further refined while

the connection weights are incrementally computed (learned or developed) from

sensing experience, e.g., using the Candid Covariance-free Incremental Principal

Component Analysis (CCIPCA).60 More detail about sensory mapping is explained

in Ref. 65.

A cognitive mapping realizes a mapping f : X �→ Y, where X is the space of the

last contexts and Y is the space of the primed contexts (predictions, see below).

Some major requirements for a cognitive mapping are: (i) it must be constructed

incrementally; (ii) have a dynamic number of degree of freedom (parameters) that

are automatically determined to fit changing complexities of the mapping exhib-

ited by the experience; (iii) have long term memory to avoid loss of old memory,

derive feature subspaces for better generalization from limited training samples;

and (iv) have a very low time complexity for each updating when the size of the

memory has grown very large.

Incremental Hierarchical Discriminant Regression (IHDR)22 ,54 is used to self-

organize the input space of f into a hierarchy of (nested) partitions organized

into a tree structure. Although desired output actions may be supplied sometimes,

the internal representation of IHDR is not totally supervised and is largely self-

organized instead. Each cell in a coarse partition is refined by a fine partition in the

next finest level in the tree. At each node, the space is represented by its own auto-

matically developed most-discriminating feature subspace, in which the boundary

of cells of the finer partition is determined by the Bayesian estimation. This results

in a quasi-optimal generalization boundary, conditioned on the current coarseness

of the partition. Such recursive coarse-to-fine partition ends at a node when the

number of samples (vector quantized version) it receives is so small that the cluster

statistics cannot be estimated reliably. This node is then a leaf node, where a limited

number of individual context prototypes (through incremental vector quantization)

are kept as context state vectors, each of which is linked to a number of output

vector(s) in Y. The tree structure results in a logarithmic time complexity in the

number of leaf nodes in the tree, for each retrieval and update of the tree, making

it possible to achieve real-time speed even when the number of context prototypes

is very large. It has been systematically demonstrated22 that HDR out-performs

many well-known classifiers, including the support vector machines, in a series of

high-dimensional tests.

Most traditional task-specific methods have used human-designed, task-specific

and environment-specific invariant features, e.g. a particular color for human facial

detection. They are called early invariance methods (early in sensory processing).
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The new developmental architecture introduced here is called late invariance in the

sense that it fully uses rich information in the sensory data for generality, while the

task-specific invariance is achieved through learning, which realizes many (context

prototypes) to one (action) mapping using IHDR.

The architecture shown in Fig. 4 is expected to be equally well applicable to

other sensory modalities, such as vision,55,65 speech67,68 and touch,64 each with a

different set of developmental parameters (e.g., the extent of temporal context, see

visual and auditory experiments and citations discussed in later sections). This is

practical because representation (e.g. the feature detectors using CCIPCA60 and

the tree using IHDR22,54) is generated automatically from the sensing experience

of that sensing modality.

How does this architecture relate to the major concepts introduced in the pre-

vious sections? The coarse architecture (e.g. the partition of sensory, cognitive and

motor mappings and their connections) is hand-designed (innate) but the fine archi-

tecture (e.g. the connection patterns) and representation (e.g. the weights of connec-

tions) are grown and modified incrementally, in real-time, according to the (innate)

developmental mechanisms (e.g. CCIPCA and IHDR) and the actual real sensory

and motor experience (signals), following the autonomous development paradigm.

The architecture is not designed for a particular task (e.g. neither the 3-D position

concept nor the 3-D occupancy concept are hand-designed in the internal repre-

sentation), but for a wide variety of tasks. What tasks the agent ends up learning

and executing depends on the actual developmental experience (unknown during

the programming time). The introduced architecture is for SASE agent: the top-

down attention control is an internal action, acting on the brain itself. The sense

of this internal action (internal sensing) has a low degree of freedom (e.g. two for

the 2-D retinal position and one for the size of the receptive field) and is sensed

by a (virtual) internal sensor not explicitly drawn in Fig. 4. As a rule of thumb,

every (internal and external) effector that requires autonomous decisions must have

a dedicated internal sensor so that the “brain” can be aware of its status when it

attends to it.

4.2. Past and future contexts

A sensorimotor system is a predictor and a doer. At each time instant t, an (AMD)

sensorimotor system receives the last context as the input vector:

l(t) = (xl(t), al(t)), (4)

which contains the last sensation xl(t) and the last action al(t). A sensorimotor

system also needs to predict future sensations and actions. We call them the primed

sensation xp and the primed action ap, respectively. The term “prime” is used in

psychology to indicate a meaning similar to “predict.” They form what is called the
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Fig. 5. A developmental agent is a real-time predictor. At any time, the agent has four types
of context. It maps the last context l(t) = (xl(t), al(t)) to the selected primed context p(t) =
(xp(t), ap(t)) from multiple possible primed contexts.

primed context:

p(t) = (xp(t), ap(t)). (5)

Let P denote the space of the primed contexts. In more detail, we define four types

of context information: last sensation, last action, primed sensation and primed

action. They are positioned in the input and output spaces and along the time axis

as illustrated in Fig. 5.

Producing a single primed context is not sufficient. This is because the context

l(t) is typically not sufficient to predict a unique context. Each context l(t) may

correspond to multiple future possibilities p1(t), . . . , pk(t) (e.g. left and right turns

at a Y junction). This mapping is accomplished by a particular cognitive mapping

called reality mapping R:

{p1(t), . . . , pk(t)} = R(l(t)). (6)

Thus, the reality mapping R is a mapping from the space of the last context L to

the power set of P :

R: L �→ 2P . (7)

R is developed incrementally through experience. For any t > 0 (after birth), it is

a total function since it is defined for all elements in L, but it does not do well for

most elements in L that it has not experienced. It is not an onto function since its

range covers only a very small part of 2P .

Therefore, we need a value system that selects desirable contexts from multiple

primed ones. The value system V (t) takes a set of (e.g. k) contexts from the reality

mapping R and selects a single context:

V (R(l(t))) = V ({p1(t), p2(t), . . . , pk(t)}) = pi(t), (8)

where 1 ≤ i ≤ k and k varies according to experience. In terms of mapping between

input and output spaces, the value system is a mapping from the power set of P to
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Fig. 6. A recursive view of a simplified sensorimotor system. A more complete architecture is shown
in Fig. 7.

the space of P :

V : 2P �→ P . (9)

Further, a single mapping R is not sufficient. We need multiple ones. R maps

to near future and F maps to far future as illustrated in Fig. 6. In summary, the

three mappings, R, F , and V , accomplish a composite mapping from the space of

last contexts L to the space of primed contexts P :

L
R,F
�→ 2P

V
�→ P .

Neither of the mappings R and F is static, since both are updated at every time

instant t.

4.3. Sensorimotor system as DOSASE MDP

A more detailed block diagram of an example developmental sensorimotor system

is shown in Fig. 7.

As shown in Fig. 7, each internal and external action output feeds back, through

a delay unit, into the next sensory input. This is required by our SASE agent model:

internal and external actions are a target of perception and cognition. The agent

must sense and perceive what it does, internally and externally. The input to a

sensorimotor subsystem, indicated by the left-most arrow in Fig. 7, is its target for

perception and cognition.

A sensory mapping (e.g. SHM65) is needed wherever a developmental roboticist

finds it necessary to equip the “brain” with an attention selection effector or a

dimension reduction processor. As shown in Fig. 7, two sensory mappings are used,

the spatial sensory mapping S and the spatiotemporal sensory mapping T . The

former is for spatial sensory data attention and the latter takes into account the

attention for both space and time. The sensory mapping is developed automatically

from the sensed signals.

A developmental system can be represented by a pair (A(t), D), where A(t)

is a time varying processor being developed and D is its developer. A nondevel-

opmental system is represented by a 2-tuple (As, B), where As is a static (after
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Fig. 7. A block diagram of the architecture of a sensorimotor subsystem. Not all the connections are
shown. S is a spatial sensory mapping; T is a spatiotemporal sensory mapping. GK: gate keeper,
an internal effector to actively control the update of the last context. R the reality mapping and
F the priming mapping, both are implemented by the cognitive mapping engine IHDR. M is the
motor mapping. The value system is shown as a block, but it is in fact widely distributed. The

motor mapping for high-dimensional stereotyped actions is shown in an attached block.

traditional machine learning) processor and B is its model fitter (B for the Baum–

Welch algorithm).

Mathematically, a developing sensorimotor system can be modeled by a devel-

opmental Observation-driven SASE Markov Decision Process (DOSASE MDP),

defined as follows:

Definition 6. A Developmental Observation-driven SASE Markov Decision Pro-

cess (DOSASE MDP) A(t) is a finite state SASE machine at any time t = 0, 1, 2, . . . ,

and it starts to run at t = 0 under the guidance of its developer D. Its observa-

tion vector at time t is the last context l(t). The output from A(t) at time t is

its selected primed context p(t) ∈ P (containing output action). The states l′ of

A(t) are time-varying vector clusters in a subspace of L (the space of last contexts).

The system (A(t), D) is developmental in the sense that the internal observation-

driven SASE MDP is generated and updated autonomously (i.e. developed) through

developmental experience; the developer D does not require a given estimate of the

a priori probability distribution P (l′) of L, nor a given set of states. The states l′

dynamically change in meaning and in number. Consequently D does not require a

given estimate for the state observation probability P (l(t) | l′(t)) nor that for the

state observation probability P (l′(t + 1) | l′(t)).

We first discuss the similarity. Both (A(t), D) and (As, B) use a finite state

machine for A(t) and As, respectively. For example, the priming mapping F in

A(t), implemented by the cognitive mapping engine (e.g. IHDR22,54), maps any
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(input) last context l(t) to a list of (far) future contexts:

{p1(t), . . . , pk(t)} = F (l(t)). (10)

To do so, it keeps in leaf nodes many time-varying discrete prototypes (vector codes)

l′ as clusters of the continuous input space L (based on the sensory experience so

far). Given any l(t) ∈ L, F uses its automatically generated hierarchy of feature

subspaces to find the “best matched” prototype l′. l′ is similar to a state in the

Markov decision process (MDP)23 in the sense that they both take into account

some context. MDP has also been used for a continuous state space (using human-

designed features and representation).

The major differences between the DOSASE MDP system (A(t), D) and a tra-

ditional MDP system (As, B) include: (i) D is an automatic model generator (gen-

erates A(t) directly from observation signals) but B is a model fitter (from a given

estimated As) using, e.g. the Baum–Welch algorithm4 for which a given good set

of initial probability estimates for As is necessary to reach an acceptable perfor-

mance). Although A(0) starts from some innate behaviors, the degree of adaptation

of a developing A(t) is much larger than that of a fitted As. (ii) A(t) uses a mind rep-

resentation but As uses a world representation (see Section 5). (iii) Each prototype

l′ in IHDR has an epigenetic representation (defined later) but a state in MDP is

symbolic and, thus, cannot be automatically generated without hand-designing the

meanings first. (iv) Since the states of A(t) are generated and merged dynamically

through time, it can record more flexible context information than the traditional

MDP A. Of course, the design of the developer D is considerably more challenging

that the model fitter B.

Each prototype l′ is associated with a list of primed contexts as output, as

indicated by Eq. (10). The prototype updating queue of length k keeps the last k

visited prototypes so that updating of primed context (not just Q-value) using the

Q-learning algorithm50 can be done recursively for every prototype in the queuee

from the tail to the head,68 instead of only the currently visited prototype in the

original Q-learning. This speeds up looking ahead and expands its range. In contrast

with the priming mapping F , the reality mapping R does not need such a queue

because it only predicts the next-step context only.

The motor mapping M of a sensorimotor system generates concise representa-

tions for stereotyped actions (actions repeated many times without much variation).

If only a single motor is considered, a motor mapping includes a gating system for

each of the single motors as well as the subsumption mechanism for integration

from other sensorimotor systems. Through developmental experience, motors that

are highly correlated enable the growth of a new part of motor mapping, denoted as

an attached block to the basic motor mapping in Fig. 7. The new part of the motor

eThis is similar to, but not the same as, what is called the eligibility trace,41 due to value-guided
exploration, human interactions, primed sensations that are not in the traditional reinforcement
learning framework.
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mapping plays the corresponding role of the gating system, but it is for correlated

multi-motor actions.

In supervised learning, the value (motivational) system is not needed (unique

given action output). But the robot is also allowed to perform autonomous learning.

The innate value system21 uses rewards and novelty through Q-learning to approx-

imate the value for each context so that a learned value system is developed. The

later learned value system is further based on an understanding of social norms, e.g.

what the parents are happy about or what is right and what is wrong,34 through

further development without a need for reprogramming (which needs further exper-

imental studies of course).

5. Internal Representation

The term “internal representation” refers to the representation used internally (the

central nervous system or the “brain”) by the agent.

5.1. World and mind concepts

In the current AI literature, the distinction between world concepts and mind con-

cepts have been largely ignored. One main reason is that it is the human program-

mer who designs a representation (e.g. Soar,25 ACT-R,2 Markov Decision Process

(MDP)23) and, therefore, it is assumed that the designed representation is correct

for the modeled part of the world. For this reason, symbols are commonly used

for representation. This type of world representation is effective for dealing with a

contained fully-modeled problem. However, it limits the system’s capability to go

beyond those that the fixed set of symbols can represent.

We need to distinguish between the actual physical world and the mental effects

that it causes. In general, they are not the same.

Definition 7. A world concept is a concept about objects in the external envi-

ronment of the agent, which includes both the environment external to the robot

and the physical body of the robot. A mind conceptf of an agent is an internal

representation, internal with respect to the nervous system (including the brain) of

the agent, as a compounding effect of the developmental program and the agent’s

experience.

Figure 8 illustrates world and mind concepts. A world concept is about the

world, no matter whether the agent understands it or not, or it is true or not.

A mind concept typically corresponds to a partial observation of objects in the

world. For example, “in front of the agent there is an apple” is a world concept

about the current world. It is about a fact of the world, no matter whether we call

fThe term “mind” is used for the ease of understanding without unnecessarily coining new words.
We do not claim that it is the same as the human mind.
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Fig. 8. World and mind concepts. On the left, a part of the world is modeled by a human-
designed representation, which represents world concepts. On the right, mind-centered numeric
representation is automatically generated which represents mind concepts.

the object an apple or something else. Suppose it is true that there is an apple. If a

robot sensed the apple and determined that “in front of me there is a pear,” then

“in front of me there is a pear” is a mind concept.

Definition 8. A world-centered representation is such that every item in the rep-

resentation corresponds to a world concept. A mind-centered representation of an

agent is such that every item in the representation corresponds to a mind concept

of the agent.

There is no one-to-one correspondence between a world-centered representation

and a mind-centered representation. Typically, many mind-centered representations

correspond to the same world-centered representation. For example, many views of

the same human face result in many mental prototypes in the brain.

A mind-centered representation is specific to a particular agent (mind). It can

only represent mind concepts well. A mind concept is related to phenomena observ-

able from the real world, but it reflects the reality only partially because of the

limited sensing capability. It does not necessarily reflect reality correctly either.

It can be an illusion or totally false.

5.2. Symbolic and numeric representations

A world concept can conveniently use a symbolic representation for understanding

by humans. This is because symbols are created by humans to communicate among

humans.

A world-centered symbolic representation is a symbolic representation about a

world concept and, thus, it is world-centered. It is in the form v = (v1, v2, . . . , vn)

where v (optional) is the name token of the object and v1, v2,. . . , vn is the unique

set of attributes of the object with predefined symbolic meanings.



218 J. Weng

For example, Apple = (shape, weight, color) is a symbolic representation of a

class of objects called apple. Apple-1 = (round, 170 g, red) is a symbolic representa-

tion of a concrete object called Apple-1.

A typical world-centered symbolic representation has the following

characteristics:

(i) each component in the representation has a predefined meaning about the

object in the external world;

(ii) each attribute is represented by a unique variable in the representation;

(iii) the representation is unique for a single corresponding physical object in the

external environment.

These characteristics have been a major reason for the representation to be used

widely in knowledge representation, databases, expert systems, and many other

traditional AI systems. In a non-developmental approach, it is convenient for a

mind-centered concept to use a symbolic representation. However, for developmental

robots, it is not possible to use symbolic representation for mind-centered concepts,

as we will explain in the following section.

A mind-centered numeric representation is not necessarily about any partic-

ular object in the environment. It is mind-centered, grown from the body’s sen-

sors and effectors. The early sensory form of such a representation is called iconic

representation19 and the later form categorical representation. Harnad,19 Brooks8

and others have pointed out the importance of grounding. For conciseness, we

propose calling mind-centered numeric representation epigeneticg representation.

An epigenetic representation is formed from sensory and effector signals (thus, the

‘epi’ part) and the developmental program (thus, the genetic part), which enables

the formation of feature representation according to the statistics of input signals.

Definition 9. An epigenetic representation is defined recursively as a vector

form v = (v1, v2, . . . , vn), where v (optional) denotes the vector (e.g. neuron) and

vi, i = 1, 2, . . . , n corresponds to either a sensory element (e.g. pixel or receptor) in

the sensory input, a motor control terminal in the action output, or a function of

these two types and other (intermediate) epigenetic representations.

The world-centered and mind-centered representations are the same only in some

trivial cases, e.g. where the entire external world is the only single object for cog-

nition. On the other hand, an effector-centered representation (the vector of motor

control signals) can correspond to a world object well in some cases, for example,

when the eyes of a child sense (see) his father’s portrait and his ears sense (hear)

a question “who is he?” The internally primed action can be any of the following

actions: saying “he is my father,” “my dad,” “my daddy,” etc. In this example,

the later action representation can correspond to a world object, “father,” but it is

still a (mind-centered) representation. However, since the generated actions are not

gA term used often in developmental biology and developmental psychology.
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unique, given different sensory inputs of the same object, it is difficult and unneces-

sary for the brain (human or robot) to arrive at a unique representation from a wide

variety of sensory contexts that correspond to the same single object. According to

the above discussion, it seems unlikely for a developmental being (human or robot)

to develop a monolithic (mind-centered but having a one-to-one correspondence

with a world object) internal representation.

Therefore, a symbolic representation is not suited for a developmental program,

but a high dimensional mind-centered numeric representation (i.e. epigenetic rep-

resentation) is and such a representation should be everywhere in the developing

“brain.”

6. Experiments

6.1. Developmental system projects

Our decade-long effort in enabling machines to grow their perceptual, cognitive, and

behavioral capabilities has gone through four systems: Cresceptron (1991–1995),

SHOSLIF (1993–2000), SAIL (1996–present ) and Dav (1999–present).

Cresceptron is an interactive software system for visual recognition and

segmentation.52 The major contribution is a method to automatically generate

(grow) a network for recognition from training images. The topology of this net-

work is a function of the content of the training images. Due to its general nature

in representation and learning, it turned out to be one of the first vision systems to

be trained to recognize and segment complex objects of very different types from

natural, complex backgrounds. Although Cresceptron is a general developmental

system, its efficiency is problematic.

SHOSLIF (Self-organizing Hierarchical Optimal Subspace Learning and

Inference Framework) was the next project whose goal was to resolve the efficiency

of self-organization. It automatically finds a set of Most Discriminating Features

(MDF) using the Principal Component Analysis (PCA) followed by the Linear

Discriminant Analysis (LDA), for better generalization. It uses a hierarchical struc-

ture organized by a tree to reach a logarithmic time complexity. Using it in an

observation-driven Markov Decision Process (ODMDP), SHOSLIF has successfully

controlled the ROME robot to navigate in MSU’s Engineering Building (covering

136× 116 square meters) in real-time using only video cameras, without using any

range sensors.53 All the real-time computing (refreshing rate 6 Hz) was performed

by a Sun SPARC-1 (33MHz) Workstation. Therefore, SHOSLIF is very efficient for

real-time operation. However, it is not an incremental learning method.

The SAIL robot, shown in Fig. 9, is the next generation platform after

SHOSLIF. The objective of this project is to accomplish real-time incremental devel-

opment for robot perceptual and behavioral capabilities.55,56 It is a wheel-driven

untethered mobile robot with a single robot arm. It has a total of 13 DOF. Its sensors

include two color video cameras (each can pan and tilt individually), microphones,

a laser range scanner (not used for the navigation experiments discussed here),
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Fig. 9. The SAIL robot (left) and Dav robot (right).

and an array of touch sensors and micro-switches. Its computational resources are

all onboard, including dual Pentium IV 2.1GHz, 1 Gb RAM memory, 50G SCSI

hard disk drives, and an array of device drivers. It weights 202Kg. Most of the

experiments reported here were conducted on the SAIL robot.

The Dav robot (Fig. 9) is an anthropomorphic robot, constructed in-house at

Michigan State University as a next-generation test-bed for experimental investi-

gations into autonomous mental development.17,63 This general-purpose humanoid

platform consists of a total of 43 degrees of freedom (DOF), including the wheel-

driven drive base, torso, arms, hands, neck and head. The body may support a wide

array of locomotive and manipulative behaviors. For perception, Dav is equipped

with a variety of sensors, including visual (two color video cameras), auditory

(microphones), a laser range scanner, haptic sensors, and somatic sensors (e.g. strain

gauges). It is untethered and mobile with all the computational resources onboard,

including quadruple Pentium III Xeon 700MHz CPU, 2 Gb RAM memory, 100Gb

SCSI drives, 11 embedded Motorola PowerPCs 555 40MHz processors, CAN bus

for communication among CPUs and embedded processors, wireless networks, and

a 440 Amp-Hour 12V battery power supply. It weights 242Kg.

Three types of learning modes have been implemented on SAIL with the SAIL-3

developmental program: learning by supervised learning, reinforcement learning,

and communicative learning. In the following sections, we report some experimental

results. All the learning experiments presented here were conducted incrementally

(about 30–100ms per cycle) online in real-time, except those stated otherwise. The
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“brain” of the robot is totally signal driven (from sensors and effectors), generated

by the developmental program as a model generator. There is no need for an initial

guess (e.g. weights of connections). In the experiments described here, supervised

learning was used to generate desired behaviors and, thus, the innate behavior

module was not used (it was used to generate the Boltzmann exploration41 in other

studies, e.g. development of SAIL’s value system21 and SAIL’s reinforcement speech

learning59). Movies are available at www.cse.msu.edu/∼weng/research/LM.html.

6.2. Developmental recognition from occluded views

We have designed and implemented a sensory mapping, called “Staggered Hierarchi-

cal Mapping (SHM)” shown in Fig. 4, and its developmental algorithm.65 Suppose

that a face is occluded and, thus, only attention to the unoccluded partial view

enables successful recognition based on the partial view, provided that the partial

view can uniquely determine the identity of the face. This implies that the agent

must actively select attention to the unoccluded part during the learning session.

This is the goal of the experiment illustrated in Fig. 10.

The goal of the experiment, not conducted in real-time, is to study the effective-

ness of sensory mapping (SHM) for attention selection under the control of attention

signals generated from cognitive mapping, as shown in Fig. 10. The experiment was

organized as follows. In the training session, a series of unoccluded face images

is presented to the system with class labels (name of the person). The system

On
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Sensory
mapping

Cognitive
 mapping

Active attention selection

Classifier &
 Regressor

Action output

Class label
output (given)

(a) Learning session
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Off

Sensory
mapping

Cognitive
 mapping

Active attention selection

Classifier &
 Regressor

Action output

Class label
output (retrieved)

(b) Performance session

Fig. 10. Active attention during learning and performance sessions enables recognition of occluded
faces.
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takes upper (U) and lower (L) views, controlled by the supervised attention con-

trol (to focus on the module to be tested). In other words, the attention control

also conducts supervised learning in this setting. The cognitive mapping learns two

action outputs from the currently sensed image, (i) the required attention selection

(upper or lower view), and (ii) the class label of the face image. In the performance

session, the learned attention control behavior controls the attention selection via

SHM sensory mapping, which feeds the response to the following IHDR cognitive

mapping. If only the upper view is available (not occluded), the result is called U.

Similarly, if only the lower view is available (not occluded), the result is called L.

If the system feeds the upper view and the lower view as an integrated long response

vector into the IHDR classifier (upper view and lower view is occluded individually

at two consecutive views), the result is called U + L.

If a system is passive (without active attention selection), it learns the global

view (not occluded) but in the performance session it tries to match the input

(occluded) U or L view with the learned global-view (not occluded) prototype. This

is called monolithic vision. If we use the nearest neighbor method (NN) for the

monolithic vision case to find the prototype, the result is called monolithic + NN.

The experiment used a face set from the Weizmann Institute in Israel. The set

was taken from 28 human subjects, each having 30 images with all possible combina-

tions of two different expressions, three lighting conditions and five different facial

orientations. The results are summarized in Table 1. They clearly demonstrated

the necessity of active attention using the sensory mapping, whose recognition rate

(SHM + HDR for U and L cases) is significantly higher than the case without sen-

sory mapping (Monolithic + NN for U and L cases) in the presence of occlusion.

In this experiment, the programmer did not know the task during the program-

ming time, i.e. he did not know that the robot would recognize human faces (or

something else), nor did he know that the objects to be recognized would be 2D pat-

terns or 3D objects. The sensory mapping SHM, as shown in Fig. 4, was developed

from viewing over 5,000 natural images.65 Therefore, the internal representation of

SHM is of general purpose: it represents the structure of natural scenes (via cam-

era) using the statistical distribution of image inputs (by CCIPCA), but not other

images that it has not observed. When the sensory mapping is mature, the system

starts to develop the cognitive mapping from the output of the sensory mapping

to the action output (attention control and class label). Both actions are learned

through supervised learning. Attention control is an internal action (acting on the

“brain”), which normally does not allow supervised learning (the internal effector

Table 1. Summary of recognition under occlusion.

Method Recognition rate

U (%) L (%) U + L (%)

Monolithic + NN 51.43 75.83 82.38
SHM + HDR 92.86 95.95 98.57
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is not accessible from the environment). Since reinforcement learning takes a signif-

icant amount of training time, we used supervised learning to speed up the learning

in this study.

SHM + HDR for the U + L case indicates a “programmed way” of integrating

multiple views through time, instead of an autonomous way. Autonomous integra-

tion of discrete input frames is studied in Sec. 6.6.

6.3. Developmental vision-guided navigation

In the experiment of vision-guided navigation,55 a human teacher taught the SAIL

robot by taking it for a walk along the corridors of MSU’s Engineering Building.

Force sensors on the robot body sense the push action of the teacher and its two

drive wheels comply by moving at a speed that is proportional to the force that

is sensed on each side. In other words, the robot performed supervised learning in

real-time.

The IHDR mapping algorithm processes the input image in real-time. It derives

features that are related to the action but disregards features that are not. The

human teacher does not need to define features. The system runs at about 10Hz, ten

updates of navigation decisions per second. In other words, for each 100 milliseconds,

a different set of feature subspaces are used. To address the requirement of real-

time speed, the IHDR method incrementally constructs a tree architecture which

automatically generates and updates the representations in a coarse-to-fine fashion.

The real-time speed is achieved by the logarithmic time complexity of the tree in

that the time required to update the tree for each sensory frame is a logarithmic

function in the number of fine clusters (prototypes) in the tree.

After four trips along slightly different trajectories along the corridors, the

human teacher started to let the robot “go free.” He needed to “hand push” the

robot at certain places, when necessary, until the robot could reliably navigate along

the corridor, without the need for “hand-leading.” We found that about ten trips

were sufficient for the SAIL robot to navigate along the corridors, using only vision,

without using any range sensors. Figure 11 shows some images that the robot saw

during the navigation.

Here, the developmental program does not contain any information about what

kind of scenes that the robot will sense or what behaviors will be needed. The

Fig. 11. A subset of images sensed by the SAIL robot in the autonomous navigation, showing the
wide variation of the scenes that the robot needs to learn.
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program generates a hierarchy of the most discriminating feature subspaces in the

IHDR tree. Therefore, the fine architecture (e.g. the interconnection among nodes)

and the representation (e.g. the discriminating feature basis in all the non-leaf

nodes) are functions of the input signals. What is “innate” is the hand-designed

scheme of developing the IHDR tree using input and output signals, but the IHDR

tree actually developed is neither totally “innate” (without a need for experience)

nor totally “learned” (without any innate component). The developmental program

is a model generator, generating the information processor (i.e. IHDR tree as a

model of the environment and the navigation task) “on the fly,” incrementally, in

real-time, without the need for human intervention into the internal representation

during all training and performance sessions (running the same program in a single

developmental mode).

Since the processor can be generated automatically “on the fly,” the SAIL robot

was moved outdoors (around the Engineering Building) for autonomous navigation,

without the need for reprogramming, and performed with limited success.66 A major

difference between indoor and outdoor environments is the degree of lighting vari-

ation. We trained the SAIL robot outdoors during different times of day (10 am,

noon, 2 pm, 4 pm, 6 pm, etc.) and under different types of weather conditions (e.g.

sunny and overcast), so that the robot became used to a wide variety of lighting

variations (which caused hard-to-predict effects such as shadow casts from trees).

6.4. Developmental speech learning

Our developmental speech learning is very different from traditional speech

learning38,48 in the following sense: (i) the continuous auditory streams have not

been segmented and labeled (thus, autonomous learning is possible); (ii) during

learning, the entire auditory system must listen to everything (for autonomous

learning), in contrast to traditional supervised learning where each designed model

(e.g. for a word “good”) listens to only segmented speech corpora of the single class

that it is designed to recognize (e.g. various utterances of the word “good”). For

example, if a traditional HMM model for recognizing “good” was allowed to lis-

ten to many other words during training, it cannot tell “good” from other sounds;

(iii) no syntax is involved during programming (e.g. the system can learn words and

phrases from multiple languages concurrently).

The above points (i) and (ii) are necessary for autonomous speech learning. No

traditional speech recognition methods can deal with them. Point (iii) is necessary

for the task-nonspecificity nature of development. Semantics and syntax are associ-

ated with the real-world grounded experience. In other words, the robot performs

grounded, autonomous language acquisition (words and phrases only so far), which

was impossible before with traditional approaches.

Similar to learning vision-guided navigation, the SAIL robot can learn to follow

voice commands through physical interaction with a human trainer.67 In the early

supervised learning stage, a trainer spoke a command (a word or a continuous
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Table 2. Performance of the SAIL robot in developmental speech learning.

Commands Go left Go right Forward Backward Freeze

Correct rate (%) 97.1 91.3 93.8 100.0 80.0
No. of tests 35 23 65 7 5

Commands Arm left Arm right Arm up Arm down Hand open

Correct rate (%) 100.0 90.0 100.0 100.0 90.0
No. of tests 10 10 10 10 10

Commands Hand close See left See right See up See down

Correct rate (%) 90.0 100.0 100.0 100.0 100.0
No. of tests 10 10 10 10 10

phrase) to the robot and then executed a desired action by pressing a pressure

sensor or a touch sensor that was linked to the corresponding effector. In later

stages, when the robot could explore more or less on its own, the human teacher

used reinforcement learning by pressing its “good” or “bad” button to encourage and

discourage certain actions. Typically, after about 15 to 30 minutes of interaction

with a particular human trainer, the SAIL robot could follow commands with a

success rate of about 90%. Table 2 shows the voice commands learned by the SAIL

robot and its online test performance.

A developmental robot should not be expected to recognize sophisticated, long,

continuously spoken sentences in an early developmental stage, neither should

a human baby. Section 6.6 explains why “arranged experience” (e.g. separately

spoken commands) is important for scaffolding. The major breakthrough here is

autonomous auditory learning characterized by points (i), (ii) and (iii) above, which

conjunctively make autonomous scaffolding possible.

6.5. Developmental communicative learning

With supervised learning, the human teacher must provide actions in real-time.

With reinforcement learning, it takes a significant amount of time for the robot to

generate a desired action. With the communicative learning, the human teacher can

directly state:

(i) a desired action in the current context (our experiment);

(ii) whether the current action is good (our experiment);

(iii) the rules to follow in order to reach desired actions (as in animal training and

classroom teaching);

(iv) the criteria to judge right or wrong; success or failure (teaching the value

system).

In this section, we will describe (i) and (ii). The next section will describe (iii). Real-

izing effective teaching for material type (iii) using sophisticated human language
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Fig. 12. The SAIL robot navigated autonomously using its vision-based sensorimotor skills that
were acquired through online real-time developmental learning. It perceived the scene from its
video cameras without using any range sensors.

and type (iv) via the communicative learning mode is exciting future research direc-

tion of AMD.

Recently, we successfully implemented the new communicative learning mode

on the SAIL robot for teaching material types (i) and (ii) through autonomous

development. First, in the grounded language acquisition stage, we taught the SAIL

robot simple verbal commands (phrases), such as “go forward,” “turn left,” “turn

right,” “stop,” “look ahead,” “look left,” “look right,” etc. and an evaluation of the

current action “good,” “bad”, etc. by speaking to it online while guiding the robot

to perform the corresponding action. In the next stage, teaching using language,

we taught the SAIL robot what to do in the corresponding context through verbal

commands and encouraged or discouraged the robot’s autonomous action by stating

“good” or “bad.” For example, when we wanted the robot to turn left (a fixed

amount of heading increment), we told it to “turn left.” When we wanted it to

look left (also a fixed amount of increment), we told it to “look left.” That way, we

did not need to physically touch the robot during training and instead used much

more sophisticated verbal commands. This made training more efficient and more

precise. Figure 12 shows the SAIL robot navigating in real-time along the corridors

of the Engineering Building, at a typical human walking speed. The next section

describes a more sophisticated example of communicative learning.

6.6. Scaffolding: Transfer and chaining

We first define scaffolding:

Definition 10. Scaffolding is the process of using developed simple capabilities

to further develop more complex capabilities, through further experience (with or

without a teacher), without the need of manual modification of the developmental

program.

Human teachers typically “arrange experience,” rather than didactic teaching.

Lev Vygotsky47 proposed the concept of “zone of proximal development” (PZD),

which is a latent learning gap between what a child can do on his or her own and
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Fig. 13. Integrated architecture with two sensorimotor systems, one lower (less abstract) and the
other higher (more abstract) to accomplish developmental learning for more complex skills such
as transfer and chaining.

what can be done with the help of a teacher. Wood, Burner & Ross62 used the

term “scaffolding” to describe such an instructional support through which child

can extend or construct current skills to higher levels of competence. Through this

process, the scaffolding (arranged experience) is slowly removed.

A powerful developmental program should have mechanisms for scaffolding

embedded since a collection of flat (non-hierarchical) structure sensorimotor mod-

ules cannot enable complex perceptual, cognitive and behavioral capabilities.

We have designed and implemented a hierarchical developmental learning archi-

tecture (Fig. 13), which enables a robot to develop complex skills after acquisi-

tion of simple ones.68 The major architecture mechanism that makes this possible

includes priming and attention, one that realizes chained secondary conditioning.

However, the mechanism described here is more complex, belonging to what is

called transfer,11 transferring multiple cognitive and behavioral skills learned in a

setting to new settings and chaining them by taking into account new contexts.
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A transfer-and-chaining process can be written mathematically as:

Cc → Cs1 → As1 → Cs2 → As2 ⇒ Cc → As1 → As2, (11)

where Cc is the composite (verbal) command, Cs1 and Cs2 are (verbal) commands

invoking basic actions As1 and As2, respectively. “→” means “followed by,” and

“⇒” means “develops.” The problem here is that Cs1 and Cs2 are missing in the

developed stimuli-response association. The major challenge of this work is that

training and testing must be conducted in the same mode through online real-time

interactions between the robot and the trainer.

In the experiment, upon learning the basic gripper tip movements (Fig. 14), the

SAIL robot learned to combine individually instructed movements into a composite

one invoked by a single verbal command without any reprogramming (Fig. 15). To

solve the problem of missing context in transfer and chaining, we modeled a primed

context as the follow-up sensation and action of a real context. By back-propagating

the primed context, a real context was able to predict future contexts, which enabled

the agent to react correctly even with some missing contexts. The learning strategy

integrated supervised learning and reinforcement learning. To handle the “abstrac-

tion” issue in real sensory inputs, a multi-level architecture was used with the higher

level emulating the function of higher-order cortex in biology in some sense.

Fig. 14. The gripper tip trajectories of the SAIL robot. (a)–(d) are basic actions, each of which
starts from the black dot. (e)–(g) are composite actions by transferring and chaining some or all
of the basic ones.

Fig. 15. The SAIL robot learned longer and more complex composite skills through transfer-and-
chaining based on previously learned simpler and shorter skills, while it was interacting with human
trainers in real-time.
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Again, we can see how task-nonspecificity is realized for scaffolding. The pro-

grammer does not need to know what complex tasks the robot will execute, let

alone to understand them. As long as the teacher (or environment) provides tempo-

rally (somewhat) consistent occurrences of sensory events (not pre-defined symbolic

ones), the developmental program is able to establish the corresponding association

in the developing “brain” and to prime the corresponding contexts in the future

under a similar context, allowing the scaffolding of more and more complex cogni-

tive and behavioral capabilities.

The SAIL scaffolding mechanism enables the association to take place in longer

temporal scales and coarser spatial resolution scales, which facilitates abstraction.

Sharing of simpler skills (a form of autonomous chunking) takes place automatically,

within a task and across tasks, when developing more complex skills.

6.7. Dav: Range-based collision avoidance

The Dav robot was used to test collision avoidance using its Sick laser range scan-

ner. In each time frame, the Sick scanner produces 360 laser rays, spreading evenly

over a horizontal plane (0.5◦ resolution). Each number in the frame (vector) repre-

sents the range (distance) from the Sick scanner to the obstacle that intercepts the

corresponding laser ray. The Sick laser scanner is mounted on the Dav robot with

a slight tilt downwards, so that the laser plane can detect low obstacles when Dav

moves forward.63

In this experiment,64 IHDR was used to learn the mapping from the input

range vector r to the desired heading direction θ and speed v, which are supplied

online interactively by a human teacher via a graphic user interface. To reduce the

amount of interactive training needed, an attention mechanism is used to suppress

some parts of the range vector when it is necessary, before the result is fed into

IHDR for learning. The attention selection controller (regarded as innate reflex)

was programed to behave this way: if all the readings are larger than a threshold T ,

all the readings are passed because no special attention is needed when all obstacles

are far away. If there are some range readings that are less than T , they correspond

to nearby objects and are passed without modification, but all the other readings

(corresponding to faraway obstacles) are replaced by the mean range value. This

way, nearby objects are attended to and faraway ones are not, unless there is no

nearby object.

First, to reach a quantitative evaluation with ground truth, we recorded 1,917

training samples each consisting of an input-output pair. We performed ten-fold

leave-one-out tests. The average error rates over ten tests are shown in Table 3.

Without attention selection, the heading error increased to 0.11 with standard devi-

ation 0.30 and the speed error increased to 0.0079 with standard deviation 0.073.

Comparing the results, we can see that both the mean and deviation of error were

reduced by introducing the attentional mechanism. Our continuous tests showed

that the version without attention selection ran into a complex array of objects but

the one with attention selection did not.
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Table 3. The simulation results of range-based obstacle avoidance with
attention selection.

Parameter Range Mean of error Deviation of error

Heading θ [0, π] 0.094 0.27
Speed v [0, 1.0] 0.0071 0.074

Fig. 16. Dav moved autonomously in a corridor crowded with people, using its laser range scanner.

The Dav robot has been repeatedly tested for learned range-based collision

avoidance behavior and the performance has been very satisfactory. For example,

during a visit by high school students, as shown in Fig. 16, Dav reliably navigated in

this dynamic changing environment without hitting obstacles, static ones or moving

people. It is worth noting that most of the testing scenarios were not the same as

the training scenarios.

The appropriate sensors can make some tasks easier to learn. For collision avoid-

ance, learning using a range sensor is easier than, e.g. using a pair of stereo cameras,

at least for appearance-based methods (mapping directly from normalized input

image). Of course, the learning is still not trivial, due to the wide variety of range

maps. On the other hand, a pair of stereo images provide additional information

that is very useful for other tasks, such as recognition.

Due to space constraints, some major recent experiments cannot be described

here, e.g. SAIL’s object permanence experiment,58 auditory and visual integrated

learning for rotating objects69 and development of the motivational system.21

7. Other Related Work

A type of general models put emphasis on sequential decision making, where the con-

text is represented by a symbolic state. Soar25 and ACT-R2 were motivated by state-

based interactive cognitive models. The Markov Decision Process (MDP)23 and

MDP-based reinforcement learning41 are state-based statistical learning models.

Another type of general models put emphasis on perception, modeled as high-

dimensional regression. The neural network based methods, such as ALVINN35 and

ROBIN,36 can, in principle, be applied to indoor environments. However, the local
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minima and loss-of-memory (interference) problems with artificial feedforward neu-

ral networks and the local minima problem with the radial basis function make them

problematic in low-contrast, fine-detail indoor scenes (see Ref. 10 for a detailed com-

parison). State-based SHOSLIF10 provided a general model with both emphases,

sequential decision making and perception.

The third type of studies modeled some aspects of cognitive development.

BAIRN49 (a Scottish word for “child”) is a symbolic self-modifying information

processing system as an implementation for a theory of cognitive development.

Drescher12 utilized the schema, a symbolic tripartite structure in the form of

“context-action-result.” Some behavior-based robots, such as Cog9 and Kismet6 at

MIT, performed interesting real-time social interactions with humans (some compo-

nents of Cog were offline learned). David Touretzky’s Skinnerbot43 performed action

chaining successfully, through pre-programmed symbolic representation. The Dar-

win V robot1 modeled the development of more complex vision-invoked behaviors

from simpler pleasure seeking and pain avoidance behaviors. Since its goal was to

verify the inter-cortical association from the experience of a real-world device (in a

controlled block environment), Darwin V did not address the practical issues of gen-

erating new representations for complex uncontrolled human environments. A few

more recent studies simulated infant exploratory behaviors with learning, such as

using programed reflexes to explore,28–30 using preferred grasping patterns,61 using

changes in retinal resolution and environmental complexity,32 and using histogram

association in audio and visual signals.37 Levinson and his co-workers recently

demonstrated interactive learning of verbal commands by a mobile robot.26

8. Conclusions

This paper introduces a theory and presents experimental results for a new kind

of robot — developmental robots that can develop their cognitive and behavioral

skills, autonomously, incrementally, online, through real-time interactions with the

environment without pre-designed task-specific representation. The SASE agent

model is useful for both nondevelopmental and developmental agents, but it seems

that only developmental agents are able to develop the SASE model effectively.

The theory reasons that although a world-centered symbolic representation is still

useful for simulating some aspects of development, it is not suitable for autonomous

mental development, for which a mind-centered numeric representation is suitable.

These concepts may also have implications to biological brains, since the brain is

also a developmental entity.

The architecture of intelligent agents is an important yet very challenging sub-

ject. The architecture outlined here seems to be the first general, task-nonspecific,

developmental architecture that generates task-specific internal fine architecture

(e.g. the tree structure in IHDR) and representation (e.g. weights in SHM and

IHDR) online and yet is suited for an open number of simple-to-complex tasks.
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Some experimental results of the proposed theoretical framework have been

tested on the SAIL and Dav robots for multiple tasks. The internal representation

of the systems is automatically generated based on the co-working of (innate) devel-

opmental mechanisms and the (learned) experience. It appears that we have reached

a theoretical and practical starting point of a promising new direction of develop-

mental robotics. While there are still plenty of practical and theoretical questions

awaiting investigation, this work opens up a wide range of opportunities for future

exciting research and applications.
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