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Featured Application: The review presented in this work has practical application to the concep-
tion, development and refinement of new technologies and visualisation frameworks pertaining
to railway tunnel subsurface inspection. Subsequent application to the development of proto-
type self-sustaining digital twin tunnels also presents opportunity. In both cases, practical end
user benefit would be improvement to the clarity and comprehensiveness of subsurface inspec-
tion datasets, better informing targeted maintenance strategy planning.

Abstract: Railway Tunnel SubSurface Inspection (RTSSI) is essential for targeted structural mainte-
nance. ‘Effective’ detection, localisation and characterisation of fully concealed features (i.e., assets,
defects) is the primary challenge faced by RTSSI engineers, particularly in historic masonry tunnels.
Clear conveyance and communication of gathered information to end-users poses the less frequently
considered secondary challenge. The purpose of this review is to establish the current state of the
art in RTSSI data acquisition and information conveyance schemes, in turn formalising exactly what
constitutes an ‘effective’ RTSSI visualisation framework. From this knowledge gaps, trends in leading
RTSSI research and opportunities for future development are explored. Literary analysis of over
300 resources (identified using the 360-degree search method) informs data acquisition system op-
eration principles, common strengths and limitations, alongside leading studies and commercial
tools. Similar rigor is adopted to appraise leading information conveyance schemes. This provides
a comprehensive whilst critical review of present research and future development opportunities
within the field. This review highlights common shortcomings shared by multiple methods for RTSSI,
which are used to formulate robust criteria for a contextually ‘effective’ visualisation framework.
Although no current process is deemed fully effective; a feasible hybridised framework capable
of meeting all stipulated criteria is proposed based on identified future research avenues. Scope
for novel analysis of helical point cloud subsurface datasets obtained by a new rotating ground
penetrating radar antenna is of notable interest.

Keywords: railways; tunnel; subsurface; inspection; visualisation; ground penetrating radar; 360GPR;
structural health monitoring; building information modelling; extended reality

1. Introduction

Railway tunnels provide critical transport links for passengers and freight through
terrain otherwise impassable to trains, facilitating time-efficient navigation through moun-
tains, under waterbodies and bypassing human-made obstructions (e.g., buildings, utilities,
mass-transit routes). As confined high-traffic subterranean infrastructure, tunnels are
inherently hostile and dangerous environments, suffering perpetual degradation from
both environmental and human factors (e.g., shifting landmass, extreme weather, above-
ground construction) [1–5] which seed discernible damage to the intrados—the innermost
surface of the tunnel arch [6]—surface and subsurface. In the UK, unlike comparatively
modern highway and metro tunnels, railway tunnels frequently date back to the Victorian
era. These historic masonry structures are inherently weaker than their modern concrete
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counterparts, meaning complex degradation can rapidly develop in the vicinity of seeded
damage. Therefore, detection and hazard-level evaluation of all structural features (assets,
defects) during Railway Tunnel Inspection (RTI) surveys is essential to inform targeted
maintenance, ensuring continued safe and efficient operation. Use of Non-Destructive
Inspection/Evaluation (NDI/E) techniques for Rail Tunnel SubSurface Inspection (RTSSI)
is of paramount importance in modern surveys; however, they are not infallible due to ac-
curacy and clarity limitations. Consequently, undetected seeding and growth of concealed
subsurface defects can complicate or even scrub maintenance attempts, irrespectively
posing serious safety risks that can endanger life. Timely reminders include undetected
microfracture growth which caused catastrophic failure of the Gerrards Cross Tunnel (UK,
2005) [7,8] and two violent crown failures which partially collapsed 18 m of the Yangshang
Tunnel (China, 2017) [9].

Collectively these dangers highlight urgent need for a comprehensive, reliable, repeat-
able, time-efficient and clear RTSSI visualisation framework, based on NDI techniques, for
accurate intrados subsurface feature detection and evaluation. In this work, we review the
effectiveness of current RTSSI-relatable visualisation frameworks, focusing on the increas-
ing capabilities of realistic 3D surveys and discussion of future research opportunities. Our
aims are to highlight common critical limitations of current strategies and propose viable,
pertinent improvements. Following an overview of research methodology (Section 2) we
explore leading NDI methods in RTI for RTSSI (Section 3), before deliberating the issues of
applying heuristic comparisons (Section 4). From this, we formulate criteria for effective
RTSSI visualisation frameworks (Section 5), then appraise the scope of current connected re-
search efforts (Section 6). A discussion of trends and identified findings is finally presented
(Section 7).

2. Materials and Methods

We analyse journal references, practical studies and commercial systems pertaining to
RTSSI-relatable visualisation frameworks. For this purpose, we partition notion of an RTSSI
visualisation framework into two sequential phases: (1) Data Acquisition Approaches;
(2) Information Conveyance Schemes. A subtle remark, note that information is not itself
raw data but the meaning from raw data. ‘The tree holds 5 apples’ is raw data, but knowing
we expect it to hold 20 gives meaning to the data (i.e., the harvest is poor). Context and
analysis turn raw data into useful information.

No prior review work encountered considers both described phases in detail. In
fact, we found only two literary reviews directly related to RTSSI [10,11]. Both principally
analyse literature concerning phase (1), of which [10] is the only dedicated review article.
However, being published in 2015, it now lacks current relevance due to technological
advancements. Discussions of ROBO-SPECT (RS) are the only RTSSI-specific scheme we
do not consider outdated, but consideration will only be paid its most recent publica-
tions. The 2015 review provides a comparative ‘baseline’ for discerning small updates
on already established methods from genuinely novel RTSSI innovations. Our review
focuses on the latter as this provides greater benefit to current researchers and practitioners,
with [10] providing historic reference. By contrast, we note although [11] is the more recent
publication, it relies on many references previously provided in [10]. Our observations
clearly necessitate creation of a novel review addressing both phases of RTSSI visualisation
framework development, spanning research projects and commercial systems documented
between 2015 and 2021.

Our review procedure is illustrated in Figure 1 and draws upon knowledge from over
300 information resources. We formally cite 255 primary resources (e.g., reviews, articles,
proceedings, etc.). Upwards of 60 secondary resources (e.g., internal reports, cooperate
multimedia, web-resources, etc.) provide further insight, however are not formally ref-
erenceable Owing to the fundamental dependency phase (2) has on phase (1), materials
considered have frequently contributed to discussion of both areas. As a conservative
estimate, the distribution of total literature is approximately 67% across phase (1) and
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55% across phase (2), with 33% providing contextualisation. Maximal crossover is ap-
proximately 69%. Academic publications are obtained by 360-degree searches of journal
articles and conference proceedings through databases including IEEE Xplore, Springer,
MDPI and Google Scholar. Materials concerning commercial technology solutions are
primarily sourced from the relevant corporate organisations’ website, system manuals
and any associated technical papers. Keywords recurringly searched include: “Railway
Tunnels”, “Structural Health Monitoring”, “Subsurface”, “Defects”, “Computer Vision”,
“Visualisation”, “Human Computer Interaction”, “LiDAR”, “Photogrammetry”, “Ground
Penetrating Radar” and “Extended Reality”. For a detailed breakdown of key references,
see Appendix A.

Figure 1. Flowchart of reviewing procedure prescribes handling, analysis and management of
resources, alongside providing a rigorous procedure for appraising the effectiveness and scope of
frameworks considered.
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3. RTI Data Acquisition Methods

To gauge current state of the art in RTSSI-relatable visualisation frameworks, we
first consider current leading subsurface data acquisition methods. Note that data acqui-
sition must logically precede information conveyance in all conceivable frameworks by
chronological reasoning.

3.1. Visual Methods

Visual assessment is the longest-established NDI method for RTI and is still widely
adopted today, particularly across the UK and Chinese rail networks [12,13]. We subdivide
methods into two classes: (i) Traditional and (ii) Modernised. Traditional evaluation is
exclusively based on engineers’ learnt association between visual indicators (e.g., work-
manship inconsistencies, material fatigue hallmarks) and fault likelihood. Problematically,
engineers infrequently share similar extents of practical experience, resulting in high sub-
jectivity. Crosschecks and multi-pass surveys can partially reduce accuracy and consistency
variations but take significantly longer to implement at increased resource cost, closure
times and rail worker risk. Handwritten notetaking ambiguity, incompleteness and in-
herent susceptibility to human error also present issues for later analysis. They entice
misinterpretation, causing unnecessary delays and disruption. However, being low ex-
pense and reasonably accurate (if performed by more experienced engineers), coupled with
human-aptitude at informed predications from non-structural information (e.g., history of
construction practices); traditional methods can time-efficiently localise visibly degraded
quadrants requiring repair.

Modernised methods mostly utilise Close-Range Photogrammetry (CRP) to provide
referenceable intrados imagery. Units commonly employ RGB optical cameras mounted on
moving platforms for stability and time-efficiency. These include: Pushcarts/Rail-Trolley
(RT), Road-Rail Vehicle (RRV) and Robotic Traction Unit (RTU). Merging resultant over-
lapping orthophotos via mosaicing [14,15] allows tunnels to be ‘unwrapped’—permitting
analysis in 2D—although we more frequently find studies adopt 3D CRP topography
model reconstruction via ‘Structure from Motion’ (SfM) algorithms [16–19].

A noteworthy recent innovation includes ‘Digital Imaging for Condition Asset Mon-
itoring System’ (DIFCAM) [20]; an RRV-mounted optical array deigned to reduce crew
sizes and inspection durations. Although 2014 marks DIFCAM’s last major study [21],
scope of its successor project DIFCAM Evolution [22] discusses subsurface imaging and
automated defect recognition technology integration. However, due Visual assessment is
the longest-established NDI method for RTI and is still widely a lack of available details or
recent publication activity, we reside this to speculation only. Of comparable interest, [23]
presents a ‘Moving Tunnel Profile Measurement’ system (MTPM-1) which deploys a novel
rotating camera for CRP that tracks a translating laser target to achieve swift 3D capture
of a 100 m tunnel in 3 min. Use of a more lightweight camera is necessary for smoother
rotation and reduction of prevalent lens-distortion.

Overall, visual methods provide extensive surface inspection prospects but are im-
practical for subsurface inspection since tunnel intrados’ are opaque, except where defects
have already exposed the subsurface. For a summary of defect types see Section 6.1.2
and consult ‘Ring Separation and Debonding’. We believe proposed revisions of MTPM-1
show promise and would further benefit from fusion with automatous RTU locomotion
described in [24] to facilitate 24/7 remote deployment.

3.2. Acoustic Methods

Subsurface features modify the characteristics of propagating soundwaves. Acous-
tic methods pulse predefined waveforms into the tunnel intrados and analyse resultant
distortion and delay to identify audible indicators of defects. Acoustic methods can be
subdivided into Ultrasonic Testing (UST) and Infrasonic Testing (IST). In UST, reductions
in travelling pulse velocity correspond to elastic deformation of defected regions [25,26];
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contrastingly for IST, defects are indicated by high resonant frequency components in
returning pulses [27].

We only encountered two research groups directly applying UST to tunnel subsurface
inspection. In [28], UST is extremely time-inefficient, requiring 9–25 min to scan 1m
of tunnel wall and necessitating use of a preliminary GPR scan (Section 3.6) to localise
suspected features. Likewise, despite robotic automation, UST scans performed by tunnel
profiler ROBOSPECT achieve comparably inefficient durations of one hour to scan 6m [29]
and are optimised for surface level crack and spall detection only [30,31]. Evidently, UST
can be considered ill-suited for RTSSI, where surveys must be swift to minimise periods of
tunnel closure.

IST proves more useful for RTSSI. Traditionally, hammer-strike emissions are per-
formed by experienced human operatives who detect audible defect indicators ‘by ear’
alone, but those remaining are few, approaching retirement and are not being replaced.
Faster robotic schemes are now preferential, boasting improved high level access achieved by
mounting hammers to robotic arms [32–35] on Variable Guide Frames [36] and UAVs [37,38].
We notably uncovered a unique non-contact infrasonic UAV system [39] successfully induc-
ing hammer-strike reminiscent flexural vibrations in infrastructure at distances of up to
5 m, for which application to remote-RTSSI presents an interesting research venture.

Detrimentally, inherent reliance on human interpretation of audio-spectra (which
do not physically resemble subsurface features they convey) critically limits the insight
non-specialist end-users can draw from IST without costly training or additional contextual
metadata (e.g., maps of striking locations).

3.3. Laser Methods

Terrestrial Laser Scanning (TLS), also termed LiDAR (Light Detection And Ranging),
utilises directed lasers to scan the visible tunnel intrados, generating dense 3D point clouds
(Figure 2a) at up to 1 × 106 datapoints per second [40–43]. Visible light impulses reflect
with variable intensity informing relative distances. However, datapoints lack classification
labels and do not penetrate the subsurface. This makes segmentation of tunnel features
challenging [44], but does permit direct insight into subsurface condition (e.g., profile
distortions indicate abnormal strains) [45]. Pursuit of TLS integration with counterpart
penetrating NDI methods marks an emerging avenue of long-term research. We note that
the development of a standardised, efficient and reliable method to perform the essential
alignment of multiple point cloud datasets—to form a unified digital environments—will be
a key milestone for innovators to achieve before practical deployment becomes mainstream
RTSSI practice.

Returning to standalone laser methods, we found TLS-RTI studies and commercial
contractors most commonly deploy FARO® FOCUS scanning modules [46–49] (Figure 2b)
or the Z+F Profiler® 9012 [50–52] to assimilate RGB optical photography for improved
end-user navigational ease in recovered point clouds. Noteworthy innovations include
an automated deformation detection assembly [11], which utilises a novel Circular Laser
Scanning System (CLSS), highlighting the practicality of adopting circular sensing arrays
that complement natural tunnel curvature.

Notable innovation is showcased in the Tunnel Monitoring and Measurement Sys-
tem (TMMS) developed by [52]. The prototype visualisation framework utilises a Z+F
Profiler® 9012 mounted on a bespoke rail trolley (Figure 2c) to pass RGB LiDAR tunnel
point clouds and a ‘roaming video’ feed of intrados condition to an engineer’s tablet PC.
The developed hardware bares strong similarities with a similar mobile TLS apparatus
used in [49] employing a FARO X330 scanner. Validation trials in China’s Zhengzhou Metro
network demonstrate practical deployment capability but also relay that primary functions
of ingress and cross-sectional deformation detection suffer noteworthy accuracy and stabil-
ity reduction when applied to non-circular tunnel profiles (e.g., horseshoe, elliptical, etc.).
TMMS therefore flags the importance adaptability in the design of new RTSSI solutions for



Appl. Sci. 2022, 12, 11310 6 of 35

wide-scale deployment, particularly on older rail networks (e.g., UK) which adopt multiple
‘standard’ tunnel cross-section variants.

Figure 2. TLS for tunnel inspection. (a) 3D point cloud returned from a TLS metro tunnel sur-
vey [52]; (b) A FARO® FOCUS 350 scanning module, commonly deployed for infrastructure surveys;
(c) TMMS rail-trolley transports a Z+F9012 to capture a TLS point cloud of a Zhengzhou metro tunnel.

3.4. Thermographic Methods

Subsurface faults modify thermal emission patterns of nearby interior tunnel surfaces,
causing abnormal variations. Visualising temperature distribution profiles (Thermom-
etry) facilitates localisation of suspected near-surface features (Thermography) [53,54],
but recovery of specific attributes defers to higher quality UST or localised GPR imaging.
Active Thermography (ACT) heats surfaces using halogen lamps [55], air guns [56] or
inductive-heating elements [57] to induce exaggerated thermal responses. Abandoned
testing by [58] and remarks of [59] affirm that heating element operation for RTSSI would
incur impractical cost and could debond masonry, explaining its literary absence. We find
use of infrared camera arrays for passive Infrared Thermography (IRT) more commonplace,
owing to swifter and less costly implementation. Leading systems identify both air and
water filled voids, with individual scans displayable as 2D panoramic imagery [53] or
pioneering 3D mesh overlays on digital structural models rendered using TOSCA-FI [60]
(Figure 3) or Augmented Reality [61] (Section 6.2). Despite recent work, Thermography
still exhibits persistent limitations [54] undermining direct application to RTSSI:

• Results are highly sensitive to ambient temperature conditions which diminishes
anomaly contrast (e.g., daily and seasonal variation);

• Thermal insulation and heat-resistant coatings used for tunnel temperate regulation
and fire resilience can skew results. High thermal dissipation can easily restrict
penetration d < 30 mm [62];
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• Subsurface water content variation (e.g., increased permeation following rainfall or
snow) can mask or exaggerate thermal profiles of faults;

• Enclosed, curved tunnel geometry restricts available viewing angles and confine
results to 2D, even in a 3D mesh overlay, making inference of feature depth and
physical form very challenging even for experienced operatives.

Figure 3. TOSCA-FI Software Platform: 2D heatmap overlays on a 3D digital bridge model [60].

3.5. Gravity Methods

Gravity Surveys (GS) use portable gravimeters [63], placed at regularly spaced sam-
pling locations, to measure subtle variation in gravity surrounding railway tunnels [64].
Anomalies observed in returned Complete Bouguer Anomaly (CBA) curves inform subsur-
face material composition [65] and indirectly, structural health assessment. Regional trends
in subsurface density conveyed by CBA curves can vary across scales comparable to the
tunnel itself, granting extensive inspection coverage. Likewise, localised negative field dis-
placements can indicate the presence of irregular low density regions, strong indicators of
voids and deformation zones [66–68]. However, few common defects exhibit substantially
large density variations (compared to their surrounding landmass) that would noticeably
influence a CBA curve, which despite informing the general nature of the subsurface,
does not comprehensively nor clearly visualise subsurface features themselves. Moreover,
localising large features relative to the tunnel (i.e., in front, behind, left, right) is further
complicated by the structure’s cylindrical profile. This makes modelling the corresponding
gravity field a multi-solution problem, introducing significant uncertainty and greatly
increasing involved computation efforts [69].

3.6. Radar Methods

Ground Penetrating Radar (GPR) directs radio pulse emissions at the tunnel intrados,
which penetrate and partially backscatter off strong dielectric gradients in the subsurface
associated with features of interest [10,70–73]. Pulsed Radar (PR) samples consecutively
emit wideband waveforms to measure backscatter in the time domain. Step-Frequency
Continuous Wave (SFCW) radar incrementally sweeps an emission sinusoid through a pre-
defined frequency band; the Fourier Spectrum of the returning signal is directly ascertained
in the frequency domain by frequency-wise inspection of return signal strength [74]. In RTI,
systems fall under three categories:
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• Trolley-Mounted [75–77] (Figure 4a)—Units commonly feature interchangeable air-
coupled antenna of differing frequencies to facilitate trade-off between penetration
depth and output image resolution [28]. However, motorisation is infrequent, scans
are unidirectional (typically railbed only) and offer no protection to operatives;

• Handheld [78–81]—Compact ground-coupled scanners guided by hand can achieve
real-time scanning of curved tunnel sidewalls and crown. Typically restricted by
limited penetrative depth (d < 50 cm), coverage speed (under m2 h−1) and gantry
requirement to reach high surfaces make units impractical for full RTI;

• Vehicle-Mounted [82–86] (Figure 4b)—Multidirectional fixed antenna units attached
to locomotives, rolling stock or RRVs. Although capable of data capture at speeds
ranging from to 50–30 km h−1, fixed directionality guarantees blind spot and air-
coupling reduces achievable penetrative depth.

Figure 4. A selection of leading GPR systems. (a) Ballast fouling inspection trolley with selectable-
frequency GPR antenna module [77]. (b) Loco-mounted fixed directional air-coupled GPR antennas.

Radargrams (B-scans) traditionally convey survey output, which although encoding
multiple feature characteristics (e.g., depth, extent, orientation, heterogeneity, etc.) [70,73],
demand extensive digital filtering [87–91] and may still contain abundant false-artifacts
(e.g., ringing effects from rails, airwaves from overhead surfaces) [92–94], making them
notoriously unintuitive. Increasing clarity via orthogonal intersection [95,96] (Figure 5a)
and parallel stacking [97,98] (Figure 5b) of B-scans to form C-scans is now well-established
practice in many commercially available GPR processing software packages [99–103]. Col-
lectively, we denote this pseudo-3DGPR. We stipulate ‘pseudo’ to emphasise the inherent
information loss resulting from 2D projections of 3D tomography. Beneficially, C-scan
datasets can exploit time-slicing [104–106] (Figure 6a,b), in situ transparency filtering [107]
and false-colouration [108] to improve conveyance of 3D forms. More recent investigations
into true-3D volumetric reconstruction [98,109–117] (Figure 6c) show promise for advances
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towards practically viable fully immersive GPR-based subsurface inspection surveys (un-
dertaken in fully digitised virtual survey environments) [80,118–122]. Whilst conceivable
and under trial, achieving mainstream commercial deployment will require blind spot
alleviation through adoption of rotary scan motion complementary to tunnel curvature,
possibly similar to the superposition of concentric cylindrical ‘look-ahead’ radargrams
pioneered by the TULIPS system [123] for tunnel excavation monitoring. Pursuit of blind
spot elevation is therefore of critical importance if comprehensive RTSSI profiles are to
be captured.

Figure 5. Principal methodology for combining planar radargrams to form pseudo-3DGPR visuals.
(a) Orthogonal Intersection: B-scans meet at 90◦ helps focus attention on the central region. (b) Parallel
Stacking: Aligning B-scans as slices of a cuboidal volume helps identify reoccurring targets [97].

Figure 6. Mechanisms for improved contextualisation of 3D GPR datasets. Time-slicing performed
(a) horizontally [100] or (b) vertically [102] can improve perception of relative depths and 3D feature
shape. (c) Volumetric reconstruction increases feature faithfulness to reality, reducing human memory
dependency, but processing remains highly involved [103].

3.7. Robotic Methods

Robotic systems reduce necessary human involvement in RTI, thereby beneficially
reducing human error during data acquisition (e.g., mis-recordings due to subjectivity or
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lapses in concentration). Scope for varying degrees of autonomy further reduces depen-
dency on onsite human presence, thereby increasing crew safety and cutting overhead costs.
However, we must remember robotic methods share the limitations of their constituent sen-
sors and also exhibit their own unique set of challenges (e.g., collision avoidance, recovery,
stabilisation, power management, miniaturisation).

3.7.1. Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) have become increasingly popular for tunnel in-
spection owing to their low cost designs, programmability and exceptional manoeuvrability,
which has motivated in excess of $4 billion global investment in UAV technology devel-
opment for infrastructure inspection [124]. However, practical performance of current
UAVs remains limited by poor onboard charge retention [125]; stabilisation challenges
from near-wall turbulence and common dependency on GPS. Note that being subterranean,
Global Positioning Systems (GPS) typically struggle to operate reliably in tunnels. [126,127].
Although, we did find considerable recent research applying collision-aversion proto-
col [128,129] and ‘smart pathfinding’ [130–132] (e.g., PLUTO [133]) to develop autonomous
UAVs [134–137]. However, backup pilots remain necessary which add costs and safety-
risks [137]. Furthermore, no commercially available autonomous UAV has yet to be de-
veloped specifically for RTSSI, despite similar systems existing for hydroelectric penstock
surface level inspection [138].

Being airborne, UAVs could quickly transport RTSSI sensors where articulated booms
cannot reach, for instance UAV-SWIRL hovers inside vertical ventilation shafts [125,139].
However, most systems still favour Optical Photometry and LiDAR sensing [140–142],
permitting only implicit subsurface measurements. Of novel importance, we discuss
several significant exceptions developed since 2015. These include development of new
UAV-mounted GPR prototypes [143–145]; we found one commercial system [146] capable
of 10 m penetration, however it is unclear if this incorporates UAV altitude.

In addition, hybrid locomotion UAVs now encompass:

• Fixed Anchor-Point Docking [147–150]—Sustains surface contact for IST and UST
but requires highly involved pre-installation of anchors;

• Pivoting RTUs [151] (Figure 7)—Tracks enable uninterrupted contact and continuous
one-way surface coverage but increase weight and power drain, limiting survey
completeness;

• Negative Pressure Wall-Climbers [152,153]—Faster than track-based RTUs but re-
quire large flat contact surfaces, hence curved tunnel geometry risks UAV slip and
hazardous control loss;

• Fully Actuated Configurations [154,155]—Provides best all-round solution, providing
unrestricted multidirectional movement even on curved surfaces, but is liable to near-
surface turbulence.

Figure 7. A recent novel innovation in hybrid locomotion UAVs. The pivoting traction crawler UAV
performs IST on angled infrastructure surfaces inaccessible to engineers without gantries [151].



Appl. Sci. 2022, 12, 11310 11 of 35

3.7.2. Adaptive Robots

We consider adaptive tunnel inspection robots to be devices capable of automatic
geometry, operation or locomotion mechanism modification that combats demanding envi-
ronmental conditions. As developments found were primarily proof-of-concept prototypes,
current systems lack direct applicability to RTSSI without significant refinement efforts.

Nonetheless, we shall consider how such systems could be of practical future benefit
in RTSSI. Foremost, adaption permits infiltration of inaccessible survey areas (e.g., drainage
pipe interiors, capped shafts), increasing survey coverage. Moreover, units can swiftly
traverse complex terrain (e.g., steps, rail tracks, damaged surfaces, angled walls) without
human interaction, inviting remote inspection innovation potential.

Reconfigurable UAVs [156,157] fold (Figure 8a) to pass though narrow channels before
unfolding (Figure 8b) to survey unknown void-like environments, which could be applied
to preliminary surveys of hidden shafts via small diameter drill holes in capping facades.
However, with more moving parts, damage likelihood during transit or execution is
increased, potentially trapping systems behind walls incurring excess repair, replacement
or recovery costs. Self-disassembly [158] could provide an easier route towards recovery.

Figure 8. Folding UAV PROMETHEUS for subterranean inspection [156] can enter boreholes (a) to
explore inaccessible voids (b) of potential benefit for probing hidden shafts in RTSSI.

Burrowing inspection devices [159] could create subsurface channels, then deploy
‘snake robots’ [160,161] fitted with endoscopes or fibrous sensing elements to directly
image subsurface condition, detect ground movement [162] or moisture content [163].
However, burrowing is destructive and could exacerbate damage to already defective
quadrants of intrados. Alternate use of modular configurations [164,165], compact step-
climbers [111,166,167] or deformable ‘soft robots’ [3,168,169] fitted with NDI sensors could
traverse small but pre-existing subsurface channels (e.g., pipes, vents, data cables) avoiding
destructive burrowing. Soft robots uniquely could contort to bypass obstructions for
multidirectional inspection of clogged drainage pipes. However, extensive development
remains necessary to form a coherent self-arrangement of modular robots [170–174] capable
of emulating established NDI techniques.

3.8. BIM-Integration

Building Information Modelling (BIM)represents a new paradigm for large structure
lifecycle information management [175,176]. Current survey outputs represent one-way
information exchanges between the physical tunnel environment and reconstructed digital
models. By contrast, Digital Twin Tunnel (DTT) BIMs would facilitate two-way information
exchange from any point in time during its perpetual update cycle. In two-way exchange,
state changes in physical tunnel prompt reactive changes in the digital tunnel informing
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future maintenance, which cause further state changes in the physical tunnel and so on and
so forth [177].

We find multiple recent experimental rail tunnel-BIM studies exist [178–182], typically
deploying laser methods to profile and categorise trackside assets (Figure 9) but only [183]
directly approaches RTSSI, developing a prototype AI-assisted BIM for ingress detection
(developed on the Amber Inspection Could). Problematically, none currently exhibit ad-
equate automation to be considered idealised DTTs. By inference, visualisation quality
and overheads would clearly benefit from the significantly increased data pools and opti-
mised network architectures anticipated [184]. However, challenges remain. Existing BIM
architectures frequently lack specialisation to account for unique RTSSI challenges, such as
complex terrain deformations and changeable subsurface geological conditions [182,185].
Reoccurring incompleteness of feeder data from NDI methods further limit BIM efficacy
for RTSSI, despite recent improvements in multi-label datasets recovery [186–189].

Evidently, BIM integration for RTSSI will be essential for developing the first self-
sustaining DTT [188], but insufficient without complimentary improvements to survey
completeness.

Figure 9. BIM for RTI. ‘As-is’ BIMs [181] frequently adopt LiDAR point cloud segmentation (via
RANSAC and Supported Vector Machine methods) to label trackside assets both (a) outside and
(b) within the tunnel environment [41].

3.9. Other Methods

Aforementioned NDI methods are most commonly deployed in routine RTSSI surveys
based on encountered literature, motivating distinction from (i) more antiquated methods
(e.g., invasive, inefficient, overly localised), (ii) less established experimental practices
and (iii) schemes for real-time subsurface monitoring. In (i), we group: Borehole/Drill
Core Sampling [190,191], Electrical Resistivity Tomography (ERT) [192–195], Endoscopic
Probing [196,197] and Schmidt Hammer Strength Testing [53,198]. In group (ii), we gather:
Radiography/Muon Tomography [199,200] and multiple additional prototype robotic
RTSSI systems [14,166,201–204]. Group (iii) accounts for Time Domain Reflectometry
schemes [205,206] and other Embedded Sensors [207].

4. Heuristic Comparisons of RTI Methods

Having discussed key attributes of leading RTI methods for RTSSI in isolation, we
now direct the reader to our more comprehensive summary provided in Appendix A. It is
tempting to directly compare advantages and disadvantages, ‘ranking’ methods to find an
‘optimal’ choice—a process we’ll term ‘heuristic comparison’. Noting that railway networks
must balance inspection funding, duration and result quality, whilst researchers similarly
prefer to invest effort in developments that return greatest impact, both for practical surveys
and advances to the research field. This optimisation problem initially appears well-posed
but this is not the case.
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We find heuristic comparisons lack natural scaling. We may regard ‘scaling’ as a fixed-
reference, quantifiable metric for comparing the importance of two characteristics. We draw
parallels with use of numbered scales on questionnaires gauging attitudes (e.g., perceived
risk between different dangers) [208]), therefore frequently suffer from:

1. Ambiguity maintaining a consistent comparative ground throughout;
2. Contextual variation between significance of comparative grounds.

Consistency ambiguity typically arises during first evolution of an argument (e.g.,
spoken discussion in planning meetings):

“Let’s compare the accuracy of subsurface 3D visuals produced by LiDAR and pseudo-
3DGPR. The latter are clearly more accurate because LiDAR can only indirectly visualise
the subsurface (cross-sectional deformation). But the former is more accurate because
deformation appears as point cloud deformation, whereas physical features are not actually
hyperbolae-shaped as they’re shown in pseudo-3DGPR”.

Note that both comparisons are valid and concern accuracy, but lack a definitive
conclusion. The comparison ground for ‘accuracy’ subtly shifts from data-type to data-
faithfulness. We argue the origin is vague definition of what constitutes an ‘accurate’ visual
in the comparison posed. By contrast, contextual variation is more obvious:

“The spatial resolution of gravitational surveys would be inferior to Thermography for
detecting small voids in an operating tunnel, but superior for strata mapping during
construction”.

Evidently, a more robust rationale is required.

5. Criteria for an ‘Effective’ RTSSI Visualisation Framework

So far, we have found heuristic arguments unsatisfactory for appraisal of RTI methods
in a RTSSI context. Significant disparity exists between respective operating principles,
deployment methodologies and output conveyance; not least in the inherent multifaceted
and context-dependant grounds for suitability and performance comparison. Two specific
examples would include: (i) the nature/variety of detectable features and (ii) assessment
timescale.

The basis for our criteria is twofold.
First, we recognise each RTI method discussed exhibits at least one critical limitation

(Table 1). Logically, an effective RTSSI visualisation framework would not share any,
meaning an innovation directly addressing either would have significant impact on the
current RTI hardware market. This motivates our novel formulation of well-defined but
sufficiently general criteria for an ‘effective’ RTSSI visualisation framework. We illustrate
the benefits visually using a conceptual network diagram (Figure 10).

Table 1. Main current issues facing NDI methods.

Method Critical Limitations for RTSSI

Visual Lack necessary penetrative capability to directly visualise subsurface.
Laser

Therm.
Information loss (2D projections of 3D
features) limits survey faithfulness.

Skew from ambient temperature variations.
Acoustic Inefficient implementation.

Radar
Curvature induces blind spots.
Visuals lack interpretive clarity.

Gravity Struggles to resolve localised features.

Robotic
Systems share the limits of their ancillary
sensors.

Onsite supervision still required.
Majority of systems are still concepts or early prototypes.

BIM-Int. Architectures frequently lack
sufficient optimisation to react to RTSSI data dynamically.
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Figure 10. Using criteria greatly simplifies comparison networks. (a) Heuristic comparisons are
irregular and multi-directional networks. (b) Criteria inclusion collapses the network to be regularised
and unidirectional.

Second, our creation of a Category Connection Matrix (CCM) from encountered liter-
ature (Table 2)—inspired by the hybrid workflow matrix presented in [209])—highlights
emerging research trends, which we use to infer future research avenues in RTSSI. The
categories extracted inform where research attention is currently most directed. Further-
more, collectively, motivation for all relevant studies is to contribute to producing the most
effective RTSSI visualisation framework possible. Thus, each identified research category
must align with at least one criterion.

From this, we formulate our proposed criteria for an ‘effective’ RTSSI visualisation
framework, which considers:
Data Acquisition:

1. Completeness—Uninterrupted scan coverage should be achieved to record the full
extent of the influential regions of the tunnel subsurface. Current methods either lack
deep penetrative capability or exhibit bind spots due high localisation of scans or
geometry curvature.

2. Duration—Survey execution should balance acquisition speeds with recovered data
quality (i.e., resolution, distortions) ensuring inspections and repairs cause minimal
network disruption. A rapid low-quality scan limits inspection closure, but misin-
formed repairs take longer to fix and vice versa.

Information Conveyance:
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1. Accessibility/Interpretive Clarity—A railway network end-user who is not a special-
ist in the utilised RTSSI technique(s) (e.g., planner) should independently be able to
understand and make informed decisions based on visualisation output (consider
radargrams the antithesis to this, containing considerable but mostly incomprehensi-
ble information).

2. Faithfulness—Inconsistency between the physical subsurface geometry undergo-
ing inspection and corresponding representation within the visualisation medium
should be kept to a minimum. An example of unfaithful conveyance is how overhead
structures can confusingly appear as below-ground features (airwaves) in radar-
grams [93,210].

3. Interactivity—Visualisations should react intuitively to end-user engagement in ways
that make surveys more ergonomic, efficient and versatile. Again consider radargrams;
time-slicing in pseudo-3DGPR conveys depth more ergonomically than viewing am
isolated B-scan.

Understandably, developing fully effective frameworks will take time, but we can
make informed predictions. In consulting phase (1) literature; current GPR technology
offers greatest versatility for RTSSI. Hence, we anticipate earliest industrial impact will
likely stem from its unification with pre-existing conveyance innovations such as interpola-
tive [111,116] and AI-assisted 3D feature recovery (e.g., DepthNet [114]).

Table 2. Category Connection Matrix (CCM).

Categories Identified Research Avenues

Method A B C D E F G H
Visual • G# G# G# G# G# G# •

Acoustic ◦ ◦ ◦ • G# ◦ ◦ ◦
Laser G# G# G# • ◦ G# G# G#

Therm. ◦ ◦ G# • G# ◦ ◦ ◦
Gravity ◦ ◦ G# ◦ ◦ ◦ ◦ ◦
Radar ◦ G# G# ◦ G# G# ◦ G#

Robotic • G# ◦ • ◦ ◦ ◦ ◦
BIM-Int. ◦ ◦ ◦ ◦ G# ◦ G# G#

Avenue Codes: A: Autonomous Tunnel Surveys; B: Alternatives to Fixed-Direction Sensor Arrays; C: Surface-
Subsurface Tunnel Survey Fusion; D: Automated Tunnel Feature Detection; E: Tunnel Subsurface Feature Severity
Ranking; F: Volumetric Tunnel Feature Reconstruction; G: BIM/DDT Development; H: XR/RTI Integration.
Icons: (◦): Indicates a literature gap due to critical method limitations or a currently unexplored research avenue.
(G#): Indicates works connected to an RTSSI research avenue exist but are indirectly related, signifying opportunity
for new research via novel idea synthesis either amalgamated from or inspired by present literature. (•): Indicates
works connected to a RTSSI research avenue exist and are directly related, signifying relevant practical research is
proposed, presently underway or considered surplus to requirement.

6. Steps towards Criteria Fulfilment

Relevant research is already underway targeted at fulfilling our outlined criteria for
an effective RTSSI visualisation framework.

Regarding the completeness criterion, we draw attention to the significant recent devel-
opment of rotating, air-launched GPR antenna by Railview Ltd. (UK) [211] (Figure 11). Com-
pared to fixed array GPR systems, including the Zetica Advanced Rail Radar (ZARR) [83,212]
and the IDS SafeRailSystem (SRS) [84], the helical scanning trajectory of rotating antenna
more closely mirrors naturally curved tunnel geometry, facilitating more comprehensive
360-degree RTSSI imaging, at competitive depths.
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Figure 11. Unlike conventional fixed direction antenna (a) which typically only image the railbed;
rotating GPR antenna capture 360-degree subsurface profiles including tunnel sidewalls, haunch and
crown (b).

Lastly, we consider the conveyance criteria. Helical scans directly capture 3D RTSSI
geometry in situ as 360GPR datasets, more akin to laser-methods than pseudo-3DGPR
(requiring B-scan stacking or intersection). Ergo, forthcoming analysis of 360GPR presents
an interesting opportunity for new research into volumetric feature reconstruction for
RTSSI.

Thus, 360GPR has scope to form a visualisation framework meeting at least three of
our five effectiveness criteria, feasibly disrupting the current RTSSI hardware market. At
this point, owing to the larger proportion of relevant literature focused on addressing our
conveyance criteria, we discuss the main innovations this review encountered into feature
identification within subsurface datasets (Section 6.1) and dynamic interaction between
visualisations and end-users (Section 6.2).

6.1. Automated Feature Detection and Evaluation

If an end-user cannot clearly interpret subsurface data, the inspection yields little
useful insight into tunnel structural health or targeted maintenance. Detecting degradation
indicators is critical for localising damage, whilst characteristic evaluation (e.g., location,
extent, maximal depth, etc.) informs repair urgency. Searching RTSSI visuals manually
is impractical: tunnel datasets are cumbersome; defect types are wide-ranging through
a tunnel’s operational lifespan; human cognition speeds are slow and our evaluation is
subjective. Unintuitive data visualisations only compound the issue (e.g., radargrams),
explaining why research tackling Automated Feature Detection/Evaluation (AFD/E) ac-
counts for over 1/3 of CCM-featured research connections and encompasses Convolutional
Neural Network (CNN) [213,214] and Deep Learning (DL) [49,215,216] detectors, alongside
severity ranking schemes [217,218]. Scope of feature variety and complexity current AFD
can simultaneously identify with accuracy drew our attention. Restricting our consider-
ation to subsurface studies, a DL image grid workflow flags four distinct features [96]
(manhole, cavity, pipe, heterogeneous soil background), yielding widest feature detection
scope, albeit not concurrently. Studies successfully achieving simultaneous detection of
realistically complex defect configurations [219,220] likewise favoured 2D GPR imagery
but discriminated two types maximum [81]. However, with exception to [96], test environ-
ments featured only assets or defects. This implies GPR-based research is currently leading
developments in AFD and seemingly the upper limits of DL feature detector capability
have yet to be fully explored. Thus, any study classifying over four mixed type (assets,
defects), variety (shaft, void, pipes) or complexity of features would mark a significant
advance in RTSSI-AFD.



Appl. Sci. 2022, 12, 11310 17 of 35

AFE, namely defect severity ranking, proves less researched. Contrary to our initial
expectations of exclusively dictionary-based schemes, of studies found, most now adopt
contextual evaluation via fuzzy logic devices [221,222] and probabilistic analysis [33,223].
We infer more complex evaluation grounds are being considered in parallel when grading
repair urgency, if not yet for RTSSI. For example, many nearby cracks in close proximity
can be of greater concern than one occurring in isolation. Collectively, this suggests devel-
opment of a robust contextual severity ranking scheme for RTSSI would be of worthwhile
pursuit in future research.

ADF/E is clearly transitioning from proof-of-concept simulations to practical deploy-
ment tests. In RTSSI, schemes will need to discriminate tunnel assets from more hazardous
defects, therefore training demands programmer knowledge of common features. For
already aged masonry tunnels, we found no consolidated summary, concerning given
a forecast 30–50% increase in rail-traffic demand by 2050 [224]. We therefore now present
our own bespoke consolidated summary.

6.1.1. Common Assets in Masonry Railway Tunnels

An ‘asset’ denotes any useful or valuable item associated with railway network opera-
tion, encompassing employees, track, signalling, buildings, utilities and civils (structures,
earthworks) [225]. Tunnel assets fall under civils, with any unprotected structurally signifi-
cant entity designated a critical element.

Hidden Critical Element (HCE) is unobservable from at least one side [226]. Locating
HCEs has presented considerable challenges for Network Rail (UK) in RTSSI. We identify
that for current inspection methods, greatest challenge is presented by detection of blind
(concealed but disenable) and hidden (concealed and indiscernible) shafts:

a. Ventilation Shafts—Hollow columns extending from tunnel crown to the surface.
They facilitate air circulation and were originally used to remove material during
construction [227].

b. Maintenance Shafts—To allow simultaneous excavation of multiple faces, many
shafts would be sunk along proposed tunnel routes [228]. Typically infilled or
converted to ventilation shafts, capping frequently conceals them for aesthetics
(processes rarely recorded in writing). Being unreinforced, many have deformed or
partially collapsed.

This is most true for Wales and Western Regions of the UK, following Network Rail’s
failure ‘to deliver on a commitment to identify all hidden tunnel shafts by the end of
2016–2017’ [229] and more recent delays tackling HCE examination schedules in 2019–2020
due to pandemic impacts [230].

As cavities are prime sources of water infiltration, failure to identify hidden shafts
significantly increases risk of accelerated compromise to surrounding structure. Therefore,
innovations towards hidden shaft detection present opportunity for highest new research
impact in RTSSI.

Training detectors to discriminate hidden shafts from other features motivates contin-
ued summary of other common masonry railway tunnel assets:

c Overhead Line Equipment (OLE)—Furthermore, dubbed ‘traction wires’ or the ‘cate-
nary’, these high voltage electrical pickup lines power electric locomotives via onboard
pantograph connectors. Systems can be integrated into older tunnels during electrifi-
cation works. Forms include tensioned metallic cables mounted to the crown and the
Rigid Overhead Conductor Rail System (ROCS) [231], which provide more efficient
operation in low-clearance tunnels. Structural weakening can result from necessary
drilling during install, whilst strong electromagnetic fields generated by the power
feed can interfere with data acquisition systems and present line of sight obstruction
during haunch or crown inspections.

d Portals—Reinforced surfaces surrounding tunnel entrances combating outward de-
formation induced by shear stresses from continuous shifting of landmass encircling
the tunnel [232]. Exposed to the elements, portal rigidity deteriorates, risking collapse
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if cracks and displacement are not detected early. Reinforcement schemes include
buttresses, ground anchors, and steel mesh coverage fixed with soil nails [233].

e Refuges—Small arched recesses within the tunnel lining to protect railway workers
from locomotives.

f Buried Utilities—These can include both metallic and plastic water drainage pipes [234],
electrical wiring and telecom cables.

g Trackside Objects—These include signage, signals, electrical junction boxes and
CCTV units.

h Culverts—Small passages allowing watercourses to pass under railway tracks, includ-
ing underground rivers [235]. Old masonry culverts particularly can be weakened
by solution and hydraulic action resulting in partial section collapse, deforming the
railbed above and causing water backlog which floods tunnels.

6.1.2. Common Defects in Masonry Railway Tunnels

Defects constitute any imperfections in the material or form of a structure. Indicative
of degradation and increased failure likelihood under strain. Swift detection in an enclosed
tunnel environment is critical. We provide a brief overview of causes and hallmarks for
common defects in masonry railway tunnels, then reflect on the efficacy of their detection
in modern surveys, highlighting any opportunities for future research:

a. Arch Barrel and Cross Sectional Deformations (Figure 12a)—Shifting tunnel land-
mass induces changeable tensile and compressive forces within arch barrels. This
can trigger sidewall bulging and buckling; haunch distortion; tunnel floor bowing or
side-offset of the crown.

b. Cracks and Fracturing (Figure 12b)—Localised shear forces and vibrations from
rolling stock can split and displace masonry. Damage ranges from hairline cracks
lacking obvious signs of displacement, to large open fractures exhibiting significant
displacement.

c. Water Ingress (Figure 12c)—Rain infiltrates tunnels through shafts and groundwater
propagates through dissolved subsurface joints and fissures (karsts) [236]. Leaching
of mortar begins as water percolates between masonry before flowing down the
sidewall. Lubrication of masonry joints leads to movement of the structure, resulting
in lining deformation. Owing to joint length, significant quantities of ingress can
accumulate, scouring supports and flooding tunnels without proper drainage or
saturated catchpits, as ingress often carries dissolved ochre (acquired during subsur-
face percolation) which forms crystalised limonite deposits [197] that block drains.
Out-flow down sidewalls forms noticeable white streaks emanating from the region
of breech, therefore can be used as indicators of ingress source. However, establishing
subsurface mortar leaching extent is reliant on NDI methods for RTSSI.

d. Open Joints and Perished Mortar (Figure 12d)—Characterised by the deterioration
and eventual absence of mortar between brickwork. As brick tunnels can date back
over 150 years, mortar naturally begins to deteriorate from reactions with moisture
in the bricks, air and subsurface [227,231,237]. This process is accelerated by wash
from nearby ingress, vibrations induced by both rolling stock and air-pressure waves
from passing locomotives.

e. Loose and Missing Brickwork (Figure 12e)—Early onset of spalling and failed patch-
ing repairs can result in loosened or missing brickwork, indicated by brickwork
rubble on the railbed. Individually, gaps pose no substantial loss of structural rigid-
ity, but can provide opportunity for larger defect growth if not addressed quickly.
Furthermore, if present in tunnel haunch or crown, falling rubble can damage rolling
stock, or cause serious injury to ground crews working below.
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Figure 12. Common defects in masonry railway tunnels: (a) Haunch Deformation; (b) Cracks;
(c) Water Ingress; (d) Perished Mortar; (e) Missing/Loose Brickwork; (f) Spalling; (g) Ring Separation
and Debonded Wall-Section; (h) Frost Heave [238].

f Spalling (Figure 12f)—Perishing masonry on the tunnel intrados in vicinity of the
haunch or crown can be dislodged by gravity, leaving the next layer of brickwork
exposed. Repetition gradually creates rough-profiled recessed quadrants. Bricks in
newly exposed layers lack tarnishing from exposure to soot and locomotive exhaust
fumes, thus a second hallmark is more vibrant brickwork colouration.

g Ring Separation and Debonding (Figure 12g)—Arch barrels contain multiple layers
of concentric brickwork rings. Literature encountered discussed brick tunnels ranging
from 3–15 layers [237,239,240], evidencing significant possible contextual variation.
Ingress, deterioration of intrados mortar and poor quality workmanship can all cause
neighbouring rings to separate within the wall. Gravity pulls innermost layers down-
ward, causing debonding from layers behind forming slit voids (subsurface hairline
fractures). Over time, large voids begin to grow. If near-surface, separating rings
may briefly cause visible cracking of intrados mortar, allowing detection. However,
separations deeper than a single ring are completely invisible to an in-tunnel observer.
With time, large sections of rings can debond, causing arcs of brickwork to fall away
as slabs. Such ‘delamination’ events can deform rails or damage the railbed presenting
a derailment risk. Depending on size, debonding can significantly weaken substantial
volumes of surrounding masonry.

h Railbed Faults (Figure 12i)—Subgrade layers of ballast facilitate even distribution of
rail-traffic weight, ensuring rails remains level on uneven ground to prevents derail-
ments. Displacement induced by ballast fouling [75–77] and frost heave [238,241,242]



Appl. Sci. 2022, 12, 11310 20 of 35

can damage rails and offsets train weight distribution, increasing in-tunnel derailment
risk and subsequent likelihood of major network disruptions.

i Drainage Faults—Tunnels contain integrated pipework and catchment pits to safely
remove excess water and silt. Flooding may occur if pipes become blocked, rup-
ture due to freezing and expansion, or become overwhelmed by intense weather
events [243]. Improvement works can also fail. For example, 18 bolts supporting
a water catchment tray in Balcombe Tunnel (2011) decoupled due to resin failure [244].
Sag reduced tunnel clearance from 0.87 m to 0.3 m posing a dangerous obstruction to
rail-traffic.

Upon reflection, we first note recent studies focus primarily on (and achieve) detection
of three main defects: (i) surface-visible cracks via CRP; (ii) voids via Acoustics, Thermog-
raphy or GPR; (iii) water ingress via Thermography and GPR. By extension, with suitable
modification to enable multi-directional scanning, similar hardware could reasonably de-
tect (i) open joints and perished mortar, spalling, missing brickwork; (ii) ring separation
and debonding and (iii) drainage faults in future applications.

Secondly, we observe that currently cross-sectional deformation can only be directly
imaged by laser methods as they boast 3D point cloud data capture. We note that traditional
visual inspection also detects deformation, but notetaking is inherently far less accurate
than imaging. Although no encountered literature directly utilised laser methods to detect
railbed faults, we may reasonably assume cross-sectional imaging would also provide
usable insight with relative ease.

Finally, we report that no data acquisition method is single-handedly able to detect
each identified common RTSSI defect. This agrees with our findings in Section 3. Discount-
ing Thermography since it cannot directly measure target depth, we remark that GPR has
capability to detect the widest range of defect types (five of nine). Note that direct arrival
waveforms are liable to mask small surface level defects, hence are not included in this
statistic.

To improve this ratio, we believe future research into multi-sensory data acquisition
systems presents high potential impact. A unit amalgamating RGB-CRP (surface imaging),
LiDAR (cross-sectional profiling) and 360GPR (subsurface imaging) could feasibly detect
all defects listed.

6.2. Extended Reality for Dynamic Survey Interaction

We define Dynamic Survey Interaction (DSI) to encompass any information con-
veyance technique that intuitively responds to end-user triggers (e.g., gestures, camera
proximity, movement speed, metadata, field-of-view) [245–247], thereby increasing clarity
of information within a survey and ergonomics of use. DSI attributes fundamentally reduce
application complexity, boosting data usage efficiency and its accessibility to non-specialists,
which had made them common features in Extended Reality (XR) interfaces.

Here, for clarity, we restrict our consideration of XR to just two subsets: Augmented/
Mixed Reality (AR/MR) and Virtual Reality (VR). Note there is a distinction between AR
and MR, AR is effectively passive information overlay, whereas MR is active, allowing the
physical-environment to influence the digital environment and vice versa. In both cases
survey data is conveyed through a head-mounted-display, which in AR/MR superimposes
assistive digital information over the users’ view-field, whereas in VR it provides full
immersion in a digitally rendered environment [247,248]. As an emerging exploratory
medium, academics and industry are now exploring practical applications of XR for DSI,
including use for infrastructure inspections.

We encountered multiple noteworthy AR/MR visualisation developments outside
phase (1). In [117], a rendering pipeline utilising back-projection of air-coupled 3D mul-
tistatic GPR data and Jerman Enhancement Filtering is presented but lacks an interface.
Contrastingly, [249] demonstrates a prototype Unity3D-built AR pavement-subsurface
visualiser for IOS based on ‘Reality-Capture’ modelling. However, performance of all sub-
surface AR inspection tools found appears unstudied in real railway tunnels. We anticipate



Appl. Sci. 2022, 12, 11310 21 of 35

large volumes of subsurface data necessary for practical surveys will forgo local storage
on commonly utilised tablets, requiring wireless relay from remote data-hubs. Herein we
speculate the frequent absence of underground wireless communication networks in older
railway tunnels may be responsible for research stagnation.

By comparison, several synchronisation schemes have been developed for real-time
VR-BIM data exchange (e.g., BVRS [250]) and trailed in real tunnel construction projects
(e.g., The Shenzhen-Zhongshan Immersed Tunnel [251]). For operating tunnels, literature
concerning disaster situation training [252,253] dominates, whilst we found inspection
studies to be scarce.

All but one VR visualisation framework was encountered (across [218,254]) tailored
for RTI. The Enhanced Photorealistic Immersive (EPI) Survey Platform is developed in UE4
from SfM. Processed CRP data feeds a novel interactive dashboard to provide an extensive
range of DSI attributes.

Techniques include: (i) defect highlighting filter toggles; (ii) a mini-map of in-model
user location and (iii) proximity-triggered defect information modules detailing TCMI grad-
ing. The TCMI (Tunnel Condition Marking Index) ranges from 0 to 100, where 100 denotes
a defect free aspect of the tunnel. Sadly dependency on visual CPR data does not facilitate
subsurface inspection, undermining direct application to RTSSI.

Applying recent innovations in XR for DSI to RTSSI presents a promising direction for
future research, which could significantly increase the clarity and accessibility to non-RTSSI
specialist roles in tunnel management (e.g., asset engineers, environmental managers,
operations risk advisors, etc.) [255–257].

The next key milestone facing AR/MR-RTSSI system deployment will be development
of a dedicated wireless subterranean communication network supporting real-time infor-
mation exchange with rail network data-hubs. We believe use of IoT/WSN Wireless Mesh
mine communication nodes [257–259] could present a feasible solution and interesting
research opportunity. For VR systems, we believe the lack of comprehensive subsurface
datasets discussed in Section 5 explains the absence of research into a dedicated RTSSI
application, whilst the visualisation framework presented in [218] showcases current state
of the art in DSI for tunnels. We theorise future successes in 360GPR visualisation would
open a practical research avenue into VR-based RTSSI.

7. Discussion

Method-centred subdivision of state of the art literature, spanning both data acqui-
sition approaches and conveyance schemes (circa 2015–2021) reveals considerable recent
advances in the capabilities of RTSSI-linked visualisation frameworks. Our review ad-
dresses two key knowledge gaps and presents three promising considerations for future
research.

Appendix A summarises our deconstruction of leading NDI techniques for RTSSI,
establishing that a multitude of valid comparative grounds exist between methods. Their
variable importance subject to survey context undermines heuristic direct comparisons of
method performance, suitability or efficacy by balancing advantages against disadvantages,
resulting in ambiguity and inconclusiveness. This justifies need for a robust definition of an
‘effective’ RTSSI visualisation framework to address the knowledge gap. Our formulation
of explicit criteria from five key research gaps was based on common shortcomings identi-
fied between considered methods. Respective criterions consider the (i) completeness and
(ii) duration of survey data acquisition; alongside the (iii) interpretive clarity, (iv) faithful-
ness and (v) interactivity of information conveyance.

We overall find that despite recent innovations, a fully effective RTSSI visualisation
framework has yet to be developed.

Creation of our CCM facilitated inference of eight key avenues for future research.
Grading connected developments by relevance drew distinction between emerging and
established trends within the literature. Initial thoughts towards achieving complete, time-
efficient RTSSI surveys highlights pioneering analysis of 360GPR datasets from a novel ro-
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tary, air-launched GPR antenna. Already meeting three criteria, we anticipate development
of a suitable information conveyance scheme will present a prime research opportunity,
with feasible scope for creating the first fully effective RTSSI visualisation framework within
the next decade. This would establish 360GPR as a mainstream and potentially preferential
technique amongst current RTSSI methods.

We note over 1/3 of research categories concerning information conveyance are aligned
to automated target detection and defect severity ranking. However, their practical applica-
tion on 3D datasets containing realistic quantities, varieties and complexities of subsurface
features remains largely unexplored. We believe successful trails on authentic RTSSI
datasets present an upcoming milestone for future research efforts to achieve if devised
methods are to eventually aid real surveys.

Thoughts on detection scheme training for recognition of subsurface features in ma-
sonry tunnels flagged a further knowledge gap. Namely, this review was unable to find
a combined nor comprehensive list of common masonry-related assets and defects within
recent literature. Focus primarily centred on modern concrete tunnels. To address this, we
presented our own bespoke consolidated summary for masonry tunnels.

Our exploration of emerging trends in dynamic interaction with current visualisation
frameworks found studies addressing dataset interfacing with XR hardware featured 63%
more prevalently than BIM/DTT system design. Most notable interaction potential was
demonstrated by a VR tunnel surface survey platform presented in [218], which justified
by end-user trails, quantifiably evidences the high levels of intuitiveness both 3D rendered
environments and contextual dashboard modules can achieve. As with most encountered
schemes, optimisation is for surface surveys only and no preview facility is provided during
data acquisition. Arguably, this could also be beneficial; encouraging off site analysis of
survey data in safer environments reduces crew risk.

Nonetheless, based on this review we believe VR presents the most versatile and
intuitive tunnel survey interaction medium presently available, therefore would provide
an ideal basis for future RTSSI visualisation framework developments. Application to a hy-
bridisation of CRP, LiDAR and 360GPR datasets poses an interesting research opportunity
and potential industrial solution for simultaneous surface and subsurface RTSSI surveys.
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Abbreviations

(ACT) Active Thermography; (AD) Adaptive; (AFD/E) Automated Feature Detection/Evaluation;
(AR/MR) Augmented Reality/Mixed Reality; (BIM) Building Information Modelling; (CBA) Com-
plete Bouguer Anomaly; (CCM) Category Connection Matrix; (CLSS) Circular Laser Scanning System;
(CNN) Convolutional Neural Network; (CRP) Close-Range Photogrammetry; (DIFCAM) Digital
Imaging for Condition Asset Monitoring System; (DL) Deep Learning; (DSI) Dynamic Survey In-
teraction; (DTT) Digital Twin Tunnel; (EPI) Enhanced Photorealistic Immersive; (ERT) Electrical
Resistivity Tomography; (FA) Fully Autonomous; (GPR) Ground Penetrating Radar; (GPS) Global
Positioning System; (GS) Gravity Surveys; (HCE) Hidden Critical Element; (IRT) Infrared Thermog-
raphy; (IST) Infrasonic Testing; (LiDAR) Light Detection And Ranging; (MTPM) Moving Tunnel
Profile Measurement; (NDI/E) Non-Destructive Inspection/Evaluation; (OLE) Overhead Line Equip-
ment; (PR) Pulsed Radar; (ROCS) Rigid Overhead Conductor Rail System; (RRV) Road-Rail Vehicle;
(RS) ROBO-SPECT; (RT) Rail-Trolley; (RTI) Railway Tunnel Inspection; (RTSSI) Railway Tunnel
Subsurface Inspection; (RTU) Robotic Traction Unit; (SA) Semi-Autonomous; (SFCW) Step-Frequency
Continuous Wave; (SfM) Structure From Motion; (SRS) SafeRailSystem; (TLS) Terrestrial Laser Scan-
ning; (UAV) Unmanned Aerial Vehicle; (UST) Ultrasonic Testing; (VR) Virtual Reality; (XR) Extended
Reality; (ZARR) Zetica Advanced Rail Radar.

Appendix A

For NDI methods discussed in Sections 3.1–3.8, we provide comprehensive summary
tables of key literature analysed in this review, both for completeness and to evidence the
multitude of valid comparative grounds on which heuristic comparisons may be based.
The Literature Summary Tables are included as Supplementary Material.

Abbreviations adopted in the tables carry over from each section of the review. Below
we define an additional visual scale to rank the interpretive clarity of systems presented,
alongside a global legend of additional shorthand notation used exclusively in the Literature
Summary Tables.

Table A1. Literature Summary Tables: Interpretive clarity scale.

Symbol Clarity Necessary Training

### High Training Not Required.

## Mid-High Some Require Light Training.

#  Low-Mid Most Require Moderate Training.

   Low Extensive Training Essential.

Table A2. Literature Summary Tables: Shorthand notation.

Column Field Type Shorthand

Status
Concept C

Prototype P
Commercial System CS

Motion

Static ST
Handheld HH

On-Rail OR
Airborne AB

Crawler-Unit CU
Robotic Arm RA

Adaptive Traction Unit ATU
Pneumatic Suction Feet PSF
Tunnel Boring Machine TBM
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Table A2. Cont.

Column Field Type Shorthand

Duration

Seconds S
Minutes M
Hours H
Days D

Weeks W

Key Target Types

Cross Sectional Deformation CSD
Hot/Cold Spots H/C

Groundwater Flow GF
Buried Utilities BU
Ballast Fouling BF

Trackside Assets TA
Power Distribution PD
Voids/Debonding V/D

Ore-Deposits OD

Additional Symbols
Not Applicable N/A

Information Unavailable -
Important Note *
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