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Early life stressors display a high universal prevalence and constitute a major public

health problem. Prolonged psychoneurobiological alterations as sequelae of early life

stress (ELS) could represent a developmental risk factor and mediate risk for disease,

leading to higher physical and mental morbidity rates in later life. ELS could exert a

programming effect on sensitive neuronal brain networks related to the stress response

during critical periods of development and thus lead to enduring hyper- or hypo-activation

of the stress system and altered glucocorticoid signaling. In addition, alterations in

emotional and autonomic reactivity, circadian rhythm disruption, functional and structural

changes in the brain, as well as immune and metabolic dysregulation have been

lately identified as important risk factors for a chronically impaired homeostatic balance

after ELS. Furthermore, human genetic background and epigenetic modifications

through stress-related gene expression could interact with these alterations and explain

inter-individual variation in vulnerability or resilience to stress. This narrative review

presents relevant evidence from mainly human research on the ten most acknowledged

neurobiological allostatic pathways exerting enduring adverse effects of ELS even

decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune

system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep

and circadian system, genetics, epigenetics, structural, and functional brain correlates).

Although most findings back a causal relation between ELS and psychobiological

maladjustment in later life, the precise developmental trajectories and their temporal

coincidence has not been elucidated as yet. Future studies should prospectively

investigate putative mediators and their temporal sequence, while considering the

potentially delayed time-frame for their phenotypical expression. Better screening

strategies for ELS are needed for a better individual prevention and treatment.
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INTRODUCTION

Stress is defined as the state of threatened homeodynamic balance
of the organism (1, 2). Inadequate, excessive or prolonged stress
reactions may exceed the organism’s natural adaptive capacity
and permanently affect stress responses (2, 3). Excessive stress
exposure, especially in stress-sensitive developmental stages of
higher brain plasticity (e.g., early childhood), may over- or under-
sensitize neuroendocrine responses to stress, leading to an altered
homeodynamic state (i.e., allostasis/cacostasis) with profound
and debilitating effects on physiological development and close
association to chronic physical and mental morbidity (2, 4–10).

The term Early Life Stress (ELS) describes a broad
spectrum of adverse and stressful experiences (e.g., maltreatment,
neglect, separation, parental loss, extreme poverty, starvation,
domestic/community/school violence) during the first months of
life, early and late childhood and adolescence, while the term
has been recently extended by some authors and includes also
prenatal life events (11). Childhood Trauma (CT) represents
a more specific form of ELS and is defined as “a traumatic
event that threatens injury, death, or the physical integrity of
self or others and also causes horror, terror, or helplessness
at the time it occurs and overwhelms a person’s ability
to cope” (e.g., physical/sexual abuse, medical trauma, motor
vehicle accident, acts of terrorism, war experiences, natural
and human-made disasters, witnessed homicides/suicides) (12).
ELS/CT constitute a major public health issue, as they occur at
ominously high rates, with over 30–40% of the general adult
population having experienced some form of disrupting early life
adversities (13–16).

In addition, many studies report a negative association
of ELS/CT with general adult mental and physical health-
related quality of life (17–21). Especially an increased risk
for mental disorders (e.g., depression, post-traumatic stress
disorder, schizophrenia) and their unfavorable outcomes after
ELS/CT experience has been repeatedly reported in several
retrospective (5, 22–25) but also prospective studies (26–
29). Similarly, history of ELS/CT has been associated with
risk behavior patterns, such as substance abuse and suicide
attempts in later life (30–35). Furthermore, several larger-scale
studies and meta-analyses also suggest a close association
of ELS/CT with adverse physical health and in particular
with cardiovascular, gastrointestinal, neuromusculoskeletal,
pulmonary, inflammatory, and metabolic diseases, chronic
pain syndromes, frequency of medical consultations, as well as
number of medical diagnoses (24, 36–42).

ELS/CT rarely occurs as a single event but frequently consists
of continued maltreatment involving one or more malicious acts.
In addition, in most cases, several negative risk factors may co-
exist (e.g., poverty, parental absence and parental mental disease,
drug addiction) leading to a multifaceted context of multiple
chronic stressors. The severity of physical and psychological
consequences may be also associated with the number of
experienced ELS/CT events (13, 17, 43, 44). More recent studies
confirmed that increasing number of ELS/CT may result in
higher adult risk for psychopathological complexity and severity,
mental comorbidities, prescribed psychotropic medication, poor

mental and physical quality of life, as well as several physical
conditions (e.g., chronic pain syndromes, cephalgias, heart
disease, asthma, diabetes mellitus, and arthritis) (23, 24, 45–50).
Apart from number of ELS/CT experiences, the specific nature of
ELS/CT and particularly its exact timing could greatly influence
downstream biological pathways. Furthermore, genetic factors,
presence of caregivers and psychological support, family history
of major psychiatric disorders, as well as additional traumatic
stress experiences in adulthood may all further influence the
individual vulnerability for later disease (51). The continuum
of trauma-provoked aftermath reaches from healthy adaptation
with high resilience, to severe maladjustment with co-occurring
psychiatric and physical pathologies in children, adolescents, and
adults. Despite the resilience of many abused individuals in their
early years, ELS/CT significantly increases the risk for impaired
physical and psychological well-being and adaptive functioning
in adulthood.

All these findings suggest that ELS/CT may trigger a health-
related risk cascade and be conceptualized as a common
developmental risk factor and cumulative health risk mediator,
associated with an increased physical and mental morbidity and
all-cause mortality in later life (13, 15, 36, 52–59). Although
prospective findings support the causal relation between
ELS/CT and its long-term adverse health-related effects, so
far, little is known about the exact pathways through which
ELS/CT is translated into health risk. Observational human
studies and experimental animal models suggest that ELS/CT
is related to remarkable functional and structural changes
even decades later in adulthood. The current hypothetical
model suggests that ELS/CT may trigger enduring systemic
alterations of fundamental, mainly brain-related plasticity
mechanisms and so enhance the biological embedment
of distinct “biological memories” of ELS/CT during the
sensitive period of early organism development, thus
enhancing disease vulnerability in later life (60). To date,
most studies assessing the link between ELS/CT and adult
disease risk suggest stress system related neuroendocrine
alterations as the main pathway of disease development.
However, many other related, but distinct biological systems
may also play a role and have lately emerged as important
pathophysiological pathways.

This current review discusses additionally further potential
pathophysiological mechanisms exerting the enduring adverse
effects of ELS/CT and mediating the cumulative long-term risk
for disease vulnerability in later life, a topic that cannot yet
be approached via systematic reviews. Therefore, the literature
is presented as a narrative review, providing an overview
on the most relevant and acknowledged neurobiological
findings from mainly human research. Literature searches were
undertaken using PubMed/Medline, PsychINFO, Scopus, and
Google Scholar from inception to March 2018 to identify
publications (reviews, discussion papers, clinical, observational,
and preclinical studies, etc.) addressing neurobiological aspects
of ELS/CT and relevant information was extracted. Additionally,
the search was complemented through manual review of related
terms and citations from article reference lists. The ten most
important neurobiological concepts, as backed from current
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evidence, were synthesized under the headings reported in this
narrative review.

THE HUMAN STRESS SYSTEM

ELS/CT can irreversibly disrupt vital central neurobiological
systems during vulnerable human development periods
and lead to sustainable alterations in stress regulation and
psychophysiological reactivity (13, 15, 36, 52–59, 61–63).
Because of their pivotal role in the regulation of the dynamic
stress response and perhaps also due to a historical focus on these
two systems, the hypothalamic-pituitary-adrenal (HPA) axis
and the locus ceruleus/autonomic nervous system (LC/ANS)
have been more investigated and are considered more crucially
affected by ELS/CT than other biological systems (64–66).

Hypothalamic-Pituitary-Adrenal (HPA) Axis
The chronic dysregulation of the HPA axis is of vital importance
in the pathophysiology of stress-related disorders. However, our
understanding is hampered by complex and often conflicting
relations between HPA axis markers and history of ELS/CT
(i.e., findings on both increased and decreased HPA axis
activity) (2, 64), as well as the broad definition of ELS/CT
(i.e., broad time window of 0–18 y.o.a.). For example, positive
ELS/CT history has been repeatedly associated with HPA
axis hyperactivity in adults patients with depression and
anxiety, but also in healthy individuals [e.g., higher circulating
cortisol levels, enhanced cortisol awakening response (CAR),
increased adrenocorticotropic hormone (ACTH) and cortisol
responses to psychosocial stress or endocrine challenges] (67–
75). Chronic hyperactivation of the stress system is related
to hypersecretion of corticotropin releasing hormone and
arginine-vasopressin (CRH, AVP) by the hypothalamus and
ACTH hypersecretion by the pituitary (76), resulting in
higher circulating cortisol levels due also to an “insensitive”
negative glucocorticoid (GC) feedback of the HPA axis loop
(77). The typical example of chronic HPA axis hyper-
activation is depression (2, 78), while other conditions such as
anorexia nervosa, obsessive-compulsive disorder, panic disorder,
alcohol withdrawal, excessive exercising, poorly controlled
diabetes mellitus, and hyperthyroidism amongst others, are also
associated with increased cortisol levels and HPA axis hyper-
activation (79).

On the other hand, several ELS/CT studies have reported
HPA axis hypo-activity (e.g., lower circulating cortisol levels,
blunted cortisol stress responses) in similar populations and
study designs (80–84). This diminished activity could represent
a compensatory physiologic adaptation possibly related to a
negative feedback hypersensitivity of GC by an up-regulated
leukocyte GC-receptor (GR) number and sensitivity (5, 63, 85–
87), downregulated secretion of CRH/AVP to the pituitary (76)
or a long-lasting GC catabolism drop leading to higher active
cortisol persistence in liver and kidney without elevation in the
periphery (88). This seems to be the case for patients with post-
traumatic stress disorder (PTSD), atypical depression, chronic
fatigue syndrome, fibromyalgia, and hypothyroidism.

These results suggest a particularly vital role of GC-
signaling in the pathophysiology of ELS/CT (89–91).
Insufficient multilevel GC-signaling (resulting from either
hyper- or hypo-activation of the HPA axis), may have
comparable deleterious effects on the organisms’ physiology,
as for example seen in the development and long-term
effects of both PTSD (i.e., HPA axis hypo-activation) and
melancholic depression (i.e., HPA axis hyper-activation) (91–
93). These effects appear even greater in individuals with ELS
history, suggesting a developmental programming through
GC signaling.

Thereby, several factors may have influenced study findings,
such as the exact subtype and nature of trauma, sex, the timing
and duration of exposure and the assessment of phasic (e.g.,
diurnal saliva cortisol, cortisol reactivity to challenge) vs. time-
integrated cortisol values (e.g., hair cortisol) (94, 95). However,
probably the most significant factor modulating the ELS/CT
impact on future HPA axis activity may be its exact timing,
suggesting a degree of developmental programming through
GC signaling.

Timing of ELS/CT and Developmental
Programming of HPA-Axis
The HPA axis activity trajectory develops from infancy to early
adulthood and beyond. Together with the HPA axis, however,
the amygdala and the hippocampus also develop during the
same period following non-linear patterns until early adulthood
(96–100). Thereby, periods of greater HPA axis plasticity may
represent specific periods of greater vulnerability (96, 100,
101), while mounting evidence suggests a differential impact
of ELS/CT on HPA axis activity according to the specific
developmental age of exposure (102).

Infancy and early childhood (age 0–5 y.o.a.) represent one of
the most vulnerable periods in brain development (6, 101, 103,
104). After an initial hyper-responsive period, the HPA axis may
later transition into a stress hypo-responsive period (SHRP) with
lower basal cortisol levels and blunted stress-induced cortisol
reactivity (101, 104–106). Some longitudinal studies suggest
that stress responsivity in early childhood decreases with age
throughout the preschool period (101, 105–107), suggesting
a potential social buffering of the HPA axis by a nurturing
caregiver, who may operate as a safety signal (108–110). This
could partly rely on important interactions of GC-signaling with
oxytocin pathways, as recently reviewed by Struber et al. (111).
Accordingly, this shift from a hyper- to a hypo-responsive stress
axis in the first 5 years in life may be represent an particularly
crucial stress-sensitive period, especially in the absence of a
nurturing caregiver (104). ELS/CT together with higher cortisol
during this SHRP could possibly lead to GR insensitivity through
greater exposure to GC over time, thus altering the physiological
of HPA axis development (101, 112). Studies from Kuhlman et al.
(94, 113) confirmed that ELS/CT exposure in the first 2 years in
life is associated with prolonged cortisol reactivity to acute social
stressors among adolescents.

The later developmental stage of puberty/adolescence
represents the second particularly sensitive and vulnerable
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period with a new major change in HPA axis activity. In this
phase, the HPA axis transitions from hypo-responsivity into
a period of increased activity (101, 114–116) with progressive
higher basal (106, 110, 117, 118) and reactive (106, 118–121)
cortisol levels. Interestingly, parental support no longer buffers
HPA axis reactivity during this developmental stage (110). On
the other hand, it is rather sexual maturation, in interaction
with sex and environmental cues, which represents a new major
confounder of HPA axis reprogramming (113). The onset of
gonadal hormone production plays a vital role in stress and
HPA axis reactivity, since estrogen secretion influences GC
hyperactivity (122). Some studies on ELS/CT during adolescence
reported lower baseline cortisol (123) and blunted cortisol
responses to psychosocial stress (124), accordingly suggesting
an opposite effect of ELS/CT on HPA axis basal activity and
reactivity than in infancy and early childhood.

Summarizing, ELS/CT during the first hypo-sensitive 2 years
of life may lead to a hyper-activity and -responsiveness of
HPA axis, while ELS/CT during the hyper-active phase of
adolescence to a hypo-active and hypo-responsive HPA axis
(101). Bosch et al. (125) confirmed this hypothesis showing
a relation between ELS/CT in the first year of life, but not
late childhood or adolescence, and higher cortisol reactivity in
adult life. They could also show higher adult cortisol levels after
ELS/CT experience during childhood, but lower cortisol output
after experience of ELS/CT in adolescence. These age-dependent
differences in HPA axis plasticity could be also reflected on
the specific risk for a mental disorder in adulthood. Taken
together, ELS/CT exposure in early childhood leads to a similarly
higher risk for developing major depressive disorder or PTSD in
adulthood, while after ELS/CT exposure in adolescence, the risk
for PTSD is greater than for depression (22).

Locus Ceruleus/Autonomic Nervous
System (LC/ANS)
The LC/ANS is also vitally implicated in the stress-related
pathophysiological trajectories of trauma (126). LC/ANS and
HPA axis are closely interconnected at several neuroendocrine
levels throughout the brain and body and their activity normally
shows a certain degree of analogy and complementarity. The
appropriate regulation of the HPA axis depends at least in part
on LC/ANS, especially on vagal influences (127). HPA axis and
LC/ANS are both integrated components of an internal neural
regulation system (central autonomic network, CAN) (128).
Dysregulation of the CAN (129–131) may affect downstream
autonomic core centers (i.e., PFC, amygdala, hypothalamus,
brain stem nuclei), and alter peripheral ANS activity and
overall stress responsivity (130, 132, 133). The significant
overlap of the fear/arousal circuitry with the CAN (134) could
be, at least partly, responsible for ELS/CT-related autonomic
dysregulation. The very high comorbidity of stress- and trauma-
related disorders and cardiovascular disease (135–140) confirms
a central pathophysiological link between the stress axis and
ANS (141–143).

With respect to ELS/CT in particular, a limited number
of studies have reported altered autonomic activity in adults

with ELS/CT exposure. For example, Otte et al. (144) reported
higher catecholamine responses to psychological stress in police
recruits, while O’Hare et al. (145) found higher rates of syncope
frequency in adulthood in individuals with ELS/CT experience.
Heleniak et al. (146) reported blunted cardiac output reactivity
and increased vascular resistance associated during a social stress
task in ELS/CT-exposed adolescents. However, most studies
assessing ANS activity in adult population after trauma included
PTSD patients with adult exposure to traumatic stress, repeatedly
suggesting an increased sympathetic and/or decreased vagal
activity in sequel of a trauma (147).

Some pediatric studies have also lately tried to better
investigate the interplay of HPA axis and ANS after ELS/CT.
For example, De Bellis et al. (148) reported significantly higher
24 h urinary concentrations of catecholamines in sexually abused
girls in comparison to matched controls. Another pediatric study
by Gordis et al. (149) reported an asymmetry between the
HPA axis and ANS reactivity to a social stressor with absent
associations between the peripheral biomarkers of HPA axis
(cortisol) and sympathetic activity (salivary alpha-amylase, sAA)
only in the maltreated group. In a study longitudinally assessing
children after trauma exposure to a motor vehicle accident,
Pervanidou et al. (150) could show a successive normalization
of cortisol levels but continuously higher catecholamine levels
6 months after trauma exposure, suggesting a lifted cortisol-
mediated restraint on catecholamine responses leading to a mid-
and long-term enhanced ANS activity. Lower cortisol levels and
higher ANS activity found in adult PTSD patients and after
ELS/CT exposure may, thus, represent a resulting state of a
progredient stress-axes divergence in trauma-related disorders
(151). Accordingly, Pervanidou et al. (152) proposed that such
a progredient divergence of the two limbs of the stress system
following ELS/CT, may represent a vital pathophysiological
pathway leading to the long-term impact of ELS/CT on health
and the chronic preservation of related symptoms.

IMMUNE SYSTEM AND INFLAMMATION

Inflammation is a natural immune response to pathogens and
injury, an integral part of the stress response and, thus, crucial
to tissue healing, adaptation and survival (4, 153, 154). Acute
stress activates the secretion of pro-inflammatory cytokines,
presumably by adrenergic and CRH-peptidergic stimulation,
which help orchestrate the further immune response (e.g.,
stimulation of systemic acute-phase proteins, such as C-reactive
protein, CRP) (4, 155). Pro-inflammatory cytokines, however,
unfold systemic effects far beyond the canonical immune
response and also stimulate the secretion of CGs, while
CGs, in turn, among their numerous pleiotropic effects, help
terminate the inflammatory response (153, 154, 156, 157). This
is part of a very complex, two-way neuroimmunoendocrine
interaction between the central and peripheral limbs of the
stress system and the immune axis (156, 158, 159). Growing
evidence, accordingly, implicates the immune system in stress
resilience and coping through peripheral and central immune
mechanisms of action, affecting the brain and all stress-related
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neurobiological and neuroendocrine responses (160). Vice
versa, a dysregulated stress system could allow a disinhibition
or excessive inhibition of inflammatory processes, promoting
biological aging, inflammatory-related or immunosuppressed
medical conditions and compromised overall health (63,
89, 161–163). There is growing evidence suggesting that
positive ELS/CT history is an independent risk factor for
peripheral immune dysregulation and long-term, low-grade
inflammatory excess (i.e., a pro-inflammatory phenotype) in
adulthood (101, 164–172).

Given this, the dysfunctional neuroendocrine interface
following ELS/CT may be closely correlated to immunological
alterations and related long-term health consequences (4, 36,
101, 153, 154, 172, 173), while adults with ELS/CT experience
could be at increased risk of disease with potentially immune
origin (36, 53). Most human research has been concentrating
on pro-inflammatory cytokines and CRP for the immune status
characterization. Among all cytokines assessed, interleukin-6
(IL-6) findings are the most robust.

Interleukin-6 and CRP
IL-6 is a pleiotropic cytokine and simultaneously one of the
most suitable inflammatory markers for the characterization of
inflammatory status in humans (174), but also an applicable
stress biomarker (155), as IL-6 may have a reciprocal modulatory
effect on the stress system (175). Indeed, animal and human
research confirms that IL-6 stimulates the HPA axis at
hypothalamic, pituitary and adrenal level (176–183). Basal IL-6,
through activation of the JAK/STAT3 signaling cascade, is
required for the sustained cortisol response to chronic stress
and is therefore a possible mediator of HPA axis plasticity,
in particular in chronic stress states (184). Conversely, cortisol
exerts a mild inhibitory effect on the peripheral production
of IL-6 (185) and is a major moderator of circadian IL-6
changes (186, 187), while prednisone administration flattens the
diurnal rise of IL-6 in the early morning (188). Norepinephrine
and epinephrine, on the other hand, lead to an increase of
plasma IL-6 in both humans and rats (189–191), in part via
beta-adrenergic receptor mechanisms regulating hepatic and
splenic IL-6 production (192–194). A recent animal finding also
suggested that basal IL-6 signaling in the hypothalamus is a
potential determinant of plasticity in the HPA axis response,
specifically during chronic stress exposure (184), suggesting
that both central and peripheral IL-6 play crucials role on
the development of stress susceptibility and related behaviors
(175, 195). Several studies have reported dysregulated IL-6
levels in individuals with ELS/CT experience. Carpenter et al.
(169) reported higher IL-6 baseline concentrations and a higher
inflammatory IL-6 response to acute psychosocial stress challenge
in healthy adults with a history of ELS/CT. Using the same
paradigm (Trier Social Stress Test; TSST), Pace et al. (196)
have shown the same exaggerated IL-6 response to an acute
psychosocial stressor in depressed male patients with positive
ELS/CT history, compared to depressed patients without ELS/CT
history. Interestingly, Kunz-Ebrecht et al. (197) reported an
inverse relation between IL-6 and cortisol release to mild mental
stress challenges, while Pervanidou et al. (150) provided evidence

that IL-6 was involved in the initial biological alterations in
the aftermath of trauma, and predictive of PTSD development
6 months later in a longitudinal study design following motor
vehicle accidents in children. Finally, in one of the few large (over
3,500 children) prospective studies, Slopen et al. (198) reported
ELS/CT being associated with increased levels of IL-6 years later.

With respect to CRP, there are a large number of studies
reporting on the association of ELS/CTwith increased circulating
CRP levels. Most findings, but not all, suggest a robust correlation
between ELS/CT and adult CRP levels (165, 166, 170, 199–202).
In their seminal study of a birth cohort followed to age 32 years,
Danese et al. (165) reported an independent effect of ELS/CT on
adult inflammation and suggested that more than 10% of the low-
grade inflammation cases in the population may be attributable
to ELS/CT. In their prospective study, Slopen et al. (198) found
that ELS/CT is a significant independent predictor of persisting
inflammation almost 10 years after ELS/CT exposure. Finally, a
recent meta-analysis, including over 20,000 samples, confirmed
that individuals exposed to ELS/CT show significantly elevated
baseline peripheral levels of CRP, IL-6 and TNF-α (203). This
study also suggested that specific types of ELS/CT may have
differential impacts on single inflammatory markers.

Neuroimmune Pathways
Although numerous neurobiological links between ELS/CT and
inflammation have been put forth, the underlying mechanisms
are still not completely understood (159). On the one hand,
ELS/CT-related autonomic imbalance with reduced vagal activity
may further directly augment inflammation through a direct
vagal efferent effect of autonomic brain regions (204–206). On
the other hand, HPA axis dysregulation in ELS/CT affects GR-
mediated transcriptional and post-transcriptional responses of
immune-related genes with lower recovery ability (89, 207).
Preclinical research has shown GC resistance in immune cells
following repeated acute stress (208, 209), while in humans,
prolonged or chronic stress leads also to GR insensitivity of
immune cells and, respectively, altered GC inhibitory signal (112,
210). Respectively, several recent human gene expression studies
show accumulating evidence for innate immune dysregulation
after trauma and a particular and specific (i.e., comorbidity-
independent) role of cytokines (211–215). Smid et al. (175)
have recently reported both higher mitogen-stimulated T-cell
cytokine and innate cytokine production with increasing PTSD
symptoms, suggesting a direct effect of cytokine production in
stress sensitization. Further human PTSD research suggested
that elevated expression of pro-inflammatory cytokines after
traumatic stress exposure is probably regulated by multiple
epigenetic mechanisms, including dysregulation of microRNA
expression (216–218). Interestingly, animal findings suggest that
pro-inflammatory cytokines also mediate chronic, stress-induced
impairments in hippocampal neurogenesis (167), suggesting that
ELS/CT-related subsequent pro-inflammatory diathesis could
impair neurogenesis in vital central nervous system (CNS) areas
during critical developmental periods and result in a reduced
hippocampal volume (see below) and a related malfunction
of the fear response circuit in context-dependent situations
in adulthood.
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HUMAN MICROBIOME AND
THE GUT-BRAIN-AXIS

During the last decade, the human microbiome and the
microbiota-gut-brain (MGB)-axis have become a novel epicenter
in mental health and specifically stress-related research and have
been already acknowledged as a potentially vital new determinant
in the field of neuroimmunoregulation, brain development and
behavior (219–223). The MGB-axis represents a bidirectional,
key communication pathway between the immune system and
the CNS, thus partly mediating the regulation of stress response
and early life programming of the neuroimmune system (221,
224). The gut microbiota is a complex ecosystem with a great
organism variety and refined genomic structure that resides in
the intestinal tract and has a central position in human health
and disease (225).

The microbiome produces directly and indirectly significant
amounts of antimicrobial peptides, hormones, short chain
fatty acids, vitamins, and several neurotransmitters (e.g., 5-
HT, catecholamines) and strongly influences our metabolic,
endocrine, immune, and CNS (219). In addition, a special role of
macrobiota wall constituents on CNS function and development
has been suggested recently. For example, peptidoglycans and
lipopolysaccharides have been shown to cross the intestinal
epithelial barrier and to bind to specific pattern recognition
receptors and lead to an activation of the central and peripheral
immune system and HPA axis (226, 227). Furthermore, gut
microbiota may modulate CNS microglia maturation and
functioning and thus also affect neural circuitry of the developing
brain (228, 229).

The other way around, the CNS can also modulate the
composition and balance of the intestinal microbial community
(and mostly Gram-negative bacteria) through the stress system
(ANS, HPA axis), (230). For example, PTSD patients show
differences in the total abundance of specific bacterial taxa in
comparison to trauma-exposed controls (231), while chronic
social defeat stress animals models have also lead to shifts
in intestinal microbiota composition (232, 233). A chronic
bacterial dysbiosis weakens the intestinal mucosal barrier and
affects intestinal permeability (“leaky gut”) (234), which possibly
results in a microbiota-driven proinflammatory state (235).
Thus, a major candidate source of systemic stress-related
inflammation could be the disordered gut barrier function (236).
A stress-driven microbiome imbalance could then feedback
and affect brain functioning by reprogramming the HPA axis
through cytokines-related CRH release in the hypothalamus and
elsewhere (224, 237–240).

The human microbiome follows a dynamic trajectory
development throughout the lifespan and establishes a symbiotic
relationship with the organism early in life. Thereby, the
development of the intestinal microbiota occurs in parallel
with the CNS, having similar critical windows with rapid and
profound developmental changes during infancy, childhood,
and adolescence (241). Stress-related disruption of the dynamic
host-microbe interaction at these critical periods can lead to
alterations of the bacterial colonization of the gut in early life
and vice versa (242, 243). As the microbiome plays an important

role in the programming of the HPA axis and stress reactivity
(244), ELS/CT may affect the signaling of the MGB axis in a
major fashion and alter not only immune, but also CNS and
stress system functioning with lifelong emotional and behavioral
consequences (i.e., higher risk of neurodevelopmental disorders)
(223, 239, 241, 245, 246).

Taken together, the imbalanced human microbiome might be
another vital pathway linking ELS/CTwith altered neuroimmune
reactions and neurodevelopment, as well as long-lasting effects
on general health, behavior, emotions, and cognition (247). Risk
and resilience to stress- and immune-related disorders may,
thus, depend on the diversity and complexity of gastrointestinal
microbiota (229), which could play a pivotal role in the etiology
of psychiatric illness and make individuals more susceptible to
develop psychopathology after ELS/CT (241, 248, 249).

OXIDATIVE STRESS AND
CARDIOVASCULAR SYSTEM

Redox State and Antioxidant Defenses
Oxidative stress (OXS), defined as a disequilibrium between
oxidant generation and antioxidant defenses (i.e., an altered
redox state), has been proposed recently to link ELS/CT to a
higher risk of developing psychiatric but also physical morbidity
in general (250). Animal findings confirmed that ELS (e.g.,
maternal separation) has a significant impact on parameters of
OXS in mitochondrial function and has shown an association
with reactive oxygen species, mitochondrial glutathione, ATP
and cytochrome c release in cardiac tissue (251). Furthermore,
decreased levels of superoxide dismutase and catalase activity,
as well as higher levels of protein carbonylation have been
reported in the brain of adult animals exposed to ELS (252).
Human research been successfully replicated similar findings.
For example, increased OXS markers (i.e., reduced glutathione
peroxidase levels, increased protein carbonylation and total
reactive antioxidant potential kinetics, etc.) have been reported
recently in otherwise healthy ELS/CT-exposed adolescents (253).
ELS/CT may so lead to long-term molecular consequences in
the basal antioxidant defenses with elevated systemic levels of
OXS, stimulating inflammation and driving oxidative damage
and accelerated cellular aging in both the CNS and the periphery
of the organism (254, 255).

Telomere Length
Telomeres are DNA-protein complexes located at the ends of
linear chromosomes capping and protecting the genome from
damage, while inflammation and OXS have been suggested
to reduce telomere length. Telomere length is an emerging
marker of biological age and OXS, with shorter length being
associated with accelerated biological aging, premature cell
death and increased morbidity and mortality from age-related
diseases (256). Not only has PTSD been associated with shorter
telomere length, but also the experience of ELS/CT (257–260).
For example, Tyrka et al. (261) investigated healthy adults
with absent Axis-I disorders and reported shorter whole-blood
telomere length in association with ELS/CT. In a longitudinal
study, Shalev et al. (262) showed higher telomere erosion in
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children 5–10 years old exposed to more than 2 violent events.
Chen et al. (263) reported that greater ELS/CT exposure was
associated with reduced telomere length and normal telomerase
activity in healthy volunteers. A recent study by Mitchell et al.
(264) also found a significant association between father loss and
children’s telomere length, with the death of father showing the
greatest effect, and a 90% greater effect in the children with the
most reactive alleles of the 5-HTTLPR gene. Finally, two current
meta-analytic studies, confirmed the significant association
between ELS/CT and accelerated telomere erosion in adulthood
(265, 266). ELS/CT could, thus, possibly partly mediate their
long-term biological impact also through shorter telomere
length, representing another biomarker of increased cacostatic
load (51, 256).

OXIDATIVE STRESS AND
ENDOTHELIAL DYSFUNCTION

Emerging epidemiologic evidence strongly supports that ELS/CT
is an independent albeit silent risk factor of future chronic
cardiovascular risk through various systemic and molecular
mechanisms (267–272) and that its effect is particularly
heightened among women (273). The recent American Heart
Association scientific statement offers a comprehensive review
of the literature on the influence of ELS/CT on cardiovascular
outcomes (274). Besides genetic, metabolic, autonomic, circadian
and inflammatory pathways reviewed elsewhere in this article,
OXS-related endothelial dysfunction plays a similarly major
role in total cardiovascular risk. Animal findings suggest that
ELS/CT-related significant endothelial dysfunction is linked to
increased superoxide production (275) and reduced endothelial
nitrous oxide system buffering capacity with dysfunctional
endothelial Angiotensin II-mediated signaling and sensitization
to Angiotensin II-induced vasoconstriction (276).

METABOLISM

The stress system is closely interconnected with metabolism.
GCs, as the end-effectors of the HPA axis, stimulate appetite
(277), alter insulin and leptin secretion and target tissue effects
by increasing body weight through the orexigenic and food
reward effect of the hypothalamic feeding signal NPY (278, 279)
[an effect inhibited by leptin and insulin (280)]. Consequently,
in individuals with ELS/CT history, the disrupted biological
background described above promotes a tendency toward a
dysmetabolic syndrome (281, 282). Accordingly, in the obese
population, rates of ELS/CT exposure are reported to be almost
twice as high as in the non-obese population (69 vs. 39%)
(283). Furthermore, ELS/CT has been repeatedly found to
be independently associated with increased overall metabolic
risk (284, 285), obesity and increased visceral fat deposition
(286–288), decreased HDL, increased LDL levels and lower
HDL/LDL ratio (289, 290), higher triglyceride levels (285), an
overall prediabetic state (e.g., impaired insulin sensitivity) (291),
reduced T3 levels and abnormalmetabolism of thyroid hormones
(292), enhanced risk for emotional eating as a self-regulatory

coping strategy (293) and higher prevalence of metabolic
syndrome (290, 294, 295) in later life, while some studies
have suggested a dose-dependent relation in these associations
(288, 296).

ELS/CT-induced metabolic derangements, such as
hyperinsulinemia and altered insulin sensitivity on exposure
to a high energy diet later in life, can be a result of altered
peripheral gene expression. For example, the interaction
between HPA axis activity and liver 11-beta hydroxysteroid
dehydrogenase (11β-HSD1) could modulate both tissue and
circulating GC availability, with adverse metabolic consequences
(297). In addition, genetic interactions with ELS/CT could
influence risk for dysmetabolic consequences. HPA axis
related FKBP5 polymorphisms, in combination with ELS/CT
exposure predict higher insulin and glucose values in midlife
(298). Animal findings suggest that ELS/CT is associated with
increased food intake, weight gain, increased deposition of
abdominal fat, higher plasma triglycerides levels, n-3 PUFA
deficiency, etc. (299).

On the other hand, there is also evidence that ELS/CT can
exert a programming effect on the adipose tissue and alter
the highly sensitive process of adipogenesis (282), leading for
example to alterations in adipokine regulation and higher fat
accumulations in mice (300). Leptin is an important, circadially
secreted adipokine and a vital regulator of energy homeostasis
and metabolism, reward processing, brain development and
neuroendocrine and immune function (301). Leptin directly
interacts with the HPA axis (302), showing an inverse relation
to circulating corticotropin and cortisol in healthy men and
exerts an anorexigenic effect in conjunction with inhibition
of orexigenic pathways via leptin-responsive hypothalamic
neurons (303). The adipose tissue–derived protein adiponectin,
is another adipokine that may also play a central role in the
metabolic dysregulation after ELS/CT. Adiponectin is decreased
in obesity (304), whereas hypoadiponectinemia is related to
adverse metabolic and cardiovascular outcomes in humans (305).
Prospective pediatric studies of physical injury (i.e., burn, MVA)
have shown a persistently elevated insulin resistance index up to
3 years (306) and decreased adiponectin levels up to 6 months
after physical stress exposure (152).

Taken together, mounting evidence suggests that stress during
critical periods of growth and development disrupts the interplay
between the stress, circadian and metabolic system and has
permanent adverse effects on body size and composition and
is often accompanied by associated lifestyle and nutritional risk
behaviors (i.e., physical inactivity, emotional eating, disrupted
sleep) (282).

SLEEP AND CIRCADIAN SYSTEM

The human circadian system (CS) enables the nyctohemeral
organization and coordination of many physiological processes
and promotes homeostasis and environmental adaptation (307).
The HPA axis activity is closely linked to the CS and displays
circadian rhythmicity (308–311). Through various pathways,
the central circadian system synchronizes hypothalamic
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neuroendocrine neurons secreting CRH and AVP, modulates
adrenal ACTH sensitivity, stimulates GC secretion and defines
the peripheral circadian changes in target tissue GC sensitivity
(308, 312–314). Circadian acetylation and deacetylation of
the GR, modulated by melatonin, allows for these changes
in tissue sensitivity (308, 312, 315, 316). In addition, animal
studies demonstrated a circadian regulation of peripheral clock
gene oscillation in the adrenal gland (317, 318) confirming a
nyctohemeral change in its responsiveness to ACTH. Central
and peripheral circadian rhythmicity also modulates ANS
control through projections to pre-autonomic neurons of
the hypothalamus and is essential for the physiologic diurnal
fluctuations seen in humans (319–321). Finally, animal and
human studies demonstrate responsiveness of cognitive
performance to the CS (322, 323). Memory processing,
formation and consolidation are directly influenced by the
circadian clock and stress (322, 324, 325). Besides light,
an important regulator of CS activity is sleep. Sleep acts
synergistically and bidirectionally with the central CS, but also
independently to reinstate the internal temporal synchrony
(326). Specific sleep stages are associated with CLOCK gene
expression in the suprachiasmatic nuclei and are tightly ruled by
the CS (326–328).

A critical loss of this timed order across several organizational
levels of the organism is defined as chronodisruption and
promotes a dysharmony of internal biological systems and
appropriate biobehavioral adaptations to external stimuli (329)
with short- and long-term pathophysiologic and epigenetic
impact (330, 331). Chronodisruption may progressively
alter the fundamental properties of brain systems regulating
neuroendocrine, immune and autonomic function, similar to
ELS/CT-related stress axis dysregulation, and may play a central
role in the development of stress-related disorders (328).

Direct and indirect human and animal stress research
supports the important supraordinate role of CS on stress system
and GCs, linking circadian misalignment in ELS/CT-related
pathophysiology and potentially resulting in the extensive co-
morbidities of ELS/CT through an impaired homeostatic balance.
Some animal (332), but—most importantly—numerous human
studies including large cohorts, have repeatedly confirmed that
ELS/CT is independently associated with enduring adult sleep
disruption including global sleep pathology (i.e., insomnia), as
well as specific types of sleep problems, such as shortened
total sleep time, prolonged sleep onset latency, decreased sleep
efficiency, increased number of awakenings, nightmare related
distress, sleep apnea and higher nocturnal activity in a probably
dose-response manner (333–344).

Sleep deprivation, which is tightly associated with
chronodisruption (326–328), has been recurrently related
to HPA axis dysregulation findings, such as a flattened cortisol
amplitude, decreased CAR and cortisol reactivity, increased but
also decreased diurnal cortisol concentrations and increased
CRH levels in humans (345–347). Both animal and human
studies show that sleep deprivation is associated with increased
sympathoadrenal activity and blunted cardiovascular autonomic
rhythmicity and responsiveness, thus representing a key
cardiovascular risk factor (347–349). Human and animal

sleep deprivation studies have reported hypo-responsive
medial-frontal cortical regions, hyper-responsive amygdala, and
a smaller hippocampal volume (350–352), as shown in adults
with ELS/CT history (see above). Sleep disturbances have been
associated with altered CLOCK gene expression in humans,
which vitally affects neurobiological response to stress (353, 354).
Chronodisruption may, thus, sensitize individuals to stress and
increase their vulnerability to stress-related disorders (347, 355).

Numerous human and animal studies suggest that acute and
chronic physical and/or psychological stress affects the sleep
centers of the brain (356–363). Stress, thus, influences sleep
physiology and dream patterns and may cause both immediate
and long-lasting sleep disruption (364–366), which may, in
turn, enhance maladaptive stress regulation (367). For example,
REM sleep disruption immediately after trauma exposure has
been associated with higher REM-related sympathoadrenal
activity, and represents an important predictive factor for the
development of trauma-related disorders in humans (368–
370). As sleep promotes memory consolidation, in particular
for emotional content, sleep deprivation after stress exposure
can affect amygdala-cortical connectivity and disrupt this
process (371–373).

Such findings suggest that sleep disruption occurring after
trauma exposure may represent a core, rather than a secondary
pathway that mediates the enduring neurobiological correlates of
ELS/CT (364, 368–370, 374, 375) and that chronodisruption may
be the common underlying neurobiologic link (370, 374, 376).

GENETICS AND EPIGENETICS

Genome-wide association studies (GWAS) have identified
several disease-associated candidate genes, which, however,
explain only a minor part of heritability in such complex
disorders. In recent few years, the interest has shifted to the
central role of the interaction of specific candidate genes
with environmental factors, as well as to gene programming
through epigenetic regulation (e.g., DNA methylation, histone
modification of chromatin, aberrant expression of miRNA)
(377, 378). The combination of specific genetic polymorphism
profiles and density or activity of functional sites controlling
the human stress axis may increase or decrease the risk of
psychobiological maladjustment after exposure to ELS/CT. A
thorough understanding of the interaction between genes,
environment, DNA methylation patterns (methylome)
and subsequent gene expression profiles (transcriptome) is
integral to our understanding and treatment of stress-related
disorders (378).

GENE × ENVIRONMENT INTERACTIONS

Two of the first ground-breaking human studies investigating
the interaction between ELS/CT and gene polymorphisms were
conducted by Caspi and collaborators. In the first study, abused
children with a monoamine oxidase A (MAOA) genotype
associated with low levels of MAOA expression, were more
likely to show antisocial-personality disorder and commit
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violent crimes in adulthood (379). In the second prospective-
longitudinal study of a representative birth cohort, functional
polymorphisms in the promoter region of the serotonin
transporter (5-HTT) gene (5-HTTLPR) was found to moderate
the influence of ELS/CT on depression, with the presence of the
short allele being associated with more depressive symptoms,
diagnosable depression, and suicidality (380). These findings
were later confirmed by Karg et al. (381) and are consistent
with the assumption that 5-HTTLPR moderates emotional
responsivity to stress in interaction with ELS/CT (382).

More recent findings suggest a vital role of genes involved
with HPA axis function and GC sensitivity, in conjunction with
exposure to child maltreatment or abuse (383). To date, findings
mainly implicate two key genes: the GC response element (GRE)
and the CRH-releasing hormone receptor 1 (CRHR1) of the
FKBP5 gene (383, 384). The co-chaperone FKBP5 regulates
steroid receptors such as the GR, resulting in a resistance
(reduced sensitivity) against GCs. As first shown by Binder
et al. (385), specific single-nucleotide poly-morphisms (SNPs)
of the FKBP5 gene interacting with ELS/CT predict the level
of adult PTSD symptoms. An allele-specific demethylation in
the GREs of FKBP5 may result in a dysregulated expression
of GRs (386). Further clinical studies confirm minor alleles of
FKBP5 being particularly sensitive and interact with ELS/CT to
increase aggressive behavior (387), suicide attempts (388), and
depression (389). The CRHR1 acts as a mediator in initiating
the stress response, possibly leading to a hypersensitive negative
feedback loop of cortisol. Bradley et al. reported in two separate
cohorts, independently, that specific CRHR1 polymorphisms
interact with ELS/CT to increase the risk of adult depression
(390), similar to Heim et al. (391), while Ben-Efraim et al. (392)
reported comparable findings with respect to suicide attempts.

Taken together, gene × environment interactions of gene
polymorphisms may affect the acute biological response to
ELS/CT and mediate long-term risk of disease to some extent,
most probably through their effects on stress responsiveness.

EPIGENETIC REGULATION

Epigenetic modifications are dynamic—and to some extend
reversible—changes, thatmediate the interaction between genetic
predisposition and environmental factors through regulating
functional expression of genes by decreasing, silencing or
increasing gene expression (393, 394). The installment of such
epigenetic marks by ELS/CT exposure and its genetic moderation
by related factors represents a critical factor for vulnerability
or resilience to stress-related disorders and may explain inter-
individual variation. The interpretation of epigenetic findings is
critical due to the complexity of the epigenetic mechanisms and
the large number of involved genes.

ELS/CT exposure has been repeatedly related to epigenetic
changes and altered gene expression profiles, particularly in
the CNS (e.g., hippocampus, amygdala), thus affecting stress
responses and memory consolidation (395–398). There is
accumulating evidence for gene programming and epigenetic
regulation of specific genes in the pathophysiology of PTSD

in humans (399–402). Especially, several GC-signaling-
related genes (e.g., GCR gene promoter 1F) are sensitive
to traumatic-stress-related epigenetic regulation across the
lifespan and may represent useful biomarkers related to the
development, symptomology and prognosis of PTSD (403, 404).
For example, in a recent human brain autopsy material study,
history of childhood abuse was associated with changes in
DNA methylation related to the neuron-specific GR (NR3C1)
promoter in the hippocampus, suggesting distinct effects of
ELS/CT on the epigenetic regulation of hippocampal GR
expression (405). With respect to the promoter and exon 1F
of the human GR gene Nr3c1, Oberlander et al. (406) showed
specific epigenetic effects (gene hypermethylation) and elevated
cortisol stress reactivity in the offspring due to maternal
depression even during late pregnancy. Other animal findings
also suggested ELS/CT-related epigenetic changes in the CNS
growth and differentiation-related BDNF gene expression (407),
while in a genome-wide blood DNA methylation analysis study
by Houtepen et al. (408), a locus in the Kit ligand gene (KITLG;
cg27512205) was shown to strongly modulate the relation
between ELS/CT and cortisol stress reactivity.

Lately, various studies have investigated large-scale
methylation patterns with respect to ELS/CT in cross-sectional
settings. Bick et al. (409) reported significant differences in
methylation in 72 of investigated 173 genes (responsible for HPA
and immune system regulation) in children with and without
foster care experience. Yang et al. (410) reported significant
differences in methylation in 2,868 CpG sites on genes of all
23 chromosomes with respect to presence of ELS/CT, while
Essex et al. (411) described similar transgenerational results
in more than 150 of 28,000 CpG sites in a prospective study
assessing parental stress and its consequences in their offspring.
Interestingly, Mehta et al. (412) found that gene expression
profiles of PTSD patients with and without ELS/CT are 98%
non-overlapping. Moreover, these changes were mostly mediated
by DNA methylation changes to a much larger proportion in
the childhood abuse group, suggesting that changes in DNA
methylation may exert a much greater impact during early
life and possibly reflect differences in PTSD pathophysiology,
depending on preceding exposure to ELS/CT.

Taken together, enduring changes in the transcriptome may
facilitate the response to early developmental challenges and
thus play a central role in the long-term (and sometimes
transgenerational) biological trajectories of stress-related disease
through programming effects for stress reactivity after ELS/CT
exposure (104, 413, 414).

STRUCTURAL AND FUNCTIONAL
IMAGING FINDINGS

ELS/CT during critical periods of brain development crucially
affects the interaction between developing brain regions and
neural circuits, exerts epigenetic influences and alters the
functions of the HPA axis and GCs; indeed, it has been
associated with remarkable structural and functional brain
changes even decades later, in adulthood, defining both
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vulnerability and resilience (383, 415, 416) [for an in-
depth review see (417)]. Studies in animals have shown
that elevated levels of GCs and catecholamines may lead to
alterations in brain development through accelerated loss of
neurons (418), delays in myelination (419), or abnormalities in
developmentally appropriate synapse pruning (420). ELS/CT-
related remodeling of structure, responsiveness and connectivity
of specific brain areas and circuits can accordingly alter
behavioral, cognitive, emotional, and physiologic responses
(51, 421). For example, as cognitive function is heavily
dependent on HPA axis and CG activity, childhood adversity
associated with HPA axis dysfunction and GC excess or
deficiency can result in diminished cognitive functioning and
maladaptive emotional behavior (422). Accordingly, in a human
resting activity neuroimaging PET study by Insana et al.
(423), ELS/CT was associated with altered frontolimbic adult
neural activity in the left orbital frontal cortex and left
hippocampus, regions involved in executive functioning and
emotional autoregulation, socioemotional processes, autonomic
function, and sleep/wake regulation. ELS/CT has been also
associated with several altered cognitive function findings,
such as poor processing speed, defective executive functioning,
and memory deficits (e.g., impaired spatial working memory
performance, pattern recognition memory) in adulthood,
which in turn might pose risks for the development of
psychopathology (424–426).

There have been several additional studies assessing structural
and functional brain correlates of ELS/CT, but the results have
to be explored with caution, given the complexity of brain
function, the simplicity of most study paradigms, the age of
ELS/CT and assessment, the specific morbid population (i.e.,
type of psychopathology) and a number of other parameters
not taken into account (427, 428). With respect to structural
correlates, ELS/CT is associated with disruptive development
and reduced volume of corpus callosum, insula, dorsolateral
prefrontal cortex (PFC), orbitofrontal cortex (OFC), anterior
cingulate gyrus, and caudate, as well as decreased cortical
thickness of medial and lateral prefrontal and temporal lobe
regions, and reduced overall brain volume in humans (416,
417, 425, 426, 428–434). A study of Teicher et al. (435),
utilizing high-resolution T1-weighted MRI scans to assess
network connectivity, also reported substantial changes in
the cortical network architecture in these areas in young
adults with ELS/CT history. Interestingly, the distinct neural
plasticity during development can lead to cortical adaptation
with very specific regionally altered cortical representation fields
(436, 437) and be potentially protecting from the specific
sensory processing of different ELS/CT (417). Thus, experience
of sexual abuse has been associated with cortical thinning
specifically in the genital representation field of the primary
somatosensory cortex, while emotional abuse specifically in
regions relevant to self-awareness and self-evaluation (438). Such
plastic reorganization may be initially protective under abusive
conditions, but may underlie later behavioral problems in the
same areas (e.g., sexual dysfunction) and be selectively associated
with increased vulnerability to internalizing and externalizing
psychopathology (434).

The amygdala and the hippocampus are the two brain
structures so far mostly reported to be impaired in adult victims
of ELS/CT, suggesting most vital effects of ELS/CT on prefrontal-
limbic gray matter. The hippocampus is of particular importance
because of its role in cognition, but also its rich density of
GR, while the amygdala because of its pivotal role in stress
responsivity and the extensive related research in mood and
anxiety disorders. There are numerous reports and meta-analytic
studies confirming the association of ELS/CT with reduced
hippocampal volume in adulthood (416, 417, 428, 430, 431, 433,
439). Interestingly, several studies assessing the effects of ELS/CT
on hippocampal volume in patients with MDD, suggested that
it is rather the history of ELS/CT than depression which
is associated with hippocampal atrophy (440–442). However,
hippocampal volume seems to be unaffected in children but not
in adults with maltreatment-related PTSD, suggesting an initially
volumetrically normal hippocampus with subsequent abnormal
disrupted development (443). With respect to amygdala, the
results from human studies regarding the volumetric effect of
ELS/CT are inconclusive, with some studies reporting reduced
volume (416, 428, 430, 444), some differential effects according
to specific type of ELS/CT (432, 445), and some even greater
amygdala volume (in non-human primates) (446). However,
findings are conclusive concerning amygdala responsiveness, as
ELS/CT has been repeatedly associated with facial threat- or
negative-emotion-related amygdala hyper-responsiveness (416,
417, 447, 448). In addition, some studies even suggested that the
relation between ELS/CT and risk for adult depression is actually
mediated by this preceding amygdala hyperactivity (448, 449).

Finally, imaging studies have investigated the potential
influence of genetics (i.e., specific polymorphisms in candidate
genes) on the ELS/CT effects described above (417). For
example, van Velzen et al. (444) showed that the magnitude
of amygdala atrophy in maltreated individuals was significantly
associated with the BDNF Val66Met genotype, while Booij et al.
(450) demonstrated that greater peripheral serotonin transporter
methylation in smaller hippocampal volume in adults with
ELS/CT experience. More importantly, there have been a number
of studies suggesting a moderating effect of FKBP5 (451–453)
and mineralocorticoid receptor genotypes (454) on amygdala
volume, reactivity and connectivity of ELS/CT exposed adults,
thus implicating HPA axis-related genes in brain development.
Genetic susceptibility may, thus, represent a crucial factor leading
to related structural and functional trajectories of ELS/CT on
brain development (455).

Taken together, altered amygdala-PFC connectivity with
reduced top-down regulation of the amygdala by the PFC,
reduced contextual input to the amygdala from the hippocampus,
and increased connectivity of the amygdala with the LC (leading
to increased limbic activity and PFC dysfunction), all suggest
that ELS/CT plays a seminal role in functional and structural
changes in the brain that may persist along the lifespan (51, 417,
430). Developmental differences in sensitivity to specific forms
of childhood maltreatment may lead to different susceptibility
of various brain regions and pathways to maltreatment at
different ages (417). These results suggest that previously
reported structural and functional findings in adolescent or adult
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FIGURE 1 | Conceptual model on developmental trajectories of early life stress. Schematic model of moderating factors and allostatic neurobiological trajectory

networks involved in the enduring biopsychological effects of ELS/CT. Exposure to ELS/CT can lead to disruption in critical phases of perinatal and juvenile brain

development and an evolving programmed phenotype with altered allostatic processes and reduced adaptability to stress. The individual effects on ELS/CT on the

organism depend on the specific genetic background and fetal programming (hit-1), the timing, duration, intensity and type of ELS/CT (hit-2) and other later-life

challenges, such as additional stressors, coping strategies, support existence, life style, and aging (hit-3). Depending on their interaction, these factors explain

inter-individual variation in resilience or vulnerability to altered biopsychological functioning and disparate health outcomes.

psychiatric disease should be re-evaluated addressing ELS/CT as
a potential confounder (417).

EXPLANATORY MODELS

The developmental origin hypothesis of evolutionary biology
suggests that the origins of adult disease are often found

among early-life disruptions of physiological developmental
processes, ranging from direct causal associations to complex,
interacting environmental effects (58, 456–460). The previous
sections confirm that ELS/CT during critical phases of perinatal
and juvenile brain development is associated with increased
cacostatic load and reduced stress adaptability in adulthood,
leading to enhanced vulnerability to several chronic diseases.
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Consequently, various explanatory models have been suggested
during the past decades.

According to the cumulative stress model (diathesis-stress
model) put forth by McEven et al. (4), when the accumulation
of stressors along the life span exceeds a certain threshold,
disease development is enhanced in individuals with higher stress
exposure. Gluckman et al. (458, 459) suggested a pivotal role of
ELS/CT that could prompt developmental (epigenetic) changes
underlying predictive adaptive responses leading to a mismatch
between the phenotypic outcome of adaptive plasticity and the
ability to cope with current stressors increasing risk for disease
(match/mismatch hypothesis). In contrast to the cumulative
stress model, the mismatch hypothesis explicitly assumes that
ELS/CT may also have advantageous effects by representing
a possible source of adaptation, potentially even promoting
active coping (stress inoculation) to moderate stressors and,
thus, resilience. Similarly, the for-better-and-for-worse model
suggested by Belsky and Beaver (461) assumes that genetic
susceptibility should be contextually interpreted and, according
to the specific environment, could be beneficial or not. Nederhof
and colleagues have proposed an integrated model based on
programming effects of ELS/CT interacting with individual
genetic vulnerability (462, 463). Recently, Daskalakis et al.
(104) have expanded this model suggesting a three-hit concept
for vulnerability and resilience. Accordingly, vulnerability in
a given context is enhanced when failure to cope with
adversity accumulates. The interaction of the individual genetic
background (hit-1) with ELS/CT exposure (hit-2) results in
an evolving phenotype with altered stress axis regulation and
sensitivity due to early developmental programming, which,
in turn, interacts with later-life challenges (hit-3) to result in
a higher or lower vulnerability risk according to the type of
challenge experienced. This model underlines the extraordinary
plasticity of the brain and suggests that “nothing is written in
stone” (464).

DISCUSSION

Coordination of the stress, immune and circadian systems is
essential to individual development, adaptation, survival, and
well-being (1, 2, 153). ELS/CT, in interaction with genetic
factors, disrupts developmental programming of the related
neural circuitry and leads to alterations in neuroendocrine,
immune, circadian, emotional, and autonomic (re-)activity,
with related structural, functional, and epigenetic modifications
both in the brain and peripheral tissues. These persistent
structural and functional neuropsychobiological changes as
sequelae of ELS/CT could mediate risk for chronic disease in
adulthood, and lead to cumulative disadvantages and increased
adult physical and mental health morbidity (15, 55, 58, 62).
Nevertheless, although most studies support a causal relation
between ELS/CT and psychobiological maladjustment in later
life, the developmental course of such changes and its temporal
coincidence has not been elucidated as yet. Thereby, non-linear

patterns in neurodevelopment lead to specific periods of greater
stress system plasticity, which represent important vulnerability
periods (96, 100, 101). Thus, ELS/CT experience is probably
associated with a differential impact on stress system activity
according to the specific developmental period of exposure (102).
ELS/CT exposure during the first hypo-sensitive 2 years of life
may lead to a hyper-activity and -responsiveness of HPA axis and
accordingly higher risk for developing depression than PTSD,
while ELS/CT during the hyper-active phase of adolescence
may lead to a hypo-active and hypo-responsive HPA axis and
accordingly higher risk for developing PTSD than depression in
adulthood (22, 101).

Figure 1 summarizes the above developmental approaches
and provides an integrative schematic model of moderating
factors and allostatic neurobiological trajectory networks
involved in the enduring biopsychological effects of ELS.
However, further biological pathways (i.e., gonadal steroids,
amyloid beta, mitochondrial function, leptin/ghrelin system),
psychiatric states (i.e., depression, PTSD), and behavioral
patterns (i.e., substance abuse, physical exercise, nutrition) could
also play an important role in the mediation of the overall
biological risk after ELS/CT and should be better investigated.

CONCLUSIONS

The identification of factors related to risk and resilience in
the wake of child abuse is a matter of central importance
for public health interventions (465). Understanding the
pathways susceptible to disruption following ELS/CT exposure
and the effects of a dysregulated interconnection between
all neural systems involved could provide new insights into
the pathophysiologic trajectories that link toxic stress during
developmental stages of childhood and adolescence to adult
maladjustment and psychopathology. Future studies should
prospectively investigate potential confounders, their temporal
sequence and combined effects at the epidemiological, biological,
and epigenetic level (466, 467), while considering the potentially
delayed time-frame for the expression of their effects. Finally,
screening strategies for ELS/CT and trauma need to be
improved. Information about ELS/CT history and the number
of adverse experiences could help to better identify the
individual risk for disease development, predict individual
treatment response and design prevention strategies to reduce
the negative effects of ELS/CT (468). Detecting and healing
of the “hidden wounds” left by ELS/CT should thus be a public
health priority.
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