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ABSTRACT 

Human hematopoiesis is a dynamic process that starts in utero 4 weeks post-conception. 

Understanding the site- and stage-specific variation in hematopoiesis is important if we are 

to understand the origin of hematological disorders, many of which occur at specific points in 

the human lifespan. To unravel how the hematopoietic stem/progenitor cell (HSPC) 

compartments change during human ontogeny and the underlying gene regulatory 

mechanisms, we compared 57,489 HSPCs from 5 different tissues spanning 4 

developmental stages through the human lifetime. Single-cell transcriptomic analysis 

identified significant site- and developmental stage-specific transitions in cellular architecture 

and gene regulatory networks. Uncommitted stem cells showed progression from cycling to 

quiescence and increased inflammatory signalling during ontogeny. We demonstrate the 

utility of this dataset for understanding aberrant hematopoiesis through comparison to two 

cancers that present at distinct timepoints in postnatal life – juvenile myelomonocytic 

leukemia, a childhood cancer, and myelofibrosis, which classically presents in older adults. 

KEYWORDS  

Hematopoiesis, single-cell genomics, human development, stem cells 

 

INTRODUCTION  

In the human embryo, definitive blood stem cells first arise in the aorta-gonad-mesonephros 

(AGM) region at 4-5 weeks post conception. Hematopoiesis then migrates to the fetal liver 

(FL) and subsequently to the bone marrow (BM), which becomes the dominant 

hematopoietic organ at birth and remains so throughout postnatal life (Ivanovs et al., 2017). 

Single cell transcriptomics have been extensively applied to clarify the cellular architecture 

and molecular pathways in hematopoiesis, but the majority of studies have been done in 

adult tissues (Hay et al., 2018; Velten et al., 2017), mouse models (Dahlin et al., 2018; Tusi 

et al., 2018) or human cord blood (Notta et al., 2016; Zheng et al., 2018). A recent analysis 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

of 1st and 2nd trimester human fetal liver (FL), fetal kidney and fetal skin indicated that the 

hematopoietic compartment in FL changes from being predominantly erythroid in early 

gestation, to lympho-myeloid in later development, and that hematopoietic stem/progenitor 

cells (HSPCs) become less proliferative during fetal maturation (Popescu et al., 2019). 

Transition of HSPCs from proliferative to quiescent state has also been associated with 

migration of hematopoiesis from FL to fetal bone marrow (FBM), along with a concomitant 

decrease in the frequency of non-committed HSPCs, suggesting a role for the niche in 

regulating hematopoietic cell state (Ranzoni et al., 2021).  

 

However, the transcriptome profiles of the lineage-negative (Lin-), CD34+ HSPC 

compartments in hematopoietic tissues during development and postnatal ageing have 

never been directly compared using the same platform. These studies are crucial if we are to 

understand the variation in hematopoiesis during normal human ontogeny. For example, 

whether certain patterns of fetal, pediatric or adult-specific gene expression signatures exist 

that are permissive for the emergence of age-dependent hematopathologies has not 

previously been described.  

 

We therefore generated a comprehensive dataset encompassing 57,489 HSPCs sampled 

from healthy human hematopoietic tissues including first trimester early FL (eFL), paired 

second trimester FBM and FL (isolated from the same fetuses), pediatric BM (PBM), and 

adult BM (ABM). To our knowledge, this is the first study that directly compares human 

HSPC from all stages of ontogeny (early fetal life to adulthood) at single cell level. Precise 

delineation of the consistencies and differences in the cellular composition and molecular 

pathways in the HSPC compartments across human development demonstrated 

pronounced site- and developmental stage-specific transitions in cellular architecture and 

transcriptional profiles between hematopoietic tissues. While megakaryo-erythropoiesis 

predominated in early fetal liver, lympho-myeloid progenitors showed dramatic expansion 

following onset of hematopoiesis in the BM of the developing fetus. The proportion of 
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lymphoid progenitors in the BM hematopoietic compartment then progressively decreased 

during postnatal life. In addition, HSCs but not lineage-committed progenitors showed 

progression from cycling to quiescence and increased inflammatory signalling during 

development from fetal through to adult life. Finally, comparison of HSPCs sampled over 

normal human ontogeny to HSPCs from two hematological cancers that occur at extremes 

of life, Juvenile Myelomonocytic Leukaemia (JMML) affecting young children and 

myelofibrosis (MF) affecting older adults, suggested a fetal origin for JMML and 

exacerbation of the adult BM-associated inflammatory signalling programs in myelofibrosis 

HSPCs. These observations highlight the value of this comprehensive single cell 

transcriptomic resource for understanding the changes in normal hematopoiesis through 

human ontogeny, as well as unravelling the cellular and molecular disruptions that occur in 

hematopoietic disorders.  

 

RESULTS 

Analysis of 57,489 HSPCs revealed 21 distinct cell clusters across human ontogeny.   

Single-cell RNA sequencing (scRNAseq) was performed on Lin-CD34+ cells from eFL 

(15,036 cells), matched FL (17,351 cells) and FBM (14,935 cells) isolated from the same 

fetuses, PBM (13,311 cells) and ABM (6,300 cells) using the 10x Genomics platform 

(Fig.1A). 66,933 HSPC were captured, and following quality control 57,489 single-cell 

transcriptomes were included in downstream analyses (Suppl. Table 1). Datasets were 

integrated using an adaptation of the Harmony algorithm (Korsunsky et al., 2019) that 

automatically groups marker genes for each cluster per sample, and builds up a gene set 

database for GSEA analysis (see methods) as implemented in the SingCellaR package 

(https://github.com/supatt-lab/SingCellaR). This led to optimal data integration with improved 

resolution of erythroid from eosinophil/basophil/mast progenitors than when using standard 

Harmony or Seurat methods as indicated by visual inspection (Suppl. Fig. 1A-C) and the 

objective measures kBET, iLISI and cLISI (Suppl. Fig. 1D-E) (Buttner et al., 2019; Korsunsky 

et al., 2019).  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

 

To identify the cellular composition of the 57,489 HSPCs captured from different stages and 

tissues over ontogeny, graph-based Louvain clustering was performed. This identified 21 

clusters with distinct expression patterns of canonical stem/progenitor and hematopoietic 

lineage marker genes (Fig. 1B, Suppl. Fig. 2A-B and Suppl. Table 2) (Drissen et al., 2019; 

Hay et al., 2018; Pellin et al., 2019; Popescu et al., 2019; Velten et al., 2017). While some 

clusters were easy to identify by their clear expression of canonical markers, other clusters 

were less readily classifiable due to low-level expression of lineage-affiliated genes and/or 

expression of multiple lineage markers. To facilitate annotation of these clusters, we collated 

lineage signature genes from 75 published human hematopoiesis gene sets (Supp. Table 3), 

and gene set enrichment analyses (GSEA) were performed on the expressed genes for 

each cluster using these gene sets to guide assignment of cell types (Fig. 1C).  

 

Cluster 1 had robust expression of hematopoietic stem cell/multipotent progenitor 

(HSC/MPP)-affiliated genes, while clusters 7 and 12 showed HSC/MPP-genes together with 

evidence of early myeloid or lymphoid priming respectively (Fig. 1B, 1C and Suppl. Fig. 2C). 

Cell clusters representing the major hematopoietic lineage progenitor subsets (erythroid, 

myeloid, lymphoid, megakaryocytic, dendritic, eosinophil/basophils/mast cells) were 

identified, as well as clusters with expression of genes representing >1 lineage likely to 

represent uncommitted/oligopotent progenitors (e.g., erythro-megakaryocytic [cluster 4] and 

eosinophil/basophil/mast cell precursors [cluster 17]) (Fig. 1C). A population of non-

hematopoietic cells (Cluster 19) expressing endothelial genes was detected, which derived 

predominantly but not exclusively from eFL. Some lineage progenitor clusters had 

differential enrichment of G2M checkpoint and S-phase gene signatures (Suppl Table 4), 

allowing us to classify certain progenitor populations by their distinct proliferation state (e.g. 

cluster 9 – erythroid (cycling); cluster 10 – B lymphoid (cycling); Fig. 1B). 
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Site- and developmental stage-specific differences in the cellular composition of the 

HSPC compartment 

To accurately determine differences in the composition of Lin-CD34+ progenitors between 

hematopoietic sites and ontological stages, we identified cells showing enriched expression 

of curated gene signatures (Suppl. Table 4) corresponding to uncommitted HSC/MPP and to 

the main lineage progenitor sub-types (myeloid, mega-erythroid-mast cell and B-lymphoid 

progenitors, Fig. 2A). Using an AUCell (Aibar et al., 2017) score of > 0.15, clear distinction 

between cellular subsets was seen, with 24% of cells (13,871 cells) classified as 

uncommitted HSC/MPP, 15% as myeloid (8,330 cells), 16% as lymphoid (9,473 cells), 2% 

as eosinophil/basophil/mast cell (1,361 cells), 12% as erythroid (6,778 cells), and 1% as 

megakaryocytic (572 cells) progenitors (Fig. 2A).  

 

1st and 2nd trimester FL contributed the majority (69.4%) of the erythroid progenitors 

captured (Fig. 2B), whereas lymphoid and myeloid progenitors predominantly derived from 

BM samples (70.4% and 81.2% respectively, Fig. 2B). Marked differences were observed in 

origin of the megakaryocyte progenitor cells captured, with a majority (63.5%) captured from 

eFL (Fig. 2B), while only 5%-12% derived from any other individual tissue. Differences in 

lineage specification were also demonstrable when the proportions of progenitor cell types 

were quantified within individual tissue (Fig. 2C and Suppl. Fig. 3A). These differences in 

lineage specification for the main lineage subtypes described above were maintained after 

adjusting for the variable cell numbers obtained from each tissue type (Suppl. Fig. 3B). Of 

note, marked differences were seen in the cellular composition of matched FL and FBM 

HPSCs when analysing cells representing uncommitted HSPC and the main lineage 

subtypes. There were 4.4-fold more uncommitted progenitors and 8.7-fold more erythroid 

progenitors in FL than FBM. The opposite trend was true for myeloid and lymphoid 

progenitors, which were 7.9-fold and 2.8-fold more frequent in FBM than FL (Fig. 2C).  
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Four main differentiation trajectories are present among HSPCs across human 

ontogeny. 

To explore the developmental relationships between cell clusters, cells were ordered based 

on their gene expression using a force directed graph (FDG) network (Fig. 3A – 

3C). ‘Lineage signature gene scores’ were defined as before (Psaila et al., 2020) and 

superimposed on the FDG. This demonstrated four major paths emerging from the 

HSC/MPP cluster (cluster 1, Fig. 3A), representing erythroid, megakaryocytic, lymphoid, and 

myeloid differentiation trajectories along pseudotime (Fig. 3B and C). As expected, clusters 

with multipotent potential (Clusters 1, 5, 7, 11, 12, and 15) were located at the apex or 

central positions in the trajectories (Fig. 3A and B, grey cells). The existence of the main 

trajectories was confirmed using diffusion mapping as an alternative trajectory analysis 

(Suppl. Fig. 3C).  Dendritic cell precursors (clusters 18 and 20) were closely affiliated with 

the lymphoid trajectory, while the trajectory of eosinophil/mast cell/basophil progenitors 

(cluster 17) was associated with that of erythroid progenitors (Fig. 3A and B).   

 

Monocle3 (Trapnell et al., 2014) analysis was performed to calculate pseudotime and 

identify differentiation paths for the four main trajectories (erythroid, megakaryocytic, 

lymphoid, and myeloid) (Suppl. Fig. 3D). To compare lineage differentiation trajectories 

across tissue types, the datasets were ‘down-sampled’ to control for differences in numbers 

of cells captured from each tissue, and cells were then ordered in pseudotime (Fig. 3D – 

3K). The expression of erythroid and megakaryocyte-associated transcriptional program 

occurred earlier in pseudotime for eFL than other tissues (Fig. 3D – 3G). The expression of 

lymphoid-associated genes was markedly different between tissues across ontogeny, with 

onset of expression markedly earlier at the onset of bone marrow hematopoiesis in the 2nd 

trimester fetus, and then was observed to occur progressively later in PBM and ABM cells 

(Fig. 3H and I). This included both early lymphoid genes and later B-cell specific genes, 

suggesting an accelerated B cell specification program in fetal and pediatric BM. Myeloid-

associated gene expression occurred earlier in pseudotime for all BM tissues compared to 
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eFL/FL and was particularly pronounced in FBM (Fig. 3J and K). The differences between 

matched FL and FBM from the same donors highlight differences in lineage specification 

between hematopoietic sites at the same developmental stage (Fig. 3D, F, H and J). 

 

Developmental stage drives global transcriptional differences between HSPCs, with 

enrichment of cell cycle genes in early fetal liver and inflammatory pathways in adult 

bone marrow.   

HSPCs from different developmental stages and hematopoietic sites showed distinct 

molecular profiles. A total of 4,094 genes was identified as differentially expressed (DE) 

upon pairwise comparison of the 5 tissue types, with the largest number of DE genes found 

between eFL and ABM (1,235 DE genes), and the smallest difference between FL and FBM 

samples from the same developmental stage (54 DE genes), suggesting that developmental 

stage is a more significant driver of global transcriptional differences than is the site of 

hematopoiesis (Suppl. Fig. 4A). Hallmark GSEA on differentially expressed genes between 

pairwise comparisons of selected tissues demonstrated enrichment of cell cycle related 

pathways (e.g. E2F target and G2M checkpoint) in eFL vs. FL, heme metabolism in FL vs. 

FBM, and multiple inflammatory response-related pathways in adult vs. paediatric BM 

(Suppl. Fig. 4B).  

 

We also identified subsets of specific genes that were differentially expressed in each tissue 

when compared to all others (Suppl. Fig. 4C and Suppl. Table 5).  Unsurprisingly, genes 

involved in controlling the cell cycle (MYC) and erythroid lineage-associated genes 

(CNRIP1, TIMP3, and GATA2) together with fetal-specific genes (LIN28B, and IGF2BP3) 

were highly expressed in eFL and FL (Copley et al., 2013; McWilliams et al., 2013; Yuan et 

al., 2012). DHRS9, a robust marker for regulatory or suppressive macrophages (Riquelme et 

al., 2017) was also specifically expressed in FL. FBM had strong expression of chemokine 

ligands (CCL3, CCL3L1, CCL4, and CXCL8) as well as B lymphoid genes (VPREB3 and 
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CD83) (O'Byrne et al., 2019) reflecting the strong myeloid/lymphoid skew in FBM. The 

postnatal samples PBM and ABM had relatively similar transcriptional profiles, with only 193 

genes differentially expressed (Suppl. Fig. 4A). However, expression of LAIR2, a gene 

encoding an immunoglobulin superfamily receptor, was very specific for PBM perhaps 

associated with its role in the establishment of the innate immune system during childhood 

(Suppl. Fig 4C). Other genes expressed more highly in PBM vs. ABM included genes 

associated with early B-lymphoid development (DNTT and FLT3), the transcription factor 

and proto-oncogene (ETV6) that is frequently mutated in hematological malignancies, and 

genes involved in cell growth, proliferation and apoptosis (YPEL3 and AKR1C3; Suppl. Fig. 

4C). ABM strongly expressed kruppel like factors (KLF3 and KLF9), markers of DNA stress 

(DDIT4), a regulator of inflammation (SOCS3), the protein phosphatase IER5 that regulates 

cell growth and stress resistance (Kawabata et al., 2015), and myeloid associated genes 

(AREG and CEBPB) compared to other tissues (Suppl. Fig. 4C). As expected, the switch 

from fetal to adult hemoglobin was also evident with the fetal gamma globin gene HBG2 

strongly expressed in FL in contrast to PBM and ABM where the beta globin gene (HBB) 

was the most prominently expressed beta globin cluster gene. A complete list of significantly 

differential genes across tissues is provided in Suppl. Table 5. 

 

Distinct gene regulatory networks in uncommitted HSPCs underlie differences in 

lineage specification between hematopoietic tissues.  

To examine the molecular regulators that underpin the differences in lineage-priming and 

cellular heterogeneity between hematopoietic tissues, we performed Single-Cell Regulatory 

Network Inference and Clustering (SCENIC) to evaluate the activity of gene regulatory 

networks (GRNs) (Aibar et al., 2017). This method enables identification of ‘regulons’, or 

genes that are co-expressed with transcription factors, with known direct binding targets 

based on cis-regulatory motif analysis. The activity score of each regulon was quantified in 

each cell using AUCell (Fig. 4A). This enabled identification of regulons that were specifically 
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enriched in uncommitted HSC/MPP (ZNF467, HOXA9 and HOXB5); lymphoid progenitors 

(PAX5, TCF3, and TBX21); myeloid progenitors (SPI1, CEBPD, and RUNX1); erythroid 

progenitors specifically (HES6); megakaryocytic-erythroid progenitors (STAT5A and 

GATA1); eo/baso/mast cell progenitors (FEV and FOXD4L1); and megakaryocytic 

progenitors (MEF2C) (Fig. 4A).     

 

The regulon activity was compared across tissue types for each HSPC subset (Fig. 4B). 

While the main differences in regulons were driven by the lineage specification of HSPC, 

there were tissue specific differences that were identifiable within uncommitted HSC/MPP 

and lineage-committed HSPC compartments. Uncommitted HSC/MPP from eFL had 

stronger enrichment of MYC, HDAC2, HMGA1, FLI1 and MEF2C, and expression of these 

regulons decreased substantially during development, suggesting a key role for these GRNs 

in promoting erythroid and megakaryocytic differentiation in eFL vs. hematopoietic tissues 

later in normal human development (Fig. 4B). Fetal HSC/MPP also showed enrichment for 

HOXA9 and HOXB5 regulons compared to postnatal tissues. There was an enrichment of 

lymphoid-associated GRNs in HSC/MPP from PBM, and this was accompanied by strong 

enrichment of ZMIZ1, IKZF1, BCL11A and ETS1 regulons in PBM lymphoid progenitors. 

TBX21, WT1 and SOX4 regulons were enriched in eFL lymphoid progenitors; MEF2D, SPIB, 

IRF4, 7 and 8, RUNX1 and CEBPA/D/E in postnatal myeloid progenitors; and MYC, HDAC2 

and HMGA1 in fetal vs. postnatal erythroid progenitors. RAD21 and CTCF targets were 

specifically enriched in postnatal vs. prenatal HSC/MPP, erythroid and eo/baso/mast cell 

progenitors (Fig. 4B).  

 

Differences in the transcriptome of uncommitted HSPC through ontogeny 

We next sought to investigate differences in the gene expression patterns of uncommitted 

HSPCs (HSC/MPP) through ontogeny, to identify possible cell-intrinsic factors underlying the 

changing differentiation bias during development. Cells from all tissues that were classified 
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as HSC/MPP using an AUCell Score >0.15 were selected for further analysis (Fig. 5A and 

B). This demonstrated four distinct cell clusters – two minor subfractions that showed low-

level enrichment of mega-erythroid and lympho-myeloid lineage gene signature sets, 

suggesting early lineage priming of some HSC/MPP (Fig. 5C), and, secondly, the non-

lineage primed HSC/MPP were separated into two distinct subsets reflecting proliferative 

and quiescent cell states (Fig. 5D and E). After down sampling the data to analyse equal 

numbers of HSC/MPP from each tissue type, BM HSC/MPP from all developmental stages 

(FBM, PBM and ABM) showed myeloid-priming compared to FL samples, and PBM 

HSC/MPP were more lymphoid-primed than ABM, similar to our observations in total Lin-

CD34+ HSPCs (Suppl. Fig. 5A).  

 

Uncommitted HSCs show progression from proliferation to quiescence during 

ontogeny with enrichment of inflammatory signatures in adult bone marrow.    

To investigate the transcriptional profile of the most primitive HSC, cells with the very highest 

HSC AUCell score (> mean score) within the HSC/MPP compartment were taken forward for 

further characterisation (6,398 cells, Suppl. Fig. 5B). Quiescence and proliferation gene 

signatures (Suppl. Table 4) showed opposite changes through ontogeny, with ABM HSC 

showing the highest quiescence score and early FL HSC being most proliferative (Fig. 5F 

and G). Notably, this temporal pattern in cell cycling observed in HSCs over ontogeny was 

clearly distinct to that seen in the lineage-affiliated progenitor clusters (Suppl. Fig. 5C). The 

decrease in cell cycle score through ontogeny correlated with decreasing expression of MYC 

and E2F targets, oxidative phosphorylation, and DNA repair pathways. In contrast, 

increasing HSC quiescence correlated with inflammatory response, activation of P53 

response and cell death associated pathways (Fig. 5H).    

 

We next sought to determine if cell-intrinsic drivers of lineage priming and cell cycling were 

detectable in the most primitive HSCs. We therefore examined the regulons that were 
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actively enriched in the 6,398 HSCs with the highest HSC AUCell score at different stages of 

ontogeny. eFL and FL HSC showed evidence of erythroid and megakaryocyte-specific 

regulons such as KLF1, GATA2, FLI1 and MEF2C (Fig. 5I). The FBM regulon was enriched 

for calcineurin-regulated NFAT-dependent transcription networks (FOSL1, JUNB, EGR3, 

EGR4 and MAFB) that are usually seen in lymphocytes, which might represent early 

lymphoid priming. PBM HSC showed a predominance of B lymphoid specific regulons, such 

as BCL11A, IKZF1, PAX5 and IRF8 compared to other tissues. The regulons specifically 

expressed in ABM HSCs were predominantly mediating inflammatory programs (e.g., 

interferon pathway (ELF1 and IRF1), NFKB and acute phase response (CEBPB), as well as 

genes previously reported as deregulated in aged HSCs (FOSL2 and JUND, Fig. 

5I)(Lavrovsky et al., 2000; Schafer et al., 2018).   

 

Leveraging single cell transcriptomics to understand abnormal hematopoiesis  

Finally, to demonstrate the utility of the dataset for understanding transcriptional 

perturbations in hematological diseases, we compared the normal ontogeny dataset to 

previously published single-cell datasets from two disease states. We chose datasets from 

hematological neoplasms that occur specifically in either early life (Juvenile Myelomonocytic 

Leukemia; JMML (Louka et al., 2021) or in adulthood (primary myelofibrosis; MF) (Psaila et 

al., 2020). We integrated the 57,489 Lin-CD34+ cells sampled from tissues across normal 

human ontogeny with 19,524 Lin-CD34+ cells from JMML patients (n=2) and 19,524 Lin-

CD34+ cells from MF patients (n=15). The total dataset of 96,537 cells was then 

interrogated for lineage specification as for Fig. 2A. Compared to its normal counterpart 

(PBM), JMML HSPC had fewer lymphoid, erythroid and megakaryocytic progenitors (Fig. 

6A) with majority of the HSPC being defined as HSC/MPP or myeloid progenitors (Fig. 6B). 

This is in keeping JMML being a myeloid neoplasm that originates in the earliest HSC 

compartment with an expansion of an abnormal CD38-CD90+ primitive HSPC population, 

with a reduced or abnormal erythroid, megakaryocytic and lymphoid output from JMML HSC 

in vitro, and a myeloid biased reconstitution in vivo (Louka et al., 2021). When compared to 
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normal ABM, MF HSPCs showed dramatic expansion of megakaryocyte progenitors with 

almost complete absence of lymphoid progenitors (Fig. 6A and B), as previously reported 

(Psaila et al., 2020). 

 

The developmentally-regulated molecular features of the progenitors in which blood cancers 

originate might drive the distinct biology of the disease at different ages. To understand 

whether the abnormal HSPC compartments in JMML and MF share features with normal 

counterparts from a particular developmental stage, we compared HSC/MPP and lineage-

specific progenitors from disease states to their counterparts from all tissue types through 

ontogeny. Hierarchical clustering of the number of differential genes revealed that 

HSC/MPP, myeloid, and erythroid progenitors in childhood JMML clustered with fetal 

counterparts rather than postnatal PBM, whereas MF HSPC clustered with postnatal 

counterparts (Fig. 6C).  

 

Differential gene expression analysis was performed to compare cells from JMML and MF to 

normal ontogeny in each lineage (Suppl. Table 6). JMML HSC/MPP showed higher 

expression of stem cell genes (e.g. HOPX, SPINK2 and CLEC9A) compared to normal 

counterparts, and this ‘stemness’ signature was retained in JMML myeloid progenitors when 

compared to normal counterparts (Fig. 6D). Concomitantly, more mature myeloid genes 

such as ELANE and CEBPD were downregulated in the JMML myeloid progenitors 

compared to normal counterparts, suggesting a block in differentiation along the 

granulocytic/neutrophil lineage. Gene regulatory network analysis showed similarities of 

JMML HSC/MPP regulons with fetal HSC/MPP (FLI1, MEF2C, MECOM and GATA2), which 

were also enriched in JMML myeloid progenitors (Fig. 6E).  

 

MF HSC/MPP showed high expression of immune and inflammatory pathways (HLA genes, 

GBP4 and IFITM1), a matrix and collagen degrading enzyme (MMP2) and genes with 

oncogenic function (MYCN, KRT8 and KRT18) that have been correlated with cancer 
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progression and poor survival(Fortier et al., 2013; Lai et al., 2017). Megakaryocyte 

progenitors from MF showed markedly increased expression of a subset of MK-associated 

genes involved in cell-matrix interactions and cell adhesion (CD9 and MPIG6B) when 

compared to the megakaryocyte progenitors from healthy control tissues. Similar to MF 

HSC/MPP, megakaryocyte progenitors in MF also showed increased expression of 

oncogenes (RAB6B), interferon inducible genes (IFITM3) and the cell cycle regulator 

CDK2AP1 (Fig. 6F). Gene regulatory network analysis highlighted the activation of 

inflammatory signalling pathways (IRF9, IRF1, ELF1 and STAT1 regulons) and cell cycle 

(CUX1) in MF HSC/MPP and megakaryocyte progenitors, as well as resurgence of 

megakaryocyte-associated regulons (MEF2C, FLI1) that were most prominent in eFL 

HSC/MPP in the normal ontogeny dataset (Fig. 6G and Fig. 5I).  

 

DISCUSSION 

Single cell approaches have been extensively applied to understand normal and perturbed 

hematopoiesis and to define human prenatal blood and immune cells (Park et al., 2020; 

Popescu et al., 2019; Ranzoni et al., 2021). These studies, together with other observations, 

have highlighted the predominance of erythroid lineage cells in human FL (Popescu et al., 

2019) and B-lymphoid cells in FBM (O'Byrne et al., 2019; Popescu et al., 2019). Differences 

in the proliferative capacity of fetal and postnatal HSPC have been described using 

functional studies (Bowie et al., 2006; Copley et al., 2013; Lansdorp et al., 1993; Muench et 

al., 1994). A switch from multipotent to largely oligo/unipotent stem cells has also been 

documented between fetal and adult life (Notta et al., 2016). However, HSPCs sampled from 

over multiple timepoints over human ontogeny from 1st trimester to adulthood at single cell 

resolution have not previously been reported.  

 

In this study, we sought to define how hematopoiesis evolves during the human lifespan by 

interrogating a comprehensive transcriptomic dataset of HSPCs sampled from 5 

hematopoietic tissues over 4 stages of ontogeny. Our data clearly demonstrate the changing 
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frequencies of lineage-specific subsets that exist within the HSPC compartment. Notably, 

directly comparing FL and FBM HSPCs isolated from the same 2nd trimester fetuses showed 

that while more than half of HSPCs in 2nd trimester FL are uncommitted, >80% of HSPCs in 

the matched FBM are lineage primed, with dramatic expansion of myelo-lymphopoiesis in 

FBM. This enrichment of oligo/unipotent progenitors and switch in lineage output is likely to 

be driven by microenvironmental cues, as hematopoiesis migrates from FL to BM during the 

second trimester, although could also be explained by selective engraftment and 

subsequent expansion of lympho-myeloid progenitors in the BM microenvironment. We also 

found key differences in the gene regulatory pathways between tissues, supporting previous 

studies indicating that a complex interplay between cell intrinsic (Dykstra et al., 2011; Grover 

et al., 2016) and extrinsic factors (Ho et al., 2019) alter hematopoiesis and lineage 

specification during postnatal life. A marked and progressive increase in HSC quiescence 

was evident during postnatal development. As cell cycle may play a role in determining the 

fate of multipotent progenitors, at least for erythro-megakaryocytic lineage specification (Lu 

et al., 2018; Tusi et al., 2018), it is possible that this may also play an instructive role in the 

myeloid-biased hematopoiesis that is observed with increasing age.  

 

Finally, mapping of two hematological malignancies onto normal hematopoiesis datasets 

allowed us to identify the similarities and differences in lineage specification and gene 

regulatory networks between these diseases and normal hematopoiesis through ontogeny. 

Such comparisons showed a persistence of fetal-like gene expression programs in the 

childhood disease JMML, supporting a fetal origin of this disease(Helsmoortel et al., 2016). 

Myelofibrosis, a cancer that typically presents in later adulthood, showed further 

exacerbation of inflammatory signalling pathways initiated in adult BM, together with altered 

cell-matrix interactions and activation of oncogenic programs, and resurgence of 

megakaryocyte-associated transcriptional signatures that were prominent in fetal liver but 

subsequently downregulated in later physiological development.  
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In conclusion, defining the key similarities and differences between hematopoietic tissues 

across normal human ontogeny has provided a key resource to study how the 

characteristics of the most primitive HSPC and their lineage fates change through the 

human lifetime. These results pave the way for a better understanding of hematopoiesis in 

normal human development, necessary to indicate the composition and likely long-term 

reconstitution ability of HSPC selected from donors of different ages for cell-based therapies, 

including gene editing and stem cell transplantation (Harrison et al., 1997; Holyoake et al., 

1999; Hua et al., 2019; Muench et al., 1994; Nicolini et al., 1999), as well as the cellular and 

molecular underpinnings of age-specific vulnerabilities to the origin and evolution of certain 

disease states. 
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METHODS 

Human samples 

Donated fetal tissue (1st trimester FL and matched 2nd trimester FL and FBM) was provided 

by the Human Developmental Biology Resource (HDBR, www.hdbr.org). Fetal tissues were 

transported to the laboratory at 4°C and processed immediately as described previously 

(O'Byrne et al., 2019; Roy et al., 2012). Adult BM mononuclear cells were purchased from 

StemCell Technologies, Canada (cat no. 17001). Normal pediatric bone marrow was 

prospectively  collected  in  accordance  with  the Declaration of Helsinki for sample 

collection and use in research. After filtering through a 70 micron cell strainer, samples were 

red cell and granulocyte depleted by density gradient separation using Ficoll-Paque PLUS 

(GE Healthcare Life Sciences, cat. no. 17-5442-03) and CD34 enrichment was carried out 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

on freshly isolated mononuclear cells (MNC) from some of the samples using a Miltenyi 

CD34 MicroBead kit and MACS system (Miltenyi Biotech, cat. no. 130- 046-703). 

Developmental stage (age) and sex can be found in Suppl. Table 1.  

 

Fluorescent activated cell sorting (FACS) staining, analysis and cell isolation 

Cells were stained with fluorophore-conjugated monoclonal antibodies (mAb; see Suppl. 

Table 7) in PBS with 2% FBS and 1mM EDTA for 30 minutes followed by two washes. 

FACS-sorting was performed using a Becton Dickinson Aria III or Fusion 2 as previously 

described (Psaila et al., 2020). 

 

High-throughput single-cell RNA-sequencing (10x Chromium) 

15,000-24,000 Lin-CD34+ cells were FACS sorted from each sample, and processed as 

described in (Psaila et al., 2020).     

10x Genomics single-cell RNA sequencing 

Demultiplexed FASTQ files were aligned to the human reference genome (GRCh38/hg38) 

using Cell Ranger software (version 3.0.1) from 10x Genomics. The Cell Ranger ‘‘count’’ 

standard pipeline was used to obtain the expression matrix of Unique Molecular Identifier 

(UMI) for each individual sample. 

Data and code availability  

All raw and processed sequencing data generated in this study have been submitted to the 

NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The data will be 

released after the official publishing of this study. The JMML and MF datasets were 

previously published and are available under accession numbers: GSE111895 and 

GSE144568 respectively.  SingCellaR open-source codes are available and maintained on 

GitHub https://github.com/supatt-lab/SingCellaR.  
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Data processing and filtering of HSPC dataset 

We used SingCellaR (https://github.com/supatt-lab/SingCellaR) to process each sample 

individually. The function ‘load_matrices_from_cellranger’ was used to read in data matrices 

from the Cell Ranger output. Cell and gene filtering was performed by assessing QC plots 

using the ‘plot_cells_annotation’ function. Cells meeting the following QC parameters were 

included in analyses (Suppl. Table S1): UMI counts > 1,000 and £ maximum UMIs; number 

of detected genes > 500 and £  maximum number of detected genes; the percentage of 

mitochondrial gene expression £ limited percentage of mitochondrial gene expression (10% 

or 20% depending on an individual sample). Genes expressed in at least 10 cells were 

included. After filtering according to these criteria, 57,489 cells passed quality control (Suppl. 

Table 1) and were included in downstream analyses.  

Data integration  

To perform data integration, the ‘SingCellaR_int’ R object was created. R object file names 

from individual samples were required as the input for the object. The function 

‘preprocess_integration’ was performed to combine all of UMIs from all samples and cluster 

together with marker gene information into a single integrated R object. Using the function 

‘get_variable_genes_by_fitting_GLM_model’ as previously described (Psaila et al., 2020), 

949 highly variable genes, after removing ribosomal and mitochondrial genes, were 

identified and used for PCA analysis of the integrated dataset. Data normalization (using 

scaled UMI counts by normalizing each library size to 10,000 and transforming to the log 

scale) and dimensional reduction were performed using the function ‘normalize_UMI’ and 

‘runPCA’, with the fast PCA analysis from the IRLBA package. To perform integration, the 

function ‘runSupervised_Harmony’ (implemented in SingCellaR) was run by using 40 

principal components (PCs) as determined by the PCA elbow plot generated using the 

‘plot_PCA_Elbowplot’ function.   
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runSupervised_Harmony function automatically groups marker genes for each cluster per 

sample and builds up a gene set database for GSEA analysis. An iterative GSEA is then 

performed to test significance level and to calculate positive enrichment scores for marker 

gene sets for each cluster by querying the marker genes identified per cluster against the 

whole gene set database. A matrix of cluster matching scores from GSEA enrichment values 

is generated and used as the input for an automated hierarchical clustering with the ‘cutree’ 

function. This can be used to estimate the number of likely matched and unmatched clusters 

from all samples. Common and unique clusters across samples are then identified from the 

hierarchical clustering tree using the ‘cutree’ function. A prior probability matrix is calculated 

for each single cell belonging to the common and unique clusters. Finally, the probability 

matrix is provided as the input ‘cluster_prior’ together with the ‘donor’ and ‘batch’ as the 

covariates for the subsequent Harmony analysis (Korsunsky et al., 2019).  

 

Benchmarking distinct integrative methods for HSPC dataset 

We performed kBET and LISI methods (Buttner et al., 2019; Korsunsky et al., 2019) on our 

HSPC dataset (Suppl. Fig. 1) to benchmark the SingCellaR integrative method against 

previously published methods for integrating datasets. To run kBET, we annotated clusters 

of HSPCs using AUCell score (Aibar et al., 2017). We selected cells with a high AUCell 

score (> 0.15) of HSC/MPP, myeloid, lymphoid, erythroid, megakaryocyte, 

eosinophil/basophil/mast and endothelial progenitor cell gene signatures (Suppl. Table 4) 

and classified them into 7 groups. Due to strong AUC cell score, indicating strong 

expression of signature genes per each selected lineage progenitor, we would expect that 

each group of cells should be aggregated well together when applied integrative methods. 

We next performed each data integration method and UMAP analysis. UMAP 2D-

coordinates for all methods were used as the input matrices for kBET analysis. kBET 

analysis was run for each group of annotated lineage progenitor cells by subsampling 1,000 

cells/group and donor information was used as the batch of interest. kBET average 
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acceptance rate per group of HSPCs was calculated and plotted for each integration method 

(Suppl. Fig. 1D). For LISI, the function “compute_lisi” was performed with the input UMAP 

2D-coordinates together with donor and annotated lineage information. iLISI and cLISI 

scores were calculated and plotted for each integration method (Suppl. Fig. 1E).  

Data visualisation with lineage signature gene sets  

After data integration, data embedding methods were performed for visualisation using 

SingCellaR. These included UMAP, force-directed graph, and diffusion map using functions 

‘runUMAP’, ‘runFA2_ForceDirectedGraph’, and ‘runDiffusionMap’. We investigated the 

expression of lineage signature gene sets superimposed on top of those embeddings. 

Lineage signature gene sets were collated by curating known canonical lineage markers 

selected from multiple published hematopoiesis datasets (Suppl. Table 3).  

 

SingCellaR calculates a lineage gene score for each cell based on the average gene 

expression of each gene set. Represented colours for gene sets can be assigned 

automatically or by user-defined colours. Transparency factors for selected colours are 

calculated from normalised expression values across cell types. SingCellaR uses ‘ggplot2’ 

functionality for adding the dynamic alpha parameter values to ‘‘geom_point’’ to control the 

transparency of colours. 

Clustering analysis, marker gene identification, and cell type annotation 

Clustering analysis was performed using the function ‘identifyClusters’ in SingCellaR with 

the integrative embeddings as the input together with the ‘cosine’ as a distant metric and 

local k-nearest neighbour (KNN) equal to 30. SingCellaR clusters cells using k-nearest 

neighbour approach implemented by a fast KNN algorithm from ‘RcppAnnoy’ package. After 

nearest neighbours are identified, the weighted graph is created with weight values 

calculated from normalised shared number of the nearest neighbours. The ‘louvain’ 
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community detection method implemented by igraph package was applied to identify 

clusters. To identify genes differentially expressed in each cluster, the function 

‘findMarkerGenes’ was performed. SingCellaR uses a standard nonparametric Wilcoxon test 

on log-transformed, normalised UMIs to compare expression level. Fisher’s exact test was 

used to compare the expressing cell frequency of each gene as previously described 

(Giustacchini et al., 2017). P-values generated from both tests were then combined using 

Fisher’s method and adjusted using the Benjamini-Hochberg (BH) correction. Genes 

expressed by each individual cluster are compared to all other clusters and differential 

genes defined as an absolute log2 fold change of  ³ 1.5 and adjusted P-value of < 0.05, with 

the fraction of expressing cell frequency of > 0.3. Differentially expressed genes were ranked 

using P-values and log2FC to select the top differential genes per cluster.  

 

To annotate clusters, the function ‘identifyGSEAPrerankedGenes’ was used to pre-rank 

genes obtained from differential gene expression analysis comparing each individual cluster 

with all other clusters. Gene ranking scores were calculated as the log2 of expression fold-

change multiplied by -log10 of the adjusted p-value. To run GSEA, the function 

‘Run_fGSEA_for_multiple_comparisons’ was performed using the fGSEA package 

(Korotkevich et al., 2019). The function ‘plot_heatmap_for_fGSEA_all_clusters’ was used to 

perform hierarchical clustering and to visualise GSEA positive enrichment scores from all 

clusters on the heatmap. This cell annotation heatmap (Fig. 1C) together with the identified 

top marker genes (Suppl. Table 2) and manual curation was used to identify cell clusters. 

Gene set enrichment analysis  

SingCellaR provides functions for GSEA analysis. These functions include: 

‘Run_fGSEA_analysis’ used to compare two groups of cells; 

‘Run_fGSEA_for_a_selected_cluster_vs_the_rest_of_clusters’ to compare any selected 

cluster against all other clusters; ‘Run_fGSEA_for_multiple_comparisons’ function to 
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performing GSEA on multiple comparisons. Curated lineage signature gene sets used here 

are listed in Suppl. Table 3. The HALLMARK gene set was downloaded from MSigDB 

(https://www.broadinstitute.org/gsea/msigdb/collections.jsp). Genes were pre-ranked using 

the function ‘identifyGSEAPrerankedGenes’. 

Lineage progenitor quantification  

AUCell (Aibar et al., 2017) was used to quantify the number of cells affiliated to each lineage 

(HSC/MPP, myeloid, lymphoid, erythroid, megakaryocyte, and eosinophil/basophil/mast) 

among all HSPCs). To run AUCell, the function ‘Build_AUCell_Rankings’ was performed 

followed by ‘Run_AUCell’ with the gene matrix transposed (GMT) file of lineage gene sets. 

We manually inspected different AUCell thresholds per each lineage. We selected cells with 

AUCell score > 0.15 for each lineage and calculated the proportion of cells in each lineage 

progenitor subset and between tissues. 

Pseudotime trajectory analysis  
 
We used Monocle3 (version: 0.2.3.0) combining with the SingCellaR results to identify 

trajectories of the entire dataset. Raw UMI count data and clustering annotations were 

extracted from SingCellaR object to build a Monocle ‘cds’ object. We first used 

‘preprocess_cds’ function to normalise the data. The UMAP and forced-directed graph 

dimensional reduction and clustering results slots were obtained from SingCellaR analyses. 

The trajectory was identified using “learn_graph” function on the UMAP reduction 

embeddings, representing paths along different lineages. “Order_cells” function was used to 

calculate pseudotime and the root node was defined using function 

“get_earliest_principal_node” on the UMAP reduction embeddings. The trajectory was 

defined from the graph plot as: 1) HSC – Ery: cl1-cl4-cl3-cl9; 2) HSC – Lym: cl1-cl7-cl6-cl8; 

3) HSC – MKE: cl1-cl4-cl13; 4) HSC – Mye: cl1-cl7-cl5-cl2. We further downsampled the 

number of cells to control for differences in numbers of cells captured from each tissue (HSC 

– Ery: 1,650 cells per tissue; HSC – Lym: 1,781 cells per tissue; HSC – MKE: 1,363 cells per 

tissue; and HSC – Mye: 2,715 cells per tissue). Selected marker genes for each lineage 

were presented in heatmaps using the ComplexHeatmap package and line plot 

using ggplot2.  
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Single-cell regulatory network inference and clustering (SCENIC) analysis 

We used pyscenic (version 0.10.4) to perform single-cell regulatory network analysis. We 

performed the analysis by following the protocol steps described in SCENIC workflow (Van 

de Sande et al., 2020). We analysed the cells corresponding to uncommitted HSC/MPP and 

main lineage progenitor sub-types described as the AUCell score of > 0.15 (Fig. 2A). We 

first run the python script ‘arboreto_with_multiprocessing.py’ using the ‘grnboost2’ method 

followed by running the ‘pyscenic’ using default parameters with the database file 

‘hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather’ and the motif information file 

‘motifs-v9-nr.hgnc-m0.001-o0.0.tbl’. The AUCell analysis was further performed using 

‘pyscenic aucell’ function with parameters ‘rank_threshold’ 5000, ‘auc_threshold’ 0.05 and 

‘nes_threshold’ 3. Identified regulons from pyscenic were further selected based on the 

average AUC score across cells > 0.02 and the number of genes in each regulon > 10. 

Differential regulons were selected using the visual inspection on the heatmap plot of 

normalised AUCell scores across tissues or lineages. 

 

FIGURE LEGENDS 

 

Figure 1. Single cell RNA-sequencing of 57,489 hematopoietic stem/progenitor cells 

(HSPCs) from five hematopoietic tissues across human ontogeny reveals 21 distinct 

cellular subsets. (A) Experimental design. Lineage-negative (Lin-) CD34+ HSPCs were 

FACS-sorted for single-cell RNA-sequencing from first trimester fetal liver (eFL), matched 

second trimester FL and fetal bone marrow (FBM), pediatric bone marrow (PBM), and adult 

bone marrow (ABM). A bar chart shows the number of cells per tissue. (B) Louvain 

community-detection clustering based on the weighted graph network Uniform Manifold 

Approximation and Projection (UMAP) of 57,489 cells identified 21 distinct hematopoietic 

progenitor populations. (C) Heatmap generated using SingCellaR’s cell-type annotation 

system showing positive gene set enrichment scores for each cluster, facilitates cluster 
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identification. X-axis represents clusters as numbered in Fig. 1B. Y-axis represents a 

curated list of hematopoietic lineage-specific gene sets (Suppl. Table 2) 

 

Figure 2. Site and developmental stage-specific changes in composition of the HSPC 

compartment. (A) Cells were classified using an AUCell score of > 0.15 for canonical 

marker genes for HSC/MPP, myeloid, lymphoid, eosinophil/basophil/mast cell, erythroid, and 

megakaryocyte progenitors. (B) The proportion of HSC/MPP and lineage progenitor subsets 

that derived from each tissue type. (C) The proportion of HSPCs from each tissue classified 

as HSC/MPP or lineage progenitors subtypes. 

 

Figure 3. Four main differentiation trajectories were identified, and onset of lineage-

affiliated transcriptional programs varied along ‘pseudotime’ between tissues. (A-C) 

Force-directed graph (FDG) showing (A) 21 Louvain clusters (B) superimposition of gene 

scores for 4 lineage gene sets (C) pseudotime score from Monocle3 analysis. Dashed 

arrows represent the four main trajectories of differentiation from HSC/MPP towards 

lymphoid, erythroid, megakaryocytic and myeloid progenitors. (D, F, H, and J) Expression of 

canonical lineage-affiliated genes along pseudotime from HSC to erythroid, megakaryocytic, 

lymphoid and myeloid trajectories for each tissue. (E, G, I, and K) Example erythroid, 

megakaryocytic, lymphoid and myeloid lineage-affiliated gene expressions along 

pseudotime for each tissue.  

 

Figure 4. Distinct activity of gene regulatory networks (GRN) underlie differences in 

lineage specification across ontogeny. (A) UMAP plots superimposed with enrichment 

scores from SCENIC analysis for regulons specifically enriched in each lineage. HSC/MPP 

(ZNF467, HOXA9, HOXB5); lymphoid (PAX5, TCF3, TBX21); myeloid (SPI1, CEBPD, 

RUNX1); erythroid-specific (HES6); mega-erythroid (STAT5, GATA1); eo/baso/mast cell 

(FEV, FOXD4L); and megakaryocyte-specific (MEF2C). (B) Heatmap showing selected 
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regulons that showed differential activity between lineages across tissues. The red boxes 

and names indicate regulons highlighted in the main manuscript. 

 

Figure 5. Uncommitted HSC/MPPs show early lineage priming and progression from 

cycling to quiescence over ontogeny, with differential GRN activity between tissues. 

(A) 13,871 cells were identified as HSC/MPP using an AUCell score > 0.15 for the HSC 

gene set) and visualised in a force-directed graph (FDG) with superimposition of (B) tissue 

of origin; (C) lineage gene set; (D) cell cycle gene expression scores and (E) quiescent gene 

expression scores. (F and G) AUCell scores for quiescence and cell cycle signature gene 

sets in a total of 6,398 HSC identified from different tissues. (H) Violin plots comparing 

AUCell scores from each selected HALLMARK gene set across tissues. (I) Differentially 

active regulons in HSC across tissues. Cells for each tissue were ranked by the quiescence 

score. 

 

Figure 6. Concordance in gene expression between Juvenile Myelomonocytic 

Leukemia (JMML) HSPCs and normal fetal HSPCs; and increased inflammatory 

signaling seen in myelofibrosis (MF) and ABM in HSPCs.  

Data was derived from JMML (n=2, total cells=19,524) and MF (n=15, total cells=19,524) 

HSPC (A) UMAP plots showing lineage progenitors as identified by AUCell score >0.15 for 

‘downsampled’ datasets to show 5,600 cells per tissue type. (B) The proportion of HSPCs 

(from all cells within each tissue), classified as HSC/MPP or lineage progenitors in JMML, 

MF and their normal counterparts. (C) Hierarchical clustering of the number of differentially 

expressed genes from pair-wise comparisons of tissues from normal ontogeny and JMML 

and MF for HSC/MPP, myeloid and erythroid compartments (adjusted p-value < 0.05, 

absolute log2FC > 1.5, and expressing cell frequency > 0.3 per tissue). (D and E) Top 

differentially expressed genes and regulons respectively, between JMML HSPCs and those 

from normal human ontogeny tissues for HSC/MPP and myeloid progenitors. (F and G) 

Comparison of top differentially expressed genes and regulons respectively, between MF 
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HSPCs and those from normal human tissues through ontogeny for HSC/MPP and myeloid, 

erythroid and megakaryocyte lineage progenitors.   

 

SUPPLEMENTAL INFORMATION  

Supplemental figures and legends (Suppl. Figs. 1-5). Compiled supplementary figures 

and legends referenced in the main text. 

Supplemental Tables 1-4. Supplemental Table 1 – sample information and cell QC; 

Supplemental Table 2 – top 30 differentially expressed genes per cluster; Supplemental 

Table 3 – gene-sets from previous studies relevant to hematopoiesis; and Supplemental 

Table 4 – gene sets mainly used in lineage scoring and AUC cell analyses in this study. 

Supplemental Table 5. A complete list of significantly differential genes across tissues. 

Supplemental Table 6. A complete list of differentially expressed genes between JMML and 

MF versus normal ontogeny in each lineage. 

Supplemental Table 7. A list of antibodies used for flow cytometry. 
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Supplemental Figure Legends 
 
 

Supplemental Figure 1. Optimal resolution of lineage progenitor clusters was 

obtained using a ‘supervised Harmony’ integration approach, implemented in 

SingCellaR. UMAP plots of selected integration methods (Seurat, Harmony and 

SingCellaR) that performed well for this HSPC dataset. Lineage signature gene 

scores for (A) myeloid, (B), erythroid and (C) eosinophil/basophil/mast progenitors 

are superimposed on the UMAP plots, with a dashed circle highlighting the cluster of 

eosinophil/basophil/mast progenitor cells that is resolved only using SingCellaR. (D 

and E) Objective measures of integration for each method (D) Boxplot of kBET 

average acceptance rate score and (E) iLISI and cLISI scores. X-axis represents 

cLISI score. Y-axis represents iLISI score. A higher kBET and iLISI score indicates 

better data integration, and accurate integration should result in a cLISI score of 1. 

 

Supplemental Figure 2. Identification of cell clusters using differentially 

expressed genes. (A) Heatmap showing relative expression of the top 8 

differentially expressed genes for each cluster. Cluster IDs are ranked from left 

(Cluster 1) to right (Cluster 21). (B) UMAP plots displaying the expression of 

canonical lineage marker genes. (C) Bubble plots showing the expression of lineage 

marker genes for each cluster. The size of the dot represents the percentage of 

expressing cell frequency. The number inside the dot is the percentage of 

expressing cells.  

 

Supplemental Figure 3. Dynamic changes in the cellular composition of HSPCs 

across tissues and differentiation trajectory analyses. UMAP plots overlaid with 

lineage gene signature scores for HSC/MPP (grey); erythroid (red); lymphoid 

(yellow); myeloid (cyan) and megakaryocyte (purple) (A) showing all cells in each 

tissue (B) showing down-sampled cells (5600 cells per tissue). (C) HSPCs 

differentiation trajectories on a diffusion map. Left panel, diffusion map with cluster ID 

information. Right panel, diffusion map with the superimposition of 5 lineages 

progenitor gene sets. Red - erythroid; yellow - lymphoid; cyan - myeloid; purple - 

megakaryocyte; green - endothelial cells. The arrows indicate the main trajectories of 

cell differentiation from HSC/MPP towards lymphoid, erythroid/megakaryocyte, and 
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myeloid differentiation. (D) Pseudotime and trajectory graph using Monocle3 

analysis. Left panel, UMAP-plot superimposed with pseudotime scale. Dark-blue 

indicates the starting state and yellow or red indicates the terminal state of the 

cellular trajectories. Right panel, UMAP-plot with clusters and identified trajectory 

paths based on the monocle analysis. 

 

Supplemental Figure 4. Dynamic changes in HSPC gene expression programs 

across human ontogeny and the trajectory analysis of selected HSC/MPPs 

across tissues. (A) The number of differentially expressed genes between tissues in 

pair-wise comparisons. (B) Heatmap of gene set enrichment scores for HALLMARK 

gene sets for the comparison of 5 selected pairs of tissues – eFL vs. FL, FL vs. FBM, 

FBM vs. PBM, FBM vs. ABM, and PBM vs. ABM. The gradient of colors represents 

the normalised enrichment score (NES) provided by GSEA. Red – gene sets 

enriched in the first tissue of the pair (positive values); blue – enrichment score for 

the second tissue of the pair (negative values). Yellow – no significant difference 

(‘ns’). (C) Selected tissue-specific genes that are highly expressed in each tissue.  

 

Supplemental Figure 5. Selection of primitive HSCs and comparison of AUCell 

scores for selected gene sets across tissues. (A) Force-directed graph trajectory 

analysis of selected HSC/MPPs across tissues following ‘down-sampling’ to 1,000 

cells per tissue. Lineage signature gene expression is superimposed on top of the 

graph. Red - erythroid; yellow - lymphoid; cyan -myeloid; purple – megakaryocyte 

progenitors. (B) Left panel, the AUCell score distribution calculated from 10 curated 

HSC genes. 6,398 cells had higher HSC score than the average (>2.5) and were 

selected for downstream analyses. Right panel, force-directed graph represents 

selected HSC (black and red cells) in the trajectory of HSC/MPP compartment. (C) 

Violin plots comparing cell cycle AUCell scores in different lineages across tissues. 

Significance level shown as obtained using a Wilcoxon test (* = P £ 0.05; ** = P £ 

0.01; *** = P £ 0.001; and ‘ns’ = not significant).  
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