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Abstract

An experimental investigation into the fully developed, turbulent flow in circular

pipes and high aspect ratio rectangular ducts (channels) was undertaken. A review of

the literature revealed that there is a need for more accurate duct flow measurements,

despite the large number of studies already completed. Thus, a new, high quality

channel flow apparatus has been carefully designed and constructed. For the fully

developed flow, all measureable turbulence statistics at the centre of the channel are

presented. Measurements are recorded using hot-wire and pitot tube anemometry,

with an insistence on the highest accuracy. All results are analysed with the intention

of providing a better physical understanding of turbulent flows.

An existing pipe flow apparatus — most recently employed by Henbest (1983) — is

used to check the applicability of common pitot corrections by comparison with hot-

wire data. It is found that applying the MacMillan (1956) and turbulence intensity

corrections gives good agreement between measurements. Velocity profiles measured

at the centre of the channel display the expected logarithmic scaling. These also

highlight a significant difference between pipe and channel flow velocity profiles;

that is, pipe flow has a much larger wake. This observation has been observed, but

not explained in the literature. It was postulated that the difference is due to an

increased number of eddies contributing to the outer flow in the pipe. Evidence

supporting this claim is found from the attached eddy hypothesis.

Recent literature has provided predictions of the turbulence intensities in boundary

layers, based on the attached eddy hypothesis. These predictions are compared

and extended to channel flow measurements for the first time. In the analysis of

flow structure, the auto-correlation of streamwise velocity fluctuations is an often

neglected statistic. It is shown here that channel flow auto-correlation measurements

v
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indicate the existence of streamwise ‘packets’ of attached eddies. The packets appear

to persist well into the outer flow region, in contrast to packet behaviour observed

in boundary layers.

Accurate measurements of flow quantities in the vicinity of the channel side-walls

are also uncommon in the literature. An investigation is undertaken to learn more

about the flow in this part of the channel. Perimetric wall shear stress distribu-

tions are presented. These attest to the two-dimensionality of the central flow and

the Reynolds number independence of side-wall effects. Side-wall velocity profiles

confirm the above trends. Finally, the channel length required to permit full flow

development is investigated. Side-wall and central flow velocity profiles, measured

at various streamwise stations, suggest a length of no less than 130 channel heights

is necessary for fully developed turbulent flow.
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Vg Extended viscous correction for turb. intensity predictions

v Wall-normal velocity

v′ Normalwise velocity fluctuation

v′2 Normalwise turbulence intensity

W Weighting function in the attached eddy hypothesis

Wg Outer flow component of u′2 formulation

w Channel width; spanwise velocity

w′ Spanwise velocity fluctuation

w′2 Spanwise turbulence intensity

x Streamwise coordinate

x0 Streamwise spacing associated with time delay, t′
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y Wall-normal coordinate, also referred to as wall-distance

z Spanwise coordinate

zs Offset spanwise coordinate; zs = z + 0.585

L Integral length scale

O Indicates ‘of the order’

R11 Auto-correlation coefficient

T Integral time scale

α Coefficient of the mean velocity power law

Note that α is also the shear parameter in Chue’s pitot correction

β Exponent of the mean velocity power law

∆(y) Wall-distance correction

∆ Outer flow length scale

∆E Largest height scale of attached eddies

∆p Static pressure error

δ Characteristic height scale of hierarchy of attached eddies

δ1 Smallest height scale of attached eddies

ǫ Chapter 2 & 4: aspect ratio dependent, three-dimensionality factor;

Chapter 7: viscous dissipation rate

Φ11 Streamwise velocity spectra

η Wall-distance scaled with outer flow variables; η = y/∆

Γ Mean velocity power law diagnostic function

κ Universal constant in the logarithmic law of the wall

λ Chapters 2 & 5: An intermediate variable defined as ln(δ/y);

Chapter 7: Taylor microscale

λ1 Defined as ln(δ1/y)

λE Defined as ln(δE/y)

λp The Darcy friction factor

λt Total friction factor

ν Kinematic viscosity

Π Wake factor determined from Jones’ wake formulation

Πc Coles wake factor

Πm Non-dimensional static pressure error
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Θ Mean velocity log law diagnostic function

θ Momentum thickness

ρ Fluid density

τw Wall shear stress

τw Perimeter-averaged wall shear stress

ξ Spanwise (azimuthal for pipe flow) vorticity

ξH Spanwise or azimuthal vorticity contribution from a

hierarchy of attached eddies

ψii Pre-multiplied hierarchy spectral function

+ When used as superscript, indicates scaling with inner flow variables;

e.g. y+ = yUτ/ν and U+ = U/Uτ
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Chapter 1

Introduction

For centuries the behaviour of fluid flows has captured the attention of some of

history’s most esteemed minds. Indeed, almost all of us have been captivated at

times by the intriguing patterns observed in smoke rising from a fire or in the wakes

of ships or boats, or even in water simply draining out of a basin. It is perhaps

not surprising to learn then, that those responsible for some of the earliest known

scientific activities were similarly captivated by these phenomena. Respected intel-

lectuals such as Aristotle and Archimedes — whose thoughts on a remarkable array

of other complex processes are well documented — raised questions concerning the

mechanisms behind fluid flows, centuries before the birth of Christ. Over 1500 years

later, Leonardo’s astonishing portfolio of scientific observations included various as-

pects of fluid mechanics. In fact, it was Leonardo who first discovered the principle

of continuity. However, as centuries passed, further questions were raised concern-

ing the mechanics of fluid flow, with few adequate answers provided. Even those

who are now considered history’s greatest mathematicians would find themselves

challenged by the complexity of fluid motions: Newton, Euler, Lagrange, L’Hopital,

Bernoulli, Stokes and d’Alembert are examples. All these men are famous for their

monumental contributions to other sciences, however all encountered many obsta-

cles in contributing to fluid mechanics theory. Thus, progress in fluid mechanics

was relatively slow in a period of history when solutions to other classical physics

problems were appearing at a rapid rate.

1
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Even into the 18th and early 19th centuries, fluid mechanics remained poorly under-

stood, although these times did see moderate success in the formulation of equations

of fluid motion, most notably evidenced by the work of Euler, d’Alembert, Bernoulli

and Navier. The fact that all theories at this time were limited by their exclusion of

undiscovered viscous effects, proved to be the major hinderance. A technical excep-

tion to this shortcoming was Navier’s equations — now known as the Navier-Stokes

equations — which contain all mathematical information of any fluid flow. These

equations included terms related to the intermolecular forces in the fluid which we

now know should be replaced by viscosity. Navier was a French engineer and gradu-

ate of the École des Ponts et Chaussées (School of Roads and Bridges) who is often

mistakenly identified as a pure mathematician due to his exceptional mathematical

abilities. Navier’s work was indeed an impressive achievement for his time, although

even he could not have contemplated the significance his equations would have to

future fluid mechanics research.

Although theories were developing, experimental studies were much further behind.

Prior to the 19th Century, one of the few experimental events of historical sig-

nificance was the discovery of the Pitot tube by the French engineer, Henri Pitot

in 1732. Indeed, it was Pitot’s countrymen who led the way in experimental re-

search at this time. The École des Ponts et Chaussées (EPC) was established in

1747, becoming the first institution dedicated to the education of engineers. The

EPC produced a number of famous engineers includ-

ing Coriolis, Cauchy and Navier and the school still

exists today, although it is now known as the École

Nationale des Ponts et Chaussées. In a more direct

effort to improve scientific experimental research, the

Learned Committee was set up in the late 18th Cen-

tury, headed by d’Alembert. The committee’s aim

was to understand fluid flow through careful experi-

mental studies in order to improve navigation of ships.

d’Alembert soon realised that past experiments in

fluid mechanics had been of no interest to science due

Figure 1.1: Jean Le Rond

d’Alembert [1717 – 1783].
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to experimentalists ignorance of new developments in fluid flow theory:

“The whole business of experimental investigations is so delicate a mat-

ter, however, that it requires a very special attention, while in actual

fact it often appears to be accidental. Information and data collected

by many superficial investigators often appear to be unrelated to each

other. In many cases, it is difficult to understand the causes and the

sources of the data. Some forget the purpose of science... It is necessary

to be careful with the information presented by an experimentor who

lacks theoretical principles; such an experimentor lacks vision and rea-

soning, and therefore often presents one and the same fact in different

guises, without realizing it himself. Or he gathers at random several

facts and presents them as proofs, without being able to explain them.

It must be understood that scientific knowledge without reasoning —

that is, without theory — does not exist.” Nouvelles experiences sur la

resistance des fluides. Jombert, Paris (1777); from Rouse & Ince (1957),

p91.

With recently discovered theories at its foundation, the Learned Committee pro-

ceeded to build on their understanding with experimental observations. Bossut — a

member of the Learned Committee — and his contemporaries, Borda and Du Buat

produced the earliest of these truly scientific experimental studies in fluid mechan-

ics. It should be noted that the work of the Learned Committee spawned many

experiments that warrant inclusion in an historical discussion, however considering

the contention of this thesis, the focus will be on those experiments concerning duct

flows. Since most experimentalists were military or civil engineers, almost all of

the ducts constructed for studies before the 20th Century were either circular in

cross section (pipe flow) or open channels (simulating rivers); the military engineer

Du Buat is an example. Du Buat published the first scientific study of pipe flow

resistance in 1779, noting the retardation of the fluid by the pipe walls and that

the effects of this extended through the flow away from the wall. Although he was

unaware that viscous effects were the cause of this phenomena, Du Buat had made
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the first steps leading to the discovery of the boundary layer. Du Buat observed

many interesting flow features during his extensive research endeavours, however he

still struggled to gain an understanding of the complex fluid processes involved. He

soon realised he was not alone in this struggle, commenting on his colleagues similar

experiences:

“Everybody reasons about Hydraulics, but there are few people who

understand it... For lack of pinciples, one adopts projects of which the

cost is only too real but of which the success is ephemeral.” George Du

Buat [1739–1804].

Du Buat’s efforts would prove valuable to future workers, however fluid flow exper-

imentation would continue into the 19th century with little more success — due in

part to the aforementioned slow progress of fluid mechanics theory.

In Germany in 1839, Hagen noticed that saw-dust particles in heated pipe flow moved

in straight lines when the temperature was low. As the temperature increased,

particles began to swirl around randomly. This would indicate that Hagen was the

first to discover laminar to turbulent pipe flow transition. However, Hagen is not

credited for this discovery because he related his findings to temperature changes

rather than viscosity variation. No more than a few years after Hagen conducted his

measurements, a French physician named Poiseulle also experimented with laminar

pipe flow. The two experimentalists were unknown to each other, both knew little

about the mathematics behind their work and both documented a parabolic velocity

profile for laminar flow. This velocity profile, analytically confirmed in 1858, is now

commonly known as the Hagen-Poiseuille profile.

A largely forgotten figure in fluid mechanics was the next to contribute to pipe flow

research. Henry Darcy (another French engineer) published many papers discussing

his experimental work between 1850 and 1858. Arguably the most influential of

Darcy’s contributions to experimental fluid mechanics was his modifications to the

Pitot tube. Since its discovery in 1732, the Pitot tube was no more than a scientists

toy; an inaccurate and awkward device. For over 130 years it remained as such, until

Darcy’s improvements. The new Pitot tube was an experimental breakthrough since,
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for the first time, accurate measurements of velocity in fluid flows could be recorded.

Darcy proceeded to use the device to measure velocity fields of pipe and open channel

flows with reasonable accuracy. Among other outstanding achievements, Darcy

contributed to the development of the Darcy-Weisbach equation (still used today

for calculating head loss through a pipe), he made further steps toward the discovery

of the boundary layer and his name is given to the well known Darcy friction factor.

One Professor who took a keen interest in Darcy’s work is now familiar to all stu-

dents of fluid mechanics due to his 1883 paper on the characterisation of laminar

to turbulent flow transition. Osborne Reynolds, an Englishman and graduate of

Cambridge University, became only the second Professor of engineering in England

at Owen’s college, Manchester in 1868. Reynolds work included significant con-

tributions to many other fields, however his most famous discoveries were in fluid

mechanics. The 1883 paper is acclaimed for its introduction of a non-dimensional

quantity later given the title of Reynolds number. Although Reynolds was able to

correctly characterise laminar to turbulent transition, he remarked that the mech-

anism of transition needed further study. Today, studies into flow transition are

common and there remains a need for futher study on this phenomenon. It should

also be noted that a large section of Reynolds (1883) is devoted to a comparison of

Reynolds’ pipe flow resistance results with those of Darcy and Poiseulle, emphasising

the importance of their respective studies.

A second ouststanding paper by Osborne Reynolds was presented to the Royal So-

ciety in 1894. This analytical paper included the derivation of what we now know

as the Reynolds Averaged Navier-Stokes (RANS) equations. Reynolds was the first

to consider fluid flow velocities as the sum of a mean velocity and a fluctuating

velocity component. Substituting velocity in the Navier-Stokes equations for the

two velocity components and time averaging the resulting equation, results in the

RANS equation used by almost all commercial numerical simulation software pack-

ages today. Due to the widespread use of RANS, it is often forgotten that Reynolds

(1894) also includes an analytical study of the equations of motion of flow between

parallel plates — a flow which has received much attention since the advent of the

computerised numerical simulation. Reynolds analytically determined the laminar
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Figure 1.2: Osborne Reynolds [1842–1912] stands beside his famous pipe flow apparatus.

Sketch taken from Reynolds (1883).

to turbulent transition Reynolds number of this flow to be 517. Since there were no

high aspect ratio rectangular duct studies prior to 1894, Reynolds could make no

comparison with experiment. However it has more recently been determined that

transition occurs around Reynolds number of 1000, impressively close to Reynolds

calculations.

Shortly after Reynolds milestone publications, arguably the single most important

discovery in the history of fluid mechanics was made. Ludwig Prandtl of Göttingen,

Germany published a paper in 1904 suggesting that flow over a solid boundary may

be thought of in two parts. Firstly, a region of fluid very close to the boundary where

velocity is significantly influenced by viscosity called the boundary layer, and sec-

ondly, the rest of the flow (i.e. outside the boundary layer) which may be considered

inviscid. The rapid progress of aerodynamics immediately following this discovery

is plain to see. Finally, d’Alembert’s 250 year old potential flow paradox — that

fluid mechanics theory predicts zero drag on any object moving through a fluid,

contrary to reality — was explained. The concept of the boundary layer also led

to an explanation of duct flows which were, without an understanding of viscous

effects, poorly understood.
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Prandtl continued to present outstanding theories in fluid mechanics, heat trans-

fer and physics throughout his career, however it should be noted that Prandtl

was not simply a theoretician, he was an experimentalist also. In fact, it was

Prandtl who made further modifications to Darcy’s

improved Pitot tube to obtain much higher accu-

racy velocity measurements. This new anemome-

ter was essential to experimental studies conducted

by Prandtl’s students, and indeed many other re-

searchers throughout the 20th Century. This brings

us to yet another remarkable aspect of Prandtl’s ca-

reer: his teaching ability. He is frequently described

as someone who was capable of making the difficult

concepts seem simple. Whatever his methods were,

Prandtl’s students are some of the most highly re-

spected names in fluid mechanics: Blasius, Schlicht-

Figure 1.3: Ludwig Prandtl [1875

– 1953].

ing, Nikuradse, Ackeret and von Kármán are just a few examples. This astonishing

group of researchers were responsible for many benchmark studies in fluid dynamics.

Johann Nikuradse conducted extensive pipe flow experiments including investiga-

tions into rough wall pipe flow. His paper, Nikuradse (1933), is one of the most

frequently cited publications in circulation. Unfortunately, it is reported that Niku-

radse’s success drove him to challenge his mentor’s leadership at Göttingen. Failure

to effect Prandtl’s demotion led to the premature end of a promising research ca-

reer — Nikuradse never published again. Shortly after Nikuradse’s pipe flow work,

Herman Schlichting studied turbulent rectangular duct flow with great attention to

detail, using highly accurate experimental techniques. Results of the smooth and

rough wall studies are presented in Schlichting (1936) — yet another frequently cited

publication from Göttingen. Schlichting was also the first to publish a textbook on

his teachers’ boundary layer theory (Boundary Layer Theory, 1951); a highlight of

an impressive research career.

Prandtl’s theories opened the floodgates holding back experimental investigations.

The new theory combined with rapid advances in measurement technologies during
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the 20th Century resulted in a surge of studies into all kinds of flows. A selection

of the most important literature of the 20th Century relevant to this thesis will be

reviewed in the following chapter.

1.1 The 20th century and beyond

Over the past 100 years, a large amount of experimental pipe flow data has been

published. New technology has allowed measurement of flow properties that were

previously immeasurable. However, much of the more recent mean flow and friction

factor data is ignored or only briefly discussed as researchers and practical engi-

neers frequently refer to the benchmark results of Nikuradse, despite considerable

concerns raised about the quality of the data. Firstly, the experiments were con-

ducted in 1936 while measurement techniques were still in the relatively early stages

of development. Secondly, Nikuradse’s analysis techniques have been questioned;

some researchers even accusing him of selecting favorable results from the data col-

lected. The reliance on Nikuradse’s work led to the decline of dedicated mean flow

studies in pipes through the latter half of the 20th century. Although these studies

are important, it is clear that turbulent pipe flow is not yet fully understood. The

lack of understanding was distinctly revealed through the Princeton University ‘su-

perpipe’ controversy in 1996 (analysed in detail in chapter 2). While unanswered

questions concerning even the simplest quantities in turbulent pipe flow remain,

further experimental pipe flow studies will be required.

Recent turbulent channel flow history is almost identical to that of pipe flow. Laufer

(1950) is the benchmark study in the case of smooth wall channel flow. Laufer was

the first to use the now common hot-wire anemometry to record the first detailed

turbulence measurements in a channel. As with Nikuradse’s data, this study has its

serious faults which, in the author’s opinion — are given insufficient consideration

by engineers and many researchers. In the later years of the 20th Century, channel

flow received even less attention than pipe flow for two reasons: firstly, there is

uncertainty in two-dimensionality of the flow due to corner effects, and secondly,

great success of numerical simulations in channel flow was achieved in this period.
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After 1980 there are very few channel flow experimental results in the literature.

Only recently, Zanoun et al. (2002) and the author have conducted experimental

studies into the fluid mechanics of fully developed channel flow at moderate—high

Reynolds numbers. It is likely that numerical simulations of channel flows will

dominate experimental studies in the foreseeable future as computational power

increases. However, until numerical simulations can reach high Reynolds numbers,

there is still much to learn about turbulent channel flow through experiment.

In summary, centuries after the great mathematicians and experimentalists struggled

to make progress in fluid mechanics, we find ourselves in a similar position today.

Turbulent fluid motion remains the last unsolved problem in classical physics. Du

Buat’s statement that experimentalists of his time adopted “projects of which the

cost is only too real but of which the success is ephemeral”, still applies today. Often

the most elaborate and innovative experiments raise as many questions as answers

(e.g. the Princeton Superpipe). However, these difficulties need not discourage the

experimentalist, rather, he should be inspired to journey into the unknown; to make

a valuable contribution to an intriguing, developing science.

1.2 Aims of this investigation

This thesis intends to build on the foundations of duct flow knowledge established

over centuries, particularly the 20th century, as discussed above. The overall aim of

the investigation is to further our understanding of the behaviour and development

of turbulent duct flows. The specific aims are as follows:

1. To develop new and more efficient hot-wire anemometry techniques. Current

measurement techniques have typically remained unchanged for many years.

It has been suggested that some of these techniques could be improved. This

study aims to determine which modifications are beneficial and to implement

the necessary changes so that the techniques used for experiment are most

accurate and efficient.

2. To record accurate mean streamwise velocity profiles in a fully developed tur-
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bulent pipe flow using pitot tube and hot-wire anemometry. At the time of

writing, hot-wire measured mean velocity profiles in a circular pipe had not

been published. Comparison of data recorded using the two measurement

techniques will help to answer questions regarding the validity of the log law

and appropriate pitot tube corrections.

3. To carefully construct a large, high aspect ratio, rectangular duct (channel)

facility in the Walter Bassett Aerodynamics Laboratory. The ultimate purpose

of this channel will be to study the effect of wall roughness. As such, the

apparatus must be designed to facilitate frequent substitution of roughness

types.

4. The smooth wall channel flow case: measurements of mean streamwise veloc-

ity, turbulence intensities, the measurable Reynolds shear stresses and auto-

correlation and spectra of velocity fluctuations will be recorded. Measurements

are to be taken using both hot-wires and pitot tubes with the highest accuracy

and care.

5. To analyse the flow development through the channel. Two sets of streamwise

velocity profiles measured at various longitudinal stations in the channel will

be required: firstly, a set of profiles will be measured laterally from the side-

wall; a second set will be recorded normal to the wall at the centre of the

channel bed.

6. There is currently an observed anomaly in the mean velocity profiles of tur-

bulent pipe flow and channel flow. That is, pipe flow has a much larger wake

than channel flow, which is counter-intuitive. An explanation of this phe-

nomenon based on the attached eddy hypothesis of Perry & Chong (1982) will

be explored.



Chapter 2

Literature review and

background theory

In the interest of making a meaningful contribution to the future of fluid dynamics

research, it is imperative that past work in the field is reviewed and analysed care-

fully. In the following chapter, a selection of important publications are reviewed.

However, reviewing the literature without an explanation of some basic theories

of duct flows would only confuse the reader. Therefore a number of sections in

this chapter will be devoted to the background theory relevant to the succeeding

publication reviews.

There have been a large number of pipe flow studies conducted over the last century

that could justifiably be reviewed here; the author has selected only those studies

having most relevance to the current investigation. For turbulent channel flow,

Dean (1978) compiled a comprehensive review of rectangular duct flow experimental

results up to 1978. This reference will be discussed in the following pages along with

more recent developments in turbulent channel flow.

Following these discussions will be a review of pitot tube corrections. Although the

pitot tube is now a common laboratory tool, there remains some doubt about its

correct application to wall-bounded shear flows. Also included is a discussion of

a physical model for wall-bounded turbulent flows — a rather poorly understood,

though very promising, branch of turbulence research. Finally, the chapter will

11
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Figure 2.1: Definition of various flow regions in turbulent duct flow.

conclude with the author’s overview of the literature and thoughts on the current

status of turbulent duct flow research.

2.1 Mean flow

Wall bounded shear flows can be divided into two flow regions; an inner flow layer

close to the wall, and an outer flow region further away from the wall, which extends

to the edge of the shear layer. In turbulent duct flow there is no ‘edge’ of the shear

layer, so the outer flow region is the entire flow between the inner flow region and

the centreline. Therefore in ducts, the outer flow region is commonly known as

the core flow region. These regions in a fully developed duct flow are illustrated

schematically in figure 2.1. The distinction between the two regions is explained in

the following paragraphs.

In the inner flow region, the important variables affecting the mean streamwise

velocity, U , are wall-distance, y, friction velocity, Uτ , and kinematic viscosity, ν.

Note that Uτ =
√

τw/ρ is a velocity scale based on local shear stress at the wall,

τw and fluid density, ρ. The large scale geometry of the flow is unimportant close
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to the wall. Therefore, flow through a circular pipe will have the same inner flow

behaviour as that over a flat plate or channel bed. The following result is obtained

from a dimensional analysis of the inner flow variables:

U

Uτ

= f

(

yUτ

ν

)

. (2.1)

Prandtl (1925) was the first to propose this relationship, hence it is commonly

referred to as Prandtl’s law of the wall. In the outer or core flow region the viscosity

is no longer an important parameter; however the large scale geometry of the duct

(diameter or height) is important. Applying dimensional analysis to the important

variables in the core region gives a relationship for local velocity relative to centreline

velocity, UCL:
UCL − U

Uτ

= g
( y

∆

)

. (2.2)

Here, ∆ is an outer flow length scale which, depending on the duct, is either the

pipe radius, R, or channel half-height, h/2. Equation (2.2) is known as the von

Kármán velocity defect law since von Kármán (1930) first derived this formulation.

Note that the arguments of f and g are usually written as y+ = yUτ/ν and η = y/∆

respectively.

Now, it is assumed that the inner and outer flow regions are not distinct; that

is, there must exist a region of overlap between the two regions. This region is

commonly referred to as the overlap or turbulent wall region, and equations (2.1) &

(2.2) must hold simultaneously in this region. Equating the derivatives of these two

equations gives
∂

∂y

(

U

Uτ

)

=
Uτ

ν
f ′
(

yUτ

ν

)

= − 1

∆
g′
( y

∆

)

, (2.3)

for which there is only one solution: f ′ and g′ are inversely proportional to their

respective arguments, y+ and η. Integration then yields the following explicit forms

for the scaled velocity and velocity defect in the turbulent wall region:

U

Uτ
=

1

κ
ln

(

yUτ

ν

)

+ A, (2.4)

UCL − U

Uτ
= −1

κ
ln
( y

∆

)

+B. (2.5)

Where κ and A are universal constants and B depends only on large scale geometry.

Coles (1962) suggested κ and A should be 0.41 and 5.0 respectively, based on a
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survey of data† available at the time, including that of Nikuradse (1933). From

this time onward, Coles’ log law constants have been widely adopted by the fluid

dynamics community — indeed, Coles (1962) states: “these [log law constants] ought

to be both satisfactory and non-controversial”.

It should be noted that the derivation detailed above is not the only method of arriv-

ing at the classical equations (2.4) & (2.5). In fact, Prandtl (1925) first derived the

equations using his mixing length argument, while the more common approach used

above, was proposed over 10 years later by Millikan (1938). It would be expected

that these very different methods arriving at the same logarithmic laws would instill

a degree of confidence in the equations. This has been the case for most wall turbu-

lence analysts throughout the 20th century, with a wealth of experimental evidence

in support. However, in recent years the validity of the logarithmic laws has come

into question. Although equation (2.1) is almost universally accepted, the velocity

scale used in von Kármán’s defect law has been challenged — especially at low to

moderate‡ Reynolds number. Changing the outer flow velocity scale invalidates the

above derivation, leaving no universal scaling law for the mean flow. Those who dis-

pute the logarithmic law (2.4) usually give their support to a power law relationship

for inner flow scaled velocity,
U

Uτ

= α(y+)β, (2.6)

where α and β are Reynolds number dependent coefficients. Originally, the power

law was no more than an empirical curve fit since it was not analytically justified.

Following the simple, analytical derivation of the log law by Millikan, the power law

curve fit was almost completely discarded. Today, the list of power law proponents

is growing and already includes many prominent researchers such as Barenblatt

(1993), George, Castillo & Knecht (1993)¶ and Zagarola & Smits (1998). The first

two of these references also give new, analytical justifications for the power law, thus

providing a much stronger case for this alternative to the log law.

† Coles (1962) acknowledges the substantial scatter observed in this data set.

‡ That is, flow Reynolds numbers commonly attained in laboratory facilities of the order 105.

¶It should be noted that George et al. (1993) relates only to turbulent boundary layers — not

pipes or channels.
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It is not the intention of this thesis to prove which scaling is correct, although

experimental data will be presented in later chapters to provide further evidence in

this ongoing argument. However, the importance of the power law versus log law

debate to this study cannot be understated. Indeed, it was the controversial results

of Zagarola & Smits (1998) in support of the power law that provided much of the

motivation for the experimental investigation of this thesis. The milestone work of

Zagarola & Smits (1998) is the topic of the following section.

2.2 The Princeton ‘Superpipe’

In 1996 the first results of the Princeton high Reynolds number pipe flow facility

(the Superpipe) were released in the PhD thesis of Zagarola (1996). A paper on

the findings was also published: Zagarola & Smits (1998). The Superpipe is a

unique apparatus in that pressurised air is used as the working fluid. Pressures in

the pipe can reach up to 230atm, drastically reducing the kinematic viscosity of

the air and thereby increasing Reynolds number (based on bulk velocity and pipe

diameter) to an unprecedented 35 million. The Superpipe also has a diameter, D

of 129.4mm and development length of L ≈ 160D, where L is the distance from

the pipe inlet to the measurement location. These dimensions are quite large in

magnitude compared with other laboratory pipe flow facilities. Many turbulence

analysts were eagerly anticipating the outcomes of Zagarola’s study; however, the

Superpipe, instead of resolving some controversial issues, created more uncertainty.

Some of the controversial Superpipe results and their impact are discussed in this

section.

2.2.1 Controversial results

Firstly, Zagarola found that the superpipe data disagreed with the well-known and

generally accepted smooth wall friction factor formulation proposed by Prandtl

(1935),
1
√

λp

= C1 log10(Re
√

λp) + C2 (2.7)
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where the constants C1 and C2 are 2.0 and −0.8 respectively. These constants were

determined empirically from the data of Nikuradse (1933). In equation (2.7), λp is

the Darcy friction factor defined as:

λp =
4τw

1
2
ρU2

b

= 8

(

Uτ

Ub

)2

. (2.8)

Note that very similar values of C1 and C2 (2.035 and −0.91) can be found through

Prandtl’s analytical derivation of equation (2.7). This is not overly surprising, how-

ever, since the derivation begins with the log law (2.4) having constants of κ = 0.4

and A = 5.5, which were themselves found from the data of Nikuradse (1933). This

derivation will be further discussed in §2.4.3 and is given in full in Appendix A.

For the Superpipe results, it was shown that values of C1 = 1.889 and C2 = −0.3577

gave best agreement with Prandtl’s smooth wall law (2.7) at high Reynolds number

(Re = UbD/ν = 105 – 35× 106). To cover the entire Re range, Zagarola found that

a second Re dependent term was needed in (2.7). Therefore,

1
√

λp

= 1.872 log10(Re
√

λp) − 0.2555 − 228

(Re
√

λp)0.89
(2.9)

was proposed. This equation is significantly different to Prandtl’s smooth wall for-

mula, as illustrated in figure 2.2. Furthermore, the result contradicts the data of

Nikuradse (1933) which displays excellent collapse onto (2.7) with Prandtl’s con-

stants for all Reynolds numbers up to 3.4×106. However, Nikuradse (1933) is often

criticised in the experimental fluid dynamics community for reasons ranging from

insufficient flow development, to suggestions of unjustified selectivity of the data.

Unfortunately such opinions raise doubts which signify that one cannot discount the

Superpipe data on the basis of disagreement with that of Nikuradse (1933).

In regards to the deviation of the Superpipe data from equation (2.7), it must be

noted that Prandtl’s law relies on the logarithmic behaviour of the inner flow scaled

mean velocity profile† , which — even the most avid opponents of the log law agree

— must hold as Re→ ∞. Therefore, if the Superpipe data is different to Prandtl’s

smooth wall law at high Reynolds number, it is implied that the mean velocity

† Throughout this thesis, unless otherwise stated, the mean velocity profile refers to the wall-

normal distribution of mean streamwise velocity with inner flow scaling.
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(2.7); , Zagarola (2.9).

profiles in the pipe at high Re must have different log law constants, κ and A, when

compared to those used by Prandtl.

This leads to the highly controversial Superpipe mean velocity profiles and their

variation over the Reynolds number range. Some of these velocity profiles will be

presented in Chapter 5 for comparison with results of the present study. Zagarola’s

analysis of the profiles yielded a power law relationship of the inner flow scaled

velocity in the turbulent wall region for low Reynolds number. That is, for Re <

230 × 103 the mean velocity scales as

U+ = 8.7(y+)0.137. (2.10)

For all higher Reynolds numbers, Zagarola found a combination of both the log and

power laws was applicable. The classical log law was found to hold from y+ = 500

to y/R = 0.1 with

U+ =
1

0.436
ln(y+) + 6.13, (2.11)
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although the constants are obviously quite different to the traditional κ = 0.41,

A = 5.0. For the region 50 < y+ < 500, the power law (2.10) was found to more

suitably fit the data. In analysing these results, some researchers have postulated

that the pitot tube measured profiles may have inappropriate corrections and rough-

ness effects at high Reynolds numbers. Both potential criticisms are documented in

Perry, Hafez & Chong (2001) which presents evidence of a shift in inner flow scaled

velocity profiles at high Reynolds number — a characteristic roughness effect. A

plot taken from Perry et al. (2001) is shown in figure 2.3 to illustrate this shift in ve-

locity profiles and the clear effects of applying different pitot tube corrections (note

that pitot corrections will be discussed further in §2.7). However, two important

observations must be stated at this point:

i. Wall roughness effects on turbulence are poorly understood, especially at high

Reynolds number.

ii. The Superpipe reaches Reynolds numbers that are an order of magnitude

higher than any other study, and more than two orders of magnitude higher

than most studies. Hence, without further high Reynolds number studies, it

will always be difficult to argue that conclusions drawn from results at low Re

will be applicable at the maximum Superpipe Reynolds number.

Unfortunately it was beyond the scope of this thesis to contribute to (i); however,

pipe flow data recorded here will hopefully provide insights into pitot tube correc-

tions with (ii) in mind.

In summary, the above results have stirred the fluid dynamics community because

they challenge the classical laws that were once, without doubt, thought to extend

to infinite Reynolds number. The repurcussions are evident in the literature: there

have been numerous debates over high Reynolds number scaling of turbulent pipe

flow and boundary layer flow since the publication of Zagarola & Smits (1998).

See, for example, Perry et al. (2001), Österlund et al. (2000b), Barenblatt, Chorin

& Protoskishin (2000), Österlund, Johansson & Nagib (2000a) and Panton (2002).

These debates will undoubtedly continue until further high Reynolds number pipe

flow data is available.
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Figure 2.3: Reanalysed Superpipe data from Perry et al. (2001). (a) Uncorrected Super-

pipe data shifted up vertically by 5 ordinate units. Profiles 5, 10, 15, 20 and 26 correspond

to Karman number = Kτ = 2.344×103, 8.486×103 , 3.288×104 , 1.273×105 , and 5.286×105

respectively. (b) Corrected Superpipe data, ◦ , with uncorrected data, • , superimposed

for comparison. (c) Profile 5 is compared with profile 26; Both profiles are shifted down

by 5 ordinate units. The slope of heavy logarithmic lines in (a) and (b) is κ = 0.436, while

in (c) it is 0.39.
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2.2.2 Recent results

More recently, McKeon & Smits (2002) used the superpipe to quantify errors and

provide corrections for wall mounted static pressure tappings at high Reynolds num-

ber. Previous studies by Shaw (1960) and Franklin & Wallace (1970) have shown

that for small hole diameter, ds, the calculated error in pressure measurement tends

to a universal constant as d+
s = dsUτ/ν increased (that is, as Reynolds number

increased). Interestingly, measured pressure was found to be higher than the true

static pressure in all cases. However, both the Shaw (1960) and Franklin & Wallace

(1970) studies were at much lower Reynolds number than the Superpipe study of

McKeon & Smits (2002).

McKeon’s careful experiments (detailed in the PhD thesis of McKeon, 2003) conclu-

sively showed that the static pressure error does not asymptote to a constant value

with rising d+
s , nor does her pressure error data collapse onto a universal curve. The

results of McKeon & Smits (2002) are summarised by an empirical correction for

non-dimensional measured mean velocity, U+
m, given by

U+ = U+
m

√

1 +
2Πm

(U+
m)2

. (2.12)

Here, Πm is the non-dimensional pressure error (Πm = ∆p/τw, where ∆p is the

pressure error and τw is the wall shear stress) which may be interpolated from

McKeon’s data. Of importance to this thesis is that Πm → 0 as d+
s → 0. Since

static pressure measurements presented in this thesis are measured with tappings

of d+
s < 100 (due to the relatively low Reynolds number), the maximum error

in velocity measurements according to equation (2.12) is 0.084% — certainly an

insignificant fraction for any experiment.

A second paper by McKeon concerning total pitot tube corrections was published

in 2003. Note that further discussion of the methods and results of McKeon et al.

(2003a) can be found in §2.7 which will cover pitot tube corrections in detail. To

summarise, McKeon et al. (2003a) found a new displacement and wall correction

that collapsed their data well. The authors also found that the MacMillan (1956)

corrections gave almost identical results. However, the important finding was that

the corrections proposed by Chue (1975) and adopted by Zagarola & Smits (1998)
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performed poorly. McKeon et al. (2003a) concluded that the Chue (1975) correction

should be discarded in favour of their new correction or that of MacMillan (1956).

McKeon’s findings may have only a minor direct impact on the results of this thesis,

however her studies did lead to an important reanalysis of Zagarola’s data. Cor-

recting the original static and total pressure measurements gave new constants for

the log law (κ = 0.421 and A = 5.6, from McKeon et al., 2003b) and friction factor

relation,
1
√

λp

= 1.920 log(Re
√

λp) − 0.475 − 7.04

(Re
√

λp)0.55
. (2.13)

Furthermore, from data presented in McKeon (2003) it is evident that (2.13) is

not noticeably dissimilar to Prandtl’s traditional friction law (2.7) in the range of

Reynolds numbers (∼ 30 × 103 – 200 × 103) studied in this thesis. Therefore, it is

not expected that data presented here will contribute to the argument over friction

factor laws. However, it is important that the Superpipe results are discussed in

detail here as they provided motivation for this study, as mentioned earlier, and will

be frequently cited in subsequent chapters.

2.3 Further analytical forms of the velocity profile

In §2.1 the form of the velocity profile in the overlap region was introduced. While

the significance of this region increases as Reynolds number increases, most of the

velocity profile lies outside this region for the Re range of common studies. To

describe the velocity profile in the inner or outer flow regions, one must resort to

empirical relationships. In determining such relationships, the velocity profile is

often broken down into three regions: the sublayer extending from the wall to the

near edge of the outer layer, the overlap region, and the wake which spans the edge

of the overlap region to the duct centreline.

Coles (1956) was the first to propose the concept of the law of the wall, law of the

wake formulation:

U+ =
1

κ
ln(y+) + A+

Π

κ
Wc(η), (2.14)

where Π is commonly known as the Coles wake factor and Wc the Coles wake

function. Π is a non-universal, free parameter to be determined from measured
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velocity profiles. Coles (1968) suggested a possible wake function,

Wc(η) = 1 − cos(πη), (2.15)

which may be sufficient. For analytical work, however, a polynomial form of (2.15)

is more convenient:

Wc(η) = 2η2(3 − 2η), (2.16)

as given by Jones (1998). Further, Jones, Marusic & Perry (2001a) points out that

for ‘pure wall flow’ (i.e., flow having almost no wake† ) these wake descriptions are

inadequate since they assert that the log law continues until the shear layer edge.

To solve this problem Jones et al. (2001a) introduce a corner function, −η3/(3κ),

so that the law of the wall, law of the wake becomes:

U+ =
1

κ
ln(y+) + A− 1

3κ
η3 +

2Π

κ
η2(3 − 2η). (2.17)

It should be noted that the inclusion of the corner function will require different

values of Π to fit the data as compared with (2.14) using either form of Wc. Defining

Πc as the value of Π determined from the result of including (2.15) in equation (2.14),

it can be shown that, theoretically,

Π = Πc +
1

6
, (2.18)

where Πc is Coles’ original wake factor. Throughout the remainder of this thesis,

values of Π will be determined from equation (2.17). Therefore Π is expected be

higher than previously published values (of Π = Πc) by roughly 1/6.

Prandtl’s law of the wall (2.1) tells us that inner flow scaled velocity should follow a

universal curve in the sublayer. Experiments confirm this behaviour and a number

of authors have proposed curve-fits to the data. Two popular examples are referred

to here. Firstly, Reichardt (1951) gives one equation to describe the complete inner

flow velocity profile:

U+ =
1

κ
ln(1 + κy+) +

(

A− ln(κ)

κ

)(

1 − e−
y+

11 − y+

11
e−0.33y+

)

. (2.19)

This formulation has the correct asymptotic behaviour as illustrated in figure 2.4. It

† ‘No wake’ implies the velocity profile does not deviate above the log law and Π → 0.
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Figure 2.4: Sublayer velocity profile formulations given by Nickels (2001), Spalding (1961)

and Reichardt (1951).

is observed that Reichardt’s formula smoothly joins the log law (2.4) in the overlap

region with the well-known linear relationship, U+ = y+, describing the viscous

sublayer velocity profile. Secondly, the curve of Spalding (1961), who saw no reason

why one should rigidly require U+ as a function of y+, is given as:

y+ = U+ + e−κA

(

eκU+ − 1 − κU+ − (κU+)2

2!
− (κU+)3

3!
− (κU+)4

4!

)

. (2.20)

This equation is also plotted in figure 2.4 which shows that (2.20) has the same

asymptotic behaviour as (2.19); however, between the viscous sublayer and the over-

lap region, there is a noticeable difference between the two formulations. Unfortu-

nately, for analyses appropriate to this study, Spalding’s function was inconvenient,

as U+ was always required as a function of y+.

The two formulations just described are appropriate for zero pressure gradient

boundary layer or high Reynolds number duct flows. For wall-bounded flows where

the non-dimensional streamwise pressure gradient,

p+ =
ν

U3
τ

dp

dx
, (2.21)

is large enough, the sublayer velocity profile will deviate from (2.19) & (2.20). Nickels

(2001) accounts for p+ effects with the following functional form applicable to the
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sublayer only:

U+ =
1

a0
(1 − [1 + 2a0y

+ +
1

2
(3a2

0 − a0p
+)y+2 − 3

2
a2

0p
+y+3

]e−3a0y+

). (2.22)

If p+ is negligible (i.e., |p+| < 0.002) then a0 is a universal constant. Nickels (2001)

gives a0 = 0.0829 + 0.75p+ based on a number of experimental data analyses. Nick-

els’ formulation is shown in figure 2.4 for comparison with (2.19) & (2.20). This

formulation is important in duct flows where p+ becomes significant for low Re.

Although accurate experimental measurements in this Re range are rare, numerical

simulation Reynolds numbers are typically in the range where pressure gradient ef-

fects are evident. Thus, when analysing duct flow DNS data, one must not expect

collapse onto the inner flow formulations of Spalding and Reichardt; or for that

matter, any high Re measurements.

2.4 Wall shear stress

The wall shear stress, τw, in fully developed duct flow is one of three parameters

required to determine the Darcy friction factor, λp (Ub and ρ are the others), the

behaviour of which was discussed in the previous section (§2.2). λp is a very im-

portant quantity in practical duct flows since it can be related to the head loss due

to friction through the duct. For the purposes of this thesis, τw takes on further

significance because almost all analyses of turbulence quantities require knowledge

of wall shear stress at the measurement location. In fact, turbulence analyses for

any wall-bounded turbulent shear flow require τw, because it is used to calculate the

important velocity scale Uτ =
√

τw/ρ, introduced earlier as the friction velocity. De-

termining wall shear stress presents a serious obstacle for boundary layer researchers

who have no reliable non-intrusive method for determining skin friction† . The most

common methods employed are the Clauser (1954) method and the Preston tube

(Patel, 1965); however, both rely on the assumption of Reynolds number similarity

near the wall — a rather severe limitation, especially if one is interested in analysing

the extent of this similarity. Numerous physical devices to intrusively measure shear

† The exception to this is the equilibrium boundary layer where a momentum balance gives

Uτ , see Rotta (1962).
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stress have been implemented, with varying degrees of accuracy. Examples are oil-

film interferometry (Tanner & Blows, 1976) and Micro-Electro-Mechanical Machines

(MEMS) employing hot-film devices (Österlund, 1999). Generally, these are expen-

sive, complex devices that struggle to give better than 1% accuracy. Herein lies a

significant advantage for duct flow experimentalists who have a simple, accurate and

indirect method for determining τw, as will be explained in the following sections.

2.4.1 Pipe flow

A simple momentum balance of turbulent pipe flow gives the following equation

relating wall shear stress to streamwise static pressure gradient, dp/dx:

τw =
D

4

∣

∣

∣

∣

dp

dx

∣

∣

∣

∣

. (2.23)

Measurements confirm that the pressure gradient is constant if the flow is fully

developed. Furthermore, dp/dx is easily measurable; experimentalists often only

measure static pressure at two streamwise locations to determine dp/dx. Equation

(2.23) has been well-known for many years, with measurements of friction factor

based on τw dating back to the late 18th century as discussed in Chapter 1. Hence,

determining wall shear stress in pipe flow is a simple and highly accurate exercise

which requires no further validation or correction. When working with rectangular

ducts, however, a complication emerges.

2.4.2 Rectangular duct flow

Experimentalists working with high aspect ratio rectangular ducts are generally in-

terested in simulating true channel flow; that is, flow between infinitely wide parallel

plates. One reason for this is that true channel flow is often studied not only by an-

alytical and experimental researchers, but also by computational fluid dynamicists.

Firstly, any turbulence analyst may be attracted by the similarities of channel flows

with pipe flows and zero-pressure-gradient boundary layer flows. Second, fully devel-

oped channel flow is favourable to numerical simulation due to the simple geometry

and applicability of the Cartesian coordinate system (cf. complications arising in
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Figure 2.5: Thin control volume (CV) containing only fully-developed two-dimensional

flow.

pipe flow simulations in cylindrical coordinates, particularly at the pipe centreline).

Moreover, an important advantage for computationalists and experimentalists alike,

is that flow properties between parallel plates are independent of spanwise loca-

tion. In other words, true channel flow is truly two-dimensional. In relation to wall

shear stress (also invariant over the span), two-dimensionality ensures τw can again

be determined from a simple momentum balance, similar to that which produced

equation (2.23) for pipe flow. This momentum balance gives

τw =
h

2

∣

∣

∣

∣

dp

dx

∣

∣

∣

∣

, (2.24)

where h is the channel height, at any location on the wall.

Obviously, in reality, the experimentalist has a finite aspect ratio rectangular duct

in which τw will not be constant over the perimeter. If the aspect ratio is high

enough, however, there may exist a section of the flow toward the centre of the

duct which can be considered nominally two-dimensional. This means there is no

measurable spanwise variation in mean streamwise velocity and the quotient of mean

spanwise velocity and mean streamwise velocity is less than ±0.005. In this case, the

relationship for wall shear stress may be given by equation (2.24) — although not

necessarily: the relationship depends on the choice of control volume over which the

momentum balance is applied. If the control volume chosen encloses only a thin slice

of the duct (as shown in figure 2.5) where the flow is known to be nominally two-

dimensional, the momentum balance will return the result of equation (2.24). This

is because the shear stress on the walls is the only shear stress at the control volume

boundaries; shear on the sides of the control volume is zero in two-dimensional flow.

Therefore, equation (2.24) will give accurate τw anywhere on the wall within ±wcv
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of the centre. It must be noted that it is τw obtained in this way that should be

used to calculate the important velocity scale, Uτ . Now, it is often argued that shear

stress on the side walls of a rectangular duct affects the centre τw. However, if the

flow is two-dimensional for −wcv < z < wcv it is clear that there is no reason for

side wall shear to enter the argument presented above.

Alternatively, if the control volume selected encloses the entire cross section of the

channel (i.e., −w/2 < z < w/2), then the momentum balance gives a wall shear

stress averaged over the perimeter (P ) of the duct, τw.

τw =
1

P

∮

P

τw(s)ds =
wh

2(w + h)

∣

∣

∣

∣

dp

dx

∣

∣

∣

∣

, (2.25)

where w is the channel width and s is a coordinate around the perimeter of the

duct. The wall shear stress equation (2.25) now includes the shear stress on the

side walls. However, τw is obviously a different quantity to wall shear stress in the

centre of the channel, τw. In fact, the perimeter-averaged shear stress is only useful

for calculating total skin friction loss through the duct; τw is not a useful quantity

in turbulence scaling arguments. Furthermore, the definition of local skin friction

in a channel,

Cf =
τw

1
2
ρU2

b

, (2.26)

(cf. Darcy friction factor for a pipe) should not have τw replaced with τw to account

for side wall shear as suggested by Coleman et al. (1984).

It is critical then, to have some region of two-dimensionality in the duct flow in order

to calculate τw accurately from the pressure gradient using equation (2.24) alone.

As mentioned above, duct flow can never be truly two-dimensional unless the aspect

ratio is infinite, a fact which implies an overestimation of centre wall shear stress

determined by (2.24). This error in calculation of τw must depend on aspect ratio,

As since it is this parameter that specifies the extent of two-dimensionality. Such

an error term could simply be included in (2.24) so that:

τw = ǫ
h

2

∣

∣

∣

∣

dp

dx

∣

∣

∣

∣

. (2.27)

The three-dimensionality factor, ǫ(As) will be unity provided As is large enough that

the flow is nominally two-dimensional near the centre. It would diverge from the
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aims of this thesis to experimentally analyse this function and, moreover, such an

analysis would require a variable aspect ratio rectangular duct facility. However,

the aims of this thesis stated in Chapter 1 do require two-dimensional duct flow.

Further, two-dimensional flow is necessary to assume ǫ(As) ≈ 1. In Chapter 4, exit

velocity profiles, shear stress distributions and crossed hot-wire measurements will

be presented, from which the extent of two-dimensional flow may be judged. At this

point it is postulated that τw may be reliably calculated from streamwise pressure

gradient through equation (2.24) for ducts with large aspect ratio (§2.5.2 discusses

the criteria for ‘large’ As). τw calculated as such will be used throughout this thesis

unless otherwise stated.

An important note concerning the above argument justifying equation (2.24), is

that it does not suggest side wall shear stress is negligible. In fact, shear stress

distribution plots show that the side walls make an appreciable contribution to the

perimeter-averaged shear stress. However, the essential point made here is that the

secondary flows in the vicinity of side walls have a negligible effect on the central

flow region of a high aspect ratio duct.

2.4.3 Skin friction in rectangular ducts

From the previous section (§2.4.2) there are two wall shear stress definitions that

may be of interest, depending on the motivation of the researcher. For example,

Dean (1978), Schlichting (1936) and Laufer (1950) all required centreline wall shear

stress, τw for turbulence scaling arguments; whereas Jones (1976) and Hartnett, Koh

& McComas (1962) used τw in studies motivated by practical engineering interests

concerning total frictional loss through rectangular ducts of arbitrary aspect ratio.

Therefore, when perusing the literature concerning skin friction in duct flow, the

reader must ensure that the authors’ field of interest is clearly understood . To rein-

force this point, an example of confusion in the literature concerning the definitions

of wall shear stress is discussed. Following this short discussion will be a review of

the literature regarding the relationship of pipe flow friction factor to rectangular

duct flow skin friction.
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Coleman et al. (1984)

In this reference, the results of Schlichting (1936) are reanalysed by essentially sub-

stituting τw with τw. Coleman et al. (1984) argue that Schlichting ignored the side

wall shear stress contribution on the assumption that it was negligible. It is correctly

pointed out that studies have since shown side wall shear does make a significant

contribution to τw (e.g. Leutheusser, 1963, and results presented in Chapter 4).

Coleman et al. (1984) conclude that Schlicting’s skin friction results were signifi-

cantly higher than they should be due to this ‘mistake’. This is not a surprising

conclusion since dividing equation (2.24) by (2.25) gives

τw
τw

= 1 +
1

As
, (2.28)

which stipulates that τw must always be less than centre τw
† . However, the criti-

cism by Coleman et al. (1984) of Schlicting’s work is inappropriate for the simple

reason that Schlichting required τw to determine Uτ . That is, Schlichting (1936)

was interested in studying turbulent flow behaviour, not total friction loss in the

duct. Therefore Schlichting had no need to calculate the average wall shear stress.

Although Schlichting’s use of τw is acceptable, he did make a false assumption con-

cerning the two-dimensionality of the duct flow. As discussed earlier, a large aspect

ratio duct is required for two-dimensional flow in the centre of the duct; for Schlicht-

ing’s duct, As = 4.25. It has been conclusively shown (see Chapter 4) that duct

flows with an aspect ratio of less than 6 cannot be considered two-dimensional at

the centre. Thus, referring to equation (2.27), the error factor, ǫ(As) would not be

unity for an As = 4.25 duct.

Pipe-channel ‘similarity’

The Darcy friction factor for pipe flow gives a measure of total frictional loss through

the pipe. For rectangular duct flows a similar friction factor, λt, can be defined

(hereafter referred to as total friction factor):

λt =
4τw

1
2
ρUb

2 . (2.29)

† This is because side-wall shear stress makes a smaller contribution to τw than channel centre

shear stress.
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The total friction factor should not be confused with local skin friction, Cf , which

is defined by (2.26) and requires centre wall shear stress rather than the perimeter-

averaged value, τw. Studies of total friction factor in rectangular ducts are common

and are often found in civil engineering journals. An excellent source is Jones (1976)

who compiled total friction factor data from a number of other sources in addition

to his own experimental results. The studies surveyed in this reference utilised

rectangular ducts of various aspect ratio ranging from 1:1 to 39:1. It should be noted

that throughout Jones (1976), Reynolds number is based on hydraulic diameter

De = 4A/P (A is the duct cross-sectional area) rather than the conventional channel

height or pipe diameter, while λt = λp and De = D for pipe flow. Plots of total

friction factor versus Reynolds number found in Jones (1976), unsurprisingly, show

no collapse of the data for turbulent flow Reynolds numbers. Jones asserts that

there must be some way to collapse this duct flow data onto Prandtl’s smooth wall

friction formula for circular pipes given in equation (2.7).

At this point the reader is reminded of the Prandtl smooth wall law (2.7) derivation† :

the radial mean velocity profile through the pipe is integrated to determine the

quantity, Ub/Uτ . This quantity defines λp for circular pipes (as given in equation

2.8) at any point on the pipe surface. To extend this to rectangular ducts is not

physically sensible since τw values and mean velocity profiles vary with position on

the duct perimeter. Moreover, the Prandtl smooth wall law derivation requires that

the mean velocity profile normal to the surface of the duct is invariant over the

perimeter, which only occurs with infinite aspect ratio ducts (true channel flows).

However, even for true channel flows, the mean velocity profiles are not identical to

pipe flow profiles. This is a well-known fact, although reasons for this are not yet

understood. The wake strength of pipe flow velocity profiles is considerably larger

than that of channel flow profiles, resulting in different values of the constant, C2 of

equation (2.7) for channel and pipe flows. This was not considered by Jones (1976).

Now, Jones proposed a modified Reynolds number,

Re∗ =
Ubφ

∗(As)De

ν
, (2.30)

† See Appendix A for full details of this derivation.
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where φ∗(As) was determined from the data of Cornish (1928) and is given here in

approximate form as

φ∗(As) ≈
2

3
+

11

24

1

As

(

2 − 1

As

)

. (2.31)

Re∗ was found to collapse λt for laminar rectangular duct flow onto the well-known

laminar flow solution for pipe flow† ,

λp = λt =
64

Re∗
. (2.32)

The highlight of Jones (1976) is the finding that simply replacing Re in Prandtl’s

formula with Re∗ collapses the data with only ±5% scatter. Since there is no physial

reasoning for this result, the generalised Prandtl smooth wall formula found by Jones

(1976),
1√
λt

= 2.0 log10(Re
∗
√

λt) − 0.8, (2.33)

can best be described as an empirical curve fit to the available data rather than the

so-claimed “similarity between circular and rectangular geometries”. Furthermore,

whilst this is a neat and clever solution, it is suggested that other curve-fits could be

investigated, such as a power law, which may give better collapse of the data. The

only other criticism of the above analysis is that very little experimental data was

considered; most data came from ducts with very small height and low Reynolds

number (less than 100,000 based on De).

2.5 Recent developments in turbulent channel flow

The single most widely cited turbulent, smooth wall, high aspect ratio, rectangular

duct flow study is that of Laufer (1950). For almost 30 years after Laufer’s work,

many investigations into this particular flow were conducted and a review of these

was published by Dean (1978). Since 1978, experiment became overtaken by nu-

merical simulation with the pioneering work of Moin & Kim (1982) leading to many

more numerical investigations (e.g. Kim, 1987 and Kuroda et al., 1993). Today

there appears to be more effort directed toward the achievement of higher Reynolds

number (and more geometrically complex) numerical simulations than experiments.

† For pipe flow: φ∗ = 1 so that Re∗ = Re.
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However, numerical channel flow studies must be validated by comparison with

experimental data. In many cases concerning smooth wall flow, this is achieved

through the data of Laufer (1950), underlining the reliance of current research on

that data.

2.5.1 The benchmark study

The experimental results of Laufer (1950) are often accepted without question due

to their frequent citation in the literature. Regardless of popularity however, the

complexity and sensitivity of turbulent fluid flows obligate the researcher to look

carefully at the flow condition and historical setting of any publication — Laufer

(1950) is no exception. Firstly, it is important to note that only mean flow and skin

friction data had been studied in channel flow prior to 1950, and even those studies

were rare — Davies & White (1928) is among the few published. Laufer intended

to take a rather large leap forward by measuring turbulent velocity fluctuations in

a channel for the first time. Such measurements require high frequency response

anemometers, necessitating the use of hot-wire anemometry technology which was

still in its infancy in 1950. Indeed, Laufer was one of the first to use hot-wires

for scientific experimentation and, since the superior constant temperature hot-wire

anemometer was not discovered until the early 1960’s, the only option was to employ

the less reliable constant current anemometer.

The channel flow apparatus studied by Laufer (1950) was located at GALCIT† and

had good spatial resolution with a height of 5′′ (127mm) and aspect ratio of 12:1.

A single test was also carried out with the height reduced to 1′′ for comparison. As

discussed later in this section, an aspect ratio of 12:1 should be more than sufficient

to provide two-dimensional flow in the centre of the channel. The major criticism

of the experimental apparatus of Laufer (1950) was that the overall length of the

channel was only 23′ (7m) and of this, the first 7′ (2.13m) weakly diffused the flow

as the channel height grew from 3′′ to 5′′. Therefore the development length, L/h

of the channel was at best, 55 and if the diffusing section is excluded, L/h = 38

† Graduate Aeronautical Laboratories of the California Institute of Technology (Caltech), USA.
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(values are for the 5′′ height case). Although little is known about flow development,

most experimentalists would now agree that these lengths are insufficient for fully

developed flow.

As a pioneering work, Laufer (1950) is an impressive and important reference. Based

on the above criticisms however, the data is not of sufficient accuracy to be used

for validation of high accuracy numerical simulations or turbulence theories. That

is, more accurate, truly fully developed flow data is presented in this thesis and is

recommended for these purposes.

2.5.2 Literature review of mean flow results

Dean (1978) provides a comprehensive review of mean flow and skin friction variation

in turbulent channel flow. Dean consulted a total of 42 references, of which he found

only 27 could be considered ‘channel’ flow; that is, only 27 had sufficiently high

aspect ratio. Based on his observations, Dean postulated that the minimum aspect

ratio to ensure two-dimensional flow in the duct was 7:1. Thus, only references with

ducts exceeding this aspect ratio were considered.

An important note about the collection of references cited in Dean (1978) is that flow

development was not completely taken into account. Dean provides a table detailing

the aspect ratio, method of determining τw, date and development length. He states

that the reader should bear in mind that the channel development lengths range from

L/h = 23 – 500; although he also states the minimum length required was unknown

at the time of writing. Even to this day there has been no further advancement in

knowledge of development length. This unknown property leads to the construction

of possibly over-sized facilities, wasting time, valuable laboratory space and money.

Hence an important aim of this study is to determine the required length of duct

for full flow development (discussion of this topic is continued in Chapter 4).

The main aim of Dean (1978) was to determine suitable functions describing the be-

haviour of skin friction, Cf , with Reynolds number variation. Firstly, a simple power

law curve-fit (cf. Blasius’ pipe flow friction factor relation given in Appendix B) was



34 CHAPTER 2. LIT. REVIEW & THEORY

applied to the data in the turbulent Re regime. The result was

Cf = 0.073Re−0.25. (2.34)

Dean continues, deriving a skin friction logarithmic law by integration of the mean

velocity profile at the centre of the channel, similar to that of Prandtl (1935) for

pipe flow. This law was written as

√

2

Cf

=
1

κ
ln

(

Re

2

√

Cf

2

)

+ F, (2.35)

where

F = A+
2Πc

κ
− UCL − Ub

Uτ
.

The equation differs from Prandtl’s law in that the wake component of the velocity

profile is included in the derivation (appearing in the constant F ). Through a

comprehensive analysis of the mean velocity data, Dean finds κ = 0.41, A = 5.17

and F = 3.2. It is shown that κ and A are indeed universal as they have no

dependence on Reynolds number. The reader should note, however, that the value

of κ found was not representative of all data sets; Dean (1978) selected only a few

data sets which he considered to be fully developed (i.e. the long channel flow data)

to include in this analysis. This leads the reader to question why the short channel

data sets are included in other analyses, especially in the determination of the other

log law constant, A.

Dean’s comparison of equations (2.34) and (2.35) with the skin friction data from

the literature shows that both are a good fit — although equation (2.34) is, unsur-

prisingly, the better of the two since it is a curve-fit to the data. These formulations

will be compared with data from the current investigation and discussed in more

detail in Chapter 4.

2.6 Previous pipe flow studies at Melbourne

The investigation into pipe flow of this thesis was in fact the third experimental

investigation involving the pipe apparatus at the University of Melbourne. Henbest
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and Abell (independently) were the researchers involved with the previous studies,

although the most recent of these (Henbest, 1983) commenced over 20 years prior

to the current study. Both Henbest and Abell have been, and continue to be widely

cited in the literature and their important results are summarised below.

2.6.1 Abell (1974)

The pipe flow facility was first constructed by Abell around 1970. At this time the

pipe was relatively short with the measurment station being only 84.7D from the

inlet. Thus the results presented in the thesis of Abell (1974) are questionable due

to the potentially underdeveloped flow condition. The criticism may be regarded as

harsh since Abell conducted many tests to ensure the flow was fully developed. These

included comparing local mean velocity, turbulence intensity and centreline velocity

spectra at two streamwise locations (71.9D, 84.9D). After completing these tests

and therefore having confidence that the flow was fully developed, Abell proceeded

to measure all streamwise turbulence statistics and power spectral density (spectra)

for both smooth and rough wall cases. Unfortunately for the current investigation,

Abell used the Clauser chart with traditional log law constants (κ = 0.41, A = 5.0)

to determine the friction velocity, Uτ . Since the values of Uτ determined as such

were consistently lower than those given by the more appropriate pressure drop

formula (2.23) (up to 3% lower according to Abell, 1974), it is difficult to draw

meaningful comparisons between data collected during the current investigation and

that presented in Abell (1974).

Among the most notable of Abell’s experimental observations was the inverse power

law (‘−1 law’) describing the power spectral density of streamwise velocity fluctu-

ations. The power law relationship had previously been analytically deduced from

dimensional arguments, while Abell’s findings (also recorded in Perry & Abell, 1975)

provided the supporting experimental evidence. Shortly after Abell (1974), it was

shown that the −1 law was also predicted by the Perry & Chong (1982) attached

eddy model for wall turbulence (see §2.9).

Another important result which was not documented until Perry & Abell (1977)
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was a scaling law for streamwise turbulence intensity in the turbulent wall region:

u′2

U2
τ

= B1 − A1 ln[η] − C

(

yUτ

ν

)− 1

2

, (2.36)

where the constants A1 and C are universal and B1 is large scale characteristic.

An extended form of equation (2.36) will be compared with new experimental data

presented in Chapter 6. However, the reader is reminded of the aforementioned

Clauser—Uτ issue, which should ensure that the constants of Perry & Abell (A1 =

0.80, B1 = 3.53 and C = 9.54) will not be reproduced here.

Finally, Abell found support for the inner flow scaling law (2.4) for mean velocity

profiles, and the turbulent wall region was observed to extend from the traditional

y+ ≈ 100 to y/R ≈ 0.1. Constants in the log law (2.4) were effectively forced to be

κ = 0.41 and A = 5.0 by application of the Clauser method for finding Uτ . Outer

flow similarity was also observed, although the extent of collapse onto von Kármán’s

velocity defect law was not a consideration in Abell (1974).

It must be finally noted that after completion, Abell himself acknowledges the length

of pipe used for his experiment was likely to be insufficient for full flow development

(see Perry & Abell, 1977). Hence, the contribution of the Walter Bassett Aero-

dynamics Laboratory to turbulent pipe flow research was not to cease after Abell

(1974)...

2.6.2 Henbest (1983)

Due to this speculation concerning development length, Henbest left nothing to

chance as a further 315D in length was added to the pipe, bringing the total work-

ing section length to an extraordinary 398.5D or 39.77m. This apparatus (detailed

in Chapter 3) is one of the longest pipe flow facilities with such a large diameter,

D = 0.0998m, used for the study of turbulence. Henbest, like Abell, experimented

with both smooth and rough wall pipe flow and also repeated the same measure-

ments: mean velocity profiles, friction factor, all turbulence statistics and spectra.

Results found in the thesis of Henbest (1983) may be more suitable for comparison

with the current study (than Abell, 1974) since the friction velocity appears to have
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been correctly determined from pressure drop. It should be noted that Henbest

is not clear on this point, however no mention of the Clauser chart is made, nor

any other method of friction velocity determination other than the pressure drop

method.

The two most important aims of Henbest (1983) were: i) to provide accurate data for

a very long pipe flow free of development effects; ii) to experimentally validate the

attached eddy model for wall-bounded turbulent flow proposed by Perry & Chong

(1982). Results agreed well with model predictions and once again the −1 law was

found in the inner flow scaled power spectral density. Many of Henbest’s important

results were also published in Perry, Henbest & Chong (1986). In Chapter 5, the

smooth wall data of Henbest (1983) will be presented and compared with results of

the present study.

Perhaps of most relevance to this study is that both Abell and Henbest chose not

to measure mean streamwise velocity profiles with a hot-wire anemometer. A pitot

tube was used for both investigations, despite the employment of hot-wires for most

other measurements (e.g., turbulence intensity, Reynolds stress and spectra). This

preference for pitot tubes is common in the literature — in fact, there are no pipe

flow studies known to the author that provide accurate hot-wire measured mean

velocity. Such measurements would be useful for comparison with pitot tube results

which require corrections for known errors. The validity of these corrections is an

often debated topic that will receive further attention in §2.7 below. Hence, an

initial aim of this project was to record hot-wire measured mean velocity profiles in

a turbulent pipe flow for comparison with pitot tube measurements.

2.7 Pitot tube corrections

The frequently used pitot tube anemometer is known to provide simple and accurate

velocity measurements in non-turbulent, low-shear flows. Unfortunately, the same

accuracy is not available when using the anemometer for measuring mean velocities

in turbulent wall-bounded shear flows. In such flows the pitot tube is affected

by various phenomena including shear, viscosity, wall proximity and turbulence.
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Importantly, these effects vary throughout the shear layer and generally become

more pronounced as the wall is approached. Errors due to most of these effects

have been known for many years and so a variety of corrections for pitot tube

measurements may be found in the literature; Young & Maas (1936), MacMillan

(1956) and Chue (1975) are examples.

2.7.1 MacMillan’s correction

Most popular among pitot tube experimentalists is the correction proposed by

MacMillan (1956) (usually referred to as the MacMillan correction). The MacMillan

correction provides a correction for the over-reading of pitot tube measured velocity,

Um, caused by the effects of shear. This is a very important correction since, in most

cases, shear effects dominate other effects on the pitot tube. To determine the cor-

rection, MacMillan conducted a number of experiments in a turbulent pipe flow and

boundary layer with circular, square-ended, pitot tubes of different outer diameter,

dp. Five tubes in total were used, with outer diameters of dp = 0.607, 0.74, 1.38, 2.30

and 3.08mm. The internal diameter of the pipe facility used by MacMillan was

50.8mm (2′′). The procedure followed was to measure velocity profiles through the

shear flow with all pitot tubes, ensuring wall-normal position was measured accu-

rately. Then, at a given distance from the wall, the measured velocity, Um of each

pitot tube was plotted against dp. From each Um versus dp plot, MacMillan extrap-

olated the data to dp = 0, at which point Um should be the true velocity, U (or at

least U should be the velocity free from shear effects). Thus, MacMillan was able

to determine the error in Um as a function of dp.

Now, MacMillan was aware of a study conducted many years earlier (Young &

Mass, 1936) that proposed the error in pitot tube measured velocity may be more

conveniently expressed as an error in wall-normal position, y; although the study

of Young & Maas (1936) concerned free-shear flows, not wall-bounded flows. So,

knowing the ‘true’ velocity profiles from extrapolation, MacMillan reinterpreted the
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Um error, producing the surprisingly simple displacement correction† :

∆y

dp
= 0.15, (2.37)

where ∆y is the necessary adjustment to probe position. This correction is favor-

able to the experimentalist since all that is required is an addition of 0.15dp to each

y-coordinate of the mean velocity profile. There exists published experimental data

in support of MacMillan’s correction and further evidence is presented in Chapter

5. Conversely, the author is unaware of any experimental evidence in the literature

that reveals any serious limitations of the MacMillan correction. In support of the

correction are, for example, Jones et al. (2001a) and McKeon et al. (2003a). Both

references have very different approaches with Jones et al. (2001a) showing MacMil-

lan corrected (pitot tube) turbulent boundary layer profiles collapse onto profiles

measured with a hot-wire anemometer. McKeon et al. (2003a), on the other hand,

compares corrected turbulent pipe flow velocity profiles measured with different di-

ameter pitot tubes (cf. experiments of MacMillan, 1956). The latter, more recent

study addresses some important questions and therefore warrants further discussion

in this section.

Recent experimental support for the MacMillan correction

McKeon et al. (2003a) gives results of a recent Superpipe study into pitot tube cor-

rections at high Reynolds number as briefly mentioned in §2.2.2. Following MacMil-

lan’s work, this investigation involved mean velocity profile measurement with four

different diameter pitot tubes at two relatively low Reynolds numbers: 75×103 and

146 × 103. The smallest tube with outer diamter, dp = 0.3mm was also used for

21 velocity profile measurements over the Reynolds number range, Re = 75× 103 –

35 × 106. The latter data set was used for comparison with the original Superpipe

data found in Zagarola & Smits (1998) (this original study utilised a larger pitot

tube with dp = 0.9mm). MacMillan’s extrapolation to zero pitot tube diameter

was not followed by McKeon et al. (2003a). Instead, the suitability of correction

methods was judged by the extent of collapse of corrected velocity profiles measured

† Young & Maas (1936) proposed a very similar relationship for free-shear flows: ∆y/dp = 0.18.
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with the different diameter pitot tubes. Note that this analysis only has the capacity

to point out failure of a correction method since corrected measurements are not

compared to ‘true’ values. So, although complete collapse of the data on to one

velocity profile may be observed, the question of whether or not this is the ‘true’

profile is not addressed† .

Careful and accurate experimental techniques used by McKeon et al. (2003a) ensure

that the data produced provides useful evidence in the ongoing debate over which

pitot tube corrections are appropriate. Importantly, it was made quite obvious in

McKeon et al. (2003a) that the correction of Chue (1975) was inadequate since

it failed to collapse the different diameter pitot tube measurements onto a single

curve. This is an important discovery since Zagarola & Smits (1998) applied Chue’s

correction represented by

∆y

dp
= 0.18α(1 − 0.17α2), (2.38)

where

α =
dp

2U

dU

dy
,

to all pitot tube measurements. Note that in the definition of the shear parameter,

α, U and its gradient must be evaluated at the geometric centre of the pitot probe.

In light of McKeon et al. (2003a), the results of Zagarola & Smits (1998) were

reanalysed (as discussed in §2.2.2) and new conclusions were drawn concerning mean

flow behaviour in wall-bounded shear flows.

While Chue’s correction was dismissed, McKeon et al. (2003a) show that the MacMil-

lan correction collapsed all pitot tube data effectively. Even so, the authors propose

a new, alternative correction that includes the shear parameter, α:

∆y

dp
= 0.15 tanh(4

√
α), (2.39)

Although (2.39) is shown to perform very well, no quantified evidence was presented

that would suggest this far more complex correction should take preference over

† This is not a criticism of McKeon et al. (2003a); the author is aware that a ‘true’ reference

velocity cannot be determined beyond doubt at this time. However, hot-wire data is commonly

accepted as sufficient for comparison.
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the MacMillan correction. Theoretically, (2.39) is more correct than MacMillan’s

correction because ∆y → 0 as the edge of the shear layer (or centreline of a duct)

is approached, whereas this will obviously not occur with the MacMillan correction.

However, in support of MacMillan’s correction, ∆y = 0.15dp becomes a negligible

quantity near the edge of the shear layer.

From the reliable experimental data presented by McKeon et al. (2003a), private

communications with other experimentalists and data presented later in this thesis,

the author holds the view that the correction for shear effects on pitot tube measure-

ments is no longer in debate for any Reynolds number up to 35× 106. Furthermore,

there appears no reason that the corrections should become inappropriate at even

higher Reynolds numbers. Finally, while the correction proposed by McKeon et al.

(2003a) is technically more appropriate, the simple MacMillan displacement cor-

rection has been proven to be adequate. Hence, MacMillan’s correction has been

applied to all velocity profiles measured with a pitot tube in both the circular pipe

flow and channel flow investigations of this thesis.

2.7.2 The effects of turbulence

When taking pitot tube measurements in any turbulent flow, a correction for the

effects of turbulent velocity fluctuations is required. This is due to the fact that,

when using a pitot tube, static pressure† is subtracted from pitot measured total

pressure to give dynamic pressure; that is, velocity is not measured directly. This

can be shown analytically‡ by examination of the equation of motion of a fluid

element moving along a streamline (Euler’s equation):

−1

ρ

∂p

∂s
= q

∂q

∂s
+
∂q

∂t
, (2.40)

where s is a coordinate along the streamline, q is the velocity in the s direction, t is

time and p is pressure. Note that viscosity and external body forces are insignificant

in this analysis and so have been neglected in equation (2.40). Integrating along the

† Usually measured with a static pressure tube or wall tapping.

‡ After Goldstein (1936).
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streamline gives
p

ρ
= −1

2
q2 −

∫

∂q

∂t
ds+ f(t), (2.41)

where f(t) is a time varying constant of spatial integration. For wall-bounded tur-

bulent shear flows, q may be decomposed into mean and fluctuating components, Q

and q′ respectively. Applying the same decomposition to pressure, substituting into

equation (2.41) and time-averaging the result gives

P + p′

ρ
= −1

2
(Q+ q′)2 −

∫

∂(Q + q′)

∂t
ds+ constant. (2.42)

By definition, ∂Q/∂t = 0 and p′ = q′ = Q · q′ = 0 so that (2.42) may be simplified

to
P

ρ
+

1

2
(Q2 + q′2) = constant, (2.43)

which differs from the classical Bernoulli equation only by the turbulence inten-

sity term, q′2. Assuming a pitot tube is aligned with the flow direction, then

Q = U . It can also be shown that the resultant mean square of fluctuating ve-

locity, q′2 = u′2 + v′2 + w′2. Finally, with reference to the local static pressure,

(2.43) can be used to determine the following relationship:

∆P =
1

2
ρ(U2 + u′2 + v′2 + w′2). (2.44)

However, due to the relatively small magnitudes of v′2 and w′2, it will be assumed

acceptable to neglect these components, leaving

∆P =
1

2
ρ(U2 + u′2). (2.45)

Now, the pitot tube measures — relative to static pressure — ∆P , the mean dynamic

pressure. Therefore, the calculated velocity without turbulence correction, Um is not

the true velocity — in fact,

Um = U2 + u′2. (2.46)

This applies to any pitot tube, regardless of diameter, for the simple reason that

there is a non-linear relationship between velocity and dynamic pressure.

MacMillan (1956) is quite clear in stating that his correction for shear did not

account for the effects of turbulence, which implies that a turbulence correction
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should be applied in addition to the MacMillan correction. However, it is argued

in McKeon et al. (2003a) that applying both corrections is inappropriate because

MacMillan’s correction was derived from experiments conducted in turbulent shear

flows and therefore implicitly accounts for turbulence effects. Now, in summary of

the above explanation of MacMillan’s experiment: the correction deduced effectively

calibrates a pitot tube of arbitrary diameter against one of zero diameter; that is, a

tube that provides no interference to the flow and is unaffected by velocity gradient.

This infinitely small pitot probe still measures pressure, however. Therefore the

dp = 0 reference velocity, which MacMillan determined by extrapolation, is itself

affected by turbulence due to equation (2.45). Put simply, the MacMillan correction

is essentially a spatial correction whereas the effect of turbulence on pitot tubes is

temporal in nature.

McKeon et al. (2003a) extend their argument against a turbulence correction by

providing experimental evidence showing that application of the correction, in ad-

dition to MacMillan’s, over-corrects the data. This conclusion is based on the pipe

flow data of McKeon et al. (2003b), with correction for turbulence applied, failing

to blend on to the well-known U+ = y+ curve which holds in the viscous sublayer

of the flow (i.e., below y+ ≈ 5). There are many reasons why this misalignment

might be observed, not the least of which is experimental error. For example, a

simple calculation reveals that a wall-normal position error of only 18µm would

completely account for the observed deviation in the viscous sublayer region (based

on dp = 0.3mm and Uτ = 0.42, estimated from data published in McKeon et al.,

2003a). However, the trends in experimental data are irrelevant to this argument.

There is no doubt that the effects of turbulence must be accounted for by virtue of

(2.45) — notwithstanding the fact that the turbulence correction has a small impact

on the data relative to the MacMillan correction for common pitot tube diameters.
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An explicit turbulence correction

The turbulence correction can easily be determined by inspection of equation (2.45)

and is written in full as:

U+ =
U

Uτ

=

√

(

Um

Uτ

)2

− u′2

U2
τ

, (2.47)

where Uτ is the friction velocity. Clearly, to apply this correction requires knowledge

of the scaled u′2 profile of the flow. Empirical relationships for turbulence intensity

are available (equation (2.36) from Perry & Abell (1977) is commonly cited for

example) although the accuracy of such relationships is questionable due to exper-

imental error in u′2 data in the inner flow region. One source of this error is that

high response anemometers (e.g. hot-wires) used to measure turbulent velocity fluc-

tuations are now known to suffer from the effects of inadequate spatial resolution at

low to moderate Re. Further work is required to understand these problems which

limit the accuracy of the turbulence correction near the wall. Note however, that

the turbulence correction is relatively small in magnitude, particularly as the wall

is approached. Therefore, errors in — or assumptions about — turbulence intensity

profiles are likely to have little noticeable effect on the corrected velocity profile.

All MacMillan corrected velocity profiles measured with a pitot tube presented in

this thesis will have the additional turbulence correction (2.47) applied; turbulence

intensity is determined from normal hot-wire measurements.

2.7.3 Wall proximity correction

In addition to his correction for shear, MacMillan (1956) proposed a wall proximity

correction. This correction accounts for the effect of the pitot tube when it is very

close to the wall. The criteria to determine whether a tube was ‘close to the wall’

was found to depend on pitot tube outer diameter only; that is, for y < 2dp a wall

proximity correction was found necessary. Now, MacMillan had already determined

the true velocity profile for y > 2dp, as described in §2.7.1, down to y+ = 30.

It was therefore possible to compare non-dimensional velocity measurements at a

given y+ made with pitot tubes of various outer diameter with the ‘true’ velocity
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profile. With this method it was found that the wall proximity correction was most

conveniently represented by a single curve relating the quotient of velocity correction

and measured velocity (∆U/Um) to y/dp. MacMillan (1956) provides a graph of

∆U/Um versus y/dp from which the author has extracted and tabulated data points;

this table is included for reference in Appendix C. An interesting observation of the

wall correction is that it shows the velocity is under-read by the pitot tube for

y < 2dp — so the wall proximity effect is in opposition to the effect of shear (which

causes over-reading of velocity).

It is acknowledged here that MacMillan’s wall proximity correction was shown to

be inaccurate by McKeon et al. (2003a). However, due to the simplicity of the cor-

rection, the small magnitude of error highlighted by McKeon et al. (2003a) and the

inconsequence of this error to the velocity profile regions of interest here, MacMil-

lan’s correction for wall effects is applied to all pitot tube measurements in the range

y < 2dp presented in this thesis.

2.8 Numerical simulation

The field of numerical simulation is a promising and rapidly advancing one. Un-

fortunately, at this point in time computational power is insufficient to simulate

duct flows at the Reynolds numbers easily obtained in the laboratory. As discussed

earlier, the pioneering numerical investigation into channel flow simulation was that

of Moin & Kim (1982). This study introduced the Large Eddy Simulation (LES)

approach which requires the input of a turbulence model for the fine scales; that is,

only the large scale motions are numerically computed. This allows the simulation

of higher Reynolds number flows by sacrificing spatial resolution. At the time of

writing, Karman numbers in the vicinity of 1000 (corresponding to Re ≈ 30 × 103

for the channel flow of this study) are possible with LES.

Direct Numerical Simulation (DNS) does not suffer from the limitation of LES since

all scales are resolved by numerical solution of the Navier-Stokes equations — the

governing equations of fluid flow. The Reynolds numbers attainable are much lower

using DNS than LES. Kim et al. (1987) was one of the first DNS studies into
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fully developed channel flow. For their study Rec = 3300, where Rec is Reynolds

number based on centreline velocity. This is an order of magnitude lower than the

lowest Re of this study. For constant pressure turbulent boundary layers, Spalart

(1990) conducted a DNS study reaching a Reynolds number based on momentum

thickness of Reθ = 1410. This corresponds to a Karman number, Kτ = ∆Uτ/ν

of approximately 750 which may be compared with the lowest Kτ studied in this

thesis ofKτ ≈ 1000. Spalart (1990) is a useful reference since, although the Reynolds

number is low, the behaviour in the inner flow region of the boundary layer should

be the same as that at higher Re, as discussed earlier. This highlights a problem

with low Reynolds number duct flow simulations — the pressure is not constant.

Thus the pressure gradient parameter, p+, will affect the flow as discussed in §2.3.

This makes comparisons of most experimental duct flow data with most DNS data

impossible. In fact, comparisons of experimental data with Spalart (1990) would be

more useful than with simulations of duct flow.

While DNS algorithms continue to progress and computational power increases,

current technology does not allow the fully resolved simulation of even moderate Re

duct flows. Thus, in this thesis only the data of Spalart (1990) will be compared

with experimental results. Further, the LES method requires knowledge of fine scale

behaviour and it is suggested that data acquired in this experimental project may

be useful for the validation of fine scale models.

2.9 The mechanism of wall turbulence

At this point it may be observed from the literature that most studies present sta-

tistical wall-bounded turbulence data which implies a certain degree of randomness

of the turbulence. Conceptual models that aim to provide a physical understand-

ing of the mechanism of wall turbulence are comparatively much more difficult to

find. One such concept is the Attached Eddy Hypothesis of Townsend (1976) which

considers turbulence as a field of organised eddies or structures with an important

property:



2.9. THE MECHANISM OF WALL TURBULENCE 47

“The velocity fields of the main eddies, regarded as persistent, organised

flow patterns, extend to the wall and, in a sense, they are attached to

the wall.” Townsend (1976), p152.

This hypothesis allowed Townsend (1976) to model the complex turbulent flow with

reasonable success. More pertinent to this thesis, however, is that the above hy-

pothesis formed the basis for a detailed turbulence model established by Perry &

Chong (1982).

2.9.1 The hierarchy of structures

The proposition that wall-bounded turbulent flow contains hairpin-type vortex loops

is well supported in the literature. The famous boundary layer flow visualisations of

Head & Bandyopadhyay (1981) and the annual review of Robinson (1991) are two

of the earlier publications. More recently, substantial evidence has arisen from both

numerical simulation of channel flow, Liu & Adrian (1999), and Particle Image Ve-

locimetry (PIV) measurements in a boundary layer, Adrian, Meinhardt & Tomkins

(2000) and Ganapathisubramani, Longmire & Marusic (2003).

After observation of the flow visualisations of Head & Bandyopadhyay (1981), Perry

& Chong (1982) proposed the model of boundary layer turbulence consisting of a

random array of characteristic hairpin vortices. These vortices grow out of the vis-

cous sublayer ‘material’, then undergo a period of stretching until their ultimate

‘death’ by viscous dissipation and vorticity cancellation; the characteristic vortices

were all considered to be inclined at 45o. For simplicity, Perry & Chong (1982)

considered only the ∧-shaped vortex, as shown in figure 2.6a, rather than the more

complex hairpin or horseshoe vortices. It was shown that an array of such vortices,

all at different stages of stretching, does not give the required mean velocity distri-

bution. That is, the model resulted in a limit on the extent of the overlap region,

where the log law is valid, as Re increases. It is commonly accepted that the overlap

region continues to increase as Re→ ∞. To overcome this problem Perry & Chong

(1982) proposed the hierarchy of geometrically similar eddies as shown in figure 2.6.

The eddies shown are in the final stages of stretching and the characteristic height
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Figure 2.6: a) Schematic of a simple ∧-vortex; b) The discrete hierarchy of eddies pro-

posed by Perry & Chong (1982).

scale of eddies at such a stage is δ. For a discrete system of hierarchies this height

scale increases by a factor of 2 for each hierarchy. The introduction of this system of

eddies gave the desired mean velocity behaviour as Re→ ∞. Perry & Chong (1982)

concede that the mechanism for the formation of hierarchies remains a mystery. Al-

though it was conjectured that a vortex in a given hierarchy may be formed by the

pairing of two vortices from the hierarchy below. Finally, the hierarchy concept

was further extended to the more realistic continuous distribution of scales. It was

shown that, to achieve the same mean velocity behaviour as the discrete hierarchy

system, the required p.d.f. (probability density function) of scales was:

pH(δ) =
M

δ
, (2.48)

where M is a constant.

Having conceptually developed the array of attached eddies in a turbulent flow,

Perry & Chong (1982) show that second order statistics can be calculated through

uiuj

U2
τ

=

∫ ∆E

δ1

IijpH(δ)dδ; (2.49)

a result also derived by Townsend (1976). Townsend referred to Iij as the eddy-

intensity function and δ1 is the smallest hierarchy scale, assumed to be of the Kline
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et al. (1967) scaling order (i.e., δ1 ∼ 100ν/Uτ). ∆E is the height scale of the largest

hierarchy. Incorporating the proposed functional forms of Iij given in Townsend

(1976), equation (2.49) predicts a constant Reynolds shear stress and wall-normal

turbulence intensity, while logarithmic distributions of streamwise and spanwise

turbulence intensity are given. Perry & Chong (1982) finally calculate the spectra

of streamwise velocity Φ11, showing that a − 1 power law in the moderate k1y range

(where k1 is streamwise wavenumber) is predicted, provided enough hierarchies are

included. That is,
Φ11(k1y)

U2
τ

=
C

k1y
, (2.50)

where C is a universal constant. It is interesting to note that dimensional arguments

presented in Perry & Abell (1975) led to the same result as (2.50). Additionally, the

attached eddy prediction of logarithmic streamwise turbulence intensity was also

deduced by Perry & Abell (1977) from the spectral similarity law (2.50). Some

limited experimental pipe flow spectra (from Abell, 1974) was supplied by Perry &

Chong (1982) which roughly supports (2.50). However, figure 24 of this reference

implies that at least 10 hierarchies of eddies (using the discrete system of hierar-

chies) are required before a -1 slope appears in the predicted spectra. Assuming

δ+
1 = δ1Uτ/ν = O(100) (after Kline et al., 1967) the Karman number, Kτ , of the

flow required for the streamwise spectra to exhibit the -1 law is Kτ = ∆+
E = O(105).

For the study of Abell (1974): Kτ = O(103); indeed, this order is typical of most

laboratory flows including those of the present study.

2.9.2 Modifications to the attached eddy model

The foundational study of Perry & Chong (1982) provided an interesting and useful

explanation of the turbulent flow in the overlap region. The behaviour of the outer

flow region, however, remained unexplained. That was until the publication of Perry,

Henbest & Chong (1986). By considering a variety of different shapes of eddies,

Perry et al. (1986) showed that simply changing eddy shape could never satisfactorily

describe the wake behaviour of the mean velocity. It is worth noting that the most

promising characteristic eddy shapes found were the previously tested ∧-vortex and

the ⊓-vortex which is featured in figure 2.9. It was eventually found that simply
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Figure 2.7: An illustration of the original and modified p.d.f. of hierarchy scales. ∆E is

the scale of the largest hierarchy.

modifying the p.d.f. of hierarchy scales could account for the known streamwise mean

velocity deviation from a log law in the outer flow region. The modification involved

an increase in p.d.f. (above 1/δ) for the larger scales as illustrated in figure 2.7. Now,

since the new p.d.f. was not physically justified, any model using an arbitrarily

modified p.d.f. requires the prescription of the mean velocity field. That is, the

mean velocity is not given by the model; rather it is an input to the model.

Another major change by Perry et al. (1986) to the original model was a new method

of calculating spectra. By introducing the variable λ = ln(δ/y) the p.d.f. of scales

can be written as

pH(δ) =
M

δ
W (λ− λE). (2.51)

W will be referred to hereafter as the weighting function for hierarchy scales† and

λE = ln(∆E/y). It was shown that the spectra of any velocity component is simply

given by:
Φii

U2
τ

=
1

k1y

∫ λE

λ1

M
ψii(k1δ, λ)

U2
τ

W (λ− λE)

∣

∣

∣

∣

k1y = const

dλ. (2.52)

ψii is termed the pre-multiplied hierarchy spectral function; it is the contibution to

the pre-multiplied spectra from one hierarchy of eddies and it may be determined

as follows:

† It should be noted that Perry et al. (1986) label the weighting function w; to avoid confusion

with the spanwise component of velocity and channel width definitions in this thesis, however, W

was deemed a more appropriate variable.
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Figure 2.8: Velocity field in the x − y (symmetry) plane of an attached ⊓-eddy. A solid

line is drawn through the centre of one ‘leg’ of the eddy. Note the rapid decay in velocity

magnitude beyond y/δ ≈ 1.

1. The velocity field generated by an isolated attached eddy of height scale δ

and its image in the wall is calculated from the Biot-Savart law. An example

of such a field is shown in figure 2.8 which presents velocity vectors in the

x − y plane of a ⊓-shaped eddy. A three-dimensional illustration is provided

in figure 2.9. In this figure, streamlines in the vicinity of an isolated ⊓-vortex

are shown for the x− z and x− y planes. The vortex rods have a core radius

of 0.1δ.

2. The power spectral density (PSD) of velocity signatures in a given y/δ plane

along a line of constant z/δ (i.e., a streamwise ‘cut’) is calculated. The PSD

for each streamwise cut will be a function of non-dimensionalised streamwise

wavenumber, k1δ.
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Figure 2.9: Streamlines in the x − z and x − y planes around an attached ⊓-eddy. The

shaded plane is the wall; the lower, translucent ‘eddy’ represents the attached eddy’s image

in the wall.

3. An ensemble average of the PSD for all streamwise cuts is formed for a given

y/δ (i.e., wall-normal distance). Pre-multiplying this ensemble average by k1y

gives ψii as a function of k1δ at a given y/δ.

The final step is to perform the integration of (2.52) to determine the PSD (spectra)

for all hierarchies. This integration is not straightforward and the reader is encour-

aged to consult Perry et al. (1986), Li (1989) or Marusic (1991) for more details on

this. Whereas the Perry & Chong (1982) method was used to calculate u spectra

only, this new method clearly allows the calculation of the spectra of any velocity

component. Further, any desired modification to the p.d.f. is easily implemented

by simply altering W (this is a useful feature if wall-bounded flows with various

geometries or pressure gradients are of interest).
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2.9.3 Recent extensions to the attached eddy model

Since Perry et al. (1986), the attached eddy model has been successfully extended to

rough wall flows (see Perry et al., 1987, and Perry & Li, 1990) and non-zero pressure

gradient boundary layers (see Perry & Marusic, 1995, and Marusic & Perry, 1995).

Even turbulent jet characteristics have been modelled using arrays of haripin vortices

(see Nickels & Perry, 1996, and Nickels & Marusic, 2001).

The pressure gradient studies show that any model incorporating only one shape

of eddy, regardless of weighting function or geometry, cannot predict the correct

behaviour of Reynolds shear or normal stresses for strongly adverse pressure gradient

boundary layers. This problem was very successfully removed by adding an array

of a second type of eddies that are not attached to the wall. These were named

‘type-B’ eddies; the attached ⊓-eddies were termed ‘type-A’ and their arrangement

and individual properties remain as described above. No further discussion of ‘type-

B’ eddies is warranted here as they are unnecessary for modelling of constant area

turbulent duct flows. Perry & Marusic (1995) also introduce the additional weighting

function, T (λ−λE), to account for changes in the velocity scale between hierarchies

of eddies (e.g. changes in circulation). Implementation simply involves multiplying

T (λ − λE) into the integrand of equation (2.52). Introducing this new weighting

function, equation (2.51) and the variable λ into equation (2.49) gives:

uiuj

U2
τ

=

∫ λE

λ1

Iij(λ)T 2(λ− λE)W (λ− λE)dλ. (2.53)

This equation is simply a convolution of Iij(λ) and T 2W (λ). Therefore, if one knows

or can deduce the formulation of I13(λ), T 2W may be determined by a deconvolu-

tion of the expected/measured u1u3 (Reynolds shear stress,also referred to as u′v′

in this thesis) distribution. T can be extracted from T 2W since the known mean

flow behaviour dictates W . The remaining second order turbulence statistics may

be found from equation (2.53) once T 2W is known. Perry & Marusic (1995) and

Marusic & Perry (1995) show that this method results in excellent agreement be-

tween predicted and experimental streamwise turbulence intensity. Now, for fully

developed turbulent channel flow it can be shown that

−u1u3

U2
τ

= 1 − η − dU+

dy+
, (2.54)
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where the velocity gradient, dU+/dy+, is negligible away from the wall. Marusic

(1991) showed that using a suitable weighting function W † , T = 1 and I13 = −κe−λ

in (2.53) agreed with the theoretical distribution of u1u3 given by (2.54). That is,

changes in eddy velocity scale may be considered negligible across all scales for

channel flow (T = 1) — in so far as the attached eddy model is concerned.

The most recent extension to the Perry & Chong model, which is also of most

relevance to this thesis, was that of Marusic (2001). In this reference the auto-

correlation of streamwise velocity fluctuations was analysed and compared with

attached eddy model results. The agreement was shown to be poor requiring further

amendments to the attached eddy model. Details of the modifications proposed by

Marusic (2001) will be revealed and discussed in depth in Chapter 7 where auto-

correlation measurements are presented.

In summary, the application of the attached eddy hypothesis has been largely suc-

cessful over the past two decades. As the model has evolved, however, it has become

apparent that it is not a predictive model as such. In its current stage the model

provides a simple, physical explanation for the statistical properties of turbulence

that are readily measureable and available in the literature. Due to the complexity

of even the simplest (geometrically) turbulent flows, such physical understanding

may prove invaluable as more complex flows are studied in the future (e.g. rough

wall-bounded flows).

2.10 Auto-correlation

Most experiments in turbulent flows aiming to determine higher-order turbulence

stastics involve the use of a single hot-wire probe. These probes are usually only

capable of wall-normal movement during an experiment. Certainly probes used in

the current study are of this type. Clearly, measurements of velocity components

as a function of streamwise coordinate are not possible with such a probe (unless

multiple probes are employed). This prevents direct calculation of the longitudinal

spatial correlation of streamwise velocity. Thus, it is the Eulerian streamwise ve-

† A detailed discussion of W for channel flow will be given in Chapter 5.
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locity correlation with respect to time that is generally the favoured correlation of

the practical researcher† . This correlation is more commonly known as the auto-

correlation with respect to time, R11(t
′), and is simply the mean of the product of

velocity fluctuations at time t with those fluctuations at time t = t− t′. That is,

R11(t
′) = u′(t)u′(t− t′), (2.55)

where t′ is the time difference or time lag. The auto-correlation coefficient, R11(t
′),

or normalised auto-correlation can also be defined:

R11(t
′) =

u′(t)u′(t− t′)

u′2
. (2.56)

The auto-correlation coefficient is of some use in the analysis of vortical structures

in turbulent shear flows as will be evident in Chapter 7. However, if structure

identification is the motivation of the investigation of R11, then the auto-correlation

with respect to streamwise coordinate would have more direct application than the

correlation with respect to time. To move out of the temporal and into the spatial

domain, Taylor’s hypothesis of frozen turbulence is invoked. This hypothesis permits

the transformation x0 = Uct
′, so that

R11(x0) = R11(Uct
′), (2.57)

where Uc is a convection velocity. While this transformation appears simple, the

convection velocity is a quantity that is difficult to determine and one that has

received extensive attention in the literature.

2.10.1 Taylor’s hypothesis and convection velocity

Taylor (1938) in his highly regarded paper: “The spectrum of turbulence”, first

hypothesised the concept of stationary or frozen turbulence. The now commonly

cited Taylor hypothesis states that the structure of turbulence remains statistically

unchanged as the flow moves downstream. That is, flow structures are convected

downstream, without significant modification or breakdown, with some convection

† The rapid and promising emergence of Particle Image Velocimetry (PIV) technology is an

exception, since the instantaneous spatial variation of velocity is available using this technique.
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velocity, Uc. This means that information gleaned from a turbulent flow snapshot

(e.g. PIV measurements), which gives spatial distributions of flow quantities, is the

same information that can be recorded by a stationary probe as the flow passes by.

This hypothesis is very useful to experimentalists, if indeed it is accurate. Thus,

much research has been devoted to verification of Taylor’s hypothesis. Taylor him-

self conducted grid turbulence measurements which gave support to his argument.

Clearly though, the hypothesis cannot hold either for the finer scales in the flow or

very near to a wall. This is because the small scales are dissipated by viscosity on

very small time scales. In fact, the Taylor hypothesis will always have a time scale

associated with its applicability. Eventually the structures will change even for low

wavenumber motions; although the time scales of structure change will become too

large to be of consequence if the wavenumber is low enough.

In support of the above restrictions, Hussein, Jeong & Kim (1987) have shown that

the Taylor hypothesis is accurate everywhere in a channel flow except very near the

wall. Kim & Hussein (1993) explain that errors near the wall can be numerically

accounted for by modification of the convection velocity, however, this would seem

physically intractable due to the aforementioned viscous dissipation of fine scales.

Away from the wall, both of the above references agree that the convection velocity

should be the local mean, U . This conclusion is questionable given the significant

amount of literature suggesting a constant convection velocity throughout the shear

flow.

The pioneering work of Favre, Gaviglio & Dumas (1958) who took extensive space-

time correlation measurements in a boundary layer with two normal hot-wire probes,

clearly shows that the convection velocity is not equal to the local mean velocity.

Plots of the auto-correlation calculated both with varying spatial separation of the

hot-wires and using Taylor’s hypothesis illustrate that the convection velocity is only

equal to the local mean at y/δ = 0.24. Measurements were also taken at y/δ = 0.03,

y/δ = 0.15 and y/δ = 0.77. It is shown that for y/δ < 0.24, U underestimates

Uc and for y/δ = 0.77, U overestimates Uc. Sternberg (1967) presents a physical

argument based on convection of point vorticity sources which agrees with the above

findings. Sternberg concludes: “Thus in the outer portion of a boundary layer, the
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large scale disturbances should be convected more slowly than the mean velocity,

and in the inner portions more rapidly than the local mean velocity”.

In this author’s view, perhaps the most convincing of all arguments is given by

the experimental investigation of Uddin (1994). Uddin (1994) rigorously tested

Taylor’s hypothesis in a similar study to that of Favre et al. (1958) in a constant

pressure boundary layer. Uddin gathered space-time correlation data with two hot-

wire probes that had the capacity to vary the wall-normal and streamwise spacing

between them. Uddin took care to avoid the problems Favre et al. (1958) encoun-

tered due to probe intereference. The study showed that the true longitudinal

space-time correlation, obtained by varying the streamwise spacing of the wires,

was almost indistinguishable from that determined using Taylor’s hypothesis (for

small, fixed wall-normal spacing). Importantly, Uddin uses a constant convection

velocity, Uc = 0.82U1, where U1 is the free-stream velocity of the boundary layer

flow. While this test is interesting, plots of peak time lag, t′m versus streamwise

spacing, ∆x are truly convincing† . Peak time lag is defined as the time lag, t′, at

which the auto-correlation peaks for a given physical probe spacing, ∆x, ∆y. It can

be shown that

Uct
′
m = ∆x− g(∆y), (2.58)

where g is a known function of wall-normal spacing of the probes, ∆y. Therefore,

plots of t′m against ∆x should reveal a slope of 1/Uc. Further, this slope should

not change for any fixed wall-normal spacing if the convection velocity is invariant

through the shear layer. The plots given in Uddin (1994) are remarkably linear for

all streamwise and wall-normal spacing. The slope in all cases is consistent and

reveals Uc ≈ 0.8U1.

Based on the described extensive work of Uddin (1994), the convection velocity will

be assumed constant throughout the flow and across all turbulent scales in this

thesis. While it is acknowledged that this assumption may introduce errors at high

wavenumbers and that the author’s duct flows are different to that studied by Uddin,

Uc = 0.82UCL is judged to be the best choice for convection velocity at this time.

† Note that Uddin (1994) actually plots non-dimensional t′m against non-dimensional ∆x. See

this reference for further details.
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In the future, it is anticipated that high accuracy, higher Reynolds number PIV

measurements will be able to shed further light on the issue of convection velocity.

2.11 A final observation on channel flow literature

Although there is definitely no shortage of rectangular duct flow studies in the

literature, there does appear to be limited comprehensive data of all measurable

turbulence quantities in long ducts with high aspect ratio and large height. This is

undoubtedly due to the limited laboratory space for such large facilities available

to researchers. Often studies that have some or all of these elements are found in

civil or practical engineering journals and as such, have different aims and motives

to those of this study. As stated earlier, numerical simulation is making steady

progress in channel flows. However, there is still significant ground to cover before

experiments can be effectively replaced with simulations. Furthermore, the lack of

quality experimental data in high aspect ratio ducts inhibits the accurate validation

of simulations. Hence, it is this author’s view that, although duct flows appear to be

well studied and numerical simulation rapidly advances, there is a need for further

experimental research into channel flows.



Chapter 3

Experimental apparatus and

techniques

Despite increasing efforts to improve the understanding of even the simplest wall-

bounded turbulent flows, it appears that a lack of consensus with published results

has developed. Although poor experimental techniques or technological limitations

may be partly responsible, these do not provide a complete explanation of the dis-

crepancies observed in the literature. It has become apparent to the author that

a large number of studies claiming to investigate simple wall-bounded flows are, in

fact, investigating much more complex flows. Complications may arise, for exam-

ple, in the form of: pressure gradient effects in purportedly zero pressure gradient

boundary layers; insufficient length of pipe/channel; inadequate aspect ratio (of a

rectangular duct); roughness effects; or poor inlet flow quality. Such complications

do not necessarily invalidate a study, however, they must be realised and taken into

account by the researcher. Thus, the author believes it is of great importance to

allow the reader to judge the flow condition by plainly providing full details of the

facilities employed.

A complete and detailed explanation of the apparatus and techniques used for this

study is presented here. By taking great care and thoroughly examining the litera-

ture, the components constructed for this project were expected to provide the high

quality, simple duct flows that the aims of this study require. It is hoped that the

59
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details given in this chapter will convincingly attest to this claim and to the quality

of the measurements recorded.

3.1 Pipe flow facility

Perhaps the most important characteristic of this experimental apparatus is the

length of the pipe. The distance between the inlet and the test location is close to

400 diameters (L/D = 393.4). This is significant since the length of pipe required

for full flow development has not been definitely determined at this time. A com-

monly accepted figure is around 150 diameters, however, even results from facilities

of this size have been questioned. The extraordinary length-to-diameter ratio of the

pipe studied here should ensure fully developed turbulent flow well before the mea-

suring station. The pipe length has added significance since most researchers are

forced to compromise L/D for spatial resolution (large diameter) due to laboratory

space constraints. The result is that experiments with extremely large L/D pipes

are uncommon. Fortunately, spatial constraints in this investigation were not so

restrictive, with the Walter Bassett Laboratory being nearly 50m in length.

3.1.1 General layout of the measurement apparatus

The pipe setup for fully developed flow measurements is schematically presented

in figure 3.1a. Most of the apparatus was orignally used by Henbest (1983) and

further details can be found in this reference. The fan at the pipe exit sucks air

through a settling chamber containing honeycomb and mesh screens. The flow then

accelerates through a circular contraction (I) of area ratio 5.2:1. At the working

section entrance, a 60grit sand paper trip (150mm long) had been glued around the

entire circumference.

The working section was constructed from six lengths of precision drawn brass tub-

ing with internal diameter, D = 0.0988m. Tubes were joined with custom made

collars designed to produce minimal gap or step and all joints were sealed before

experiments began. The six pipe lengths, contraction, settling chamber and fan

were originally assembled by Henbest (1983). A new removable measuring section
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Figure 3.1: Schematic diagram of pipe flow apparatus.
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was built to house the anemometer and traverse. This section was bolted between

the sixth length of pipe and the final pipe length. The final pipe was attached to

the fan inlet through a flexible rubber coupling.

Other modifications to the Henbest (1983) pipe included installation of a new DC

motor controller along with disassmebly of the whole working section for checking.

All tubes were then carefully polished, reassembled and realigned† .

Measurements were taken at a distance of L = 38.87m from the working section

inlet and 2.46m from the exit. When flow is sucked rather than blown through the

pipe, the fan will have a swirling effect on the flow upstream of the exit. Thus, it is

important to take measurements at a location well upstream of the exit. The chosen

distance of 2.46m was thought to be sufficiently upstream of any exit effects.

There are a total of six static pressure taps inserted along the length of the pipe, at

roughly 6m intervals, used to calculate the static pressure gradient.

3.1.2 Calibration section

Figure 3.1b shows the hot-wire anemometry (HWA) static calibration setup. During

calibration, the measuring section is detached from the measurement setup (shown

in figure 3.1a) and attached to a new contraction (II) with area ratio 3.3:1 via a

short extension tube. This extension has a fixed reference pitot-static tube inserted

to measure mean velocity. The downstream end of the test section is connected to

the fan inlet through the flexible rubber coupling. The purpose of this setup is to

produce a uniform flow in which to calibrate. It was thought that calibrating in the

uniform flow was preferable to in-situ calibration. For in-situ calibrations, both the

hot-wire and reference pitot-static tubes must be closely aligned due to the radial

velocity profile. Furthermore, turbulence effects on the pitot-static tube must be

neglected. After the investigation was concluded, it was found that these problems

are not insurmountable. It can be shown that a large error in probe alignment is

allowable if the anemometers are placed near the pipe centreline. This is because

† The author would like to acknowledge the invaluable contribution of Dr. S. Hafez to this

stage of the investigation.
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the mean velocity profile has a very weak gradient in this region. Also, turbulence

effects can be neglected in the centre of the pipe since turbulence intensity, u′2, is

less than 0.1% of the square of mean velocity.

In hindsight, in-situ calibration in this facility would have been preferable for two

reasons:

i Simplicity — clearly an in-situ method would be much simpler to implement as

the setup shown in 3.1b is not required and the hot-wire need not be handled

between calibration and measurement.

ii Temperature stability — this is a serious issue which is often given insufficient

consideration during the design of experiments involving hot-wire measure-

ments.

Due to the length of the pipe and temperature distribution in the laboratory, the

flow temperature during calibration was often significantly higher than that during

measurements. This problem would not exist if calibration had been performed in

the fully developed flow. Further discussion of temperature variation will be included

in §3.3.

3.2 Channel flow facility

A schematic diagram of the entire channel flow facility is presented in figure 3.2. The

fan, diffusing section and settling chamber were part of an existing boundary layer

wind tunnel facility (see Saddoughi, 1988). The working section and contraction

were constructed for this investigation. Further details of the apparatus are provided

in the following sections.

3.2.1 Fan, settling chamber and contraction

The fan, motor and DC controller were well chosen by previous researchers. At the

controller output limit, the motor speed was close to its limit of 1700RPM . The

belt drive was setup with a gear ratio of 4:3, driving the fan near to its limit of
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Figure 3.2: Schematic diagram of channel flow facility.
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2232RPM for a volume flow rate of approximately 3.6m3/s (corresponding to a

bulk velocity of approximately 30m/s through the working section).

After leaving the fan, the flow passes through a honeycomb screen for straightening.

A fine-mesh screen is inserted at each join in the diffuser and settling chamber. This

gives a total of 11 screens, ensuring the flow is uniform with minimal turbulence at

the contraction inlet.

Fortunately, the settling chamber width was equivalent to the desired width of the

channel working section. Hence, only a two-dimensional contraction between the two

sections was required, with an area ratio of 9:1. Mathematically, the contraction

shape was defined by a cubic curve leading to a parabolic curve near the exit. A 1:3

scale model of the contraction was built to check for flow separation. This model

was tested in a small model-testing wind tunnel. No separation could be detected

at any inlet velocity during testing. The shape was accepted and the contraction

constructed, with the finished surface varnished and sanded repeatedly until smooth.

With considerable care in design and construction of the contraction — combined

with the high quality flow conditioning before the contraction — the inlet flow to

the working section was expected to be uniform with low turbulence intensity. The

extent of flow uniformity will be shown later in this section.

3.2.2 Working section

The channel flow working section was originally designed with the intention to con-

duct a parametric study of wall roughness effects on the flow. The large number

of roughness types of interest, combined with time limitations, meant the interior

walls of the channel were required to be easily accessible. A simple design shown in

figure 3.3 was chosen and proved successful.

The full channel consists of eighteen, 18 × 1220 × 2440mm MDF (Medium Density

Fibreboard) walls. The interior faces of each were varnished and sanded back mul-

tiple times before assembly of the working section. After varnishing, a coat of wax

was applied to achieve the required smoothness.
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Figure 3.3: Isometric view of a short section of the channel, illustrating the main features

of its design. The crosses on the channel edges represent bolt locations, evenly spaced

100mm apart over the entire channel length. The diagram is not drawn to scale.
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The channel floor (bed) was laid on longitudinally oriented aliminium joists — one

close to each side and one through the centre as shown in figure 3.3. The joists were

6mm thick C-section aluminium, providing sufficient support to deter deflection of

the floor. The channel ceiling was braced laterally with 75mm high MDF stiffeners.

These stiffeners proved to have inadequate stiffness and deflection of the ceiling

resulted. The amount of deflection depended on flow rate and longitudinal position,

since a higher pressure at the inlet is required for higher flow rates and pressure

decreases as the exit is approached. The deflection problem was solved by building

adjustable supports at 35 longitudinal locations along the channel (not shown in

figure 3.3). Before any measurement, the supports were checked/adjusted to ensure

less than ±0.5mm lateral deflection was present in the channel ceiling at any point

along the channel.

During construction of the tunnel, a laser level was used to align the channel verti-

cally. The supporting frames under the working section were adjustable in height.

Longitudinal alignment was achieved using a simple string line. These procedures

ensured there was less than ±0.5mm in lateral or longitudinal waviness along the

entire length of the channel.

At the working section inlet, 100mm wide strips of 80grit sand paper were glued

around the entire perimeter. This tripping device ensured the laminar boundary

layers formed in the contraction would become turbulent at the inlet. Without the

tripping device, the flow would require a far greater length to reach full development.

A pitot-static tube was inserted at the centre of the channel over the roughness trip

to measure the inlet velocity of the flow. Since the boundary layers are so thin at

the end of the contraction, the velocity measured at the inlet should be very close

to the bulk velocity of the fully developed flow (measurements confirmed this).

A measuring station was set up 20.55m from the trip, 1.40m from the exit. This

location was chosen in the hope that the flow would be fully developed (development

length of 205h) and uncontaminated by exit effects. At the measurement location,

a pressure tap was inserted to measure static pressure during experiments.

Upstream of the measuring station, a further six wall mounted pressure taps were
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inserted in the channel ceiling. Their locations were 7.29, 9.73, 12,17, 14.61, 17.04

and 19.48m from the inlet trip. The stainless steel pressure taps were 1.6mm in

diameter and upon microscopic inspection, were found to be free from burrs or

other defects. All pressure taps were tested against a removable static pressure

probe before use.

3.2.3 Flow Condition

Before any useful measurements could be taken, establishment of the flow quality

was imperative. Many procedures involving various tests and checks were involved

in this process. The two most important checks, inlet flow condition and two-

dimensionality, are discussed here.

Uniform flow at inlet

After construction of the two-dimensional contraction, measurements of mean stream-

wise velocity at the contraction exit were taken. These consisted of wall-normal

velocity profiles at seven spanwise locations measured with a pitot tube. Results

were taken with a centerline velocity of UCL = 17m/s and are presented in fig-

ure 3.4. This figure clearly indicates that the flow is uniform almost throughout

the entire inlet cross-section. In fact, the mean velocity is within ±0.5% of UCL for

y & 0.02h = 2mm. These results indicate excellent contraction design and construc-

tion as well as effective flow conditioning in the diffuser and settling chamber.

Two-dimensionality

To check that the flow was nominally two-dimensional, centreline mean streamwise

velocity and the quotient of spanwise and streamwise velocity, W/U , were measured

at various spanwise locations at the channel exit. Experiments were not taken at

the station used for final measurements, since no spanwise traverse was available at

that location. Nominal two-dimensionality requires all mean flow quantities to be

independent of spanwise coordinate and −0.005U < W < 0.005U . Measurements

of the quantities of interest were recorded with a pitot-static tube and a crossed
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Figure 3.4: Inlet velocity profiles at seven z/h (spanwise) locations for a constant UCL =

17m/s. The inset plot is a magnification of the main plot for small wall-distance, y/h.

Broken lines represent ±0.5% deviation from unity.

hot-wire (X-wire). The results are shown in figures 3.5 and 3.6. Both figures clearly

indicate the flow is nominally two-dimensional. Further experimental support for

two-dimensionality will be shown in Chapter 4, using measurements of spanwise wall

shear stress (see §4.1.3). Also in Chapter 4, more detailed spanwise distributions of

streamwise velocity along the centre of the channel are presented (see §4.2).

One of the most frustrating problems in experimental turbulence research using hot-

wire anemometery (HWA), is temperature variation. The calibration of a hot-wire

becomes inaccurate if the temperature variation of the flow exceeds 0.5oC according

to Perry (1982). When statically calibrating a normal hot-wire in the turbulent

flow at the channel centreline, this problem is avoided (provided that measurements

are taken without excessive delay). However, when calibrating in an apparatus
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external to the channel, temperature changes are more likely and less avoidable.

This is because of the physical separation of the channel and calibration tunnel,

and the ambient temperature variation throughout the laboratory. Unfortunately,

for the crossed hot-wire (X-wire) calibration technique used, it was not possible

to calibrate inside the channel. Hence, an external wind tunnel was necessarily

employed for calibration, requiring resolution of the problems resulting from ambient

temperature change.

3.3 Temperature controlled calibration tunnel

Although corrections may be applied to hot-wire results to account for temperature

variation (see Perry, 1982), it would obviously be more desirable to eliminate the

problem rather than correct for it. This view led to the installation of a heating

element into the settling chamber of the external calibration tunnel. The element

was inserted upstream of the flow conditioning screens to improve heat distribution

and maintain flow uniformity at the test section. The power output of the element,

and therefore, the temperature in the tunnel was manually controlled with a variable

voltage AC power supply. No cooling was required since the calibration tunnel was

fortuitously situated in the coolest area of the laboratory. At any velocity range,

temperature variation in the working section of the calibration tunnel could be

accurately controlled to within ±0.1oC of the desired operating temperature.

Figure 3.7 displays a schematic diagram of the calibration tunnel showing the loca-

tion of the heating element. This tunnel was originially constructed by Jones (1998)

and further details may be found in this reference. Figure 3.7 also shows a rough

sketch of the dynamic calibrator used to calibrate X-wires. The setup allows the

accurate oscillatory shaking of the X-wire in the horizontal and vertical (x and y)

directions required for the dynamic calibration technique of Perry (1982). Further

discussion of this calibration method will be included later in this Chapter (§3.8).
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Figure 3.7: Schematic diagram of the temperature controlled calibration wind tunnel.
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3.4 Data acquisition and automation

For all experiments, a PC with a Microstar dap 4000a data acquisition processor

(DAP) interface was used to record measurements. The DAP had 16-bit digital

resolution and maximum sampling rate of 80kHz. The input/output voltage range

of the board was set to ±5V so that the acquisition resolution was ±0.15mV . Sixteen

analog input channels were available for simultaneous sampling with negligible time

delay during switching of channels.

The DAP had 2 analog output channels. The first was used to control the anemome-

ter traversing mechanism. The traversing mechanism consisted of a stepper-motor

capable of 0.9o rotation increments, attached to a threaded rod of 1.25mm pitch. The

threaded rod rotates through a tapped hole in a carriage which grips the anemome-

ter sting. The minimum distance traversable was 3.125µm. No measurable backlash

was observed, despite repeated testing to detect this unavoidable phenomenon. It

was concluded that the careful design and construction of the traverse effectively

reduced the backlash to an insignificant quantity.

During hot-wire measurements, it was found that the stepper motor control circuit

transmitted a significant noise signal to the HWA output. Unsuccessful attempts to

completely remove the noise resulted in the decision to switch off the stepper motor

between measurements. Automation was maintained by incorporating a 240V AC

relay on the stepper motor control circuit power source. The motor controller could

then be software activated by sending a 5V impulse to the relay through the second

analog output channel of the DAP.

3.5 Pressure measurement and filtering

Two different pressure transducers were employed during the investigations. For low

pressure measurement in the pipe, a HALSTRUP TYPE PU pressure transducer

was used. The maximum pressure difference measurable with this transducer was

250Pa. In the channel, and for high pressure measurement in the pipe, an MKS

Baratron pressure transducer was employed. This transducer was able to measure
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much larger pressure differences, up to 1300Pa (10mmHg). All pressure measure-

ments, including pitot-static tube measurements, were low pass filtered at 10Hz.

A Krohn-Hite 3321 filter with cut-off frequency range of 0.01Hz – 100kHz was used

for pipe flow measurements. This versatile single-channel filter could be set to either

high or low pass filtering modes. For channel flow measurements a Frequency Devices

9002 low pass filter with cut-off frequency range of 0.1Hz – 100kHz was employed.

Software remote control of this device was possible through a serial port connection,

allowing automated filter adjustment. A separate Frequency Devices 9002 high pass

filter with 0.1Hz – 100kHz cut-off frequency range was required for energy spectra

measurements. Both Frequency Devices filters were dual-channel instruments.

3.6 Anemometer details

For measurement of turbulence statistics, two types of anemometers were employed:

the pitot tube and the hot-wire. Within these two categories, there exists many dif-

ferent types of each device so that a discussion of the full details of the anemometers

used is imperative.

3.6.1 Pitot-static tubes

The geometry of the stainless steel pitot-static tubes used is shown in figure 3.8.

For pipe flow experiments, the outer diameter of the pitot tube, dp, was 1.44mm,

while for central channel flow measurements, dp = 1.0mm. For channel measure-

ments, a wall-mounted static pressure tap was inserted at the point of measurement

(x/h ≈ 205) for comparison with the static tube shown in figure 3.8a — no signif-

icant difference was found between the two readings during testing. Also shown in

figure 3.8 is a sketch of the pitot-static tube used for side-wall mean velocity mea-

surements. This tube was of the ‘inverted’ type, such that measurements could be

taken very close to the wall on which the traverse was mounted.
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Figure 3.8: Diagrams of pitot-static tubes used for: a) central channel flow; b) pipe flow

and; c) channel side-wall flow.

3.6.2 Hot-wire anemometry

Commercial DANTEC normal hot-wire and crossed hot-wire (X-wire) probes were

used for turbulence measurements. The probe tip spacing was approximately 3mm

for all tips. 5µm platinum Wollaston wire was manually soldered between the tips,

with 1mm of the silver coating etched with nitric acid. Thus, the exposed platinum

wire had length to diameter ratio of 200. The geometries of the hot-wires are

given in figure 3.9. For the X-wire probe, the distance between the two wires was

approximately 1mm.
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Figure 3.9: Hot-wire anemometer tips.

After etching, hot-wires were connected to custom made constant temperature HWA

control circuits with a frequency response range up to approximately 35kHz. More

details of the HWA circuit are given in Perry (1982). The resistance ratio of each

HWA was set to 2.0. All hot-wire filaments were allowed to anneal for 12 hours

(min.) after etching, before use. The outputs of the HWA circuits were offset

and amplified appropriately to fit into the input voltage window of the DAP. The

response of each HWA to a step input was set to second-order with a minimum

frequency response of 25kHz for all velocities in the range to be measured.

3.6.3 Determination of hot-wire wall-distance

Before hot-wire measurement of any flow quantity, the distance of the wire from the

wall must be accurately known. This is a common problem with wall turbulence

measurements close to the wall, which is further complicated in duct flows where

the probe is generally not visible.

Various solutions have been proposed in the literature and, after considerable thought,

it was decided to use an electrical contact method. This method is usually imple-

mented through a microswitch attached to the hot-wire probe body. On contact with

the wall, the geometry of the probe gives the wall-distance. Clearly, knowing the
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Figure 3.10: Schematic diagram of ‘dummy’ duct section required for wall-distance de-

termination in the channel. The traverse mechanism is also illustrated. Note that the

traverse was mounted to the same mounting plate for measurements in the channel.

geometry of the probe and its orientation accurately is crucial for this method. To

avoid the reliance on probe geometry, it was decided that the best implementation

of the electrical contact method required the use of a ‘dummy’ duct section. The

dummy section was a small, portable model of the duct that holds the probe and

traverse. For the channel, the dummy section is illustrated in detail in figure 3.10.

Note that the dummy pipe section was essentially the same only circular in shape.

The dummy duct was constructed so that the probe was in line with the end of the

duct (when looking down on the wire). A microscope could then be focused on the

edge of the duct and the hot-wire simultaneously. The needle shown in figure 3.10 is

attached to the probe body and acts as a switch in a trivial electrical circuit. This

circuit simply illuminates an LED when the switch is activated. To determine the

height of the probe from the wall at contact, the probe is first traversed toward the

lower wall until the needle is sufficiently deflected to complete the circuit. At this

point, the distance of the hot-wire from the wall could be determined with the aid
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of the microscope. The microscope employed was equipped with an eyepiece ruler,

having divisions of 0.038mm at a magnification of 26x. The probe and traverse are

then transferred to the duct test section where the probe is no longer visible. No

pitching or yawing of the probe resulted when moving from the dummy section to

the test section, even with flow present. This was checked in the channel through

use of a CCD camera. For the pipe, the ‘dummy’ section was, in fact, the mounting

section shown in figure 3.1 with the small extension pipe attached to the end. Since

the whole mounting section was inserted into the pipe for measurement, no change

in probe orientation was possible.

To begin a measurement, the probe was traversed toward the wall until the afore-

mentioned electrical circuit was completed. The wall-distance was then accurately

known from the ‘dummy’ duct procedure. This method was repeatedly checked by

traversing the probe into the wall until the hot-wire broke. In the pipe the method

exceeded expectations with accuracy of ±0.02mm. However, in the channel the

method was consistently inaccurate. It was found that the wall-distance predicted

was approximately 0.1mm larger than the true value. Due to insufficient time, it

was not possible to correct this error, so channel flow measurements with a nor-

mal hot-wire were conducted by traversing the probe into the wall until breakpoint.

For X-wires, the error was deemed negligible so the procedure described above was

followed.

It is suggested that the wall-distance error in the channel may be attributed to the

surface of the channel. The wooden surface of the channel appears less suitable

for this method than the brass surface of the pipe. This may be because it is

more difficult to produce a high quality sharp edge in wood compared to brass.

If the edge is rounded, the distance between the wall and the hot-wire becomes

ambiguous because the exact location of the wall cannot be seen clearly through

the microscope. Despite the problems encountered in the channel, pipe flow results

suggest this method for determining wall-distance is superior to many other popular

methods.
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3.7 Static calibration of normal hot-wires

Two different methods of statically calibrating normal hot-wires were employed for

the pipe and channel flow experiments. The two methods are described in the

following sections.

3.7.1 Pipe flow: calibration in uniform flow

A separate calibration section, as illustrated in figure 3.1, was constructed in order

to remove the effect of turbulence on the mean velocity measured during calibra-

tion. This approach proved successful although exceedingly troublesome due to the

difference in temperature between the flow through the calibration section and mea-

surement section. The calibration section was simply a very short version of the

main measurement section of the pipe. Since the flow has no length over which to

develop, the bulk of the flow through the pipe has uniform velocity with negligible

turbulence.

The calibration procedure simply involved taking simultaneous measurements from

the hot-wire and a pitot-static tube inserted in the flow. The hot-wire signal was

low pass filtered at 10Hz and no less than eight velocity measurements were taken

over the appropriate velocity range. A further three measurements across the range

were recorded in order to check the calibration. A polynomial of desired degree

(usually third degree) was then fitted to the data and the three checkpoints were

compared with this polynomial. The calibration was only accepted if all checkpoints

lay within ±0.5% of the fitted polynomial.

3.7.2 Channel flow: in-situ normal hot-wire calibration

Calibration of normal hot-wires was performed on the centreline of the turbulent

channel flow at the measurement location (i.e., 205h from the inlet). At the centre-

line, turbulence intensity is less than ±0.1% of the square of mean velocity. There-

fore, a calibrated normal hot-wire and a pitot-static tube should give almost identical

velocity measurements at the centreline (see equation 2.47). That is, even though
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Figure 3.11: Basic diagram of the electrical circuit used to match X-wires.

the flow is turbulent, the turbulence is low enough to permit accurate calibration of

the normal hot-wire.

To perform this calibration, the hot-wire and the pitot-static tube were firstly tra-

versed to the centreline. This was achieved easily by mounting both anemometers

on separate traverse mechanisms. After this, the same procedure as that described

in the previous section for pipe flow calibration was employed.

3.8 Dynamic calibration of X-wires

Dynamic calibration of X-wires was performed in the Temperature Controlled Cal-

ibration Tunnel external to the channel as detailed in §3.3. Note that X-wires

were used in the channel flow experiments only. The calibration procedure and the

apparatus used are identical to those used by Jones (1998). For a more detailed

explanation of the procedure, the reader is referred to Perry (1982).

3.8.1 Matching circuit

Before calibration, a method of extracting the voltages Eu and Ev (sensitive to the

streamwise and normal velocities, respectively) from the individual X-wire signals is

required. Traditionally, this has been accomplished through an electronic matching

circuit shown in figure 3.11. This simply adds the amplified and offset outputs of
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each of the X-wire HWA circuits and its function can be written mathematically as:

Eu = K1(E1 − EA1) +K2K
′
2(E2 −EA2) (3.1)

Ev = K1(E1 − EA1) −K2K
′′
2 (E2 −EA2). (3.2)

See figure 3.11 for the definitions of E1, E2, EA1 and EA2. In order to determine the

appropriate gains, K1, K2, K
′
2 and K ′′

2 , the X-wire probe is shaken sinusoidally in

the streamwise direction (horizontally) and then in the normal direction (vertically).

Accurate sinusoidal shaking is imperative and is achieved by attaching the X-wire

probe to a Murray cycloidal drive unit. Further details of the matching method are

provided in Perry (1982). The X-wires are deemed to be matched when Ev < 0.05Eu

during horizontal shaking and Eu < 0.1Ev during vertical shaking.

This circuit has been successfully implemented by many researchers, although it has

been unneccesarily complicated. A signal analysis of the matching circuit with two

HWA’s having sinusoidal outputs (E1, E2) that are slightly out of phase is given in

Appendix D. It is shown that optimum matching is achieved when

K2K
′
2 = K2K

′′
2 =

|E1 −EA1|
|E2 −EA2|

. (3.3)

Practically, |E1 − EA1| can easily be set very close to |E2 − EA2| and the HWA

outputs are not perfectly sinusoidal. Thus, ifK2K
′
2 ≈ K2K

′′
2 ≈ 1, optimum matching

is achieved. If so, it is also shown in Appendix D that Eu and Ev will be out of

phase by 90o.

Until now, matching has been achieved by observing the matching box output during

shaking on an oscilloscope, then adjusting potentiometers through trial and error.

The above result (3.3) gives a guide to the approximate amplifier gains required.

However, the matching circuit is a redundant electronic device. This is because

its function can be easily replicated through computational manipulation of HWA

signals sampled by the DAP during shaking. A simple program was written to

numerically apply equations (3.1) & (3.2) to the sampled data and optimise the

constants, K2K
′
2 and K2K

′′
2 (with K1 = K2 = 1), based on the criteria stated above.

This simple method gives more accurate matching and eliminates the relatively

complex, potentially noise infected electronic matching circuit from the system.
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3.8.2 Dynamic calibration procedure

During calibration, the X-wire was shaken in one direction and then in the other

at no less than eight free-stream velocities, U , spanning the desired range. U was

measured with a Pitot-static tube. The Murray cycloidal drive is fitted with an

HEDS–5640A06 optical rotary encoder. This allows measurement of the shaking

frequency and phase sampling of Eu and Ev at 500 locations per cycle. The HWA

outputs were low pass filtered at 10Hz. Data sampled at 200Hz was phase-averaged

over 25 shaking cycles. From these measurements, mean voltages Eu, Ev and sen-

sitivities ∂U/∂Eu, ∂V/∂Ev were calculated. From these quantities, all constants in

the calibration equations,

U = a0 + a1Eu + a2E
2
u + a3E

3
u (3.4)

W = b0 + b1Eu + b2Ev + b3E
2
u + b4EuEv + b5E

2
uEv, (3.5)

derived by Perry (1982)† , may be found. At three representative velocities during

calibration, large samples of Eu, Ev and U were recorded at 200Hz (typically 6000

samples). After the calibration curve was determined, it was applied to these data

sets, giving Um, u′2m and v′2m (where subscript m denotes X-wire measured quantities).

The true values of the stresses, u′2 and v′2, depending on the shaking direction, are

related to the shaking frequency, fsh, by:

2(πAshfsh)
2 =











u′2, horizontal shaking,

v′2, vertical shaking.

(3.6)

Ash = 37.95mm is the amplitude of sinusoidal shaking. A calibration was accepted

provided Um is within ±0.5% of U and measured stresses were within ±2% of that

predicted by (3.6).

3.9 Central flow mean velocity measurements

For both the pipe and channel flow facilities, the same methods were applied for

measuring streamwise mean velocity profiles normal to the wall. Both pitot-static

† Perry omitted the E2
u term. This omission seems unjustified, hence, the term is included in

all calibrations performed in this study.
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tubes and normal hot-wires were traversed from as near to the wall as possible, to

the duct centreline (and beyond in cases where flow symmetry was checked).

3.9.1 Pitot-static tube

The pitot-static tubes used in the pipe and channel flow are shown in figure 3.8.

The tubes were connected to the pressure transducer and the output sampled by

the DAP at 200Hz. It was found that 18000 samples were sufficient for convergence.

To begin a streamwise mean velocity profile measurement, the probe is traversed

toward the wall until the pitot tube hits the wall. The probe is then traversed away

from the wall in 0.05mm increments until a significant change in mean velocity is

detected (typically a 2 – 5% change). The mean velocity at this point (y = 0.05 +

0.5dp) becomes the first measured value. There is clearly a spatial error of ±0.025mm

involved with this method. However, this is insignificant for the Reynolds number

flows encountered in this study. The estimated experimental error of pitot tube

velocity measurements was ±0.3%. This estimate includes errors introduced by the

static pressure tubes, pitot manufacturing flaws (i.e., pitot tube reading deviations

from true velocity) and the pressure transducer which has a known accuracy of

±0.1%.

3.9.2 Normal hot-wire

After wall-distance was determined and the HWA was calibrated, a mean velocity

profile (and streamwise turbulence intensity profile) could be measured. During

measurement, the hot-wire probe was traversed normal to the channel bed-wall

with logarithmic spacing in wall-distance. For this measurement, the HWA output

was passed through the low pass filter with a cut-off frequency of 20kHz and then

input to the DAP. Three bursts of 4000 samples were taken at a frequency of 200Hz.

Convergence tests prove that this relatively short sampling time was sufficient (see

Appendix E). Data recorded was processed and graphically plotted on-the-fly during

a traverse for monitoring purposes.
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h = 100 mm

39 mm

10 mm

w = 1170 mm

pd  = 1.2 mm

Figure 3.12: Channel cross section displaying Preston tube locations.

Following a measurement, the HWA is re-calibrated to ensure the calibration did

not drift during measurement. Unfortunately, in cases where the hot-wire was tra-

versed into the wall (channel flow), this check was clearly not possible. However,

all measurements were repeated at least once before acceptance. The estimated ex-

perimental error of hot-wire velocity measurements was at most ±0.5%. This error

is necessarily higher than pitot error since the hot-wire was calibrated using a pitot

tube and hot-wire drift was deemed acceptable if within ±0.5%.

3.10 Spanwise measurements

Wall shear stress

Measurements of wall shear stress were taken using a total of 21 circular, square

ended pitot tubes of 1.2mm outer diameter placed on the wall (Preston tubes). The

calibration curves given by Patel (1965) were used to convert the preston pressure

reading to shear stress. Each tube end was cleaned and examined carefully under a

microscope to ensure no burrs or other irregularities were present. The tubes were

evenly spaced along the measurement wall and side wall of one quadrant of the

channel as shown in figure 3.12. Measurements were recorded at L/h = 205 only.

The Preston tube pressures were sampled sequentially by the DAP at a frequency

of 200Hz, with 18000 samples recorded and ensemble-averaged.
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Spanwise distributions of centreline velocity

The pitot-static tube shown in figure 3.8c was used for all spanwise distributions

of streamwise velocity at the centreline (y = h/2). The aim of these measure-

ments was to analyse the development of the side-wall flow. Therefore, a total of

six streamwise stations were investigated. These stations were at the locations,

L/h = 50, 100, 125, 150, 176 and 205. At each station, a small hole (3/4′′ in diam-

eter) was drilled in the side-wall of the channel to allow insertion of the pitot-static

tube. The anemometer was attached to the same traverse as used for the central

flow measurements as illustrated in figure 3.10. Extended sliding and threaded rods

replaced those shown in figure 3.10 to allow a traverse distance of up to 400mm.

An extended circular sting, housed in a tube of aerofoil cross-section, connected the

anemometer to the traverse.

The pitot-static tubes were connected to the pressure transducer and the same

procedures as those used for central flow pitot measurements was followed.

3.11 Second-order turbulence statistics

Streamwise turbulence intensity, u′2, was calculated from data recorded during

mean velocity profile measurements with a normal hot-wire in the central flow at

L/h = 205. Reynolds stresses (u′v′, u′w′), normal stresses (u′2, v′2, w′2) and mean

velocities in all directions are measured with a calibrated X-wire during a normal

traverse. For all measurements, the sampling and filtering settings are as stated in

§3.9.2 above. The X-wires were also re-calibrated after a measurement to check for

drift.

3.12 Auto-correlation coefficient

The auto-correlation coefficient, R11(τ), was introduced in §2.10. The auto-correlation

is simply determined from the correlation of hot-wire measured streamwise veloc-

ity fluctuations as described by equation (2.56). However, high frequency sampling

is required for adequate temporal resolution so that data recorded during a mean



86 CHAPTER 3. APPARATUS & TECHNIQUES

velocity profile measurement is not suitable for calculation of auto-correlation. It

is often assumed that the difference between auto-correlation coefficient of velocity

fluctuations and that of HWA output voltage fluctuations is negligible. Since insuffi-

cient evidence is available to justify this assumption, calibrated hot-wires were used

in all cases. In Chapter 7, the validity of this assumption will be further discussed

in light of the measurements recorded during this study.

Auto-correlation measurements were taken with a normal hot-wire at various wall-

normal coordinates up to, and including, the channel centreline in the central flow

region at L/h = 205. The HWA output was low pass filtered with a cut-off frequency

of 20kHz. The filtered signal was then sampled at 15kHz in 20 bursts of 60000

samples. 20 bursts proved to be sufficient for convergence of the correlation data.



Chapter 4

Boundary shear and flow

development

While certain aspects of rectangular duct flow are strongly represented in the lit-

erature (as discussed in Chapter 2), other important and interesting features of

such flows receive far less attention. Perhaps it is the concentration on the two-

dimensional, fully developed central flow that gives the impression that all aspects

of channel flow have been studied. This is especially true of high aspect ratio ducts

where most studies focus on one ‘fully developed’ measurement location at the cen-

tre of the channel bed, measuring such quantities as skin friction and wall-normal

profiles of turbulence statistics.

Thus, the following chapter provides a detailed discussion of two features of chan-

nel flows that the author believes are under-represented in the literature. First,

wall shear stress measurements are presented, of which the distributions around the

rectangular duct perimeter are most interesting. Secondly, and most importantly,

a study of streamwise flow development is presented. This study is considered long

overdue as almost all duct flow experimentalists either assume full development in

a relatively short apparatus, acknowledging the possibility of a resultant error, or

build excessively large facilities to ensure full flow development. It is hoped that

the analysis presented here will not only provide an interesting insight into flow

development, but also a guide to the length of duct required for future experiments.

87
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4.1 Wall shear stress

While it is the wall shear stress, τw, distribution around the rectangular duct perime-

ter that will receive most attention in this section, measurements of τw in the fully

developed pipe and at the centre of the channel bed were also recorded. These im-

portant measurements were required to determine the friction velocity Uτ for velocity

scaling. The variation of channel centre and pipe τw (determined from streamwise

pressure gradient), with Reynolds number will be included in this section for com-

pleteness. The investigation of perimetric τw distribution in the channel will follow

these analyses.

4.1.1 Pipe flow

The friction factor, λp, values were determined for each of the five Reynolds numbers

studied in the pipe flow facility and the results are presented in figure 4.1. In this

figure, 1/
√

λp is plotted against Re
√

λp on semi-logarithmic axes for comparison

with Prandtl’s smooth wall equation (2.7). It is immediately obvious that further

data is requried to make a substantial statement concerning the variation of λp with

Re. Unfortunately, only a small range of Reynolds number was achievable in the ex-

isting apparatus. Nevertheless, comparison of measurements with the formulations

of Prandtl and Zagarola (1996), given by equations (2.7) and (2.9) respectively, are

shown. Furthermore, a curve-fit of Prandtl’s smooth wall friction factor relation

(2.7) to the data of figure 4.1 gives the constants: C1 = 2.114 and C2 = −1.323. It

can be shown by derivation of Prandtl’s law (2.7) (see Appendix A) that the log law

constant κ is simply related to C1 by

κ =
ln(10)

C1

√
8
. (4.1)

Hence, if C1 = 2.114, then κ = 0.385. It is therefore expected that the value of κ

determined from mean velocity profiles in the pipe will be close to 0.385. Further

discussion of log law constants will be included in Chapter 5, although at this point

it will be noted that κ = 0.386 has been found to fit the pitot tube measured mean

velocity profiles. The agreement of κ determined by these two very different methods

is encouraging and is an important finding in relation to the work of Zagarola (1996).



4.1. WALL SHEAR STRESS 89

10
3

10
4

10
5

10
6

2

4

6

8

10

12

4x10
4

1x10
5

2x10
5

6.5

7.5

Re
√

λ

1√
λ

Prandtl’s Law (2.7); C1 = 2.000, C2 = −0.800
Zagarola (2.9)
Prandtl’s Law (2.7); C1 = 2.114, C2 = −1.323

Re
√

λ

1√
λ

Figure 4.1: Friction factor measurements presented to best provide comparisons between

the data and Prandtl’s smooth wall formula (2.7). The inset plot is simply a magnification

of the main plot in the Re
√

λp range studied here.

In his analysis of the Superpipe data, Zagarola (1996) uses curve-fits to the friction

factor data to determine κ. Zagarola states that this is more accurate than curve-

fitting the mean velocity profiles. While this statement is true, it must be expected

that both methods would return similar results as found in the current investigation.

If the methods consistently give different results, as found by Zagarola (1996), no

conclusions about the true logarithmic behaviour in the overlap region can be drawn

without justification for the difference† .

Returning to figure 4.1: the inset plot focuses on the Reynolds number range of the

current pipe flow investigation. In this plot it can be seen that the data increasingly

† Random error associated with curve-fitting mean velocity profiles cannot justify consistent

differences.
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deviate from Prandtl’s law with original constants as Re
√

λp decreases. The rela-

tionship proposed by Zagarola (1996) provides a better fit than Prandtl’s original

law, although it must be noted that all three curves are similar over the limited Re

range studied. The main plot illustrates how much more the curves differ at higher

Reynolds number. It is conceded that the limited number of data points and Re

range prevent solid conclusions concerning the friction factor behaviour. However,

the measurements do provide useful evidence in support of the log law constant κ

to be determined in subsequent analyses.

4.1.2 Channel flow: central wall shear stress

Skin friction, Cf , at the most downstream measurement location was calculated from

a large number of measurements of streamwise pressure gradient, over the possible

range of Reynolds number. The variation of Cf with Re is presented in figure 4.2.

Also included in this plot are the power law curve-fits of Dean (1978) and Zanoun

et al. (2003), along with a relationship analagous to Prandtl’s smooth wall formula

(2.7). The latter relationship is derived in the same way as Prandtl’s formula (i.e.,

integration of the logarithmic velocity profile) with the result:
√

1

Cf
= C3 log10(Re

√

Cf) + C4, (4.2)

where C3

√
2 = ln 10/κ (See Appendix A for this derivation). From a curve-fit to

the data for Re & 40 × 103 the values of the constants in (4.2) were found to be

C3 = 4.175 and C4 = −0.416. The value of C3 gives κ = 0.390 which will again

be shown to compare well with the central flow mean velocity profile analysis in

Chapter 5. For Re < 40 × 103 the log law no longer represents an appreciable

portion of the flow, therefore, by definition, equation (4.2) is not expected to hold in

this Re regime. Figure 4.2 shows that the smooth wall law (4.2) provides a good fit

to the data for all Re & 40×103. The expected deviation of the data from this curve

for lower Re is also clear. The sharpness of this deviation, however, is surprising.

It is suggested that experimental error due to the small pressure differences and

velocities measured at low Re may be the reason for this observation.

The power law curve-fits found in the literature appear to agree well with the data
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Figure 4.2: Channel flow skin friction measurements over a broad Reynolds number range. The curve-fits of Dean (1978) and Zanoun et al. (2003)

are included for comparison. A third curve, similar to Prandtl’s smooth wall formula, is also plotted with constants determined by curve-fitting.
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at low to moderate Re. At higher Re, the curve-fit of Dean (1978) drops well below

the data. This is most likely due to the lack of quality high Re data available; in

fact, above Re = 150 × 103 Dean (1978) presents only four data points, of which

three were extracted from almost certainly underdeveloped channel flow facilities

(the fourth lies above the curve-fit). The curve-fit of Zanoun et al. (2003) provides a

better fit to the data presented here across the Re range; this power law is therefore

recommended by the author, if indeed a power law relationship is of interest. It

should be noted that the power law relationship is bound to the assumption of

a power law mean velocity distribution (see Appendix B for more details on the

relationship between the resistance and velocity power laws). It can also be shown

that the Re index of 0.25 assumes the Blasius 1/7th mean velocity power law. Since

the 1/7th power law has not received experimental support, particularly at high

Re, a power law relationship will become less accurate than (4.2) as Re increases.

This statement is, of course, based on the experimentally supported assumption of

a logarithmic mean velocity profile in the overlap region.

4.1.3 Channel flow: perimetric wall shear stress

Distributions of τw around the perimeter of a duct are often used to determine the

average wall shear stress, τw, which is required to determine the total friction factor,

λt (defined in §2.4.3). This property is useful for calculating frictional losses through

rectangular ducts (in air conditioning systems, for example). Therefore λt is of most

interest to researchers in the field of civil engineering, and publications concerning its

behaviour are available in the according journals. However, the author has noticed

from these studies that, while the experimental facilities used are often well designed,

error tolerance is much higher than that of common turbulence studies† and, more

specifically, of this investigation. Hence the need for more accurate perimetric wall

shear stress distributions as measured during this project and presented in figures

4.3 & 4.4.

The first of the two figures displays the normalised τw variation (normalised with

† This is a generalisation only and should not be regarded as applicable to all publications.
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Figure 4.3: Spanwise variation of channel bed shear stress normalised with perimeter-

averaged wall shear stress τw.

0 0.1 0.2 0.3 0.4 0.5

0.7

0.8

0.9

y
h

τw

τw

Re = 56 × 10
3

Re = 86 × 10
3

Re = 146 × 10
3

Re = 180 × 10
3

Figure 4.4: Variation of channel side-wall shear stress normalised with perimeter-

averaged wall shear stress τw.
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the perimeter-averaged shear stress τw) with non-dimensional spanwise coordinate.

Here it is seen that the normalised wall shear stress maintains a constant level

from z ≈ −3.5h to the channel bed centre within Preston tube error limits. It is

stated in Patel (1965), from which the Preston tube calibration curves employed

may be found, that the Preston tube method can be considered accurate to within

±3%. Thus, as z = 0 is approached, the variations observed about τw = 1.1τw

are attributed to experimental error. The constancy of τw/τw would suggest that

any side-wall effects on the wall shear stress are negligible beyond a distance of

2.4h from the side-wall (more on side-wall effects will be discussed in the following

section, §4.2). Another interesting observation from figure 4.3 is the absence of

Reynolds number dependence in normalised τw away from the side-wall (i.e., beyond

z = −3.5h). This is interesting because τw in the vicinity of the side-wall (z ≈ −5h)

appears to increase with Re for low Re. For higher Reynolds number, τw/τw appears

to reach a constant at any given perimetric point. Further, the side-wall shear stress

distributions, shown in figure 4.4, show similar Re dependence. The behaviour of the

side-wall shear stress implies that the functional relationship between τw and Re is

different to that of the centreline τw—Re relation. This should result in a Reynolds

number dependence of normalised centreline τw, at least for low Re. The reason such

a result is not realised in the data is simply that, due to the high aspect ratio of the

duct, the side-wall shear stress makes only a small contribution to the perimetric

average. That is, the Re variation of side-wall shear stress is not strong enough

to make an impact on the normalised centreline τw. Now, the Re independence is

a useful practical result as it means that, for any Re, an engineer may accurately

calculate the more useful quantity, τw, from the practically less important, but easily

measured, channel centre τw.

The above observation is in contrast to the results of Leutheusser (1963). In this

reference, the perimetric wall shear stress distribution around ducts of aspect ratio

1 and 3 were studied in the same manner as the author’s study. Due to the low

aspect ratio, a noticeable Re dependence of the normalised centre τw was observed

in the As = 3 case. This indicates that the τw/τw—Re relation is aspect ratio

dependent. This is hardly surprising since dividing equation (2.27) by (2.25) gives,
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at the channel bed centre,

τw
τw

= ǫ(As)

(

1 +
1

As

)

. (4.3)

From a practical standpoint it would be useful to know how the normalised τw varies

with As so that τw could be determined from centre τw for any aspect ratio duct;

that is, it would be useful to know the behaviour ǫ. In the following section §4.1.4,

a graphical form of ǫ(As) will be postulated.

Leutheusser (1963) also presents side-wall shear stress distributions for his two ducts.

The results show similar trends to that of figure 4.4 in that the normalised shear

reaches a peak below, and a trough at, the side-wall centreline. This behaviour

is due to the well-known presence of secondary flow cells in the channel corner as

discovered by Gessner & Jones (1965) and sketched in figure 4.8.

According to equation (4.3), the normalised wall shear stress at the channel centre

should be 1 + 1/As = 1.085 for the duct studied here — assuming ǫ(As) = 1. From

figure 4.3 it is evident that this prediction underestimates the measured ratio by

around 1.5%. Although this is within experimental error, the trend in the channel

bed shear stress is undeniably τw ≈ 1.1τw in the central flow region. Since there is no

reason that equation (4.3) should not hold, consistent error in Preston tube readings

must be present. The only region where such (consistent) error could be introduced

is in the side-wall region where the flow has significant secondary motions. Under-

reading in this region would not have to be excessive; it is unlikely that the error

would be greater than 3.0% given the τw error is only 1.5%. A possible problem

with the Preston tube near the duct corner is that the true line of action of wall

shear stress is not aligned with the streamwise direction. Gessner & Jones (1965)

have shown that this misalignment does not exceed 4o for flow near a corner. This

amount would appear too small to account for the errors observed. In the context

of this thesis, however, it is sufficient only to acknowledge the presence of Preston

tube error in secondary flow regions. Further research, beyond the scope of this

investigation, would definitely be required to quantify this error.
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4.1.4 The three-dimensionality factor

In Chapter 2, the issue of determining channel centre wall shear stress from pressure

gradient was discussed. It was shown that, for high aspect ratios, a region of two-

dimensional flow should exist, which permits the use of the τw—dp/dx relationship

(2.24). For low aspect ratio ducts, however, the three-dimensionality factor, ǫ(As)

was introduced into (2.24):

τw = ǫ
h

2

∣

∣

∣

∣

dp

dx

∣

∣

∣

∣

.

Now, the form of ǫ(As), as illustrated in figure 4.5, has been roughly estimated from

the following sources:

i. Leutheusser (1963), as discussed in the previous section, provides wall shear

stress distributions of square and As = 3 ducts. The experimental proce-

dures and facilities employed by Leutheusser (1963) were impressive; the 3′′

high ducts had a development length of L/h ≈ 280 and wall shear stress

was measured with 0.82mm diameter Preston tubes. The wall shear stress

measurements were checked by comparison with 1.6mm Preston tubes and

two flow Reynolds numbers were studied. As stated, Leutheusser observed a

weak Re dependence of normalised centre τw, which might imply a similar Re

dependence of ǫ.

ii. Wall shear stress distributions from the present study indicate that a duct

of As > 7 will have two-dimensional flow at its centre. This is confirmed

by channel exit velocity profiles, crossed hot-wire measurements (presented in

Chapter 3) and the channel flow literature review of Dean (1978). Therefore

the ǫ(As) curve should be very close to unity at As = 7. From the current

investigation, only one data point is contributed to figure 4.5 since only one

aspect ratio was studied. Recall that no Re dependence was observed in

figure 4.3 and therefore, the Reynolds number effect on ǫ remains uncertain.

It is obvious that the ǫ(As) curve, displayed in figure 4.5, is only a crude approxima-

tion; it is designed to give the reader a rough idea of aspect ratio effects. Unfortu-

nately there is insufficient accurate experimental data in the literature to construct
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Figure 4.5: Approximate form of the three-dimensionality factor, ǫ; , estimated from

Leutheusser (1963) and △ , present study.

a more accurate ǫ(As). Obviously a variable aspect ratio duct would be required for

further experimental analysis of this function; a feature which was not available on

the facility built for this project.

4.2 Spanwise mean velocity measurements

To the author’s knowledge, no detailed investigation into the streamwise develop-

ment of the flow near the sides of a high aspect ratio rectangular duct has been

published in the literature. The question was posed to the author by colleagues dur-

ing private communications: does the side-wall boundary layer, by which is meant

the region of flow affected by the presence of the side boundaries, develop indefi-

nitely in the streamwise sense? Or does this layer reach a state where no further

growth toward the centre of the channel occurs? The author argued that, if the flow

is fully developed, the protrusion of the side-wall effect must cease at a spanwise

location which is invariant with x, for large enough x. If this is not the case, that

is, if the thickness of the side-wall boundary layer, ∆, increases with x, then truly

fully developed flow does not exist; or may exist asymptotically if ∆ is only asymp-

totically constant. Others argued that the side-wall boundary layer will evolve in

a manner similar to any other boundary layer, since its growth is not restricted by

the relatively distant opposing wall. Both arguments were merely conjectures, how-

ever, requiring measurements of the side-wall boundary layer to provide evidence in
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support.

The measurements were taken at six streamwise locations, L/h = 50, 100, 125, 150,

176 and 210, with a pitot tube as detailed in Chapter 3. The results shown in

figure 4.6 are scaled and plotted in such a way as to provide evidence pertaining

to the aforementioned argument. The velocity scale used is the velocity at the end

of the traverse, UCL, while the length scale is the channel height, h. Note that the

offset, non-dimensionalised spanwise distance from the channel side-wall is denoted

as
zs

h
=
z

h
+
w

2h
,

where w is the channel width.

The first plot in figure 4.6 clearly indicates that the mean velocity on the horizontal

plane of symmetry of the channel is invariant with zs after approximately 3h from

the side-wall. Thus, at the measuring station, L/h = 205, the central flow region is

unaffected by the side-wall presence. Futhermore, from the upstream measurements

shown in figure 4.6, there appears to be negligible difference in the protrusion of the

side-wall layer up to L/h = 125. At L/h = 100, very slight changes are noticeable

in the profile. For example, in the vicinity of zs/h = 1, the velocity remains closer

to the centre value than at previous stations; slight waviness in the velocity away

from the wall is evident; and ∆ is reduced to 2.35h. The observed values of ∆ are

highlighted by the dotted grey lines indicating the approximate thickness of the side-

wall layer. It is acknowledged that the positions of the dotted lines are somewhat

subjective, especially considering the abscissa resolution is only 0.15 units, however

the trends in the data are unmistakable. At the most upstream measuring station,

L/h = 50, the side-wall layer thickness is dramatically decreased with ∆ ≈ 1.5h. In

figure 4.7, a larger plot of the side-wall profile for L/h = 50 is shown to more clearly

illustrate the underdeveloped flow features. The most distinctive of the features

observed is the strength of the intermittency in mean velocity toward the channel

centre. Interestingly, this ‘intermittency’ appears to have consistent trends at all

Reynolds numbers, that is, peaks and troughs in the mean velocity occur at iden-

tical spanwise wall-distances regardless of Re. This consistency has been observed

in other channel flow studies presented in the literature. Knight & Patel (1985),
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Figure 4.6: Spanwise distribution of streamwise mean velocity measured along the plane

of symmetry. Three Reynolds numbers are shown: Re = 40 × 103, ◦ ; Re = 106 × 103,

; Re = 186 × 103, △ .
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Figure 4.7: Expanded view of the spanwise distribution of streamwise mean velocity for

L/h = 50. Symbols as in figure 4.6.

U
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Figure 4.8: Sketch of hypothetical secondary flow cells in the underdeveloped channel

flow. Also included is a rough sketch of the mean velocity profile resulting from such a

flow pattern.

for example, suggest that there exists secondary flow cells across the channel† as

sketched in figure 4.8. Note, however, that the experimental evidence presented in

figure 4.6 does not support the presence of such cells for fully developed flow as

suggested by Knight & Patel (1985). The cells only appear noticeably at L/h = 50

and may be distinguishable as far as L/h = 100.

† This suggestion is made based on wall shear stress distributions in fully developed channel

flow, rather than mean velocity profiles.



4.2. SPANWISE MEAN VELOCITY MEASUREMENTS 101

0

0.05

0.1

210

176

0

0.05

0.1

150

125

0 1 2 3 4
−0.05

0

0.05

0.1

100

50

UCL−U
UCL

zs

h

L/h:

Re = 40 × 10
3

Re = 106 × 10
3

Re = 186 × 10
3

Figure 4.9: Side-wall velocity defect profiles at each measuring station. Outer flow scaling

applied.

To further investigate the side-wall flow development, it is useful to plot data from

all stations at a given Reynolds number together. Since three Reynolds numbers

were studied across the possible range, three subplots are provided in figure 4.9,

each displaying velocity defect profiles for all streamwise stations. Reynolds num-

bers for each downstream location were matched to within 1% for L/h > 50 and

2% for L/h > 50. It is once again immediately obvious that the L/h = 50 flow

case for all Reynolds numbers is underdeveloped. All subplots of 4.9 consistently

show that, with increasing streamwise distance from the inlet, the velocity defect

level decreases for zs/h < 2; that is, in the vicinity of the side-wall layer edge.

Acknowledging experimental error, the two most downstream profiles are almost

indistinguishable for all Re (admittedly, the L/h = 176 profile lies marginally below

the L/h = 210 profile), while all other profiles display a noticeable vertical shift for

zs/h < 2. This undeniable trend indicates that the side-wall flow is still under devel-
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opment at least as far as L/h = 125 and arguably up to L/h = 150. In fact, it could

be argued that the side-wall boundary layer growth is indeed asymptotic, owing to

the slight discrepancies between the L/h = 150, 176 and 210 profiles. This would

imply that the central flow development is also asymptotic, although from the mea-

surements presented so far, changes in the flow beyond L/h = 176 are undoubtedly

insignificant.

In this section so far, only the details of side-wall flow behaviour far from the side-

wall have received attention. The flow in the immediate vicinity of the wall was also

studied, however, and the results are presented in the six subplots of figure 4.10.

The measurements shown are scaled with inner flow variables and plotted on semi-

logarithmic axes to more clearly observe the inner flow behaviour. The data show

excellent collapse in the inner flow region, even in the underdeveloped flow stations,

although it must be noted that the friction velocity, Uτ , at the centre of the chan-

nel side-wall was determined by means of the Clauser (1954) method. This method,

commonly employed by boundary layer analysts, requires the assumption of an over-

lap region in the side-wall boundary layer and further, that this region is governed

by the log law (2.4). Another method available is the Preston tube which was previ-

ously introduced to determine wall shear stress around the perimeter of the channel.

The Preston tube method does not rely on the log law, however it does assume the

law of the wall (2.1) holds. Both methods give very good agreement and tables of

Uτ may be found in Appendix D. In summary of the apparently fully developed flow

calculations: it was observed that the Clauser determined Uτ at the centre of the

side-wall was, on average, 85.0 ± 1% of the channel bed centre friction velocity (as

determined from the pressure drop relation, 2.24). In fact, this was true for all sta-

tions except the clearly underdeveloped station, L/h = 50, and the fraction had no

significant Reynolds number dependence. For the underdeveloped station, the ratio

of the two friction velocities dropped to 0.825 at the lower Reynolds numbers and

0.81 for the highest. The invariance (with Re) and magnitude of the friction velocity

ratio is consistent with the carefully measured side-wall shear stress measurements

presented in section §4.1.3.

Again it may be useful to plot inner flow scaled profiles of a given Reynolds number
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at all streamwise locations together. Such plots are displayed in the subplots of fig-

ure 4.11. Aside from the now expected underdeveloped flow behaviour at L/h = 50,

it is clear that the apparently fully developed flow measurements collapse well past

the overlap region, even approaching the limit of the so-called side-wall boundary

layer. This gives confidence that the Clauser (1954) method is useful near the side-

walls because, for equivalent Re, inappropriate determination of the velocity scale

Uτ would result in incomplete collapse of the data outside of the overlap region. It

follows that the law of the wall is upheld in the complex, highly three-dimensional

turbulent flow at the side-walls. Furthermore, while the scaled profiles are identical

for each streamwise location where L/h > 100, the Uτ values also display no sys-

tematic relationship with L/h. For developing flow it would be expected that the

Clauser determined local Uτ values would increase with streamwise location. This

appears to contradict the earlier data analysis that concluded the side-wall flow re-

mains under weak development possibly as far as L/h = 150. However, there are two

possible explanations for this contradiction of which the latter is most important:

i. The Clauser determination of Uτ not only requires the assumption of the log

law, but also a curve-fit to a limited amount of data (only four points at the

lowest Re).

ii. The differences between developing flow profiles seen in figure 4.9 were very

small and only noticeable due to the amplification of the subplots in this figure.

Such small differences closer to the side-wall may be masked by measurement

inaccuracies combined with processing of the data.

In summary, the side-wall affected flow has been shown to asymptotically approach

full development, although there is barely a noticeable change in this flow region

for L/h > 150. However, the effect of development on the flow very near to the

side-wall appears to be negligible. While these observations are interesting, the true

relevance of this finding to the central flow development will only be understood

when the channel bed-wall-normal distributions of velocity are presented in the

following section.
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4.3 Central flow development

As stated in the introductory remarks of this chapter, there are a number of issues

in duct flow that remain poorly understood. The development of the flow with

distance from the inlet, x, is perhaps the best example. In the literature there

are a number of sources describing efforts to check that the flow is fully developed.

Many of these references compare profiles of turbulence statistics at two streamwise

stations for this purpose. However, the author holds the view that there exists no

reliable, comprehensive study of duct flow development length; that is, there is no

study comparing turbulence statistics at a number of streamwise stations with the

aim of determining the point of full development. Following on from the side-wall

flow analysis of the previous section, velocity profiles at the channel bed centre at

various streamwise stations will be presented and analysed in detail here.

Velocity profiles were measured with a pitot tube with dp = 1mm at streamwise

locations of L/h = 70, 94, 128, 148, 176 and 205. All profiles have the MacMillan

shear and wall proximity corrections applied. The turbulence correction (2.47) was

not applied to any data due to the uncertainty of the turbulence intensity behaviour

with streamwise location. It should be noted that the corrections applied in addition

to that for shear should not affect the ensuing analysis. As discussed earlier in this

chapter, the relationship between pressure gradient and wall shear stress given by

equation (2.24) is valid for two-dimensional channel flow. However, the pressure

gradient is only constant for fully developed flow so that (2.24) is only practical

for fully developed flow. Thus, it is to be expected that τw calculated using dp/dx

measured in the fully developed flow will eventually represent the local τw incorrectly

as the streamwise station approaches the inlet. When this occurs (i.e., when the

flow is underdeveloped) an alternative method of determining τw, and hence Uτ , will

be required. The Clauser (1954) method will again be employed for this purpose.

This method is not ideal since it effectively forces the inner flow scaled data to fit

onto the log law (2.4) with predetermined constants, κ and A. This procedure may

modify profiles in such a way that changes in the velocity profile due to development

— which are of primary interest — are skewed or even masked. Such an effect would

be most pronounced at low Reynolds numbers due to the reduced size of the overlap
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region, as discussed in the previous section. However, it will be clearly shown in

this section that systematic trends in the scaled data are undeniable. Moreover,

conclusions drawn from such trends are independent of any random error introduced

by the Clauser calculation of Uτ .

Figure 4.12 presents inner flow scaled velocity profiles at each of the six streamwise

stations studied. At each station three profiles are plotted, corresponding to the

Re = 40, 105 and 185×103 flows. For all profiles, the friction velocity was calculated

from pressure gradient — which is not expected to be the correct scale for all profiles

as discussed. It is somewhat surprising then, that at every station, Reynolds number

similarity is exhibited in the inner flow region. This gives an early indication that

the development length will have little dependence on Reynolds number (for the

Re range studied here). An overview of all profiles given in figure 4.12 reveals that

there are differences between profiles at different stations. An example is a very

slight increase in wake strength as the inlet is approached.

To more clearly illustrate changes in profiles with streamwise station, figure 4.13 is

given. The three sub-plots of this figure display profiles at all streamwise stations

for a given Reynolds number. Note that the individual profiles of figure 4.13 are

identical to those of figure 4.12 — only their arrangement has been altered. The most

striking feature of the behaviour of velocity profiles with streamwise distance is now

obvious. Figure 4.13 plainly shows that the dominant difference between profiles is

a vertical shift, ∆U/Uτ , which remains close to constant for a given profile at higher

Re. Upon discovery, this feature was very surprising because it is commonly thought

that a change in the outer flow region of the profile would be the first indication

of underdeveloped flow. The vertical shift (at higher Re) may be thought of as

analagous to the characteristic wall roughness effect (see Hama, 1954 or Clauser,

1954). Adopting the common definition of roughness effect, the parameter ∆U/Uτ

is defined by the additional term in the log law:

U

Uτ
=

1

κ
ln

(

yUτ

ν

)

+ A +
∆U

Uτ
. (4.4)

For the apparently fully developed profiles measured at L/h = 205 (with shear and

wall corrections, but no turbulence correction), the constants found to fit the data

in the overlap region were: κ = 0.395 and A = 4.65. It will be assumed that κ is
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Figure 4.14: The behaviour of the shift in velocity profiles with streamwise distance.

constant for the underdeveloped flow profiles. Constancy in κ does not appear to

be an unreasonable assumption from observation of figure 4.13. Thus, the vertical

shift in velocity may be determined by a curve-fit of (4.4) to the data in the overlap

region.

For each Reynolds number, ∆U/Uτ is presented as a function of streamwise station

in figure 4.14. It is observed from this figure that the vertical shifting first occurs at

around 94h from the inlet. Acknowledging the streamwise resolution of the profiles,

the point of full development is no further downstream than 148h. It is suggested

that fully developed flow should exist close to L/h = 128h, while it is certain that

the flow is underdeveloped at L = 94h. Additionally, the streamwise development of

the profiles does vary with Reynolds number, although this variation appears to be

rather weak. The Re dependence is to be expected since the channel flow begins its

development by the merging of two boundary layers and the growth of these layers

will be Reynolds number dependent. Although the observed Re dependence must

influence the flow development length in some way, the streamwise spacing of the

data presented here appears to be insufficient to resolve this issue.

At this point, the effect of flow underdevelopment has most clearly appeared as a

shift in scaled velocity; the reason for the shift is now explained. After merging of

the top and bottom wall boundary layers, it would be expected that two flow regions

will be present:
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i) The flow near the wall which is ‘well-behaved’ (i.e., behaves the same as the

fully developed flow) and includes the inner flow region and a portion of the

outer flow region.

ii) In the vicinity of the centreline, where the edges of two boundary layers merge,

the flow will be intermittent and unpredictable. This developing core region

must diminish in size with streamwise location if fully developed flow is to

exist. The developing core flow should not influence the ‘well-behaved’ region,

except that a change in boundary conditions (namely, Uτ ) would be expected.

The data shown in figures 4.12 & 4.13 appear to show that only the region nearer the

wall exists, even at 70h from the inlet. However, closer scrutiny of the data reveals

that for the two streamwise stations nearest the inlet, there is a change in the flow

near the centreline. Careful analysis of the raw data reveals that the maximum

velocity occurs before the centreline is reached, for L/h = 70 and 94. It is very

difficult to see this effect in the velocity profiles of figure 4.12 because the velocity

gradient near the centreline is very weak. The shift in maximum velocity indicates

that the developing core region is very small in size relative to h even at L/h = 70.

Due to poor spatial resolution of the data near the centreline, the developing core

cannot be accurately determined; a rough estimate lies between 0.05–0.1h at the

most upstream station. It should be recognised that, if a developing core region

exists, the channel half-height is no longer the most appropriate outer flow length

scale. Note, however, that any modification of the outer flow length scale for the

measurements presented here will have only minor impact due to the small size of

the developing core.

Although the developing core region is very small, its impact on the boundary

condition, Uτ , is not. In fact, the change in Uτ with streamwise station is responsible

for the profile shifting observed in figure 4.13. Thus, the vertical shift parameter,

∆U/Uτ , is not strictly correct; that is, the profiles are not truly shifted vertically,

rather they are scaled as the flow develops. The shift parameter remains a useful

analysis tool, since there is no reliable method of measuring skin friction of the

developing flow. Nevertheless, it would be useful to have an estimate of skin friction

in order to more appropriately scale the velocity profiles. Hence, the Clauser method
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is employed (as suggested earlier) to determine friction velocity.

Assuming the log law with constants κ = 0.395 and A = 4.65, which were deter-

mined from the fully developed flow, Uτ was calculated for each profile. Rescaling

the data forces almost complete collapse of the inner flow scaled profiles for all sta-

tions at a given Re as shown in figure 4.15. However, for the two stations closest

to the inlet, the developing core appears more clearly at higher Re. This behaviour

was originally mistaken for Re variation. After realising the Re was well-matched

for all profiles (in a given sub-plot of figure 4.15), the conclusion was drawn that

there is a noticeable change in the wake with development length. It should be noted

that this change remains relatively small, given the streamwise spacing of the mea-

surements. Due to the observed wake changes, the rescaled velocity defect profiles

should exhibit poor collapse for the two higher Re. Figure 4.16 shows these defect

profiles with Umax replacing UCL as the reference velocity. This is necessary due

to the aforementioned shift of maximum velocity away from the channel centreline

when the flow is underdeveloped. The outer flow length scale, ∆, was chosen as the

wall-distance corresponding to U = Umax. Figure 4.16 shows excellent collapse at

low Re as expected, while for the two higher Re flows, changes in the profiles are

noticeable at the most upstream station, L/h = 70. These trends are reasonably

consistent with the inner flow scaled profiles, although almost no outer flow variation

is observed for any Re for L/h > 94.

Figures 4.15 & 4.16 highlight the small size of the wake change, even while the flow

is not fully developed. This finding may provide some insight into the claims of

early flow development by authors such as Abell (1974) (∼ 80D for pipe flow). The

well-known pipe flow study by Nikuradse (1932) is another example, claiming full

development of the mean flow by 40D. In Abell’s case, measurements at two stations

approximately 10D apart were used for comparison. Measurements shown in this

thesis are at stations separated by no less than 20h. Figure 4.13 clearly shows that

even with the larger spacing, there is little difference between any two stations taken

in isolation; two stations 10h apart would be close to indistinguishable. Futhermore,

Abell (1974) used the Clauser method to determine friction velocity — a practice

that masks the noticeable development effects observed in figure 4.13, while the
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friction velocity would remain within the error bounds of the Clauser method. Thus,

the comparison of two streamwise stations is unlikely to give an accurate account of

the flow development (especially if the stations are too close together). Further, for

small ducts (i.e., h < 100mm), the small size of the developing core observed in this

study may be immeasurable for L/h & 100 using common measurement techniques.

These issues should be taken into account by the researcher when analysing the

relevant literature.

Some final notes on channel flow development

The above arguments have shown some clear trends concerning flow development,

however the following considerations must be noted:

i) The results are specific to high aspect ratio channels with uniform flow at

the inlet and with tripped perimeter boundary layers to introduce turbulence

immediately.

ii) Only a small Re range has been studied as the facility permits. Extrapolation

to higher Re should be carried out with caution.

iii) Only mean velocity measurements have been recorded. Higher-order turbu-

lence statistics would be very helpful in providing more details of the devel-

oping core region. Unfortunately, it was beyond the scope of this project to

complete these measurements.

iv) On the streamwise resolution of the measurements: even if more profiles were

recorded to improve spatial resolution, conclusions drawn are likely to be in-

consequential. The reason for this relates back to the motivation for a devel-

opment length study, which was to provide a guide for construction of new

facilities or to aid analysis and evaluation of published data.

Finally, it is recalled that the side-wall flow development study concluded that be-

yond 150h, the flow is arguably fully developed near the channel sides. Further,

the side-wall velocity profiles changed only a very small amount downstream of

L/h = 100. It has since been observed that these changes have no effect on the
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central flow. It is therefore tentatively suggested that the point of full flow devel-

opment for channel flow is approximately 130h for the Re range studied here. It is

certain, however, that flows with less than 100h development will not reach a fully

developed state.



Chapter 5

Mean flow results

It was previously stated that there is no shortage of rectangular duct flow studies in

the literature. A similar observation may be made concerning pipe flow and, more

specifically, mean flow measurements are among the most common presented. Such

data is, in general, measured with erroneous pitot tubes and furthermore, careful

analysis of the literature reveals that many experiments suffer from hinderances such

as insufficient flow development, low spatial resolution or invalid assumptions about

flow conditions (usually based on geometrical properties alone). Unfortunately, the

author has found the latter experimental practice to occur with disturbing frequency.

It is therefore clear to the author that new, more accurate experimental mean flow

data will not only be a useful addition to that currently available, but an important

reference in the ongoing debate over mean flow scaling laws (see §2.1).

In the following chapter, mean flow results from both pipe and channel facilities of

this investigation will be presented. Details given in Chapter 3 establish that the

accuracy of experimental techniques was of the highest degree and that construction

of the facilities involved was performed with utmost care. The results include a de-

tailed analysis and comparison of pitot tube and hot-wire measured mean streamwise

velocity profiles in fully developed flow. The chapter will conclude with a discussion

of the previously unexplained differences between mean velocity profiles in circular

pipe and channel flows.

117
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5.1 Pipe flow

Mean streamwise velocity profiles (hereafter referred to as simply velocity profiles)

in the Reynolds number range 40× 103 – 133× 103 were measured in the pipe flow

facility. The results will be presented and discussed in this section and judgements

of the applicability of pitot tube corrections will be made based on comparison with

hot-wire measurements.

5.1.1 Inner flow scaling

Firstly, pitot tube measured velocity profiles were recorded and the results are shown

in figure 5.1 with inner flow scaling. Both the MacMillan and turbulence intensity

corrections have been applied to the data. Secondly, records of hot-wire measured

velocity profiles were made and the inner flow scaled results are presented in fig-

ure 5.2. No corrections are applied to the hot-wire data, which displays almost

identical characteristics to the corrected pitot tube data. Using either measurement

technique, the data clearly exhibit excellent collapse for all Reynolds numbers up to

the inner flow region limit (y ≈ 0.15R). This expected result validates the assump-

tion required to arrive at Prandtl’s law of the wall (2.1), namely that large scale

geometry has no influence on the flow in the immediate vicinity of the wall.

Included in figures 5.1 and 5.2 are the logarithmic laws (2.4) with appropriate con-

stants. The following values were determined from a least squares error fit to all

data in the overlap region (100ν/Uτ < y < 0.15R† ): κ = 0.386 and A = 4.21

for pitot tube measurements; κ = 0.384 and A = 4.33 for hot-wire measurements.

These constants should be universal across all wall-bounded shear flows and many

researchers have adopted the classical values suggested by Coles (1962). Recently,

however, there has been considerable debate over the validity of Coles’ values. Table

5.1 lists a selection of universal constant values from various recent studies along

with the classical values. This table could be extended to include the results of many

other experimental programs, however, such collections already exist and may be

found, for example, in Zanoun et al. (2002), Zanoun et al. (2003) or Dean (1978).

† The effect of varying these overlap region limits will be discussed shortly in §5.4.
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κ A

Coles (1962) 0.410 5.00

Zanoun et al. (2003) 0.370 3.71

Zagarola & Smits (1998) 0.436 6.13

Perry et al. (2001) 0.390 4.42

Table 5.1: Recently published values of the universal constants κ and A.

The universal constant values given in table 5.1 are intended to indicate the extremes

encountered in the recent literature. Zanoun et al. (2003) and Zagarola & Smits

(1998) clearly give two very different sets of universal constants, emphasising the

need for clarification of these properties of the velocity profiles. While the pipe

flow data of Zagarola & Smits (1998) are at extraordinarily high Reynolds numbers,

measurements were taken with a pitot tube and therefore require correction. A

reanalysis of the data presented in Zagarola & Smits (1998) by Perry et al. (2001)

produced almost identical constants to those found from the pitot tube measured

pipe flow data of this study. This reanalysis simply involved application of the

MacMillan and turbulence intensity corrections to the raw pitot tube results of

Zagarola & Smits (1998). Zanoun et al. (2003) experimented with a similar channel

flow apparatus (Re = 104 – 105) to that of this thesis to determine their remarkably

low values of κ and A. The working section length of Zanoun’s study (L/h ≈ 105)

is probably insufficient for fully developed flow based on the conclusions of Chapter

4. Furthermore, it was shown in the previous chapter, that low values of log law

constants are consistent with underdeveloped flow.

Support for the present pipe flow universal constant values is readily available and

examples known to the author are listed in table 5.2. Österlund et al. (2000b) ex-

amined extensive hot-wire data extracted from two boundary layer tunnels in the

Reynolds number (based on momentum thickness) range, Reθ = 2, 500 – 27, 000.

Note that Österlund et al. (2000b) uses the direct method of oil-film interferome-

try to determine skin friction. Hellstedt (2003) also determined constants from a

boundary layer flow, however, this special flow satisfied the Rotta (1962) equilibrium

conditions which allowed the calculation of skin friction from a momentum balance.
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κ A

Pipe flow — pitot 0.386 4.21

Pipe flow — hot-wire 0.384 4.33

Perry et al. (2001) 0.390 4.42

Hellstedt (2003) 0.390 4.10

Österlund et al. (2000b) 0.384 4.10

Table 5.2: Support for the universal constants of the pipe flow study.

Log law or power law?

An issue that has received much attention in the recent literature is the appropriate

scaling law for the overlap region of the inner flow scaled velocity profile. Tradition-

ally, the log law (2.4) is the chosen form. As detailed in §2.1, however, there has

been a recent resurgence in support for the power law (2.6).

The applicability of a scaling law can be judged by plotting two diagnostic functions,

Θ and Γ. These are defined as

Θ =

(

y+dU
+

dy+

)−1

and,

Γ =
y+

U+

dU+

dy+

respectively. Both of the above are derived by differentiating the appropriate scaling

law. It can be shown that if the logarithmic scaling is appropriate, Θ should be

invariant with y+ in the overlap region. Further, Θ must be equal to κ in this

region. Alternatively, Γ will be invariant with y+ if the power law is the appropriate

description of the velocity profile. Also, Γ will be the index, β, of the power law

which may or may not be independent of Reynolds number. Unfortunately, both

diagnostic functions require differentiation of the data which is often an inaccurate

procedure. The most accurate method found (that which gave the least scatter)

was a second-order finite difference scheme. The scheme first fits a parabola to

three data points y+
i−1, y

+
i and y+

i+1. It can then be shown that the first derivative

of the fitted parabola at y+
i is given by:
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Figure 5.3: Wall-normal distribution of the diagnostic function, Θ, in the inner flow

region. The horizontal solid line represents Θ = 0.384.

(

dU+

dy+

)

i

=
U+

i+1(∆y
+
i )2 − U+

i−1(∆y
+
i+1)

2 + U+
i [(∆y+

i+1)
2 − (∆y+

i )2]

∆y+
i ∆y+

i+1(∆y
+
i + ∆y+

i+1)
(5.1)

Since y-coordinates are spaced logarithmically, for increased accuracy the algorithm

(5.1) was applied to data sets of (ln(y+),U+), which are linearly spaced in ln(y+).

Figure 5.3 presents the distribution of Θ for fully corrected pitot tube measured

data. Only data in the inner flow region is included in this figure, i.e., y < 0.15R

data. It is clear that for y+ & 120 a region of constant Θ exists and an average

of the data in this region returns the value Θ = 0.384. The reader will recall the

almost identical value of κ = 0.386 found from the least squares error curve fit.

The distribution of the Γ diagnostic function is presented in figure 5.4. Once again,

the data displayed was measured with a pitot tube and has the MacMillan and

turbulence intensity corrections applied. Note that it is 1/Γ which is plotted here

since 1/Γ will be seven if the data collapse on to the Blasius 1/7th power law† . The

distribution appears to have a constant range for y+ > 100, suggesting the power

† The power law with exponent β = 1/7 can be derived from the Blasius friction factor formula

(see Appendix B); hence, this velocity law is referred to as the Blasius power law.
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Figure 5.4: Wall-normal distribution of the diagnostic function, Γ, in the inner flow

region. The horizontal solid line represents 1/Γ = 7.019. The broken line is the log law

with κ = 0.386, A = 4.21.

law scaling is no less appropriate than the log law. Further, the data do not display

any notable Reynolds number dependence, although the small Reynolds number

range shown may be the reason. Taking an average of the data for y+ > 100 reveals

1/Γ = 1/β = 7.019 ≈ 7 in accordance with the Blasius profile. Returning to the

inner flow scaled velocity profiles, a power law curve fit to all data in the overlap

region gives the constants α = 8.337 and 1/β = 6.926. This power law is shown

plotted over the velocity profiles in figure 5.5. Also plotted in this figure is the power

law with constants α = 8.700 and β = 1/7.299, found by Zagarola (1996) to fit the

Superpipe data for 50ν/Uτ < y < 0.1R. Figure 5.5 clearly shows Zagarola’s power

law lies above the pipe flow data of this thesis, even deep into the overlap region.

The applicability of the 1/7th power law to the velocity profiles observed here is in

apparent contradiction to the recent analyses of Österlund et al. (2000b), Hellstedt

(2003), Jones et al. (2001b) and Zanoun et al. (2002). All these references show a

clear slope in the Γ function, while Θ remains undeniably constant in the overlap

region, thus indicating the log law is the suitable scaling. An explanation for the
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invariance of both Γ and Θ is possibly poor spatial resolution; that is, more closely

spaced data would allow a more accurate derivative calculation. Noting this pos-

sibility, however, a closer look at figure 5.4 could arguably reveal a slight positive

slope in 1/Γ which is further highlighted by the dashed log law (κ = 0.385, A =

4.23). Moreover, the power law overlaid in figure 5.5 does appear to cross through

the data somewhat; the curve does not collapse the data over the entire overlap

region as opposed to the excellent collapse of the log law (see figure 5.1).

At this point it is interesting to note that the power law curves upward as the wall

is approached. This curvature coincides with the ‘kick-up’ of the data from the

logarithmic law at y+ ≈ 50. This ‘kick-up’ was identified by Jones et al. (2001a) as

an error in pitot tube measurement (based on comparison with hot-wire data) which

is relieved, but not removed, by appropriate corrections to the data. This finding

will be confirmed later in this section, however, it is obvious from figure 5.5 that

the presence of the ‘kick-up’ favours the power law curve fit. Furthermore, if the

‘kick-up’ is indeed amplified by — or even a complete figment of — pitot tube error,

then the existence, or at least the true form, of the power law is highly dependent on

pitot tube corrections. Thus the issue of corrections becomes evermore significant

and further investigation on this topic will be detailed in subsequent paragraphs of

this section.

In summary, it does appear that no definite conclusions can be drawn concerning

the correct scaling based only on the diagnostic functions calculated from the pipe

flow data. Recent publications, the slight slope observed in Γ, invariance of Θ and

relatively less impressive collapse of the power law to the data, however, all suggest

that there is no significant evidence to discount the classical logarithmic law as the

correct scaling for the overlap region of inner flow scaled velocity profiles.

5.1.2 Outer flow scaling

Velocity defect profiles measured with a pitot tube and scaled with outer flow vari-

ables are presented in figure 5.6. Both MacMillan and turbulence corrections have

been applied to the data. Similar profiles measured with a hot-wire without correc-
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tion are presented in figure 5.7. Once again the expected trends are observed; good

collapse of the data is evident down to the outer flow region limit of y ≈ 100ν/Uτ .

No noticeable Reynolds number dependence of the data in the overlap region is

found. Thus the data is in agreement with the Townsend (1956) Reynolds number

similarity hypothesis which states that viscosity has no effect on mean relative mo-

tions in the outer flow region (except that viscosity may alter the friction velocity,

Uτ ). Additionally, von Kármán’s velocity defect law (2.2) is also supported by the

data.

Included in figures 5.6 and 5.7 is the logarithmic velocity defect law (2.5). The

constant B was again determined from least squares error curve fits to all data lying

in the overlap region. For the pitot tube data, B = 1.19 was found to best fit the

data, while for the hot-wire data, B = 1.27. As with the mean velocity profiles

presented in the previous section, differences in logarithmic law constants fitted to

hot-wire and pitot tube data are small. Due to the non-universality of the constant

B, there is much less reliable data available to compare values of B with than there is

for the inner flow scaled logarithmic law. An example is B = 1.51 for the Superpipe

data of Zagarola (1996). It should be noted that applying the MacMillan shear

correction and turbulence correction to the profiles of Zagarola (1996) would reduce

this value.

5.1.3 Comparison with Henbest (1983)

Since the pitot tube measurements of the current study had been previously ac-

quired by Henbest (1983), comparison of the two studies should reveal only minor

discrepancies. Figure 5.8a presents the velocity profiles for all Reynolds numbers

plotted with those of Henbest (1983) over a similar Re range. The differences be-

tween the data sets are far from minor and are disturbingly consistent. It is clear

that the wake components of the Henbest velocity profiles are much weaker than

the author’s. Reasons for this anomaly are unclear, although the author is confi-

dent that the data of the current study are accurate. This is because, apart from

the careful techniques employed and repeated measurement of all profiles, the wake

components of the author’s data agree very well with the Superpipe data as shown
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in figure 5.9. Although the outer flow regions are in disagreement, figure 5.8a shows

that the two data sets compare favourably in the inner flow region. This suggests

that a velocity defect plot may be useful. Defect plots are shown in figure 5.8b which

clearly illustrates the large differences between the results. A rough estimate of the

log law constant, B, gives B = 0.825 for the Henbest data — over 30% lower than

that of the author’s data.

The evidence presented here leaves no option but to conclude that the mean flow data

of Henbest (1983) are erroneous in the outer flow region. Since the pipe flow facility

used in this project was virtually unchanged from that used by Henbest (1983), flow

quality issues are unlikely to be responsible for the discrepancies revealed. Thus it

is most likely that pitot tube measurement error has occurred, the source of which

will remain a mystery.

5.1.4 A comparison of pitot tube with hot-wire mean flow

data

All pitot tube data presented above has been corrected for shear and turbulence

effects. While the correction for shear is commonly employed and validated by

recent experimental data (see McKeon et. al., 2003), the turbulence correction does

not enjoy such popularity. As discussed in §2.7.2, however, a turbulence correction

must be applied. In this section the applicability of the chosen corrections will be

judged based on a comparison with hot-wire data. This does not suggest that hot-

wire data is free from error or that it is a true reference. In the absence of more

accurate reference data, however, hot-wire data is used here.

Before comparison of pitot tube with hot-wire measured velocity profiles, an illus-

tration of the importance of corrections may be useful. Presented in figure 5.9a are

two pairs of pitot tube measured velocity profiles without correction and with inner

flow scaling. Each pair consists of a pipe flow profile from this thesis and a pro-

file from the Princeton University Superpipe (obtained from the thesis of Zagarola,

1996). The similarities are obvious, however the reader should note that the pitot

tube diameters of the two studies are quite different. The data in this thesis was
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taken with a dp = 1.44mm tube, while a dp = 0.9mm tube was employed for the

Superpipe data. For this reason, figure 5.9b is given, which has the MacMillan shear

and wall proximity corrections applied to each data set. The resultant profiles are

virtually indistinguishable. The analysis of the Superpipe data by Zagarola & Smits

(1998) using the Chue (1975) shear correction, however, gives significantly different

results to those found from the current pipe flow study (see table 5.1). This clearly

implies that the issue of pitot tube corrections is of utmost importance, especially

in the recent mean flow scaling debates appearing in the literature.

As previously stated, all pitot tube data presented in §5.1.1 has MacMillan’s shear

and wall proximity correction applied, combined with a turbulence correction based

on hot-wire measured turbulence intensity profiles (these profiles are presented in

Chapter 6). To clearly understand the effect of these corrections and observe the

agreement with hot-wire measurements, figure 5.10 is provided. This figure includes

uncorrected pitot tube, fully corrected pitot tube and hot-wire measured velocity

profiles with inner flow scaling applied. Note that only the Re = 40 × 103 profiles

are vertically unchanged; each of the remaining Reynolds number profiles have been

manually spaced by two ordinate units. The first impressions of figure 5.10 are

that the corrected data are very close to the hot-wire data, certainly relative to the

original, erroneous data. The effects of the corrections clearly extend into the overlap

region of the profile which again highlights the importance of corrections to scaling

law conclusions. Further analysis of the data shows that only the highest Reynolds

number corrected pitot profile seems significantly deviant from the hot-wire data.

This inconsistency may be explained by a small error in either Uτ or calibration for

the hot-wire measured profile since the data appear to be shifted over the entire

y+ range, not simply in the corrected region. Observing the entire range of profile

sets should, however, convince the reader that the corrections applied significantly

improve the pitot tube measurements relative to hot-wire measured profiles.

Due to the small observable differences between profiles, figure 5.10 is only truly

useful for superficial judgement of the corrections. In order to fully understand and

appreciate the effect of the pitot tube corrections, the deviation from the log law

(2.4) is calculated, amplifying the trends in the data. The deviation function is
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defined as:
∆U

Uτ

=
U

Uτ

− 1

κ
ln

(

yUτ

ν

)

− A, (5.2)

where constants employed in this analysis are κ = 0.384 andA = 4.33 (as determined

from hot-wire velocity profiles). The deviation function is plotted in figure 5.11 for

the Re = 60, 104, 140 × 103 cases. Each subplot in the figure includes four data

sets: data with no corrections, data with the MacMillan shear and wall proxim-

ity corrections applied, fully corrected data and hot-wire measurements. Thus, the

effect of each correction is more clearly observed, with the final result lying satis-

factorily close to the hot-wire measurement in all cases. In fact, for the two lower
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Reynolds number subplots, the corrected pitot data is in almost complete agreement

with hot-wire measurements, with only minimal over-correction in the overlap re-

gion (less than 0.6% of the scaled mean velocity). For the highest Reynolds number

deviation data, the over-correction in the overlap region appears much larger (ap-

proximately 1.0% of the mean) which may be explained by a combination of error

in Uτ (±0.5% at most) and other minor experimental errors. This seems plausible

as the pitot data lies a small, though consistent, amount lower than the hot-wire

data across the entire range of y+.

Another interesting aspect of the inset of figure 5.11 is the ‘kick-up’ or deviation from

the log law for 30 . y+ . 100. It is clear that the ‘kick-up’ is significantly reduced

by corrections to the data and that the hot-wire data exhibits only a small kick-up

from the log law. Now, if the overlap region is assumed to extend down to y+ = 50

and described by a power law (Zagarola & Smits, 1998), then constants determined

from a curve fit to the data will depend heavily on the pitot tube corrections applied.

More importantly, the power law curve fit shown in figure 5.5 will provide a better

fit to the data if that data is under-corrected; that is, if the kick-up is not reduced

appropriately. This point is perhaps best illustrated in figure 5.12 where the log law

with MacMillan shear correction subtracted is plotted against the power law. Note

that the constants in both the power and log laws are those fitted to the corrected

pitot tube data and the MacMillan correction is determined using dp = 1.44mm and

flow properties from the Re = 69× 103 case. This graph indicates that without the

dominant correction (shear correction), the log law is shifted into agreement with

the power law for low y+. Thus one must remain sceptical of a claimed power law fit

to any pitot tube data until serious consideration is given to the corrections applied.

In summary, the MacMillan (1956) corrections and additional turbulence correction

applied to the pipe flow pitot tube measurements presented here, produce results

in excellent agreement with hot-wire measured data. It is acknowledged that the

MacMillan shear correction is strictly incorrect close to the centreline where there

is very low shear, although this error is deemed negligible (less than 0.4% in y+ at

the centreline). Moreover, in the region of most interest, the overlap region, the

corrections perform satisfactorily.
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Figure 5.12: Comparison of the log law, power law and log law with MacMillan’s cor-

rection for shear subtracted. Constants in the log and power laws were determined from

corrected pitot tube profiles. Note the similarity of the laws in the overlap region.

5.2 Channel flow

Channel flow velocity profiles measured with both pitot tubes and hot-wires are

presented in this section. Similar analyses to those of the pipe flow data will be

repeated here. Since much more data was recorded in the channel facility, however,

the mean flow analysis presented will be limited to allow deeper analysis of other

flow quantities in subsequent chapters.

5.2.1 Inner flow scaling

Mean velocity profiles scaled with inner flow variables and measured with pitot tubes

are shown in figure 5.13; hot-wire measurements are given in figure 5.14. The pitot

tube data has the MacMillan and turbulence intensity corrections applied. As with

the pipe flow results, excellent collapse in the inner flow region is evident for all

Reynolds numbers, regardless of measurement technique.

Both figures 5.13 & 5.14 have log laws overlaid with constants determined from a
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Figure 5.13: Channel flow: mean velocity profiles measured with a pitot tube; inner flow scaling applied.
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Figure 5.14: Channel flow: mean velocity profiles measured with a hot-wire; inner flow scaling applied. Note the excellent agreement with the
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least squares error fit to all data in the overlap region. For the pitot tube data,

κ = 0.397 and A = 4.58 were found and for the hot-wire measurements, κ = 0.389

and A = 4.23. These values are in excellent agreement with the pipe flow results

as well as those of various other studies listed in table 5.2. The most interesting

characteristic of the channel flow profiles is the weak deviation from the log law

in the outer flow region. The weakness of the channel flow wake will be further

discussed later in this section and in §5.5; the observation is first highlighted here

since it is most obvious in the inner flow scaled velocity profiles.

5.2.2 Outer flow scaling

Figure 5.15 displays velocity defect data measured with a pitot tube, scaled with

outer flow variables and fully corrected for shear, wall proximity and turbulence

effects. Figure 5.16 also presents velocity defect data, in this case measured using

hot-wire anemometry. Again there is excellent collapse observed in the outer region

with no significant Reynolds number dependence of the data in the overlap region.

In fact, the data show even less scatter in the overlap region than the pipe flow data

(figures 5.6 & 5.7).

The applicable logarithmic laws are overlaid on the data in both figures 5.15 &

5.16. The constants found from least squares error fits to all data in the overlap

region are: B = 0.238 for pitot tube measurements and B = 0.327 for hot-wire

measurements. As stated previously, the deviation from the log law is much weaker

than for pipe flow. This is reiterated in figure 5.16 and is the reason for the low

value of B found (relative to the pipe flow value, B ≈ 1.2). This weak deviation

gives the appearance of an extended overlap region beyond y = 0.15h, perhaps up to

y ≈ 0.25h. In their rectangular duct flow facility, Zanoun et al. (2003) cite a similar

significant extension of the overlap region; up to 0.75h at the highest Reynolds

number studied (Kτ ≈ 5000). This finding is not consistent with the data presented

in figure 5.16 where the first sign of deviation from the log law is clearly apparent

around y+ = 0.25h.
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ordinate units.

5.2.3 Comparisons of pitot tube with hot-wire measure-

ments

A brief comparison of pitot tube and hot-wire measured velocity profiles is presented

here. Figure 5.17 displays both fully corrected pitot tube data and hot-wire mea-

sured profiles with inner flow scaling across the Reynolds number range. Note that

the profiles have been manually spaced by 3 ordinate units for clarity, with only the

Re ≈ 40 × 103 profile unchanged.

The agreement in the overlap region between the two measurement techniques is

excellent with the slight exception of the highest Reynolds number profile. Since

the turbulence correction is determined from hot-wire measured turbulence inten-
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sity which is known to be attenuated at high Reynolds numbers, it is possible that

excessive attenuation of u′2 is the reason. Closer to the wall there appears to be

a larger ‘kick-up’ from the log law in the pitot tube data. This is consistent with

the findings of Jones et al. (2001a), while inconsistent with the pipe flow results

reviewed earlier. To further analyse this effect, the deviation from the log law is

plotted for three Reynolds numbers across the range in figure 5.18. The deviation

was defined previously by equation (5.2). For the lowest Reynolds number, there

appears to be little difference in the profiles, while the kick-up is clear for the higher

Reynolds numbers. A plausible explanation may be that the MacMillan or turbu-

lence correction is insufficient, particularly as Reynolds number increases, although

this would be inconsistent with both the pipe flow results and the results of McKeon

et al. (2003a) who studied a large Re range. Unfortunately, no other propositions

for the cause of the kick-up present themselves at this stage (this was acknowledged
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also by Jones et al., 2001a) and further investigation may be justified. It is clear,

however, that the kick-up will not significantly affect conclusions drawn in this the-

sis since data in the overlap region remains uncontaminated. This point is perhaps

best illustrated by the similarities in log law constants found for hot-wire and pitot

tube profiles.

5.3 Analytical forms of the mean velocity profile

A variety of analytical formulations postulated to describe the mean velocity profile

in part or as a whole were introduced in §2.3. Firstly, three formulations of the

sublayer and overlap region profile were given by Reichardt (1951), Spalding (1961)

and Nickels (2001). In figure 5.19 these formulations are compared with hot-wire

measured velocity profiles in the channel. The first two sub-plots of this figure

indicate that the Reichardt and Nickels curves provide a very good description of

the sublayer. For the Nickels formulation the value of a0 = 0.0857 was used (as

suggested by Nickels, 2001, based on zero pressure gradient boundary layer data

only) which appears to give a slightly better fit between y+ of 10 to 20 compared

with Reichardt. The third sub-plot of figure 5.19 indicates that Spalding’s curve

(2.20) does not provide such a close fit to the data. Neither in the overlap region

(when κ = 0.389 and A = 4.23 are used in equation 2.20) or the sublayer region

does the data follow the curve. If one compares the log law with Spalding’s formula

(see figure 5.20), it is observed that the formula overshoots the log law and then

asymptotes back to it; not until y+ ≈ 103 are the two curves effectively colinear.

Based on the plots shown in figure 5.19, the Nickels (2001) formulation gives the

best fit to the measurements near to the wall.

For the outer flow, the formulation of Jones et al. (2001a), given by (2.17):

U+ =
1

κ
ln(y+) + A− 1

3κ
η3 +

2Π

κ
η2(3 − 2η),

was introduced in §2.3. By evaluating (2.17) at the duct centreline and subtracting

(2.17) from the result, the velocity defect form is found:

UCL − U+ = −1

κ
ln(η) +

1

3κ
(η3 − 1) +

2Π

κ
− 2Π

κ
η2(3 − 2η). (5.3)
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Figure 5.19: Comparisons between channel flow measurements and the formulations of

Reichardt (1951), Nickels (2001) and Spalding (1961). Symbols of the measured data are

the same as those in figure 5.14. Where appropriate, κ = 0.389 and A = 4.23.
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Figure 5.20: The Spalding (1961) inner flow velocity profile formula compared to the log

law (2.4).

In figure 5.21 equation (5.3) is compared with channel and pipe flow velocity defect

data. A least squares error fit to the data gave Π = 0.250 for channel flow and

Π = 0.454 for pipe flow. For both cases the data collapse extremely well on to (5.3)

indicating that Jones’ law of the wall, law of the wake formulation gives an excellent

description of the outer flow region.

Nickels (2001) also proposes an outer flow function which strictly applies only to

boundary layer flows:

U+ =
1

6κ
ln

(

1 + (0.66a0y
+)6

1 + η6

)

+ a2(1 − e−2(η2+η6)). (5.4)

The first term in the above equation is essentially the log law with a ‘built-in’ corner

function so that the term asymptotes to a constant at the edge of the layer. For

large y+ and small η the first term is identical to the log law (2.4). The second

term is the wake component which Nickels (2001) concedes may not provide much

improvement on Jones’ law of the wake (2.16). a2 is a wake strength parameter

similar to Coles’ wake factor, Πc. Out of interest the above formulation was also

compared to the channel flow data. As explained above for the Jones’ formulation,

a velocity defect expression can be found from (5.4):

UCL − U+ =
1

6κ
ln

(

1 + η6

2η6

)

+ a2(e
−2(η2+η6) − e−4). (5.5)

This equation also has a free parameter, a2, which was found to be a2 = 0.604 for

the channel flow data. Figure 5.22 displays the channel flow velocity defect with
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Figure 5.21: Velocity defect plots from the channel (a) and pipe flow (b) facilities with

the Jones et al. (2001a) velocity defect formulation (5.3) overlaid. Symbols are those used

in figure 5.16 for channel flow and figure 5.7 for pipe flow.
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Figure 5.22: Velocity defect plots from the channel compared with Nickels (2001) velocity

defect formulation (5.5). Symbols are those used in figure 5.16.

(5.5) overlaid for comparison. It is observed that the fit is reasonable, but clearly

not as good as the Jones et al. (2001a) formula. Now, combining all expressions

given by Nickels (2001) provides a description of the complete mean velocity profile;

the applicability of this formulation for the inner flow region has already been estab-

lished. Figure 5.23 illustrates the overall goodness of fit of the full Nickels formula

by comparison with all inner flow scaled velocity profiles of channel flow. Thus,

the Nickels velocity profile remains an attractive tool for further analytical work.

Through private communication, it is understood that a new outer flow function

tailored to duct flows has been formulated by Nickels, although it is yet appear in

the literature.

5.4 Effects of redefining the overlap region

The discussions of results in §5.1.1 and §5.2.1 included the fitting of the log law

(2.4) to the inner-flow scaled mean velocity profiles of both pipe and channel flows.

This theoretical log law (2.4) is only expected to describe the profile in the overlap

region as discussed in Chapter 2. The boundaries of the overlap region are not well

defined in the literature and were assumed to be y+ = 100 and η = 0.15 in earlier

discussions. Here, a brief statistical analysis of the effects of varying the overlap

region limits is presented. This analysis was conducted by simply fixing the upper

limit of the overlap region (η = 0.15) and varying the lower limit, then fixing the
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Figure 5.23: The full Nickels (2001) velocity profile formulation plotted with mean veloc-

ity profiles from the channel flow facility for Re = 40, 60, 75, 105, 140, 180×103 . Solid lines

represent the Nickels formulation with a0 = 0.0857 and a2 = 0.604; the scaled velocity

data are shown as circles. The profiles have been manually separated by 4 ordinate units.

lower limit at y+ = 100 and varying the upper limit. Some other combinations of

boundaries were experimented with and these are included in Appendix G. For each

of the overlap regions chosen a least squares error curve-fit to equation (2.4) was

performed to determine the constants κ and A.

The results of the overlap region analysis for pipe flow are tabulated in tables

5.3 & 5.4. The first block in each table suggests that varying the lower bound-

ary from y+ = 70 – 120 has very little effect on the resultant curve-fit. Note that at

y+ = 70 – 90 the pitot tube profiles kick-up from those measured with a hot-wire;

therefore, the first three rows of table 5.3 may be influenced by pitot measurement

error.

For a comparison of two given sets of log law constants (i.e., any two rows in the

tables 5.3 – 5.6), the maximum percentage difference between the log laws was

calculated over the range y+ = 100 – 1000. From varying the lower limit of the

overlap region from y+ = 100 – 200 for the pitot tube measured data, the maximum

difference in log laws was 0.14%. For the hot-wire measured data, the maximum
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y+ η κ A # Obs.

70 0.15 0.392 4.45 58

80 0.15 0.391 4.40 56

90 0.15 0.387 4.27 50

100 0.15 0.386 4.21 47

110 0.15 0.383 4.11 43

120 0.15 0.381 4.05 41

150 0.15 0.381 4.04 31

175 0.15 0.379 3.97 25

200 0.15 0.383 4.10 20

100 0.10 0.400 4.65 22

100 0.11 0.396 4.53 27

100 0.12 0.392 4.43 32

100 0.13 0.390 4.37 37

100 0.14 0.388 4.28 42

100 0.15 0.386 4.21 47

100 0.16 0.383 4.13 52

Table 5.3: Pitot tube measurements in pipe flow: the effect of overlap region limit

variation on the empircally derived log law constants. The right hand column contains

the number of experimental observations lying in the specified overlap region.

difference in log laws was 0.23% when the lower limit was varied from y+ = 70 – 120.

Increasing the lower limit beyond y+ = 120 results in significantly decreasing κ and

A. This decreasing trend is likely attributable to the lack of data at high Reynolds

numbers and the spatial resolution of the velocity profiles (there are less hot-wire

data points than pitot tube); that is, the trend may be a result of experimental

limitations rather than a property of the true velocity profiles. It is interesting to

note that the channel flow results given in tables 5.5 & 5.6 show similar trends. In

fact, any variation on the lower limit of the overlap region for hot-wire measured

channel flow profiles had little effect on the resultant log law — even up to y+ = 200.

The second (lower) blocks of data in tables 5.3 & 5.4 contain the results of fixing
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y+ η κ A # Obs.

70 0.15 0.389 4.48 45

80 0.15 0.386 4.38 43

90 0.15 0.386 4.40 40

100 0.15 0.384 4.33 36

110 0.15 0.386 4.38 34

120 0.15 0.384 4.30 32

150 0.15 0.379 4.13 23

175 0.15 0.378 4.08 19

200 0.15 0.374 3.93 14

100 0.10 0.393 4.62 17

100 0.11 0.394 4.66 22

100 0.12 0.392 4.59 27

100 0.13 0.391 4.54 28

100 0.14 0.389 4.48 31

100 0.15 0.383 4.28 41

100 0.16 0.371 3.86 52

Table 5.4: Hot-wire measurements in pipe flow: the effect of overlap region limit variation

on the empircally derived log law constants.

the lower limit of the overlap region and varying the upper limit from η = 0.10 –

0.16. Beyond η = 0.16 the wake peel off is visibly evident in the velocity profiles

(see figure 5.1). As the overlap region is extended, the most obvious trend in the

data is the consistent decrease in both κ and A. For the pitot measured data, the

kick-up in velocity profiles may still influence the data at y+ = 100. With only a

small overlap region (i.e., an upper limit of η = 0.10 or 0.11) the log law constants

found may be influenced by this pitot error. As the overlap region is extended, the

data points in the pitot error affected region become less significant to the curve-fit.

Since the kick-up tends to flatten the velocity profile, one would expect higher values

of κ and A. This explanation is supported by the fact that the hot-wire measured

data analysis (table 5.4) does not show such a decreasing trend as the overlap region

limit extends to η = 0.12. However, extending the upper limit from η = 0.13 to
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y+ η κ A # Obs.

70 0.15 0.404 4.83 42

80 0.15 0.400 4.71 39

90 0.15 0.396 4.57 34

100 0.15 0.397 4.58 30

120 0.15 0.392 4.43 25

150 0.15 0.391 4.39 18

175 0.15 0.390 4.34 17

200 0.15 0.391 4.39 12

100 0.10 0.406 4.86 19

100 0.12 0.400 4.70 24

100 0.14 0.397 4.58 30

100 0.15 0.397 4.58 30

100 0.16 0.393 4.47 36

100 0.18 0.391 4.38 42

100 0.20 0.390 4.35 48

100 0.25 0.389 4.31 54

100 0.30 0.386 4.21 66

100 0.35 0.384 4.16 72

100 0.40 0.382 4.10 78

Table 5.5: Pitot tube measurements in channel flow: the effect of overlap region limits

on the empirically derived log law constants.

0.16 still results in a consistent decrease in the constants. It seems to the author

that this trend can only indicate that there is a consistent curvature in the velocity

profiles plotted on semi-logarithmic axes. That is, the velocity profiles do not behave

precisely logarithmically between η = 0.10 – 0.16; although it must be noted that

the deviation from the log law is certainly only slight, as only a small decrease in

constants is observed. Unfortunately, the Reynolds numbers of this study and the

data resolution prohibit the analysis of overlap regions with upper limits of less

than η = 0.10 (with fixed lower limit of y+ = 100). However, Appendix G includes

analyses of overlap regions with lower limit of y+ = 80 and upper limit varying
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y+ η κ A # Obs.

70 0.15 0.391 4.31 61

80 0.15 0.390 4.26 56

90 0.15 0.390 4.26 53

100 0.15 0.389 4.23 49

120 0.15 0.390 4.25 41

150 0.15 0.390 4.28 34

175 0.15 0.394 4.44 28

200 0.15 0.395 4.45 23

100 0.10 0.397 4.45 27

100 0.12 0.394 4.38 37

100 0.14 0.392 4.32 43

100 0.15 0.389 4.23 49

100 0.16 0.389 4.23 49

100 0.18 0.386 4.13 55

100 0.20 0.384 4.07 56

100 0.25 0.380 3.92 65

100 0.30 0.378 3.88 74

100 0.35 0.377 3.84 75

100 0.40 0.375 3.77 81

Table 5.6: Hot-wire measurements in channel flow: the effect of overlap region limit

variation on the empirically derived log law constants.

from η = 0.07 – 0.13. The data do not exhibit the same decreasing trend in log law

constants and κ = 0.392 ± 0.002, A = 4.58 ± 0.07 were found. This suggests an

upper limit of η = 0.13 may be more appropriate than 0.15. Returning to table 5.4,

it is observed that similar values of κ = 0.391 and A = 4.54 result when the overlap

region is defined by 100ν/Uτ < y < 0.13R.

The upper limit variation analysis for channel flow also gave similar results to that of

pipe flow. For the channel flow case, the upper limit was varied from η = 0.10 to 0.40

and the results are included in the second blocks of tables 5.5 & 5.6. This increased
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upper limit range was analysed because channel flow velocity profiles visually appear

to behave logarithmically over a large wall-distance range. From the tables above

and from closer inspection of the mean velocity data, the overlap region does not

extend beyond η ≈ 0.18. As with the pipe flow analysis there is a clear trend of

decreasing log law constants with increasing size of the overlap region. Reducing

the upper limit below η = 0.10 did not improve the consistency of the constants,

contradictory to the pipe flow case. However it should be noted that, although the

log law constants do vary, the maximum percentage difference in log laws is only

0.42% (at y+ = 1000 for the pitot tube measurements) when the overlap region limit

is varied from η = 0.12 – 0.18. This small difference indicates that the data closely

obey a logarithmic law, but to extrapolate the results to higher Reynolds numbers

is only speculative. At the lowest Re of the present study, an overlap region of

100ν/Uτ < y < 0.15h/2 spans less than 50 y+ units which is plainly insufficient. It

is suggested that an overlap region size of no less than one decade in y+ (1000 y+

units) would be required to confidently determine log law constants for higher Re.

Thus it would appear that no definite overlap region limits can be proposed from

the channel flow analysis presented here — higher Re measurements are necessary

to confidently address this problem.

5.5 Comparison of pipe and channel flow results

The similarities between pipe and channel flows have been clearly stated so far: in-

variance with streamwise location for fully developed flow, wall shear stress depen-

dence on pressure gradient and Reynolds number independent inner flow behaviour

of the mean velocity profiles. The differences between pipe and channel flow, how-

ever, receive far less attention in the literature. In this section, mean profiles from

both facilities will be compared and an attempt to explain the differences will be

made.
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5.5.1 Inner flow region

Figure 5.24 presents the first comparison between pipe and channel flow velocity

profiles. In this figure, all pipe and channel velocity profiles scaled with inner flow

variables and measured with pitot tubes are presented. The agreement between

the two data sets in the inner flow region is excellent. The inset plot displays the

deviation of the data from the log law with constants determined from the channel

flow data: κ = 0.393, A = 4.46. The kick-up from the log law in the inner flow region

appears similar in magnitude for both pipe and channel measurements. Earlier the

issue of channel flow velocity profiles measured with a pitot tube showing greater

kick-up than hot-wire data was discussed. This phenomenon was not observed in

hot-wire measurements, however. The collapse of the data in figure 5.24 implies that

the hot-wire data may be in error for one of the pipe or channel flow investigations.

Figure 5.25, displaying the deviation of hot-wire data for both facilities, confirms

this suspicion. In this figure, deviation from the log law fitted to channel flow hot-

wire data is plotted. For comparison, the discrepancy between log laws fitted to

pipe and channel flows is plotted as a broken line. It is obvious that the pipe flow

data sit well above that of the channel flow. Furthermore, a closer analysis reveals

the low Reynolds number pipe flow data (that is, the data sitting above the broken

line in the vicinity of y+ = 50) display marginally more kick-up than any of the

channel flow data presented. The only explanation for this observation that the

author can provide is that the hot-wire anemometry system used responded poorly

to high frequency velocity fluctuations. This would result in an over-reading of the

mean and an under-reading of turbulence intensity. It must be conceded, however,

that no more solid reasoning for the hot-wire discrepancy can be provided at this

time.

With regard to observations in comparisons of the inner flow region data, it is clear

that pipe and channel flow pitot tube data are in excellent agreement and this data

lies between the hot-wire measurements from each facility within experimental error

(±1%). Hot-wire measurements from the two facilities, however, differ excessively.

For the following reasons it is concluded that the channel flow hot-wire measurements

and pitot tube measurements in both facilities are acceptable and of the highest
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the log law fitted to channel flow data is plotted. Symbols as in fig. 5.24. Also included

is the deviation of the log law found for pipe flow data from that fitted to channel data,

.

accuracy: i) the channel flow hot-wire data agree well with Jones et al. (2001a) and

Österlund et al. (2000a) in that almost no kick-up from the log law is evident, ii)

only low Re pipe flow hot-wire data disagree with channel flow data, and iii) the

author’s experience with the difficulties of hot-wire anemometry was significantly

more advanced during channel flow experiments.

5.5.2 Outer flow region

Observing the outer flow region of the pipe and channel velocity profiles reveals

the most significant difference between the two flows. Figure 5.24 shows that the

wake in the pipe flow is much larger than that of the channel flow for all Reynolds

numbers. A comparison with zero-pressure-gradient boundary layer profiles indi-

cates that the boundary layer has a stronger wake than both pipe and channel flows

(see figure 5.26). These observations have been made in the literature by Wei &

Willmarth (1989) and Zanoun et al. (2002). While it is expected that the boundary

layer flow will have the strongest wake due to the absence of restrictive walls, this

same reasoning would lead to the expectation that the channel flow wake would be

similar to, if not larger than, that in the pipe. This is because, of the three flows, a

circular pipe provides the greatest boundary imposed restriction on the flow. Nei-

ther reference given above offers an explanation for the undeniable weakness of the
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Figure 5.26: Comparison of pipe, channel and boundary layer measurements. Boundary

layer data is from Österlund et al. (2000b) and all three flows had Kτ ≈ 3200.

channel flow wake; in fact, Zanoun et al. (2002) concludes:

“[The wake] of the channel is significantly smaller than that for the pipe

flow. This result is counter-intuitive, especially when the results from

these two flows are compared to the case of the boundary layer...”

It is postulated here that a possible explanation may be found by a comparison of

the turbulence structure of the pipe and channel flows. In analysing the structure,

the attached eddy model of Perry & Chong (1982), discussed earlier in Chapter 2,

will be employed.

5.5.3 A physical description of the mean flow behaviour

In §2.9.1 the concept of attached eddies and some postulated shapes were introduced.

The two most common characteristic eddy shapes used in the literature are the ∧-

and the ⊓-eddy. In the following paragraphs, models incorporating both of these

eddy types will be used to help explain the wake behaviour of turbulent flows.
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Perry & Chong (1982) have shown that the magnitude of the mean spanwise (or

‘azimuthal’ for pipe flow) vorticity contribution from each hierarchy of eddies, ξH ,

is given by:

ξH =
Uτ

δ
f
(y

δ

)

, (5.6)

where δ is the hierarchy scale. Integrating across all scales and including the p.d.f.

of hierarchy scales, gives the mean vorticity magnitude (ξ) at a given wall-distance,

y:

ξ(y) =
dU

dy
=

∫ ∆E

δ1

Uτ

δ
f
(y

δ

)

pH(δ)d(δ). (5.7)

In §2.9.1 the transformation λ = ln(δ/y) was introduced to aid integration across

the scales. By applying this transformation here, the following relationships are

found:

y

δ
= e−λ; h(λ) = f

(y

δ

)

;
dU+

D

dλE
=

y

Uτ

dU

dy
; pH(λ) =

M

δ
W (λ− λE),

where U+
D is the scaled velocity defect, U+

CL − U+. Substituting these relationships

into (5.7) gives a gradient of velocity defect,

dU+
D

dλE

= M

∫ λ′

E

λ1

h(λ)e−λW (λ− λE)dλ, (5.8)

where λ′E is an intermediate variable with range 0 → λE. Thus, dU+
D/dλE is a

function of λ′E. Integrating (5.8) gives the velocity defect,

U+
D = M

∫ λE

0

∫ λ′

E

λ1

h(λ)e−λW (λ− λE)dλdλ′E. (5.9)

To make any further progress, the functional forms of h(λ) and W (λ − λE) are

required. §2.9.1 explains that W is a weighting function which may be adjusted to

account for the wake of the velocity profile. Since the large scale geometry of the

flow has not entered the argument so far, W will be left unexplained at this point.

h(λ) = f(y/δ) relates to the vorticity distribution around a single eddy. Examples

of this function for the ∧- and ⊓-eddy are given in figure 5.27. For the ⊓-eddy all

spanwise vorticity is confined to the ‘horizontal’ vortex rod at the top of the eddy

(which has been projected onto the y − z plane in the figure). In the case of the

∧-eddy, the vorticity is distributed evenly with non-dimensional wall-distance, y/δ.

Hence, f(y/δ) is a dirac delta function (at y = δ) for the ⊓-eddy, and unity for

y = 0 to y = δ for the ⊓-eddy. Transforming f(y/δ) to h(λ) and multiplying by e−λ



5.5. COMPARISON OF PIPE AND CHANNEL FLOW RESULTS 161

a)

0.5

Dirac Delta

1

0.5 1

1

1

e−λ

y
δ

f
(

y
δ

)

h(λ)e−λ

y
δ

λz
δ

z
δ

y
δ

f
(

y
δ

)

h(λ)e−λ

λy
δ

b)

Figure 5.27: Sketches of two eddy shapes and their h(λ)e−λ distributions: a) ⊓-eddy

and, b) ∧-eddy.

gives the forms shown in figure 5.27. These distributions are very important as they

make the critical connection between the mean flow and eddy shape.

At this stage, there is enough information to calculate U+
D from (5.9) if it is assumed

that W = 1. That is, the p.d.f. of hierarchy scales is a -1 power law. However, Perry

et al. (1986) have shown that no eddy shape will provide the desired wake behaviour

if the p.d.f. is of this form† . Interestingly, it was found that all eddy shapes studied

gave the correct scaling in the overlap region, even with W = 1. It was concluded by

Perry et al. (1986) that a modification to the p.d.f. was necessary to account for the

outer flow deviation from the log law. Therefore, since the problem of interest is the

anomalous difference between pipe and channel outer flow behaviour, the form of

W is of most interest here. Note that only the two eddy shapes shown in figure 5.27

will be considered in this analysis.

Returning to equation (5.8), it is seen that this equation is simply a convolution of

two functions: h(λ)e−λ and W (λ). Therefore, if the analytical form of dU+
D/dλE

† There was one eddy shape that was postulated by Perry et al. (1986) which gives the correct

wake. The eddy was of a “bow-legged, parabolic” shape, however, it was discarded by the authors

as an unrealistic shape.
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is known, a deconvolution of (5.8) will return W (λ) since h(λ)e−λ is known and

dependent only on eddy geometry. Analytical forms of the outer flow velocity profile

were introduced in §2.3. Recalling the Jones et al. (2001a) formulation in velocity

defect form (5.3):

U+
D = −1

κ
ln(η) +

1

3κ
(η3 − 1) +

2Π

κ
− 2Π

κ
η2(3 − 2η).

If ∆E is the largest length scale in the flow, then η = y/∆E = e−λE . Substituting

this into (5.10) and differentiating with respect to λE gives

dU+
D

dλE

=
1

κ
− 1

κ
(1 − 2Π)e−3λE +

12Π

κ
e−2λE . (5.10)

Note the presence of Π, the wake strength parameter, which depends on large scale

geometry and pressure gradient. All that remains now is to deconvolve (5.8) for

each eddy shape. Such a mathematical procedure is made possible by a Laplace

transformation of the convolution.

Let L{X(λ)} = Λ(s) and L{h(λ)e−λ} = Σ(s) represent the Laplace transforms of

X(λ) (an arbitrary function) and h(λ)e−λ respectively. It is well-known, then, that

the Laplace transform of the convolution is given by:

L
{

M

∫ ∞

−∞
h(λ)e−λX(λE − λ)dλ

}

= MΣ(s)Λ(s). (5.11)

If the substitution X(λ) = W (−λ) is made, then (5.11) becomes the Laplace trans-

form of (5.8) so that

L
{

dU+
D

dλE

}

= MΣ(s)Λ(s). (5.12)

Note that the convolution integration limits of (5.11) are ±∞ which is not a cause

for concern since W (λ− λE) = 0 outside the range of integration in (5.8); that is,

(5.12) holds even with this change of integration limits.

From the distributions of h(λ)e−λ shown in figure 5.27, it can easily be shown that

Σ(s) = 1 for the ⊓-eddy and Σ(s) = 1/(s + 1) for the ∧-eddy. By substituting

these and the Laplace transform of (5.10) into (5.12), Λ(s) for each eddy shape may

be determined. The inverse Laplace transform of the Λ(s) functions gives, for the

⊓-eddy,

W (λ− λE) = 1 − (1 + 12Π)e3(λ−λE) + 12Πe2(λ−λE); (5.13)
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and for the ∧-eddy,

W (λ− λE) = 1 + 2(1 + 12Π)e3(λ−λE) − 12Πe2(λ−λE). (5.14)

The above equations may be rewritten in terms of δ/∆E = e(λ−λE) and substituted

into the p.d.f. equation (2.51) to obtain the final result:

pH(δ)

Md

=
∆E

δ
− δ

∆E

[

(1 + 12Π)
δ

∆E

− 12Π

]

, (5.15)

pH(δ)

Md
=

∆E

δ
+

δ

∆E

[

2(1 + 12Π)
δ

∆E
− 12Π

]

(5.16)

for the ⊓- and ∧-eddies respectively. Note thatMd = M/∆E . Both of these functions

are plotted in figure 5.28 for various wake strengths, Π. Figure 5.28a presents p.d.f.’s

for the ∧-eddy model and figure 5.28b displays those for the ⊓-eddy model. The

heavy broken line in each figure represents the inverse power law p.d.f. (i.e., the

W = 1 case). Until this point these graphs are merely the end result of mathematical

manipulation. The real interest, however, is in their physical interpretation.

It should be remembered that the eddy shape is representative only. By this it

is meant that individual eddies in the flow need not have the exact geometrical

features of the proposed eddy shapes, rather, the real and representative eddies will,

on average, bear the same statistical properties. Thus, the choice of representative

eddy shape is of little consequence to the model, provided W is chosen correctly.

However, the resultant p.d.f.’s of figure 5.28 obviously depend on eddy shape and

these should be somewhat physically justifiable. At first glance it would seem that

the p.d.f. of ⊓-eddy hierarchies has the more logical behaviour as wake strength is

increased. Certainly for boundary layer flow it would be expected that the p.d.f.

should diminish smoothly to zero as hierarchy scale is increased to its maximum,

∆E. In fact, this eddy shape is preferred in the recent literature; Marusic (1991),

Uddin (1994), Nickels & Marusic (2001) and Marusic (2001) are examples. It could

be argued further that the representative eddies in a channel flow should not differ

from those of constant pressure boundary layer flow. This is because the channel

flow is formed from two adjacent, developing boundary layers. The only significance

of this to the current argument is that it suggests the hierarchies of eddies exisiting

in channel and boundary layer flows should behave similarly (although the channel

flow hierarchy p.d.f. should not reach zero at y = ∆E = h/2).
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Figure 5.28: p.d.f.’s of attached eddy hierarchy scales modified in order to give the

desired wake behaviour of the mean flow. a) ∧-eddy; b) ⊓-eddy. The heavy dashed line

represents the weightless p.d.f., pH = M/δ.
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In pipe flow, the ⊓-eddy would seem an odd choice due to the axis-symmetry of the

flow; the ∧-eddy model appears to more naturally adhere to the large scale geometry

of a pipe as illustrated in figure 5.29. The figure presents idealised hierarchies

of attached ∧-eddies in a pipe, in a similar way to figure 2.6 which applied to a

plane wall-bounded flow. The figure illustrates a major difference between pipe and

plane wall-bounded flows with regard to the attached eddy model: as the hierarchy

scale increases in the pipe, the characteristic eddies are increasingly angled toward

each other. Therefore, as the pipe centreline is approached, the assumption that

contributions to the azimuthal vorticity come only from those hierarchies of eddies

originating from one wall location is invalid. That is, equation (5.7) needs to be

modified to include the vorticity contributions from neighbouring hierarchies. Such

a modification would only add another weighting function to equation (5.8) and

would therefore be embedded in the weighting function, W , determined for pipe

flow in equation (5.13). Thus, the p.d.f. of scales given in figure 5.28a may be

interpreted as the p.d.f. not of scales existing, but of scales contributing to the mean

azimuthal vorticity, ξ. Figure 5.28a then suggests that as the length scale increases

beyond 0.5∆E = 0.5R, the probability of hierarchies contributing to ξ increases. The

interesting point is that this behaviour is physically consistent with the diminishing

proximity of neighbouring hierarchies as scale increases (as clearly illustrated by

figure 5.29).

The above arguments are summarised as follows: it is obvious from figure 5.29 that

many more attached structures will contribute to the mean flow than in the centre

of a channel flow, regardless of characteristic eddy shape. This is due to the presence

of a wall at any distance R (pipe radius) from the centre of the pipe; conversely, in

a channel there are only two wall locations at a distance h/2 (channel half-height)

from the centreline. While the arguments provided above may be conceivable, the

reader is reminded that the attached eddy hypothesis at the foundation of these

arguments is still an hypothesis at this point in time. Further discussion of evidence

in support of the attached eddy model will be provided in the following chapters.
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Figure 5.29: Hierarchies of attached ∧-eddies in a circular pipe cross-section. Note that

the dotted lines represent hierarchies of length scale equal to the pipe radius. Grey lines

are gridlines only.



Chapter 6

Second-order turbulence statistics

Measurement of higher-order turbulence statistics was made possible mid-way through

the 20th Century by the introduction of the hot-wire anemometer. The technique

remains popular today, even with the rapid progress of Laser Doppler Velocimetry

(LDV) and Particle Image Velocimetry (PIV). The latter technique is now almost

universally employed for water flows, while hot-wire methods are common for ex-

perimentation with gas flows.

All who have experimented with hot-wires are aware of the various issues that affect

its performance. For example, calibration drift, ambient temperature change, dust

and external electronic noise. Most of these problems can be removed through care-

ful experimentation, however, the limitation of spatial resolution of the anemome-

ter cannot. While the resolution issue has always been known, the full extent of

its effects in high Reynolds number turbulence has only recently been revealed.

Nonetheless, hot-wire anemometry remains a relatively cost-effective and convenient

technique for the difficult measurement of turbulence in air flow.

In this chapter, wall-normal distributions of streamwise turbulence intensity, u′2, are

presented for both pipe and channel flows. Measurements were taken with a normal

hot-wire probe. For channel flow only, the remaining turbulence intensities, v′2 and

w′2, and the measureable Reynolds stresses, u′v′ and u′w′, were measured with a

X-wire and are also presented here.

167



168 CHAPTER 6. SECOND-ORDER TURB. STATS

δ1

δ2

δ3

y

X-wire probe

Figure 6.1: Attached eddies of three scales, δ1, δ2 and δ3, passing by a stationary X-

wire probe. Solid lines represent instantaneous streamlines. The probe is located at a

wall-distance, y, such that δ1 < y < δ2.

6.1 The role of attached eddies

Before the presentation of results, a brief discussion of the physical expectations of

the turbulence measurements is provided here. Figure 6.1 displays three attached

eddies of varying scale moving from left to right as part of a turbulent flow field.

Some† instantaneous streamlines are shown as calculated from the Biot-Savart law

(for a ⊓-eddy). Also shown is a stationary X-wire probe, the response of which will

be affected in a different way by each eddy:

1. Firstly, the probe will have negligible response to the smallest eddy, which has

length scale δ = δ1. It was shown in Chapter 2 (see the vector field plotted

in figure 2.8) that the velocity induced by an eddy rapidly diminishes with

wall-distance for y > δ. Thus, it is safe to assume that all eddies of length

scale δ < O(y) make no contribution to the turbulent velocity felt by a X-wire

at y.

2. As the second eddy shown in figure 6.1 passes the probe, relatively high ve-

locities in all directions will be induced. That is, eddies of scale δ = O(y)

will significantly contribute to all turbulence intensities, u′2, v′2 and w′2. Ob-

viously, then, these eddies will also make contributions to the Reynolds shear

stress, u′v′.

3. The third eddy, having length scale δ = δ3 > O(y), will also contribute strongly

† Only six streamlines have been plotted for clarity.
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to the velocity field seen by the X-wire. However, only significant contributions

will be made to u′2 and w′2. This is because of the boundary condition forcing

wall-normal velocity, v, to diminish at the wall, combined with the fact that

y/δ decreases as δ increases. The velocity vector field of figure 2.8 shows

the effect of this boundary condition; that is, the vectors have negligible v

component as the wall is approached. Thus, eddies of scale much larger than

the probe wall-distance will not contribute to Reynolds shear stress; they are

referred to as “inactive” motions by Townsend (1976). Finally, it should be

noted that the usual no-slip boundary condition is not imposed in the attached

eddy model. That is, slip at the wall is permitted by the presence of the thin

viscous sublayer at the base of the eddies. Therefore, eddies of increasing

scale will indefinitely contribute to the streamwise and spanwise components

of velocity.

With this physical understanding, it should now be possible to more meaningfully

analyse the measured data.

6.2 Streamwise turbulence intensity

Turbulence intensity, u′2, was calculated from data collected during the recording

of a mean velocity profile using a normal hot-wire. That is, mean velocity profiles

presented in Chapter 5 and the turbulence intensity profiles displayed in this section

were measured simultaneously. The u′2 profiles are plotted in figures 6.2 – 6.5.

6.2.1 Inner flow scaling

For pipe flow, figure 6.2 displays the inner flow scaled u′2 profiles. Analysis of this

figure reveals that the expected peak in turbulence intensity at y+ ≈ 15 is not visible

due to a lack of data close to the wall. The reason for this is that data for y+ < 50

were not required to meet the aims of the pipe flow study. Moreover, the absence of

measurements in this region give the false impression that some Reynolds number

similarity exists in the profiles for y+ . 40. No similarity is expected in this region
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as explained below.

Reynolds number similarity implies that, at a given y+, the scaled streamwise tur-

bulence intensity is invariant with Re. Now, as Re increases, Uτ/ν increases so that

y must decrease if y+ is fixed. Similarly, the smallest eddy height also decreases,

since the smallest eddies scale as δ+
1 = O(100). Thus, the range of eddy length

scales increases with increasing Re. Recalling the third point of discussion in §6.1:

eddies indefinitely larger than the probe wall-distance contribute to the u′2 measure-

ment. Therefore, if the probe wall-distance is decreased to keep y+ constant as Re

increases, an increased number of eddies with scale δ > O(y) will exist and make

contributions to u′2. The result is an increased u′2/U2
τ at a given y+.

Obviously, the above argument applies for y+ > 100 only; application below this

wall-distance should be invalid due to the lower limit of eddy length scale (δ+ = 100).

Marusic, Uddin & Perry (1997) propose that, although a physical interpretation of

the sublayer flow is unavailable, it is most likely that no Reynolds number similarity

would exist in this region if there is no similarity at its edge (i.e., at y+ ≈ 100).

Further, it is conjectured by Perry & Chong (1982) that the eddies form and begin

to take shape in the sublayer. Hence, the argument given above may be of some

relevance in the sublayer — assuming the range of structure scales roughly increases

with increasing Re, as occurs further from the wall.

Figure 6.2 confirms the main points of the above discussion for y+ > 100: there

is clearly no similarity and the turbulence intensity increases with increasing Re.

The inner flow scaled u′2 measurements in the channel, shown in figure 6.3, display

similar trends to pipe flow data. The major difference between the two flows is simply

that measurements were recorded much closer to the wall for the channel flow case.

Hence, the dissimilarity in profiles below y+ = 100 is clear. The expected trend of

increased u′2 with increasing Re, however, is not realised in this region. In fact, the

magnitude of the peak in turbulence intensity (at y+ ≈ 15) decreases markedly as

Re increases. This behaviour is attributed to insufficient spatial resolution of the

hot-wire. The spatial resolution effect may be characterised, at least in part, by the

non-dimensional variable l+, where l is the length of the exposed platinum hot-wire
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filament. This length was maintained at 1mm† for all measurements presented in

this thesis.

In both figures 6.2 & 6.3, the value of l+ for each profile is included in the figure

legend. The studies of Ligrani & Bradshaw (1987) and Hites (1997) suggest that

measurements made with a wire length of l+ & 30 will be significantly affected by

spatial resolution effects. Furthermore, preliminary studies in the high Reynolds

number boundary layer wind tunnel at Melbourne (unpublished) agree with this

criteria. Inspection of the profiles with low l+ shown in figure 6.3, reveals that

there is a slight increase in peak turbulence intensity as Re increases, as expected.

The increase is small, although notable, and is consistent throughout the inner

flow region. For larger wire lengths — that is, for l+ > 30 — the data exhibit

increasing attenuation. Thus, the data appears to agree with the observations of

the aforementioned references. Note, however, that without a set of measurements

made with much smaller wires, it is not possible to make any conclusions about l+

effects here.

A closer look at the highest Re profile reveals that the attenuation in u′2 begins to

occur as far as y+ = 300 from the wall. Further evidence of such attenuation is

available in the literature, Morrison et al. (2004) and Henbest (1983) are examples.

The reason for this attenuation is not understood at this time. It would be expected

that attenuation would start at non-dimensional wall distances of the order l+,

which is only 78.82 at the highest Re of this study. Two possible explanations for

the extended attenuation are postulated here:

1. Conduction losses from the exposed wire to the silver ‘stubs’ attached to the

hot-wire prongs. This would result in a non-uniform temperature distribution

across the exposed hot-wire and would be more severe with increased velocity.

Once again, no definite conclusions can be drawn without varying wire length.

2. Very long (in the streamwise sense) structures exist in the flow, which are

smaller (in the spanwise sense) than the wire length. These structures would

† In hindsight, experimentation with smaller wire lengths (and therefore, smaller wire diame-

ters) would have been very informative.
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pass by only a portion of the wire, so that the velocity fluctuations measured

are attenuated, while the streamwise wavenumber remains high. To verify

this possibility would be rather difficult since extremely highly resolved, three-

dimensional measurements in high Reynolds number flows would be required.

Of the techniques available at this time, only stereoscopic PIV technology is

potentially capable of such measurements. However, the required resolution is

not possible with current technology.

6.2.2 Outer flow scaling

Shifting attention to the outer flow region, it would be expected that outer flow sim-

ilarity should be observed based on the discussion of §6.1. This is also a requirement

of Townsend’s Reynolds number similarity hypothesis. Figure 6.4 displays the outer

flow scaled turbulence intensity profiles for pipe flow. It is immediately evident that

there is poor collapse in the outer region at low Re, even for η > 0.15. The extent

of this dissimilarity is somewhat surprising, although it appears as a low Reynolds

number effect only. Further evidence of the low Re shift is observed in the channel

flow u′2 measurements, shown with outer flow scaling in figure 6.5. Upon consulta-

tion of the literature, it was found that the low Re effect on u′2 is not unique to this

investigation; Henbest (1983), McLean (1990)† and Morrison et al. (2004) present

outer flow scaled data showing similar behaviour.

For higher Re, turbulence intensity profiles do show similarity in the outer region and

follow the same trends found in the data presented by Marusic et al. (1997). This

reference clearly shows that the extent of similarity depends on Re. Unfortunately,

the Re range studied here is insufficient for the data to noticeably display such a

feature (more data points in the outer flow region would also be required). However,

in general agreement with the lower Re data of Marusic et al. (1997), the scaled

turbulence intensity exhibits similarity for η & 0.15, while u′2/U2
τ increases with

increasing Re at η ≈ 0.1.

† The turbulent boundary layer measurements of McLean (1990) are also plotted in figure 5 of

Marusic et al. (1997).
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6.2.3 Streamwise turbulence intensity formulation

In Chapter 2, during the introduction of the attached eddy hypothesis, a formulation

for streamwise turbulence intensity in the turbulent wall region was discussed. The

attached eddy model and the contributions of each eddy, discussed in §6.1 above,

can be shown to predict

u′2

U2
τ

= B1 − A1 ln[η] − V (y+), (6.1)

where A1 is a universal constant and B1 depends only on large scale geometry. The

last term is an isotropic viscous correction term and more details of its origin are

given in Perry & Li (1990). This formulation, applicable to the turbulent wall region

only, was extended to the entire outer flow region by Marusic et al. (1997). Their

new u′2 formulation is given by

u′2

U2
τ

= B1[Πc] − A1 ln[η] − Vg[y
+, η] −Wg[η]. (6.2)

Vg is an extended viscous correction term which includes the function V (y+) and

should be universal. The exact form of Vg is rather complicated and is not repeated

here; it can be found in Marusic et al. (1997). Wg is an outer flow function which

depends on large scale geometry, similar to the wake component of the law of the

wall, law of the wake (2.14). It was defined by Marusic et al. (1997) as

Wg[η] = B1η
2(3 − 2η) − A1η

2(1 − η)(1 − 2η). (6.3)

This function was chosen to give the correct boundary conditions for the streamwise

turbulence intensity of a boundary layer. For duct flows, the Dirichlet boundary

condition, u′2 = 0 at η = 1, is invalid since the flow is turbulent at all wall-distances.

Thus, the form of Wg should be

Wg[η] = (B1 −Bd)η
2(3 − 2η) − A1η

2(1 − η)(1 − 2η), (6.4)

where,

Bd =
u′2

U2
τ

∣

∣

∣

∣

∣

η=1

≈











0.8 for channel flow,

0.7 for pipe flow.
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Figure 6.6: Pipe flow: u′2 formulation with inner scaling.

The values of Bd were estimated from the data presented in this thesis. Note that Bd

should not be Re dependent, only large scale dependent. From the discussion of §5.5,

it might be expected that Bd should be higher for pipe flow than for channel flow

due to the larger probability of eddies existing at the pipe centreline. No reasons to

explain why this is not observed were found, although further work on the attached

eddy hypothesis (beyond that discussed in §5.5) may help resolve this anomaly. The

second important difference in the u′2 prediction, is that the form for B1 proposed

by Hafez (1991),

B1[Π] = 0.41 + 3.66Πc − 0.76Π2
c , (6.5)

is also invalid for duct flows. It was found that setting B1 = 2.20 for channel flow,

and B1 = 2.25 for pipe flow gave best results.

Figures 6.6 & 6.7 show the formulation (6.2) plotted over the measured data with

inner flow scaling. For the pipe flow case, all constants and functions used are those

suggested by Marusic et al. (1997) — apart from B1, of course. In the channel

flow case, setting A1 = 1.03 did not give such a good fit to the data. It was found

that a value of A1 = 1.10 provided a much better result (this is the value used in

figure 6.7). The fit to the data of the funtional form is undoubtedly excellent for all
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Figure 6.7: Channel flow: u′2 formulation plotted over the data with inner scaling.

higher Re. Finally, figure 6.8 is provided which displays the same data as figure 6.7

but with outer flow scaling. This plot clearly shows the outer flow similarity and

the increased extent of this similarity with increasing Re.

The observed collapse of the data onto the u′2 formulation of Marusic et al. (1997)

provides support not only for the functional form in itself, but also for the attached

eddy hypothesis, on which the formulation relies heavily. There are also a number

of other assumptions, beyond the scope of this thesis (see Marusic et al., 1997),

concerning the physical behaviour of the flow that are validated by the observations

of this section.

6.3 Reynolds shear stress

Measurement of the spanwise and normalwise velocity components was achieved us-

ing a X-wire as mentioned eariler. The spatial resolution issues discussed above will

certainly apply to each wire of the X-wire. Unfortunately for X-wire measurements,

there is a further resolution issue due to the spacing between the two wires. For

all experiments conducted, the spacing was very close to 1mm. The effect of these
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Figure 6.8: Channel flow: u′2 formulation plotted over the data with outer scaling.

inevitable errors will be more severe closer to the wall. To obtain an idea of how the

X-wire error might behave, it may be useful to plot the correlation of streamwise

and spanwise velocity, u′w′/U2
τ . This quantity should, of course, be equal to zero

throughout the nominally two-dimensional flow. Figure 6.9 displays the wall-normal

variation of u′w′ with outer flow scaling. The scatter near the wall is clearly evident

and reaches a maximum of ±0.1 ordinate units.

Now, the significant Reynolds shear stress component, u′v′, has the simple form

given by (2.54) for duct flows:

−u
′v′

U2
τ

= −η + 1 − dU+

dy+
.

This equation is found directly from the Navier-Stokes equations by assuming that

the flow is fully developed (i.e., all streamwise derivatives are zero). With the

expected, and therefore accepted, level of scatter near the wall in mind, the Reynolds

stress measurements are presented in figure 6.10 with outer flow scaling. The figure

shows that the data follow the expected trends reasonably well. In comparison,

the equivalent data of Laufer (1950) and Henbest (1983) display significantly larger

deviations from (2.54). In the light of these studies, the measurements shown here

appear to be very accurate.
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Figure 6.9: Wall-normal distribution of the Reynolds shear stress, u′w′, with outer flow

scaling.

Also included in figure 6.10 are plots of the theoretical stress distribution (2.54)

for each profile. The stress distribution is not universal due to the viscous velocity

gradient term which will, of course, vary with Karman number. This term was

computed by taking the derivative of the mean velocity formulations of: Reichardt

(1951) for the sublayer, given by equation (2.19) with κ = 0.39 and A = 4.4; Jones

et al. (2001a) for the outer flow region, given by equation (2.17) with Π = 0.25.

Figure 6.10 illustrates that the viscous term is almost negligible for most of the

flow, even down to the lowest wall-distances at which measurements were taken. It

is suggested that the deviation from the theoretical curve near the wall is possibly

due to the aforementioned, unavoidable spatial resolution effects.

6.4 Spanwise and normalwise measurements

In a similar manner to the analysis of streamwise turbulence intensity, the forms of

the remaining intensities in the turbulent wall region are predicted, by Perry & Li

(1990), as

w′2

U2
τ

= B2 − A2 ln[η] − V (y+), (6.6)

v′2

U2
τ

= A3 − V (y+). (6.7)

It is noted that the w′2 prediction is identical in form to that for u′2 given by equation

(6.1). This is expected based on the discussion of the contributions of each eddy
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in §6.1. The discussion points out that the same eddies contributing to u′2 also

contribute to w′2. The wall-normal turbulence intensity, however, is expected to

behave differently since eddies much larger than the probe wall-distance make no

significant contribution to this statistic (see §6.4.2).

The last term in all of the turbulence intensity formulations is the isotropic vis-

cous correction term, V (y+). Since it is related to the isotropic, Kolmogorov scale

motions, V (y+) is the same in each equation. This viscous correction is required

since the predicted intensity functions are only truly applicable for infinite Reynolds

number. That is, by subtracting V (y+), contributions from very high wavenumber

motions that do not exist at finite Re are removed. The fact that V (y+) requires

the knowledge of the high wavenumber contributions presents a problem, since mea-

surements in this range are difficult to obtain (recall the aforementioned spatial and

temporal resolution issues). From empirical formulations for the streamwise velocity

spectrum, Marusic et al. (1997) propose†

V (y+) = 4.63

[

1 −
(

yUτ

ν

)−0.9
]

(

yUτ

ν

)− 1

2

, (6.8)

which will be employed here.

6.4.1 Spanwise turbulence intensity

The spanwise turbulence intensity profiles are presented in figure 6.11 with outer flow

scaling on semi-logarithmic axes. The first of the sub-plots of this figure indicates a

roughly logarithmic trend in the data for all Re when η is small. This is in agreement

with the predicted form of w′2 (6.6) in the turbulent wall region. The second sub-

plot, figure 6.11b, displays equation (6.6) with the universal constant, A2 = 0.475

suggested by Perry & Li (1990), and B2 = 1.00 (chosen by the author). For the

low Re measurements, the agreement appears reasonably good. However, Perry &

Li (1990) state that the value of A2 is not well-known and not necessarily 0.475. In

fact, from their review of existing boundary layer and DNS data, Perry & Li (1990)

state that A2 should be “about 0.5”. Figure 6.11c displays curves of equation (6.6)

† This reference mistakenly quotes a coefficient of 5.58 in equation (6.8).
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Figure 6.11: a) Wall-normal distribution of spanwise turbulence intensity, w′2, with outer

flow scaling. The remaining sub-plots feature equation (6.6) overlaid for Kτ = 1767, 2904

and 4011. The constants used in each figure are: b) A2 = 0.475 and B2 = 1.00;

c) A2 = 0.525 and B2 = 0.885.
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with new constants found to best fit the lowest Re data. The constants found are

A2 = 0.525 and B2 = 0.885. Clearly, the fit to the low Re measurements is excellent.

It is also clear that improved resolution of the higher Re measurements is needed to

permit more extensive conclusions concerning the chosen constants.

6.4.2 Wall-normal turbulence intensity

The normalwise turbulence intensity is displayed in the sub-plots of figure 6.12.

The data shown appear to approach a reasonably constant level in the turbulent

wall region as the wall is approached. Figure 6.12a also includes three heavy lines

representing the predicted intensity (6.7) at the appropriate Karman number (the

viscous correction term is Karman number dependent). The constant A3 in (6.7)

is given the value used by Perry & Li (1990) of A3 = 1.60. The predicted curves

lie well above the experimental data; even the trends of the predictions and the

data are in disagreement. It is unlikely that spatial resolution effects explain such

differences. On returning to the calculation of equation (6.7), it was found that

Perry & Li (1990) deliberately neglected an extra term. That is, the prediction for

v′2 should be
v′2

U2
τ

= A3 − f [η] − V (y+), (6.9)

as recognised by Hafez (1991). Now, the new term has the property that f [η] → 0

as η → 0 and it is dependent on large scale geometry. Perry & Li (1990) assume

that η < 0.15 is sufficiently small to neglect f . A Taylor series expansion of f about

η = 0 reveals that f is a linear function for small η and the predicted turbulence

intensity becomes
v′2

U2
τ

= A3 − B3[Πc]η − V (y+). (6.10)

Hafez (1991) gives a convenient formulation for B3[Πc], based on his favorable and

zero pressure gradient boundary layer measurements:

B3 = 4.134 − 9.651Πc + 8.229Π2
c . (6.11)

This gives B3 = 3.386 for channel flow where Πc ≈ 0.083 (Π = 0.25). It should be

noted that Hafez (1991) found A3 = 1.781 was required if the above formulation for

B3 was employed.
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Figure 6.12: Wall-normal distribution of normalwise turbulence intensity, v′2. Each

sub-plot includes equation (6.10) overlaid for Kτ = 1767, 2904 and 4011. The constants

used in each figure are: a) A3 = 1.60 and B3 = 0.00 as suggested by Perry & Li (1990);

b) A3 = 1.60 and B3 = 2.15; c) A3 = 1.781 and B3 = 3.386.
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Figures 6.12b & 6.12c display the modified v′2 prediction (6.10). In figure 6.12c,

the curves plotted correspond to those with constants, B3 = 3.386 and A3 = 1.781

(as suggested by Hafez, 1991). The fit to the data is a clear improvement on the

Perry & Li (1990) equation and it is possible that spatial resolution effects could

account for the near-wall peel off of the data. However, it was noted in §6.2.3 above,

that the large scale dependent constant B1 for channel flow in the u′2 prediction

(6.1) did not follow the form found for boundary layers. This gives rise to the

possibility of equation (6.11) also being inappropriate for channel flow. For this

reason, figure 6.12b is provided which displays equation (6.10) with the universal

constant of Perry & Li (1990), A3 = 1.60 and B3 = 2.15. The latter constant was

simply chosen to fit the lowest Re curve; this assumes spatial resolution effects are

small for the lowest Re. It is suggested that this assumption is most likely inaccurate

so that a slightly smaller value of B3 is probably more correct. Nevertheless, the

trends in the data are best accounted for by the modified v′2 prediction shown in

figure 6.12b with A3 = 1.60 and B3 = 2.15.

Finally, it is interesting to note the similarities between the measurements presented

in figure 6.12 and those of the pipe flow study by Henbest (1983). Both sets of

measurements are qualitatively identical in that they have almost constant levels

(v′2 ≈ U2
τ ) near the wall. The only discrepancy of note is the behaviour near the duct

centreline. It was postulated in §5.5.2 that a greater number of eddies contribute

to the outer flow region of a pipe than a channel flow. This gives a possible reason

for the higher v′2 in the vicinity of the centerline of Henbest’s pipe. That is, more

eddies possibly contribute to v′2 near the centreline of a pipe than a channel flow.



188 CHAPTER 6. SECOND-ORDER TURB. STATS



Chapter 7

Auto-correlation

Of all the analyses of wall-bounded turbulence data presented in the literature to

date, the auto-correlation coefficient appears to be one of the simplest measurements

that is frequently overlooked. Indeed, the author himself (perhaps influenced by the

lack of published data) anticipated little success before the analysis presented in

this chapter was conducted. The reason for the apparent lack of interest in auto-

correlation could be that its behaviour has, in the past, been difficult to interpret.

Recent DNS and PIV studies, however, have provided new information concerning

cohesive features of wall-bounded shear layers. It will be shown here that the auto-

correlation coefficients can provide useful information about the streamwise cohesion

of structures in the flow. Measurements at different wall-normal coordinates shed

light on how cohesive features of the flow vary through the shear layer. Additionally,

it is well-documented (see Hinze, 1959) that the taylor microscale, λ, and integral

length scale, L, can be computed from the auto-correlation coefficient.

The frozen turbulence hypothesis of Taylor (1938) will be invoked in this chapter

to convert auto-correlations from the temporal to the spatial domain. As previ-

ously stated, the convection velocity required for Taylor’s hypothesis is assumed

to be Uc = 0.82UCL in this thesis, after Uddin (1994). Due to the implication of

Sternberg (1967) that the convection velocity should be a characteristic velocity of

the shear layer, it might be expected that Uc = Ub. Figure 7.1 shows that the

bulk and centreline velocities in the channel share a strong linear relationship, with

189
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Figure 7.1: Variation of bulk velocity with centreline velocity. Note that the units of

both axes are ms−1.

Ub = 0.906UCL. Based on the literature review presented in §2.10 it would appear

that a convection velocity of the magnitude of Ub would be too large for boundary

layer flows. It could be argued that this value is appropriate for fully developed

duct flows; however, the important point here is that a constant convection velocity

is employed as opposed to a velocity variant with y. Whether this constant is Ub or

0.82UCL is of little consequence as evidenced by the following discussion of results.

7.1 Auto-correlation measurements

The auto-correlation coefficient, R11(x0), defined by equation (2.56) with application

of Taylor’s hypothesis, was computed for 12 levels of η = 2y/h at three Re spanning

the possible range. The results are plotted in figure 7.2 which consists of three sub-

plots; each plot contains correlation curves at only four η values (levels) for clarity.

Note that results are shown only for the intermediate Reynolds number (105× 103)

for brevity. Coefficients for higher and lower Re are reserved for Appendix H. In

regard to the omitted data, it is sufficient to note that the general behaviour of

R11(x0) is similar for all Re; the extent of this similarity will be discussed later in

this section.
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Figure 7.2: Channel flow auto-correlation coefficient at 12 wall-normal levels for

Re = 105 × 103. Similar plots for other Reynolds numbers are included in Appendix H.
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Figure 7.2a displays the expected trends in R11 as η increases. Very close to the

wall, the correlation decays relatively rapidly with increasing separation x0. The

rate of decay is seen to decrease as the probe traverses through the viscous sublayer

(η = 0.0073 and 0.0754 correspond to y+ = 18 and 181 respectively). This trend

indicates that the characteristic size of the largest cohesive structures in the flow

increases with distance from the wall. This is not unexpected and is consistent with

the attached eddy hypothesis (i.e., sizes of the dominant eddies scale with distance

from the wall). For comparison with attached eddy hypothesis predictions, figure 7.3

is included. This figure was taken from Uddin (1994) as there was insufficient time

for the author to complete the difficult task of generating his own attached eddy

model data. Uddin (1994) computed the auto-correlation profiles using simple Π-

eddies inclined at 45o with core radius, r0 = 0.05δ. Note that ∆ is the largest eddy

size and should be interpreted as the channel half-height, h/2, where channel flow

is concerned.

Returning to figure 7.2 and examining 7.2b reveals that the correlation decay with

x0 does not change as the probe is traversed through the overlap region (η = 0.10

and 0.15 correspond to y+ = 240 and 361 respectively). This is inconsistent with the

attached eddy model, as seen in 7.3b, which shows slower decay of R11 curves up to

y/δ ≈ 0.5); nevertheless it is an interesting result, although the trend is exaggerated

due to non-uniform spacing between levels† . Finally, figure 7.2c shows that the

rate of decay of correlation coefficient begins to increase around η = 0.24 and this

trend continues up to the channel centreline. Interestingly, the correlation never

descends below zero. Figure 7.3c shows that negative correlation is predicted near

y/∆ ≈ 1. However, Uddin’s predictions were made for boundary layer flow where

the turbulence intensity tends to zero toward the edge of the layer. In this case it is

expected that there will be negative correlations as the free stream is approached and

experimental data given in Uddin (1994) confirms this‡ . In a channel flow, as the

centreline is approached, the streamwise normal stress does not tend to zero owing

† The spacing between levels was kept the same as that employed for spectral measurements

where the overlap region was of particular interest.

‡ Velocity fluctuations are extremely weak near the edge of a boundary layer meaning correla-

tions calculated in this region cannot be considered highly accurate.
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Figure 7.3: Attached eddy hypothesis predictions of auto-correlation coefficient at various

levels throughout a turbulent boundary layer. The plot is taken directly from the thesis

of Uddin (1994). ∆ is the boundary layer thickness.
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η is: 2y/h for channel flow; y/∆E in the AEH.

to the centreline presence of eddies ‘attached’ to the channel ceiling. Moreover,

it can be shown through the attached eddy hypothesis that negative correlation is

impossible in fully developed duct flows due to the meeting of eddies from the ceiling

and floor (bed) of the channel.

A quick glance at figures 7.2 and 7.3 might give the overall impression that the

attached eddy model and the experimental data agree reasonably well. However,

plotting the predictions together with the data indicates very poor quantitative

agreement. Figure 7.4 presents measured auto-correlation coefficients for two chan-

nel levels compared with the attached eddy model predictions given by Uddin (1994)

at similar levels. Both near the wall and near the centreline, the predicted auto-

correlation is far less for large separations than the experimental data. Note that

this is not the same trend observed in boundary layer flows. Data provided in Uddin

(1994) displays similarly poor agreement with predictions near the wall, while quite

good agreement is found away from the wall (i.e., y/∆ > 0.3).

Keeping the disagreement with the attached eddy model in mind, further observation

of figure 7.2a reveals that the correlation of velocity does not become negligible un-

til separations of approximately 4-6 channel half-heights. This presents an anomoly

since the characteristic heights of the largest eddies in the flow cannot exceed the

channel half-height. So either the eddy inclination angle is extremely small (i.e.,
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much less than the commonly postulated 45o, which was used in Uddin’s model) or

there is some streamwise coherency between individual eddies. The former is incon-

ceivable given the measurements of Uddin (1994) who shows the eddy inclination

angle is smaller than 45o near the wall, but not nearly small enough to explain the

trends of figure 7.2a. The suggestion of streamwise coherency of eddies is much more

plausible and warrants further discussion here.

Recent experimental (Adrian et al., 2000) and numerical studies (Zhou et al., 1999)

have confirmed the existence of spatially coherent ‘packets’ of vortex structures in

wall-bounded shear flows. Marusic, who most recently developed the attached eddy

model (see Marusic & Perry, 1995), took note of these studies and incorporated

their findings into the model. Marusic (2001) shows that the attached eddy model

gives very good quantitative predictions of the near wall correlation when coherent

streamwise packets of eddies are substituted for the assumed random distribution

of individual eddies. This encouraging result gives further support to the attached

eddy hypothesis, however, extended analysis seems to be required to explain the

channel flow correlation behaviour in the outer flow region.

In this new attached eddy model, Marusic (2001) reverts to the assumption of ran-

domly distributed eddies for those large eddies with length scale exceeding 0.35∆.

This assumption concerning large scale behaviour is supported by measurements

of Adrian et al. (2000) and Ganapathisubramani et al. (2003). These references

show that coherent packets of eddies break down beyond the near-wall region of

a boundary layer. In the case of channel flow, however, it would appear from the

auto-correlation measurements of figure 7.2, that considerable spatial coherency per-

sists much further into the shear layer. That is, packets with much larger eddies

than 0.3∆ may exist in a channel flow. While it is observed that beyond the over-

lap region the extent of coherency (i.e., the characteristic streamwise length of the

largest packets) certainly ceases to increase, the correlation curves in this region de-

cay much more slowly than those of a turbulent boundary layer. Furthermore, the

decay to negligible correlation occurs at separations of over 4–5 channel half-heights

until η = 0.622. This would suggest that coherent packets of eddies exist well into

the outer flow region for channel flow. Incorporating this finding into the modified
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Figure 7.5: The variation of auto-correlation with Reynolds number.

attached eddy model of Marusic (2001) would be an interesting exercise, although

it was unfortunately beyond the scope of this thesis. The author expects that the

results would give much better agreement with experimental data presented in fig-

ure 7.2, as compared with the model results of Uddin (1994). Moreover, it would

further establish the attached eddy model as a useful model for turbulent duct flows

as well as boundary layers.

7.2 Reynolds number and other effects

The auto-correlation plots for all Re are included in Appendix H. However, figure 7.5

is included here to exemplify the effect of Reynolds number. Three sub-plots, each

at different levels in the channel, are presented in this figure. The sub-plots contain

R11(x0) curves at each of the three Re flow cases considered. For all levels the

Re = 60 × 103 correlation distributions lie below those of the higher Re cases. The

two higher Re cases collapse very well at higher levels, while some difference between

the two exists very close to the wall. Although there are noticeable differences over

the Reynolds number range, the arguments of the preceding subsection (where only

the Re = 105× 103 case was considered) remain valid. Furthermore, the arguments



7.2. REYNOLDS NUMBER AND OTHER EFFECTS 197

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 5 10
−0.001

0

0.001

0.002

0.003

2x0

h

R11(x0)

2x0

h

R
1
1
(v

e
l)
−

R
1
1
(r

a
w

)

Re = 60 × 103

2y/h = 0.0754

Figure 7.6: Comparison of the auto-correlation of streamwise velocity and raw hot-wire

voltage. The latter is plotted in white as it overlaps the correlation of velocity. The inset

plot displays the difference between the two curves.

should be consistent throughout and beyond the Reynolds number range.

7.2.1 Experimental and data processing considerations

A common assumption in experimental turbulence measurements employing hot-

wire anemometry, is that the auto-correlation of raw hot-wire voltage is equivalent,

within acceptable margins, to the correlation of velocity. Li (1989) has shown that

differences between the spectrum of streamwise velocity and that of raw hot-wire

voltage are negligible. It is therefore to be expected that the auto-correlation (which

forms a fourier transform pair with the spectra) should follow the same trend. Since

the required data is at hand, a more thorough check on this assumption is found

in figure 7.6. Here the auto-correlation of the raw voltage is plotted in white over

that of the velocity, since the two curves are virtually indistinguishable. Only auto-

correlation at one level (where the turbulence level is relatively high) for one Re is

required as the assumption of linearity is in question; the validity of this assumption

should not depend on Re or position in the flow. The inset plot of figure 7.6 more

clearly illustrates the minute differences between the two correlations.
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Figure 7.7: Comparison of the auto-correlation of streamwise velocity calculated directly

and via spectra. The inset plot displays the difference between the two curves.

Another point of interest to the author was the difference between calculating auto-

correlation by the direct method (as applied here) and that obtained from the inverse

fourier transform of the streamwise velocity spectra. Uddin (1994) employs the lat-

ter method even though it is more complicated and requires more computational

steps than the former. Auto-correlations calculated by both methods are shown

in figure 7.7. The differences between the two are reasonably large, although the

arguments of the preceding section would not be affected by these small differences.

The author sees no reason why the auto-correlation calculated through direct mul-

tiplication of velocities should not be used; taking the inverse FFT of spectra serves

only to introduce error as illustrated in figure 7.7.

7.3 The integral length scale

According to Hinze (1959), the integral time scale, T , “may be considered to be a

rough measure of the longest connection in the turbulent behaviour of u1(t) (stream-

wise velocity)”. Introducing Taylor’s frozen turbulence hypothesis, this time scale

is easily converted to the integral length scale, L. This length scale may also be
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simply defined as the integral of the spatial auto-correlation, that is,

L =

∫

R11(x0)dx0. (7.1)

It is emphasised that this length scale is only regarded as an estimate and will

clearly be affected by the assumption of Taylor’s hypothesis and the selection of

convection velocity. Figure 7.8 displays the variation of L with wall distance (both

axes are non-dimensionalised with channel half-height) at three Re. The trends in

L are consistent across the Re range, while the two higher Re curves are of similar

magnitude, which is higher than that at the lowest Re. This is not surprising

since the same Re trends were observed in the auto-correlation coefficients shown

in figure 7.5. The magnitudes of L, however, are somewhat confusing. Marusic

(2001) successfully used coherent packets of vortices of streamwise length up to

6.7∆ (equivalent to 6.7h/2) in his modified attached eddy model; the maximum L
in figure 7.8 is no greater than 1.2h/2. Now since the modified attached eddy model

of Marusic (2001) is shown to predict the auto-correlation coefficient very well in the

near-wall region, the large difference between the known largest streamwise length

scale and L must be explained.

The author suggests that the integral length scale is not a physical measure of

the largest streamwise length scale in the flow. Just which physical length scale

it does represent will be postulated shortly. Figure 7.9 illustrates the definition
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of the integral length scale for three hypothetical flows. The figure shows that L
is defined such that the area of the rectangle enclosed by the lines x0 = L and

R11(x0) = 1 is equal to the area under the R11(x0) curve. The correlation curves

for flow cases (1) and (2) (analogous to, say, levels η = 0.0073 and 0.15) show that

slower decay of the correlation curve generally results in an increase in L (provided

the correlation curves for small x0 are similar). Now consider a flow case where

the correlation drops off quickly for small x0 then decays slowly to zero (flow case

3 in figure 7.9). In comparison with flow case (2): if AI = AII then L2 = L3. So,

although the largest length scale in the flow has obviously changed, the integral

length scales are the same. L is therefore not necessarily indicative of the largest

scales in the flow. However, returning to figure 7.2: it is observed that, in general,

the auto-correlation curves behave more like flow cases (1) and (2) than (2) and (3).

Therefore for wall-bounded turbulent flows, as stated above, L is generally larger

when correlation curves decay less rapidly with x0. Thus, the behaviour of L through

the channel shown in figure 7.8, while quantitatively irrelevant, qualitatively reflects

the behaviour of the largest streamwise coherent structures.

This last statement means that the integral length scale distribution could be used

as a guide to the length scales of the eddy packets required for a successful attached

eddy simulation. Figure 7.8 indicates that longer streamwise packets are required
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as the largest eddy height increases until this height reaches ≈ 0.3∆ as noted in

the literature (assuming the characteristic height of the eddies scales with wall dis-

tance). Interestingly, this height is about the same as the edge of the overlap region

observed in the mean velocity profiles; this suggests a likely relationship between

packet existence and logarithmic velocity scaling. For larger scales, however, the

required packet size (∼ L) is almost stagnant, decreasing only slightly. This implies

that packets do breakdown slightly in the outer region, though not enough to rein-

troduce the assumption of a random distribution of single eddies. In the turbulent

boundary layer, much more rapid decrease in L is observed as the edge of the layer

is approached. Thus, the earlier findings have been confirmed by the distribution of

L.

7.4 The Taylor microscale

The Taylor microscale, λ is a rather peculiar length scale in turbulence. It cannot

be related to any structures in the flow. Its only use appears to be in isotropic

turbulence where it is used to determine the viscous dissipation rate, ǫ; that is,

ǫ = 15ν
u2

λ2
. (7.2)

In wall-bounded turbulence this equation gives an estimate of the dissipation rate

since the flow is not truly isotropic; although, for the finer scales, the assumption is

arguably permissible. Regardless of its lack of physical relevance, λ is a length scale

which is commonly quoted. In this section, λ will not be calculated, rather, some of

the limitations of calculating this length scale for wall-bounded turbulent flows are

discussed.

The definition of λ is
u2

λ2
=

(

∂u

∂x

)2

. (7.3)

To calculate λ directly from this equation first requires calculation of the derivative

of velocity with respect to time (for fixed anemometer measurements), then invok-

ing Taylor’s hypothesis to determine the spatial velocity gradient. This presents

a potential problem for high Reynolds number turbulence research. In high Re
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laboratory facilities, the smallest scales are typically beyond the spatial resolution

of the anemometer. Moreover, the highest scale frequencies are often beyond ei-

ther the maximum sampling frequency or the maximum frequency response of the

anemometer (i.e., inadequate temporal resolution). With current technology, tem-

poral resolution should be a rare problem, although it should be noted that these

problems would have existed even until the late 20th century. If contributions from

all the scales are not included, the numerical derivative of velocity at a given point

in space/time will be spurious. In fact, it can be shown that the mean gradient of

an insufficiently resolved fluctuating velocity trace will always be less than the true

value.

The effect of inadequate temporal resolution on the square of the velocity gradient

can be easily observed. A velocity trace sampled at 10kHz (primarily used to

determine auto-correlation coefficient; Re = 60 × 103) is used as an example. The

velocity trace sampled at 5kHz is obtained by simpling dropping every second data

point. For the two resulting data sets, the normalised square of the velocity gradient

may be calculated. The results are shown in figure 7.10. It should be noted that

even the higher sampling rate is insufficient to resolve the flow at this Re so that

the two plots of figure 7.10 compare velocity gradients of two unresolved velocity

traces. The plots clearly indicate the large attenuation of velocity gradient with
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reduced temporal resolution. The plots also include values of the mean normalised

gradient (equivalent to U2
c /λ

2) illustrating the effect of poor resolution on λ. These

mean values show that more poorly resolved data results in a higher estimate of the

microscale.

A second method commonly used to determine λ originates from a Taylor series

expansion of the auto-correlation, R11(x0) about x0 = 0. It can be shown that

R11(x0) ≈ 1 − x2
0

λ2
. (7.4)

Therefore a quadratic curve fit to data near x0 = 0 estimates λ. This method is

acceptable on the proviso of high temporal resolution. Just how high the sampling

rate needs to be is illustrated in figure 7.11. The subplots of figure 7.11 present the

auto-correlation coefficient curves in the range 2x0/h = 0 – 0.2 for three Re (note

that the curves shown are all at the level η = 0.0073). The temporal resolution is

almost acceptable for the lowest Re case only. Clearly, the sampling rates for the

higher Re cases are too low and would need to be raised by a factor of at least 3-5

in order to fit equation (7.4) to the data.

It is therefore concluded that any attempt to meaningfully determine λ, and hence

ǫ using equation (7.2), is prohibited in this study by lack of temporal resolution.

Moreover, for typical laboratory Reynolds numbers, a sampling rate of 10kHz has

been shown to under-resolve the streamwise velocity for the purposes of equations

(7.3) and (7.4). As suggested earlier, the required sampling rates are commonly
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achievable with current data acquisition technology; however, since most turbulence

statistics do not require such high sampling rates for convergence, it is common

practice to temporally resolve only a limited range of scales. The aim of this short

discussion is to highlight the need for greater temporal resolution if the Taylor

microscale, or indeed any quantity derived from the velocity gradient, is required.

Since the author sees no reason that the microscale should contribute to the aims

of this thesis, the repeated measurement of velocity traces at higher sampling rates

was not deemed appropriate.



Chapter 8

Conclusions

Revisiting the history of duct flow measurements has revealed that many issues are

yet to be resolved. It is also evident that progress in fluid mechanics has been

relatively slow compared with many other engineering disciplines. With rapidly

advancing measurement technology and computational power, however, accurate

experimental studies, such as those presented in this thesis, will hopefully increase

the rate of progress in this exciting science.

Perhaps one of the most significant outcomes of this project will eventually prove

to be the construction of a new experimental apparatus at Melbourne: the fully

developed, turbulent channel flow facility. The channel was designed with careful

thought, consultation with experts in the field and model testing. Construction was

carried out with utmost care and accuracy. Further, many tests were conducted

to ensure requirements such as two-dimensionality and uniform flow at the inlet

were met. It is hoped that the channel will become a source of further significant

contributions to fluid mechanics beyond those made during this investigation.

Measurement of the turbulence statistics in duct flows is a challenging task which

needs ongoing development at this stage. The hot-wire anemometer has proven

to be a very useful instrument, despite its limitations and difficulties. One of the

problems with hot-wire anemometry is the effect of ambient temperature change.

This was a significant problem during pipe flow measurements that was eliminated

(for the channel study) by the construction of a temperature controlled calibration

205
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tunnel. This facility is another which will hopefully be of use to future workers at

the Walter Bassett Aerodynamics Laboratory.

The experimental practice of matching a X-wire through sinusoidal shaking of the

probe has previously been accomplished through an electronic matching circuit and

a trial-and-error procedure. The matching circuit has been replaced with computer

software developed during this investigation. The software eliminates a potentially

problematic device from the apparatus, giving one less element to check in the in-

evitable event of X-wire complications. Moreover, the software gives non-subjective,

optimal matching.

Before construction of the channel, an existing pipe flow apparatus at Melbourne

was studied. Hot-wire and pitot tube measured mean velocity profiles were recorded

and compared. It was found that the pitot corrections of MacMillan (1954) and a

turbulence intensity correction gave good agreement with the hot-wire data. Fur-

ther, it was shown from first principles that the turbulence intensity correction must

be applied to the pitot tube data. From the corrected pitot tube measurements, the

law of the wall, law of the wake for the pipe flow was found to be

U

Uτ
=

1

0.386
ln

(

yUτ

ν

)

+ 4.21 − 1

3κ
η3 +

0.908

κ
η2(3 − 2η).

A constant cause of concern with the study of nominally two-dimensional channel

flow is the effect of the side-walls on the central flow. To alleviate these concerns,

extensive spanwise measurements were taken from the side-wall to the central (2-D)

flow in the channel. The wall shear stress distributions showed no Reynolds number

dependence on the channel bed, while on the side-wall, wall shear stress increased

with increasing Re. These measurements give an indication of the extent of two-

dimensional flow and help to understand how the flow changes through the channel

cross-section. Streamwise velocity profiles, measured normal to the side-walls, were

also recorded. The results again provide evidence that rectangular ducts of As > 7.0

should have a region of two-dimensional flow. Furthermore, the profiles show that

the law of the wall applies normal to the centre of the side-wall, even though the

surrounding flow is highly three-dimensional.

The development of the flow in the vicinity of the side-walls was also measured
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by recording side-wall velocity profiles at various streamwise stations. These were

required to settle the debate over whether or not the side-wall affected flow increas-

ingly protudes into the two-dimensional central flow with streamwise distance. The

inner flow scaled profiles show little significant change for L/h > 100; the veloc-

ity defect plots indicate that the side-wall flow exhibits a very small region that

continues to develop until the last measuring station. However, it is clear that the

side-wall affected flow reaches a maximum protrusion of approximately 2.9h normal

to the side-wall (24% of the channel width) for all Reynolds numbers; that is, the

side-wall affected flow does not grow indefinitely with streamwise distance.

The above results gave an early indication of full flow development well before the

channel exit, although it was known that central flow measurements were needed.

During analysis of velocity profiles recorded in the central flow at various streamwise

stations, an interesting result was found. The first sign of underdeveloped flow was

a seemingly vertical shift in the inner flow scaled profiles, where the velocity scale,

Uτ , was taken as the fully developed value. It was found that the shift was the result

of changes in local skin friction due to underdevelopment of the flow. By analysing

the shift in velocity profiles, it was concluded that flow development in the channel

centre was only complete for L/h > 130. This casts doubt on a number of studies

claiming full flow development with lengths much less than 130h. More importantly,

this gives a guide for future experimentalists and computationalists as to the length

of duct required.

With full flow development at the centre of the channel bed ensured, all measureable

turbulence statistics were recorded at the most downstream station, L/h = 205.

Mean streamwise velocity profiles displayed the well-known channel flow behaviour;

that is, the law of the wall applies in the inner flow region, while the channel flow

wake is very weak, rising only marginally above the log law. The law of the wall,

law of the wake found to effectively describe the mean velocity data, at all Reynolds

numbers, for y+ > 100 was

U

Uτ

=
1

0.389
ln

(

yUτ

ν

)

+ 4.23 − 1

3κ
η3 +

1

2κ
η2(3 − 2η).

Comparing this formulation with that of the pipe flow reveals only one significant

difference: a difference in the wake parameter, Π, where Π = 0.250 for channel flow
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and 0.454 for pipe flow. A possible reason for this observation was suggested, which

essentially postulates that there is a higher probability of large scale attached eddies

contributing to the mean flow in a pipe than a channel. To the author’s knowledge,

this is the first attempt at a physical explanation of the differences between fully

developed pipe and channel flow.

Streamwise turbulence intensity measurements were also recorded in both pipe and

channel flow. The results show the expected behaviour with no Reynolds number

similarity in the inner flow region. Measurements in both facilities show excellent

collapse onto the analytical formulation derived from the attached eddy hypothesis.

This formulation has previously only been verified for boundary layer flows. It was

extended here to duct flows by the addition of a constant to the outer flow term,

Wg[η], given by

Wg[η] = (B1 − Bd)η
2(3 − 2η) − A1η

2(1 − η)(1 − 2η),

where Bd is the normalised turbulence intensity at the centreline. For pipe flow, the

constants found to fit the data were A1 = 1.03, B1 = 2.25 and Bd = 0.70; while

for channel flow, A1 = 1.10, B1 = 2.20 and Bd = 0.80. Spanwise and normalwise

turbulence intensity measurements in the channel also displayed good agreement

with the attached eddy model predictions. Best fit to the data was given by the

following equations for spanwise and normalwise turbulence intensities respectively:

v′2

Uτ
= 0.885 − 0.525 ln[η] − V (y+)

and

v′2

Uτ
= 1.600 − 2.150η − V (y+),

Once again, this is the first time these results have been applied to turbulent channel

flow. The agreement of all turbulence intensity formulations with the data provides

encouraging support for Townsend’s attached eddy hypothesis in duct flows.

Auto-correlation measurements, which the author believes could reveal more infor-

mation about the flow than previously thought, were recorded at three Reynolds

numbers across the possible range. It has recently become generally accepted that



8.1. FURTHER WORK 209

cohesive ‘packets’ of structures exist close to the wall in turbulent boundary layers.

Auto-correlation coefficients confirm that this phenomenon also occurs in channel

flow. Further, it appears that the breakdown of these long structures occurs at

much larger length scales in a channel than in a boundary layer. This behaviour is

confirmed by the distribution of the integral length scale, L, which decreases at a

relatively slow rate with increasing wall-distance (beyond the turbulent wall region).

Finally, while there remains much to be discovered before the science of wall-bounded

turbulence is well-understood, it is hoped that the work presented here has made

some progress toward achieving that goal. A brief outline of the activities that the

author foresees as important steps toward a better understanding is presented in

the following section.

8.1 Further work

• With respect to measurements near the side-walls of a channel, it would be

interesting to know the effect of increased wall shear stress on the side-walls. At

this time, it is not understood how this would affect the channel bed centre wall

shear stress. Such a study could be conducted by adhering sandpaper to the

channel side-walls and re-measuring perimetric wall shear stress distributions.

The results would be useful to further the current understanding of side-wall

effects on the central flow.

• In the present investigation, flow development has only been studied with

pitot tubes measuring mean streamwise velocity. For a definitive value of

the development length, hot-wire measurements of higher-order turbulence

statistics are required.

• It is not known if the channel flow development results apply to pipe flow also.

The long pipe flow facility available at Melbourne would be an ideal apparatus

in which to study pipe flow development.

• As suggested in Chapter 6, a repeat of hot-wire measurements at the most

downstream measuring location using wires with smaller length is required.

Spatial resolution effects were found to have contaminated the author’s data
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very close to the wall at higher Re. A correction for such effects — or even

simply a better understanding of these effects — would be invaluable.

• Further application of the attached eddy model to channel flow is needed.

Unfortunately, there was insufficient time to complete this work during the

current investigation. It is postulated that adding the ‘packet’ phenomenon

to the model (see Marusic, 2001) could show better agreement between the

predicted auto-correlation and the measured data of Chapter 7.

• Finally, a study of wall roughness effects in the channel should be carried

out. As stated earlier, the channel was constructed with the intention of

studying roughness effects. Roughness effects present a great challenge to the

experimentalist and the facility now available provides the simplest possible

geometry in which to conduct this study. It is now feasible to investigate

a large number of roughness geometries and distributions within a relatively

short time frame.
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Appendix A

Derivation of Prandtl’s smooth

wall resistance formula

The Darcy friction factor was defined in Chapter 2 for pipe flow as

λp =
4τw

1
2
ρU2

b

= 8

(

Uτ

Ub

)2

.

In channel flow, the centreline skin friction was defined as

Cf =
τw

1
2
ρU2

b

= 2

(

Uτ

Ub

)2

.

Thus, the analytical forms of λp and Cf can be found from the calculation of Ub/Uτ .

First, take the log law (2.4),

U

Uτ
=

1

κ
ln

(

yUτ

ν

)

+ A,

which holds for all wall-bounded turbulent flows. Rewriting this log law with outer

flow scaled wall-distance:

U

Uτ
(η) =

1

κ
ln (ηKτ ) + A. (A.1)

Recall that Kτ = ∆Uτ/ν is the Karman number; ∆ is the largest scale in the flow.

Integration over the cross-section provides the definition of non-dimensional bulk

velocity:
Ub

Uτ
=

1

Ax

∫∫

S

U

Uτ
dS, (A.2)

where Ax is the cross-sectional area. At this point the derivations for pipe and

channel flow deviate.
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A.1 Pipe flow

Using polar coordinates, (A.2) becomes

Ub

Uτ
=

1

πR2

∫ 2π

0

∫ R

0

U

Uτ
rdrdθ. (A.3)

Now r is a radial coordinate measured from the pipe centreline. The relationship

between η and r/R is

R − y

R
=

r

R
= 1 − η;

d

dη

( r

R

)

= −1.

Substituting this into (A.3) and assuming the flow is axis-symmetric (i.e., indepen-

dent of θ):

Ub

Uτ
= 2

∫ 0

1

[η − 1]
U

Uτ
(η)dη (A.4)

= 2

∫ 0

1

[η − 1]

[

1

κ
ln (ηKτ ) + A

]

dη

= 2

∫ 0

1

[η − 1]

[

1

κ
ln(η) +

1

κ
ln(Kτ ) + A

]

dη (A.5)

=
2

κ

∫ 0

1

[η − 1] ln(η)dη +

(

2

κ
ln(Kτ ) + 2A

)
∫ 0

1

[η − 1]dη.

The first term must be integrated by parts, while the value of the integral in the

second term is simply −1/2. The result is

Ub

Uτ

= − 3

2κ
+

1

κ
ln(Kτ ) + A.

Since Kτ = RUτ/ν and Re = 2RUb/ν,

Ub

Uτ
=

1

κ
ln

(

Re

2

Uτ

Ub

)

− 3

2κ
+ A.

√

8

λp
=

1

κ
ln

(

Re

2

√

λp

8

)

− 3

2κ
+ A. (A.6)

With some trivial algebra, the final result is achieved:

√

1

λp

= C1 log10

(

Re
√

λp

)

+ C2,

where

C1 =
ln 10√

8κ
; C2 =

1√
8

[

A− 3

2κ
− 1

κ
ln
(

2
√

8
)

]

.
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A.2 Channel flow

Assuming infinite aspect ratio (i.e., flow between parallel plates), (A.2) becomes

Ub

Uτ
=

2

h

∫ h/2

0

U

Uτ
dy. (A.7)

Substituting η = 2y/h gives the very simple equation

Ub

Uτ
=

∫ 1

0

U

Uτ
(η)dη (A.8)

=

∫ 1

0

[

1

κ
ln (ηKτ) + A

]

dη

=

∫ 1

0

1

κ
ln(η)dη +

(

1

κ
ln(Kτ ) + A

)
∫ 1

0

dη.

Integration by parts gives:

Ub

Uτ
= −1

κ
+

1

κ
ln(Kτ ) + A

=
1

κ
ln

(

Re
Uτ

Ub

)

+ A− 1

κ
,

and noting that Kτ = hUτ/2ν and Re = hUb/ν,

Ub

Uτ
=

1

κ
ln

(

Re

2

Uτ

Ub

)

+ A− 1

κ
√

2

Cf
=

1

κ
ln

(

Re

2

√

Cf

2

)

+ A− 1

κ
.

Further trivial algebra leads to the final result:

√

1

Cf

= C3 log10

(

Re
√

Cf

)

+ C4,

where

C3 =
ln 10√

2κ
; C4 =

1√
2

[

A− 1

κ
− 1

κ
ln(2

√
2)

]

.
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Appendix B

The Blasius’ power laws

Blasius (1911) found the following empirical power law fitted the available pipe flow

resistance data quite well:

λp = 0.3164Re−
1

4 . (B.1)

This relationship is commonly referred to as the Blasius resistance law for smooth

pipes. It can be shown that this resistance law implies a power law in the mean

velocity distribution. That is,
U

Uτ

= α(y+)β.

It will be shown here that the Blasius resistance law (B.1) stipulates the constant

values of α = 8.562 and β = 1/7.

From Appendix A it is known that the non-dimensional bulk velocity in a pipe flow

is given by
Ub

Uτ
= 2

∫ 0

1

[η − 1]
U

Uτ
dη.

Substituting in the assumed mean velocity power law and integrating;

Ub

Uτ
= 2

∫ 0

1

[η − 1]α(y+)βdη

= 2α

∫ 0

1

[η − 1](ηKτ)
βdη

= 2αKβ
τ

∫ 0

1

[ηβ+1 − ηβ]dη

= 2αKβ
τ

[

1

β + 1
− 1

β + 2

]

. (B.2)
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Returning to the Blasius resistance law (B.1):

1

λp
=

1

8

(

Ub

Uτ

)2

= 3.1606Re
1

4

1

8

(

Ub

Uτ

)2

= 3.1606(Kτ)
1

4

(

2
Ub

Uτ

)
1

4

(

Ub

Uτ

)
7

4

= 8 · 2 1

4 · 3.1606(Kτ)
1

4

(

Ub

Uτ

)

= 6.9926(Kτ)
1

7

Substituting for Ub/Uτ given by (B.2) then gives:

2αKβ
τ

[

1

β + 1
− 1

β + 2

]

= 6.9926(Kτ)
1

7 .

Equating coefficients and exponents achieves the desired result:

β =
1

7
; 2α

[

1

β + 1
− 1

β + 2

]

= 6.9926 → α = 8.5623.



Appendix C

The MacMillan wall proximity

correction

y
dp

∆U
U

y
dp

∆U
U

0.5000 1.5000e-02 0.8874 3.9872e-03

0.5135 1.4003e-02 0.9949 2.9742e-03

0.5242 1.3017e-02 1.0971 2.1945e-03

0.5431 1.1980e-02 1.1993 1.5446e-03

0.5619 1.0994e-02 1.2966 1.0762e-03

0.5834 9.9824e-03 1.3982 6.5967e-04

0.6130 8.9706e-03 1.4950 3.9878e-04

0.6426 8.0107e-03 1.5972 2.4154e-04

0.6830 6.9987e-03 1.6993 1.3615e-04

0.7000 6.6679e-03 1.7773 8.3026e-05

0.7368 5.9864e-03 1.8983 2.9201e-05

0.7960 5.0519e-03 2.0000 0.0000e-00

Table C.1: Tabulated data of the MacMillan (1956) wall proximity correction. ∆U is

the correction to be applied to the measured velocity, U .
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Appendix D

Convergence test
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Figure D.1: Running average of turbulence intensity measured with a hot-wire at

Re = 64 × 103. The broken line indicates the number of samples acquired for final

results. The sample frequency was 200Hz. Averages are plotted for y/h =: a) 0.0030; b)

0.0093; c) 0.0380; d) 0.0748; e) 0.1412; f) 0.2657; g) 0.5000.
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Appendix E

Convergence test
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Figure E.1: Running average of turbulence intensity measured with a hot-wire at

Re = 64 × 103. The broken line indicates the number of samples acquired for final

results. The sample frequency was 200Hz. Averages are plotted for y/h =: a) 0.0030; b)

0.0093; c) 0.0380; d) 0.0748; e) 0.1412; f) 0.2657; g) 0.5000.
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Appendix F

Matching circuit behaviour

The mathematical description of the matching box function was given by equations

(3.1) & (3.2):

Eu = K1(E1 − EA1) +K2K
′
2(E2 −EA2) (F.1)

Ev = K1(E1 − EA1) −K2K
′′
2 (E2 −EA2).

By sinusoidally shaking the X-wire in the horizontal direction, the constant K ′′
2 can

be adjusted (through an amplifier) until Ev < 0.05Eu. In practice, it is commonly

observed that when matching occurs, the resultant signals, Eu and Ev, are out of

phase by 90o. The reason for this can be explained mathematically as shown in this

appendix.

Firstly, rewrite the above equations as

Eu = K1E
∗
1 +K3E

∗
2 (F.2)

Ev = K1E
∗
1 −K4E

∗
2 . (F.3)

For horizontal shaking, the outputs from the hot-wire circuits of each wire, E∗
1 and

E∗
2 , should be in phase. However, in reality, there will be a slight phase lag between

the two outputs. Thus, the HWA outputs will be assumed to be of the form

E∗
1 = A1 sin(ωt) = |E1 −EA1| sin(ωt) (F.4)

E∗
2 = B1 sin(ωt+ φ) = |E2 −EA2| sin(ωt+ φ), (F.5)
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where ω is the frequency of shaking, A1 and B1 are the amplitudes of each output

and φ is the phase lag. Note that the mean output voltages are irrelevant to the

matching process, so they are set to zero here. Also, the amplitudes A1 and B1

should be very similar if the HWA circuits are of the same design and construction.

Substituting these forms into equations (F.3) & (F.3) gives

Eu = K1A1 sin(ωt) +K3B1 sin(ωt+ φ),

Ev = K1A1 sin(ωt) −K4B1 sin(ωt+ φ).

Including the double angle trigonometric identity, sin(ωt) = sin(ωt) cos(φ)+sin(φ) cos(ωt)

with cosφ ≈ 1,

Eu = (K1A1 +K3B1) sin(ωt) +K3B1 sin φ cos(ωt), (F.6)

Ev = (K1A1 −K3B1) sin(ωt) −K3B1 sinφ cos(ωt). (F.7)

Now, it can be shown that

G sin t+H cos t = R cos(t− α),

where R =
√
G2 +H2 and tan(α) = G/H . Applying this relationship to equations

(F.7) & (F.7),

Eu =
√

(K1A1 +K3B1)2 + (K3B1)2 sin2 φ cos(ωt− αu),

Ev =
√

(K1A1 −K4B1)2 + (K4B1)2 sin2 φ cos(ωt− αv).

If φ is small, then sin2 φ ≈ 0 so that

Eu =
√

(K1A1 +K3B1)2 cos(ωt− αu)

Ev =
√

(K1A1 −K4B1)2 cos(ωt− αv),

where,

tanαu =
K1A1 +K3B1

K3B1 sin φ
; tanαv =

K1A1 −K4B1

K4B1 sinφ
.

Since the aim of the matching circuit is to minimise the amplitude of Ev during

horizontal shaking, it is clear that K4B1 should be set as close as possible to K1A1.

That is, the X-wire will be matched when

K4 =
A1

B1

K1 =
|E1 −EA1|
|E2 −EA2|

K1, (F.8)
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or alternatively,

K ′′
2 =

A1

B1

K1

K2

. (F.9)

Now, if the wires are matched and φ is very small, then it can be seen that the

phases of Eu and Ev will be

αu → π

2
; αv → 0. (F.10)

Thus, the matching X-wire outputs, Eu and Ev are out of phase by 90o.

In the case of vertical shaking, where Eu should be minimised, the analysis is iden-

tical that given above, with one major difference: during vertical shaking the two

X-wire outputs are out of phase by approximately 180o. Hence, simply letting

φ = π + φv in (F.5) & (F.5) gives

E∗
1 = A2 sin(ωt) = |E1 − EA1| sin(ωt)

E∗
2 = −B2 sin(ωt+ φ) = − |E2 − EA2| sin(ωt+ φ).

Performing the same analysis as given above delivers the result that matching is

achieved when

K3 =
A2

B2

K1 =
|E1 −EA1|
|E2 −EA2|

K1, (F.11)

or alternatively,

K ′
2 =

A2

B2

K1

K2

. (F.12)

Once again it can be shown that the two outputs, Eu and Ev will be out of phase

by 90o when matched.

Finally, if the two HWA circuits behave similarly, then A1 ≈ B1. Also, if the

shaking amplitude is the same in both directions, A1 ≈ B1 ≈ A2 ≈ B2. Therefore,

in practice, matching should be achieved when K2K
′′
2 ≈ K1 ≈ K2K

′
2; that is,

the gains K ′′
2 and K ′

2 should always be of similar magnitude. Further, K1 is an

arbitrary constant and may be set to unity so that K2K
′′
2 ≈ K2K

′
2 ≈ 1 should

provide the desired result. It should be noted that this analysis does not suggest that

K ′′
2 , K

′
2 must be set to the values given, rather, it is intended to give an approximate

indication of the expected gains which should successfully match a X-wire.
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Appendix G

Extended overlap region analysis

y+ η κ A # Obs.

120 0.10 0.390 4.31 17

120 0.11 0.388 4.25 21

120 0.12 0.386 4.21 26

120 0.13 0.385 4.18 31

120 0.14 0.383 4.11 36

120 0.15 0.381 4.05 41

120 0.16 0.379 3.98 46

150 0.10 0.391 4.36 11

150 0.11 0.389 4.29 14

150 0.12 0.387 4.23 18

150 0.13 0.386 4.20 22

150 0.14 0.382 4.08 26

150 0.15 0.381 4.04 31

150 0.16 0.379 3.95 36

Table G.1: Pitot tube measurements in pipe flow: the effect of varying overlap region

limits on the empircally derived log law constants.
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y+ η κ A # Obs.

80 0.07 0.393 4.55 11

80 0.08 0.394 4.63 14

80 0.09 0.395 4.65 19

80 0.10 0.392 4.59 24

80 0.11 0.393 4.60 29

80 0.12 0.391 4.56 34

80 0.13 0.390 4.52 35

80 0.14 0.389 4.49 38

120 0.10 0.396 4.71 14

120 0.11 0.396 4.72 18

120 0.12 0.394 4.64 23

100 0.13 0.392 4.58 24

120 0.14 0.389 4.49 27

120 0.15 0.384 4.30 32

120 0.16 0.382 4.24 37

150 0.10 0.389 4.46 8

150 0.11 0.396 4.70 11

150 0.12 0.390 4.52 15

150 0.13 0.388 4.44 16

150 0.14 0.386 4.38 18

150 0.15 0.379 4.13 23

150 0.16 0.378 4.09 28

Table G.2: Hot-wire measurements in pipe flow: the effect of varying overlap region

limits on the empircally derived log law constants.
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y+ η κ A # Obs.

120 0.10 0.400 4.67 14

120 0.12 0.395 4.53 19

120 0.15 0.392 4.43 25

120 0.17 0.389 4.32 31

120 0.20 0.387 4.23 43

120 0.25 0.386 4.21 49

120 0.30 0.383 4.12 61

120 0.35 0.382 4.07 67

120 0.40 0.380 4.01 73

150 0.10 0.392 4.39 9

150 0.12 0.393 4.46 13

150 0.15 0.391 4.39 18

150 0.17 0.388 4.28 23

150 0.20 0.386 4.19 35

150 0.25 0.385 4.17 41

150 0.30 0.383 4.08 53

150 0.35 0.381 4.04 59

150 0.40 0.380 3.98 65

Table G.3: Pitot tube measurements in channel flow: the effect of varying overlap region

limits on the empircally derived log law constants.
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y+ η κ A # Obs.

80 0.07 0.407 4.75 18

80 0.08 0.403 4.65 26

80 0.09 0.400 4.54 27

80 0.10 0.399 4.52 34

80 0.11 0.396 4.45 43

80 0.12 0.395 4.41 44

80 0.13 0.394 4.39 49

80 0.14 0.392 4.35 50

80 0.15 0.390 4.26 56

120 0.10 0.397 4.45 20

120 0.12 0.395 4.42 29

120 0.15 0.390 4.25 41

120 0.17 0.387 4.18 42

120 0.20 0.384 4.06 48

120 0.25 0.379 3.88 57

120 0.30 0.378 3.84 66

120 0.35 0.376 3.79 67

120 0.40 0.374 3.72 73

150 0.10 0.394 4.35 15

150 0.12 0.394 4.38 23

150 0.15 0.390 4.28 34

150 0.17 0.388 4.19 35

150 0.20 0.384 4.05 41

150 0.25 0.378 3.83 50

150 0.30 0.377 3.82 59

150 0.35 0.375 3.76 60

150 0.40 0.373 3.68 66

Table G.4: Hot-wire measurements in channel flow: the effect of varying overlap region

limits on the empircally derived log law constants.



Appendix H

Additional auto-correlation data

Auto-correlation coefficient plots left out of Chapter 7 for brevity are presented in

this Appendix. In Chapter 7 only the auto-correlation curves for the Re = 105×103

case were included. Here data for all three Reynolds numbers, Re = 60, 105, 190×103

are displayed (the Re = 105 × 103 case is repeated for completeness).
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Figure H.1: Channel flow auto-correlation coefficient at 12 wall-normal levels for Re =

60 × 103.



243

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

R11(x0)

0.0073
0.0181
0.0346
0.0754

R11(x0)

0.1000
0.1145
0.1310
0.1500

2x0

h

R11(x0)

0.240
0.387
0.622
1.000

2y/h
(a)

(b)

(c)

Figure H.2: Channel flow auto-correlation coefficient at 12 wall-normal levels for Re =

105 × 103.
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Figure H.3: Channel flow auto-correlation coefficient at 12 wall-normal levels for Re =

190 × 103.


