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Developmental Stereo: Emergence of Disparity
Preference in Models of the Visual Cortex
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Abstract—How our brains develop disparity tuned � and �

cells and then integrate binocular disparity into 3-D perception of

the visual world is still largely a mystery. Moreover, computational

models that take into account the role of the 6-layer architecture

of the laminar cortex and temporal aspects of visual stimuli are

elusive for stereo. In this paper, we present cortex-inspired compu-

tational models that simulate the development of stereo receptive

fields, and use developed disparity sensitive neurons to estimate

binocular disparity. Not only do the results show that the use of top-

down signals in the form of supervision or temporal context greatly

improves the performance of the networks, but also results in bio-

logically compatible cortical maps—the representation of disparity

selectivity is grouped, and changes gradually along the cortex. To

our knowledge, this work is the first neuromorphic, end-to-end

model of laminar cortex that integrates temporal context to de-

velop internal representation, and generates accurate motor ac-

tions in the challenging problem of detecting disparity in binoc-

ular natural images. The networks reach a subpixel average error

in regression, and 0.90 success rate in classification, given limited

resources.

Index Terms—Binocular vision, neuromorphic modeling, spatio-
temporal, six-layer laminar cortical architecture.

I. INTRODUCTION

T
HE PAST few decades of engineering efforts to solve the

problem of stereo vision proves that the computational

challenges of binocular disparity are far from trivial. In par-

ticular, the correspondence problem is extremely challenging

considering difficulties such as featureless areas, occlusion, etc.

Furthermore, the existing engineering methods for binocular

matching are not only computationally expensive, but also hard

to integrate other visual cues to help the perception of depth. It

is important to look at the problem from a different angle—How

the brain solves the problem of binocular vision? In particular,

what are the computational mechanisms that regulate the devel-

opment of the visual nervous system, and what are the role of

gene-regulated cortical architecture and spatiotemporal aspects

of such mechanisms?

Although steropsis seems to be a spatial problem, the tem-

poral information appears to help stereopsis due to the phys-

ical continuity underlying the physicality of dynamics. Biolog-

ical agents exploit spatial and temporal continuity of the visual
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stimuli to enhance their visual perception. In the real world, ob-

jects do not come into and disappear from the field of view ran-

domly, but rather, they typically move continuously across the

field of view, given their motion is not too fast for the brain to

respond. At the pixel level, however, values are very discon-

tinuous as image patches sweep across the field of view. Our

model assumes that visual stimuli are largely spatially contin-

uous. Motivated by the cerebral cortex, it utilizes the temporal

context in the later cortical areas, including the intermediate

areas and motor output area, to guide the development of earlier

areas, [In Section II-B, (4) the activation level of the neurons

from the previous time step is used to supervise .] These later

areas are more “abstract“ than the pixel level, and thus provide

needed information as temporal context. However, how to use

such emergent information is a great challenge.

Existing methods for stereo disparity detection fall into three

categories.

1) Explicit matching: Approaches in this category detect dis-

crete features and explicitly match them across two views.

Well-known work in this category include [8], [13], and

[39].

2) Hand-designed filters: Filters are designed to compute

profile-sensitive values (e.g., Gabor filters [24] and [37],

and phase information [10] and [30]) from images and then

utilize these continuous values for feature matching. Then

an algorithm or a network maps from the matched features

to disparity output [14].

3) Network learning models: These models develop dis-

parity-selective filters (i.e., neurons) from experience,

without doing explicit matching, and map the responses to

disparity outputs (e.g., [11], [16], and [19]).

Categories (1) and (2) employ explicit left and right match

through either an explicit search or implicit gradient-based

search. They are generally called explicit matching approaches.

Category (1) fails to perform well in image regions with weak

texture or when a patch of the image is missing in either of left

or right images (i.e., occlusion), as it requires searching for the

best match using texture cues. Category (2) methods have the

potentail advantage of detecting other visual information such

as edges and shading, which can be used in an integrated visual

recognition system. However, this category suffers from inability

to adapt to experience—hand-designed filters cannot possibly

capture the statistics of any new environment, regardless of how

complicated their design is. Methods in Category (3) not only

develop filters that integrate other visual information, but also

adapt to changing visual environment. Moreover, in contrast

with category (2), a unified neuromorphic network learns to deal

with both feature matching and disparity computation.
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Among the different stages of the explicit matching ap-

proaches, the correspondence problem is believed to be the

most challenging step; i.e., the problem of matching each pixel

of one image to a pixel in the other [22]. Solutions to the

correspondence problem have been explored using area-based,

feature-based, pixel-based, and phase-based as well as Bayesian

approaches [8]. While those approaches have obtained limited

success in special problems, it is becoming increasingly clear

that they are not robust against wide variations in object surface

properties and lighting conditions [10].

The network learning approaches in category (3) do not

require a match between the left and right elements. Instead,

the binocular stimuli with a specific disparity are matched with

binocular neurons in the form of neuronal responses. Different

neurons have developed different preferred patterns of weights,

each pattern indicating the spatial pattern of the left and right

receptive fields. Thus, the response of a neuron indicates a

degree of match of two receptive fields, left and right. In other

words, both texture and binocular disparity are measured by

a neuronal response—a great advantage for integration of

binocular disparity and spatial pattern recognition.

However, existing networks that have been applied to binoc-

ular stimuli are either bottom-up self-organizing maps (SOM)

type or error-back propagation type. There has been no biolog-

ical evidence to support error back-propagation, but the Heb-

bian type of learning has been supported by the Spike-time de-

pendent plasticity (STDP) [7]. SOM type of networks that use

both top-down and bottom-up inputs has not be studied until re-

cently [26], [27], [31], [33]. In this paper we show that top-down

connections that carry supervisory disparity information (e.g.,

when a monkey reaches an apple) enable neurons to self-orga-

nize according to not only bottom-up input, but also supervised

disparity information. Consequently, the neurons that are tuned

to similar disparities are grouped in nearby areas in the neural

plane, forming what is called topographic class maps, a concept

first discovered in 2007 [21]. Further, we experimentally show

that such a disparity based internal topographic grouping leads

to improved disparity classification.

Neurophysiological studies (e.g., [12] and [3] ) have shown

that the primary visual cortex in macaque monkeys and cats has

a laminar structure with a local circuitry similar to our model in

Fig. 3. However, a computational model that explains how this

laminar architecture contributes to classification and regression

was unknown. LAMINART [23] presented a schematic model

of the 6-layer circuitry, accompanied with simulation results that

explained how top-down attentional enhancement in can lat-

erally propagate along a traced curve, and also how contrast-sen-

sitive perceptual grouping is carried out in . Weng et al. 2007

[15] reported performance of the laminar cortical architecture

for classification and recognition, and Weng et al. 2008 [33] re-

ported the performance advantages of the laminar architecture

(paired layers) over a uniform neural area. Franz and Triesch

2007 [11] studied the development of disparity tuning in toy ob-

jects data using an artificial neural network based on back-prop-

agation and reinforcement learning. They reported a 90% cor-

rect recognition rate for 11 classes of disparity. In Solgi and

Weng 2008 [28], a multilayer in-place learning network was

used to detect binocular disparities that were discretized into

classes of 4 pixels intervals from image rows of 20 pixels wide.

This classification scheme does not fit well for higher accuracy

needs, as a misclassification between disparity class and

class 0 is very different from that between a class and class 4.

The work presented here also investigates the more challenging

problem of regression with subpixel precision, in contrast with

the prior scheme of classification in Solgi and Weng 2008 [28].

For the first time, we present a spatio-temporal regression

model of the laminar architecture of the cortex for stereo that

is able to perform competitively on the difficult task of stereo

disparity detection in natural images with subpixel precision.

The model of the intercortical connections we present here was

informed by the work of Felleman and Van Essen [9], and that

for the intracortical connections was informed by the work of

Callaway [2] and Wiser and Callaway [38], as well as others.

Luciw and Weng 2008 [20], presented a model for top-down

context signals in spatio-temporal object recognition problems.

Similar to their work, in this paper the emergent recursive top-

down context is provided from the response pattern of the motor

cortex at the previous time to the feature detection cortex at

the current time. Biologically plausible networks (using Heb-

bian learning instead of error back-propagation) that use both

bottom-up and top-down inputs with engineering-grade perfor-

mance evaluation have not been studied until recently [15], [28],

[33].

It has been known that orientation preference usually changes

smoothly along the cortex [1]. Chen et al. [4] has recently dis-

covered that the same pattern applies to the disparity selectivity

maps in monkey . Our model shows that defining disparity

detection as a regression problem (as opposed to classification)

helps to form similar patterns in topographic maps; disparity se-

lectivity of neurons changes smoothly along the neural plane.

In summary, the work here is novel in the following aspects:

1) the first laminar model (paired layers in each area) for stereo;

2) the first utilization of temporal signals in a laminar model

for stereo; 3) the first subpixel precision among the network

learning models for stereo. Applying the novelties mentioned

in 1) and 2) showed surprisingly drastic accuracy differences in

performance. 4) The first study of smoothly changing disparity

sensitivity map; 5) theoretical analysis that supports and pro-

vides insights into such performance differences.

One may question the suitability of supervised learning for

autonomous mental development (AMD). However, the AMD

literature goes beyond the traditional classification of machine

learning types, and divides all the machine learning methods

into eight categories [36]. The learning method used in this work

falls in Type 2 of the classification proposed in [36], and there-

fore, fits the autonomous mental development paradigm.

The extensive research literature in psychology supports the

notion of developing visual capabilities via touch and interac-

tion with the environment, also known as associative learning

(e.g., [29]). Here is a specific example of supervised learning

via touch in disparity detection learning: Assume that a monkey

sees a banana and touches it at the same time. The distance that

the monkey has extended its hand to touch the banana serves

as supervisory signal to guide learning the disparity of the ba-

nana in its visual field. In general, any previously categorized

(known) stimulus (e.g., length of monkey’s hand) can supervise
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any unknown stimulus (e.g., disparity of the banana), given they

are presented at the same time (associative learning).

In a nutshell, the proposed stereoscopic network develops, in

the feature detection cortex, a set of binocular features (tem-

plates for inner-product matching; see Fig. 9). These features

are both profile-specific and disparity-specific. The best match

from a binocular input means a match for both profile and dis-

parity. The same mechanisms were used to develop the motor

cortex neurons; as long as the top-matched neurons in the fea-

ture detection cortex and the corresponding motor cortex neu-

rons fire together, they are connected (associated).

In the remainder of the paper, we first introduce the ar-

chitecture of the networks in Section II. Section III provides

analysis. Next, the implementation and results are presented

in Section IV. Finally, we provide some predictions and con-

cluding remarks in Sections V and VI.

II. NETWORK ARCHITECTURE AND OPERATION

The networks applied in this paper are extensions of the pre-

vious models of multilayer in-place learning network (MILN)

[33]. To comply with the principles of AMD [34], these net-

works autonomously develop features of the presented input,

and no hand-designed feature detection is needed.

To investigate the effects of supervisory top-down projec-

tions, temporal context, and laminar architecture, we study two

types of networks: single-layer architecture for classification

and 6-layer architecture for regression. An overall sketch of the

networks is illustrated in Fig. 1. In this particular study, we deal

with networks consisting of a sensory array (marked as Input in

Fig. 1), a stereo feature-detection cortex, which may be a single

layer of neurons or have a 6-layer architecture inspired by the

laminar architecture of human cortex, and a motor cortex that

functions as a regressor or a classifier.

A. Single-Layer Architecture

In the single layer architecture, the feature-detection cortex

simply consists of a grid of neurons that is globally connected

to both the motor cortex and input. It performs the following 5

steps to develop binocular receptive fields.

1) Fetching input in Layer 1 and imposing supervision sig-

nals (if any) in motor cortex: When the network is being

trained, is imposed originating from outside (e.g., by

a teacher). In a classification problem, there are motor

cortex neurons and possible disparity classes. The true

class being viewed is known by the teacher, who commu-

nicates this to the system. Through an internal process, the

firing rate of the neuron corresponding to the true class is

set to one, and all others set to zero.

2) Preresponse: Neuron on the feature-detection cortex

computes its precompetitive response –called prere-

sponse, linearly from the bottom-up part and top-down part

(1)

Fig. 1. (a). The binocular network single-layer architecture for classification.
(b). The binocular network 6-layer architecture for regression. Input to the net-
works (on the left) consists of a pair of rows taken from slightly different po-
sitions (depending on the degree of disparity) of a set of natural images. Two
image patches are extracted from the same image position in the left and right
image planes. Feature-detection cortex neurons self-organize from bottom-up
and top-down signals. Each motor neuron is marked by the disparity it is repre-
sentative for (ranging from�� to ��). Each circle is a neuron. Activation level
of the neurons is shown by the darkness of the circles: the higher the activa-
tion, the darker the neurons are depicted. The diagram shows an instance of the
network during training phase when the disparity of the presented input is ��.
In (a) the stereo feature-detection cortex is a single layer of Lobe Component
Analysis (LCA) [35] neurons. A rectangular kernel sets the activation of only
Disparity�� neuron to 1 and all the others to 0. In (b), the stereo feature-detec-
tion cortex has a 6-layer laminar architecture (see Fig. 3). A triangular kernel,
centered at the neuron of Disparity��, imposes the activation level of Disparity
�� neuron and four of its neighbors to positive values and all the others to 0. The
lines between neurons in the motor cortex and feature detection cortex represent
two-way synaptic connections. The denser the line, the stronger the connection.
(a) Single-layer architecture. (b) 6-layer architecture.

where denotes time, and are this

neuron’s bottom-up and top-down weight vectors, respec-

tively, is the bottom-up input vector to Layer 1,

and is the firing rates of motor cortex neurons

(supervised during training, and not active during testing).

The relative top-down coefficient is discussed in detail

later. We do not utilize linear or noninear function , such

as a sigmoid, on firing rate in this paper.

3) Competition Via Lateral Inhibition: A neuron’s prere-

sponse is used for intralevel competition. neurons with

the highest preresponse win, and the others are inhibited.

If is the ranking of the preresponse of

the ’th neuron (with the highest active neuron ranked as

0), we have , where

if

if
(2)
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Fig. 2. Examples of input, which consists of two rows of 20 pixels each. The
top row is from the left view and the bottom row is from the right view. The
numbers on the left side of the bars exhibit the amount of shift/disparity.

4) Smoothing Via Lateral Excitation: Lateral excitation

means that when a neuron fires, the nearby neurons in its

local area are more likely to fire. This leads to a smoother

representational map. The topographic map can be real-

ized by not only considering a nonzero-responding neuron

as a winner, but also its 3 3 neighbors, which are the

neurons with the shortest distances from (less than two).

5) Hebbian Updating With LCA: After inhibition, the top-

winner neuron and its 3 3 neighbors are allowed to fire

and update their synapses. We use an updating technique

called lobe component analysis [35]. See Appendix A for

details.

The motor cortex neurons develop using the same five steps

as the above, but there is not top-down input, so (1) does not

have a top-down part. The response is computed in the

same way otherwise, with its own parameter controlling the

number of noninhibited neurons.

B. 6-Layer Cortical Architecture

The architecture of the feature-detection cortex of the 6-layer

architecture is sketched in Fig. 3. We use no hand-designed fea-

ture detector (e.g., Laplacian of Gaussian, Gabor filters, etc.),

as it would be against the paradigm of AMD [34]. The five

layers in the stereo feature detection cortex are matched in func-

tional-assistant pairs (referred as feedforward-feedback pairs in

[3]). assists (called assistant layer for ) and assists

and .

Layer is globally connected to the input, meaning that

each neuron in has a connection to every pixel in the input

image. All the two-way connections between and , and

between , , and , and also all the one-way connections

from to are one-to-one and constant. In other words, each

neuron in one layer is connected to only one neuron in the other

layer at the same position in neural plane coordinates, and the

weight of the connections is fixed to 1. Finally, neurons in the

motor cortex are globally and bidirectionally connected to those

in . There are no connections from or to . The stereo

feature-detection cortex takes a pair of stereo rows from the sen-

sory input array. Then it runs the following developmental al-

gorithm.

Imposing supervision signals (if any) in motor cortex:

During developmental training phase, an external teacher

mechanism sets the activation levels of the motor cortex

according to the input. If is the neuron representative

for the disparity of the currently presented input, then the

activation level of and its neighbors are set according to

Fig. 3. Architecture diagram of the 6-layer laminar cortex studied in this paper,
which also introduces some notation. The numbers in circles are the steps of the
algorithm described in Section II. See the text for notations. Parts depicted in
brown (gray in black and white copies) are not implemented in our computer
simulation.

a triangular kernel centered on . The activation level of

all the other neurons is set to zero

if

if
(3)

where denotes Motor Cortex, is the distance be-

tween neuron and neuron in the neural plane, and

is the radius of the triangular kernel.

Then the activation level of motor neurons from the pre-

vious time step, , is projected onto neurons

via top-down connections.

(4)

Preresponse in and : Neurons in ( ) compute

their preresponse (response prior to competition) solely

based on their bottom-up(top-down) input. They use the

same equation as in (1), except only has bottom-up and

only has top-down

(5)
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and

(6)

and provide modulatory signals to , , and

– and receive the firing pattern of , , and

, respectively, via their one-to-one connections. Then

they send modulatory signals back to their paired layers,

which will enable the functional layers to do long-range

lateral inhibition in the next step.

Since the LCA algorithm already incorporates the regula-

tory mechanisms (i.e., lateral inhibition and excitation) in

the functional layers ( , , and ), assistant layers (

and ) do not have “actual” neurons in our implementa-

tion. They are modeled only to explain the important role

of and in the cortical architecture: providing signals

to regulate lateral interactions in , , and [3].

Response in and : Provided by feedback signals

from , the neurons in internally compete via lateral

inhibition. The mechanism for inhibition is the same as

described in Step 3 of single-layer architecture. The same

mechanism concurrently happens in assisted by

Response in : Each neuron, in receives its

bottom-up input from one-to-one connection with the

corresponding neuron in [i.e., ]

and its top-down input from one-to-one connection with

the corresponding neuron in [i.e, ].

Then it applies the following formula to merge bottom-up

and top-down information and compute its response

(7)

where is the relative top-down coefficient. We will dis-

cuss the effect of this parameter in detail in Section IV-B.I.

6a. Response of Motor Neurons in Testing: The acti-

vation level of the motor neurons is not imposed during

testing, rather it is computed utilizing the output of fea-

ture-detection cortex, and used as context information in

the next time step. The neurons take their input from

[i.e., ]. Then, they compute their re-

sponse using the same equation as in (5), and laterally com-

pete. The response of the winner neurons is scaled using the

same algorithm as in (2) (with a different for the motor

layer), and the response of the rest of the neurons will be

suppressed to zero. The output of the motor layer is the

response weighted average of the disparity of the winner

neurons

disparity (8)

where is the disparity level that the winner neuron is

representative for.

6b. Hebbian Updating with LCA in Training: The top

winner neurons in and motor cortex and also their

neighbors in neural plane (excited by 3 3 short-range

lateral excitatory connections) update their bottom-up

connection weights. Lobe component analysis (LCA) [35]

is used as the updating rule. See Appendix A for details.

Afterwards, the motor cortex bottom-up weights are directly

copied to top-down weights. This is another one of the

deliberate simplifications we have applied to make this model

faster and less computationally expensive at this stage. The

LCA theory, as well as our experimental results, show that

neurons can successfully develop top-down and bottom-up

weights independently. However, it takes more computation

and training time. Our future work models the top-down and

bottom-up weights updating independently.

III. ANALYSIS

A. Elongated Input Fields Using Top-Down

The neighborhood of the input space to which a neuron is

tuned (the neuron wins given input from that neighborhood) is

called the spatial input field1 of that neuron, denoted by

. We assume that for each neuron the subspace has

a uniform distribution2 along any direction (axis) with mean

value and standard deviation . The ’th element of the

input vector is denoted by .

Proposition 1: The higher the variation of data along a direc-

tion in the input field of a neuron, the less is the contribution of

that direction of input to the neuron’s chance to win in lateral

competition.

According to the principles of LCA learning [32], after devel-

opment each neuron is tuned to the mean value of its input

field3, , along any direction . Therefore, the average de-

viation of input from the neurons tuned weight is for any

direction . It is evident that the larger this deviation is, the

less it is statistically probable that the input matches with the

neuron’s tuned weight along that direction, which in turn im-

plies that the less is the contribution of on the neuron’s final

chance to win in lateral competition with other neurons in the

same layer.

Proposition 2: Top-down connections help neurons develop

input fields with higher variation along the irrelevant dimen-

sions of input (elongated input fields).

Given uniform distribution in input data, the neurons always

develop in such a way that input space is divided equally among

their input fields, in a manner similar to Voronoi diagrams. In

other words, they develop semi-isomorphic input fields. There-

fore, we expect that

(9)

for any neuron , and directions and along the uniform

distribution manifold. However, when the neurons develop

using top-down input, the projection of their input field on the

1a plot of the relationship between position in the input field and neural re-
sponse [6]. It is also referred to as input field profile.

2which is a reasonable assumption given the data is patches from natural im-
ages.

3from now on, wherever we refer to “input field” we mean “input field profile”
or equivalently “spatial input field.”
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Fig. 4. Each circle represents a neuron, and the shade of circles represents the
degree of disparity the neuron is tuned to. The areas shown around neurons
are the input fields of neurons. (a) The quantization of input space by neurons
without top-down input. The input fields of neurons has the same amount of
variation in either of directions relevant and irrelevant input (shown as a square
for the sake of visualization simplicity, should be Voronoi diagrams). (b) The
quantization of input space by neurons with top-down input. For simplicity we
assume the there is a linear relation between relevant part of bottom-up input,
� , and the top-down input, � . The input fields of the neurons are still iso-
morphic (shown as squares) on the input manifold. However, the projection of
the input fields on the bottom-up space is no longer isomorphic, but elongated
along the irrelevant axis, � .

bottom-up input space is not isomorphic anymore. Instead,

the bottom-up input field of the neuron is elongated along

the direction of irrelevant input (See Fig. 4). Assuming linear

dependence of on in Fig. 4), we have

(10)

where respectively represents any irrelevant and rele-

vant dimensions of the bottom-up input, and and are con-

stants. According to the triangle similarity (see Fig. 4), when we

project the input space onto bottom-up space, the constant is

a function of the ratio of the range of top-down input, , to the

bottom-up input,

(11)

Fig. 5. Top-down connections enable neurons to pick up relevant receptive
fields. If a neuron is supervised by the top-down connections to detect a par-
ticular disparity �, the irrelevant subspace includes those areas where object
images do not overlap, i.e., � and � . The first subindex indicates whether
it is the irrelevant or relevant part of the input space (� and � respectively), and
the second subindex shows whether it is from the left view or right view (� and
� respectively).

where any element of the bottom-up input vector, , is confined

to , and any element of the top-down input vector,

, is confined to for any direction . Hence,

(12)

4. The value of is a function of relative top-down coefficient, ,

in (1), and also the ratio of the number of relevant and irrelevant

dimensions in input. In the settings we used in this paper, an

estimation of is as follows

(13)

where and are the average5 number of dimen-

sions (number of elements) in the bottom-up and top-down input

vectors. Therefore, the following inequality always holds

(14)

Equations (10), (12), and (14) together imply that

(15)

which is the variation of input fields of the neurons is higher

along the irrelevant dimensions, and the reasoning is complete.

Combining Proposition 1 and Proposition 2, we conclude

that:

Theorem 1: As a result of top-down connections, neurons

autonomously develop input fields in which they are relatively

less sensitive to irrelevant parts of the input.

B. Top-Down Connections Help Recruit Neurons More

Efficiently

According to the rules of in-place learning [31], neurons don’t

know whether their inputs are from bottom-up or top-down, nei-

ther do they know where they are in the cortical architecture.

Each neuron can be thought as an autonomous agent that learns

on its own without the help of any controlling mechanism from

4� �
�
� given � � 	 


5dimensions change according to degree of disparity (see Fig. 5).
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Fig. 6. The deviation of samples along any direction in the input space recruits neurons along this direction. (a) The subspace of relevant information has smaller
variance than the irrelevant information. Neurons spread more along the direction of irrelevant subspace. In other words, more neurons characterize the values in
the irrelevant space (e.g., 5 neurons per unit distance versus 2 per unit distance). (b) Scale the relevant input by a factor of 2, increasing the standard deviation by
a factor of two. Then, neurons spread in both direction with similar densities. (c) Further scale down the irrelevant input, enabling neurons to spread exclusively
along the relevant direction (i.e., invariant to irrelevant direction).

outside. Adding top-down connections to a neuron increases its

input dimensionality from to where

(16)

where is the Cartesian product operator meaning that the new

space includes inputs from both bottom-up and top-down

input spaces. and are respectively bottom-up and top-down

input spaces, defined as the following

(17)

(18)

In general, bottom-up input space of each neuron is com-

posed of the relevant subspace , the part of input space that is

relevant to the motor output, and irrelevant subspace , the part

of input space that is not relevant to the the motor output

(19)

It is evident that the top-down input from the space is rel-

evant to the output. Thus, we write

(20)

representing that when top-down input is present the new

relevant subspace consists of both subspaces and . Besides,

the top-down inputs are relatively very variant compared to

bottom-up input, since during supervision each value is set

to either zero or a nonzero value. Therefore, the following

property holds the following.

1) Property 1: Adding top-down signals to a neuron in-

creases the dimensionality and variance of its relevant input

subspace.

Furthermore, the following property is true given any distri-

bution of input.

2) Property 2: Neurons are more recruited along the direc-

tion of higher variation in input space.

A rigorous mathematical proof of this property is beyond the

scope of this paper, however, an intuitive illustration is given in

Fig. 6.

Combining Properties 1 and 2, we conclude that:

3) Property 3: Adding top-down connections to neurons re-

sults in the recruitment of the neurons more along the direction

of relevant input subspace and hence improves the performance

of the network.

Even if the top-down signals are not available during testing

(in case we don’t use context signals during testing), they have

already helped neurons tune along the direction of relevant input

subspace.

To sum up, we argued that the top-down signals help improve

the network performance by increasing the variance of the input

space along the direction of relevant input space.

C. Why Use 6-Layer Architecture?

In this section, we analytically investigate why and how the

6-layer laminar architecture outperforms the single-layer archi-

tecture model. Fig. 7 compares the algorithms by which the ac-

tivation level of the neurons in single-layer and 6-layers archi-

tectures is computed. In single-layer architecture (the top row in

Fig. 7), the top-down and bottom-up energies are first computed

and proportionally added according to (21)

(21)

(22)

The notation here is consistent with those in (5), (6), and (7)6.

In most real world sensory data, such as stereo pairs in our case,

the bottom-up sensory vector [ in (22)] is significantly more

6Except we dropped the time and layer ID components, for the sake of sim-
plicity.
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Fig. 7. The mechanisms of neuron winner selection (via lateral inhibition) in single-layer and 6-layer architectures. The maps are taken from a snap-shot of the
20� 20 neurons in the networks performing on real data. Each small square projects the value for a neuron in that particular position [black(white): minimum(max-
imum) values]. The top row shows the steps in the single-layer architecture, and the bottom row shows the steps for the 6-layer architecture (which shares some
steps with the single-layer architecture). represents the operation of taking weighted average of two vectors [similar to (7)].

uniform than the top-down supervision/context vector7. In the

case of binocular disparity detection, the input pair of images

is often featureless with similar intensities for the majority of

pixels, while the top-down context/supervision vector is rela-

tively more variant. As a result we have

(23)

where and are two random variables that can get any of

the values and , respectively. Here, we show that as

a result of the lack of variation in bottom-up stimuli in such a

single-layer architecture, activation level of the feature detection

neurons is mostly determined by only top-down energy and the

bottom-up energy is almost discarded. Obviously, this greatly

reduces the performance of the network, as the top-down context

signals are misleading when the input to the network at time is

considerably different from the input at time . We call this

effect “ hallucination”.

Let us define where is the mean value

of the elements in (scalar value) and is the unit matrix of

the same size as . Also, in the same manner,

and . Since is only a constant term

different from , we have

(24)

which is, the rank of each element in , , is the same

as the rank of the corresponding element in , . In

addition, the rank of each element is

mostly determined by its top-down component, . The reason

is because (23) induces the absolute value of the top-down com-

ponent for most of the neurons is much greater than the absolute

7Variance of the elements of the bottom-up sensory vector [� in (22)] is
significantly lower than variance of the elements of the top-down supervision/
context vector [� in (22)].

value of the bottom-up component, i.e., . Hence,

the ranking of neurons’ activation is largely effected only by

their top-down component, and the reasoning is complete.

On the other hand, in the case of 6-layer architecture (the

bottom row in Fig. 7), the bottom-up and top-down energies

are ranked separately in and , respectively, before they

get mixed and compete again to decide the winner neurons in

. Therefore, as a result of separation of bottom-up and top-

down energies in different laminar layers, the 6-layer architec-

ture manages to out-perform the single-layer architecture, spe-

cially when the imperfect context top-down signals are active

(as opposed to supervision top-down signals which are always

perfect).

D. Recovery From Hallucination

Fig. 8 is an intuitive illustration of how ranking top-down

and bottom-up energy separately, as done in the 6-layer laminar

architecture, will lead to recovery from a hallucination state,

while the single layer architecture cannot recover. This analysis

is consistent with the results presented in Fig. 13.

In Fig. 8, the input space of neurons is shown on the two

axes; top-down input is represented by the horizontal axis, and

bottom-up input is represented by the vertical axis. The input

signals to the networks are depicted in filled curves along the

axes. Distribution of the two classes and are shown in

rounded rectangles which are wider along the direction of the

top-down input since, as discussed earlier in Section III-C, top-

down input is more variant than the bottom-up which results in

recruitment of neurons more along the top-down direction ac-

cording to Property 2. The two classes are shown to be linearly

separable8 along the direction of top-down input, but not along

the bottom-up input, because top-down signals are always rel-

evant during training. We assume that only top 2 neurons fire

(e.g., ).

8Shown linearly separable only for the sake of illustration simplicity in the
figures.
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Fig. 8. Schematic illustration of how 6-layer architecture, as opposed to single-layer architecture, makes recovery possible. A sample from class � is given to
the network during testing (after the network is developed) while the context top-down signals are related to class � [wrong top-down signals depicted in red
(darker) in the figure] . This causes the input to the neurons to be considered as a malicious (wrong) input [denoted by red (darker) stars] and lie out of the input
distributions. This figure illustrates the state of the networks after receiving such an input. (a) Single-layer architecture. At time �, two closest neurons to the input
have the highest preresponses (� � �). They win and fire. The winner neurons cause the top-down context input to slightly change/adapt to their top-down values.
However, this change is not beneficial as the top-down component is still wrong. Therefore, at time � � � the input will still be classified as class �, which is
wrong. (b) In a 6-layer architecture, neurons in �� compete for bottom-up energy and two vertically closest neurons to the input have the highest preresponse and
win. In the same manner, two horizontally closest neurons to the input in �� have the highest preresponse and win. Then when the preresponse of neurons in �� is
computed it is very probable that some neurons from the correct class� have high preresponses and win in the next step (1st row of (b) far right graph). As a result,
top-down input will have a right component as well. Because of this right component of the top-down signal, at the next time step ���, the network receives a right
input [shown by light star in the 2nd row of (b) far left graph] besides the wrong input. Therefore, we see that one of the final winner neurons is in the correct class
�. At the next time step �� � the network recovers to the state where the top-down signals are right again. (a) Single-layer architecture. (b) 6-layer architecture.

In a single-layer architecture [Fig. 8(a))], given an input with

wrong top-down component of class while the input actu-

ally belongs to class (e.g., when context is unrelated to the

bottom-up input), the network will be trapped in a hallucination

state, because the high variation of the top-down signal leaves a

very small chance for the input to lie close to neurons in class

. Fig. 8(a) illustrates that having a similar bottom-up input at

time (according to spatial continuity of the input) will not

change the situation.

On the other hand, in a 6-layer architecture, the neurons com-

pete for top-down energy (in ) and bottom-up energy (in )

separately. In the first row, far left plot of Fig. 8(b) two neu-

rons in class have high preresponses because of the wrong

(misleading) top-down input, and two other neurons in class

have high preresponses because of the right (correct) bottom-up

input. As a result, there is a high chance that there are winners

among the class neurons. As the new sample comes in at time

(with the same or very similar bottom-up component due

to spatial continuity of input), it is expected that only neurons

in the correct class win as both their bottom-up and top-down

component are closer to the input. Finally the network recovers

in the far right plot in Fig. 8(b) as both the winner neurons are

from the correct class , and the top-down input will be right

from then on.

IV. EXPERIMENTS AND RESULTS

The results of the experiments carried out using the models

discussed in the previous sections are presented here. The binoc-

ular disparity detection problem was formulated once as a clas-

sification problem, and then as a regression problem.

A. Classification

The input to the network is a pair of left and right rows,

each 20 pixels wide. The image-rows were extracted randomly

from 13 natural images (available from http://www.cis.hut.fi/

projects/ica/imageica/). The right-view row position is shifted

by , , 0, 4, 8 pixels, respectively, from the left-view row,

resulting in 5 disparity classes. Fig. 2 shows some sample inputs.

There were some image regions where texture is weak, which

may cause difficulties in disparity classification, but we did not

exclude them. During training the network was randomly fed

with samples from different classes of disparity. The developed

filters in Layer 2 are shown in Fig. 9.
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Fig. 9. Bottom-up weights of 40� 40 neurons in feature-detection cortex using
top-down connections. Connections of each neurons are depicted in 2 rows of
each 20 pixels wide. The top row shows the weight of connections to the left
image, and the bottom row shows the weight of connections to the right image.

Fig. 10. The recognition rate versus the number of training samples. The per-
formance of the network was tested with 1000 testing inputs after each block of
1000 training samples.

1) The Effect of Top-Down Projection: As we see in Fig. 10,

adding top-down projection signals improves the classification

rate significantly. It can be seen that when ( is the

number of neurons allowed to fire in each layer) for the top- up-

dating rule, the correct classification rate is higher early on. This

is expected as no feature detector can match the input vector per-

fectly. With more neurons allowed to fire, each input is projected

onto more feature detectors. The population coding gives richer

information about the input, and thus, also the disparity. When

Fig. 11. The class probability of the 40� 40 neurons of the feature-detection
cortex. (a) Top-down connections are active (� � ���) during development.
(b) Top-down connections are not active (� � �) during development.

more training samples are learned, the top-1 method catches up

with the top-50 method.

2) Topographic Class Maps: As we see in Fig. 11, supervi-

sory information conveyed by top-down connections resulted

in topographically class-partitioned feature detectors in the

neuronal space, similar to the network trained for object recog-

nition [21]. Since the input to a neuron in feature-detection

layer has two parts, the iconic input and the abstract (e.g.,

class) input , the resulting internal representation in fea-

ture-detection layer is iconic-abstract. It is grossly organized

by class regions, but within region it is organized by iconic

input information. However, these two types of information

are not isolated – they are considered jointly by neuronal

self-organization.

To measure the purity of the neurons responding to different

classes of disparity, we computed the entropy of the neurons as

follows

(25)
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Fig. 12. The effect of top-down projection on the purity of the neurons and the
performance of the network. Increasing � in (1) results in purer neurons and
better performance.

where is the number of classes and is defined as

(26)

where is the neuron, represents class , and is the

frequency for the neuron to respond to the class .

Fig. 12 shows that the topographic representation enabled by

the top-down projections generalizes better and increases the

neurons’ purity significantly during training and testing.

B. Regression

From a set of natural images (available from http://www.

cis.hut.fi/projects/ica/imageica/), 7 images were randomly se-

lected, 5 of them were randomly chosen for training and 2 for

testing. A pair of rows, each 20 pixels wide, were extracted

from slightly different positions in the images. The right-view

row was shifted by pixels

from the left-view row, resulting in 17 disparity degrees. In each

training epoch, for each degree of disparity, 50 bspatially con-

tinuous samples were taken from each of the 5 training images.

Therefore, there was training samples in

each epoch. For testing, 100 spatially continuous samples were

taken from each of the 2 testing images (disjoint test), resulting

in testing samples in each epoch.

We trained networks with 40 40 neurons in each of ,

and layers of the stereo feature-detection cortex. The

parameter (the number of neurons allowed to fire in each layer)

was set to 100 for the stereo feature-detection cortex, and 5 for

the motor cortex. We set in (3) and in (7) for all

of the experiments, unless otherwise is stated.

1) The Advantage of Spatio-Temporal 6-Layer Architecture:

Fig. 13 shows that applying top-down context signals in single-

layer architecture (traditional MILN networks [33]), increases

the error rate up to over 5 pixels (we intentionally set the relative

top-down coefficient, , as low as 0.15 in this case, otherwise

the error rate would be around chance level). As discussed in

Section III, this observation is due the absolute dominance of

Fig. 13. How temporal context signals and 6-layer architecture improve the
performance.

Fig. 14. The effect of relative top-down coefficient, �, on performance in dis-
joint recognition test on randomly selected training data.

misleading top-down context signals provided complex input

(natural images in this study). On the other hand, context sig-

nals reduce the error rate of the network to a subpixel level in

6-layer architecture networks. This result shows the important

role of assistant layers (i.e., and ) in the laminar cortex to

modulate the top-down and bottom-up energies received at the

cortex before mixing them.

For comparison, we implemented two versions of SOM up-

dating rules, Euclidean SOM, and dot-product SOM [18]. With

the same amount of resources, the 6-layer architecture outper-

formed both versions of SOM by as much as at least 3 times

lower error rate.

In another experiment, we studied the effect of relative

top-down coefficient . Different networks were trained with

more than 40 thousand random training samples (as opposed

to training with epochs). Fig. 14 shows the effect of context

parameter, , in disjoint testing. It can be seen that the root
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Fig. 15. (a) Map of neurons in � � of macaque monkeys evoked by stimuli with seven different disparities. The position of the two crosses are constant through all
the images marked as (B)-(H). Adapted from Chen et al. 2008 [4] (b) Disparity-probability vectors of �� neurons for different disparities when � � �. Disparity-
probability vector for each disparity is a ����� � ���� dimensional vector containing the probability of neurons to fire for that particular disparity [black (white):
minimum (maximum) probability]. It can be seen that these maps resemble those from the neurophysiological study presented in (a). (c,e). Disparity-probability
maps in �� where � � � in (c) and � � � (e). For each neuron, the largest disparity-probability (the disparity for which the neuron is most probable to fire) is
shown by the color corresponding to that particular disparity. (d,f). Cross-correlation of disparity-probability where � � � in (d) and � � � in (f). Higher value
of cross-correlation means higher similarity between two vectors, and hence more probable that neurons fire together for the corresponding classes.

mean square error of disparity detection reaches to around 0.7

pixels when . We believe that in natural visual systems,

the ratio of contribution of top-down temporal signals ( in our

model) is tuned by evolution.

2) Smoothly Changing Receptive Fields: In two separate ex-

periments, we studied the topographic maps formed in .

Experiment A – : As depicted in Fig. 15(a), the

disparity-probability vectors for neurons tuned to close-by

disparities are similar; neurons tuned to close-by disparities

are more likely to fire together. Equivalently, a neuron in

the stereo feature-detection cortex is not tuned to only one

exact disparity, but to a disparity range with a Gaussian-like

probability for different disparities (e.g., neuron could fire

for disparities , , , , with probabilities 0.1, 0.3,

0.7, 0.3, 0.1, respectively). This fuzziness in neuron’s disparity

sensitivity is caused by smoothly changing motor initiated

top-down signals [ in (3)] during training. Fig. 15(b)

shows this effect on topographic maps; having causes
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the regions sensitive to close-by disparities quite often reside

next to each other and change gradually in neural plane [in

many areas in Fig. 15(b) the colors change smoothly from

dark blue to red].

Experiment B – : However, if we define disparity

detection as a classification problem, and set in (3) (only

one neuron active in motor layer), then there is no smoothness

in the change of the disparity sensitivity of neurons in the neural

plane.

These observations are consistent with recent physiological

discoveries about the smooth change of stimuli preference in

topographic maps in the brain [5] and disparity maps in partic-

ular [4], [25].

V. DISCUSSION

The lack of computational experiments on real world data in

previous works has led to the oversight of the role of sparse

coding in neural representation in the models of laminar cortex.

Sparse coding of the input is computationally advantageous both

for bottom-up and top-down input, specially when the input is

complex. Therefore, we hypothesize that the cortical circuits

probably have a mechanism to sparsely represent top-down and

bottom-up input. Our model suggests that the brain computes

a sparse representation of bottom-up and top-down input inde-

pendently, before it integrates them to decide the output of the

cortical region. Thus, we predict the following.

1) Prediction 1: What is known as Layer 2/3 in cortical lam-

inar architecture9 has two functional roles.

1) Rank and scale the top-down energy received at the cortex

(modulated by signals from ) in .

2) Integrate the modulated bottom-up energy received from

to the modulated top-down energy received from higher

cortical areas to determine the output signals of the cortex

in .

Neuroscientists have known for a long time that there are sub-

layers in the laminar cortex [17]. However, the functionality of

these sublayers has not been modeled before. This is a step to-

wards understanding the sublayer architecture of the laminar

cortex. Our prediction breaks down the functionality of Layer

2/3 ( ) to two separate tasks. This is different from the pre-

vious models (e.g., [2]), as they consider as one functional

layer.

Fig. 16 illustrates the result of an experiment in which we

compared two models of . In the traditional model of

, it is modeled as one functional layer that integrates

the sparse coded signals received from with the top-down

energy. While in our novel model used in this paper,

functions as 2 functional layers, namely and (see Pre-

diction 1).

VI. CONCLUSIONS

Presented is the first spatio-temporal model of the 6-layer ar-

chitecture of the cortex which incorporated temporal aspects of

the stimuli in the form of top-down context signals. It outper-

9Marked as ������ , layers 2 through �� in [2]Fig. 2.

Fig. 16. Comparison of our novel model of ���� where it performs both
sparse coding and integration of top-down and bottom-up signals, with tradi-
tional models in which it only does integration.

formed simpler single-layer models of the cortex by a signif-

icant amount. Furthermore, defining the problem of binocular

disparity detection as a regression problem by training a few

nearby neurons to relate to the presented stimuli (as opposed to

only one neuron in the case of classification), resulted in biolog-

ically-observed smoothly changing disparity sensitivity along

the neural layers.

Since the brain generates actions through numerical sig-

nals(spikes) that drive muscles and other internal body effectors

(e.g., glands), regression (output signals) seems closer to what

the brain does, compared to many classification models that

have been published in the literature. The regression extension

of the MILN [33] has potentially a wide scope of application,

from autonomous robots to machines that can learn to talk. A

major open challenge is the complexity of the motor actions to

be learned and autonomously generated.

As presented here, an emergent representation based binoc-

ular system has shown disparity detection abilities with subpixel

accuracy. In contrast with engineering methods that used ex-

plicit matching between the left and right search windows, a re-

markable computational advantage of our work is the potential

for integrated use of a variety of image information for tasks that

require disparity as well as other visual cues.

Our model suggests a computational reason as to why there

is no top-down connection from and to in laminar

cortex; to prevent the top-down and bottom-up energies received

at the cortex from mixing before they internally compete to sort

out winners. Hence, we predict that the thick layer Layer 2/3

( ) in laminar cortex carries out more functionality than

what has been proposed in previous models—it provides sparse

representation for top-down stimuli in , combines the top-

down and bottom-up sparse representations in , and projects

the output of the cortical region to higher cortices.

Utilization of more complex temporal aspects of the stimuli

and using real-time stereo movies will be a part of our future

work.
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APPENDIX

NEURONAL WEIGHT UPDATING

For a winner cell , update the weights using the lobe com-

ponent updating principle [35]. That reference also provides a

theoretical perspective on the following. Each winner neuron

updates using the neuron’s own internal temporally scheduled

plasticity as where the

scheduled plasticity is determined by its two age-dependent

weights

(27)

with . Finally, the cell age (maturity) for the

winner neurons increments: . All nonwinners keep

their ages and weight unchanged. In (27), is the plasticity

function depending on the maturity of neuron . The neuron

maturity increments every time a neuron updates its weights,

starting from zero. The plasticity function prevents learning rate

from converging to zero. Details are presented in [35].
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