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Abstract

Melanomas are disease entities driven in part by the mitogen activated protein kinase (MAPK) pathway. The TCGA network recently

defined four genetic subtypes based on the most prevalent significantly mutated genes, including mutant BRAF, mutant RAS (N/H/K),

mutant NF1, and Triple wild-type melanoma (harboring none of the aforementioned mutations, but instead includes KIT, GNA and

GNAQ mutations).

The successful development of kinase inhibitors marked a milestone in the treatment of metastatic melanoma. Combination treatment

with a BRAF- and MEK-inhibitor is the current standard of care for inoperable stage IIIC/IV BRAF-mutated melanoma. Recent data

demonstrate excellent long-term outcome, especially in patients with normal baseline LDH levels, and confirm that there is a subset of

BRAF inhibitor-naive patients who experience durable responses without progression on combination treatment. In the future, adding a

third compound based on individual genetic alterations might further improve the outcome of targeted therapy.

� 2016 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
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Introduction

In the past decade, revolutionary insights were made in

understanding and treating melanoma. The identification of

the critical role of the mitogen activated protein kinase

(MAPK) pathway and development of targeted therapy

dramatically changed prognosis and overall survival (OS)

of metastatic melanoma patients.1,2 Novel techniques

such as next generation sequencing enable the identification

of new cancer “driver” genes and their mutations. These

new insights contribute to prognostication and create

opportunities for development of innovative mutation-

directed therapies.

Sequencing data have shown that the median mutation

rate in melanoma is >10 mutations/Mb, the highest of all

cancers so far analyzed by The Cancer Genome Atlas

(TCGA) network.3 Nevertheless, the number of mutations

differs according to the site, with the lowest rate in primary

melanomas on non-ultraviolet-exposed non-glabrous skin

and the highest in patients with history of chronic sun expo-

sure.4 Genetic alterations in melanoma oncogenes and tu-

mor suppressor genes commonly cause constitutive

signaling through RAS-RAF-MEK-ERK, also known as

the MAPK pathway.5,6 This cascade concludes in activation

of ERK1 and ERK2, which can then translocate to the nu-

cleus and regulate MITF, c-MYC and other transcription

factors, resulting in alteration of cell proliferation and

senescence (Fig. 1).6 Less frequently identified, yet also

relevant are genetic aberrations in other cellular pathways,

such as cell cycle control (CDKN2A), apoptosis (PT53) and

the PI3K pathway (TERT, PTEN).7e10 In 2015, TCGA
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Network suggested a new genomic classification for mela-

noma based on the most prevalent significantly mutated

genes: mutant BRAF, mutant RAS, mutant NF1 and triple

wild-type (triple wt) melanoma.7

Genetic landscape of mutations

The most common genetic alteration, accounting for

around 50% of all somatic mutations in cutaneous mela-

noma, is activating mutation of serineethreonine kinase

BRAF gene.7,8,11 This causes constitutive activation of

BRAF protein, which results in increased proliferation

and survival of melanoma cells.12 In more than 90% of

cases valine is substituted with glutamate at codon 600

(V600E), less frequently with lysine (V600K) or arginine

(V600R).5,7 Interestingly, patients with BRAF mutations

are generally younger. It is most frequent in cutaneous mel-

anoma, while it’s detected in only 10e20% of mucosal

melanoma.5

RAS is a member of the guanosine 50-triphosphatase

(GTP)-binding protein family. Under normal conditions,

RAS activation is induced by extracellular signaling and

is reversible. It’s driven by guanine nucleotide exchange

factor, which results in exchange of protein-bound guano-

sine diphosphate (GDP) to triphosphate (GTP). Mutations

in the RAS gene impair inactivation and keep RAS protein

in the activated state.13 The active form, RAS-GTP, initiates

phosphorylation of RAF and subsequently MEK and ERK

and leads to the activation of the MAPK pathway.13 This

specific structure causes difficulties in targeting; hence,

RAS was named the “undruggable” target.13 RAS mutations

are found in around 30% of melanomas and usually affect

NRAS (Q61R, Q61K, and Q61H).7,11,14 RAS not only acti-

vates the MAPK pathway, but also has activators and effec-

tors among other cellular pathways such as

phosphatidylinositol-3 kinases (PI3K), T-Cell Lymphoma

Invasion and Metastasis 1 (TIAM1) and others.13

The third most frequently identified genetic mutation is

located in the NF1 tumor suppressor gene, which serves as

a regulator of RAS through GTP-ase activating protein.

Due to an inactivating mutation, the regulative properties

of NF1 are lost, which results in continuous activation of

RAS.15 This mutation was observed in 14% of samples

analyzed by TCGA,7 and in 46.4% of BRAF and NRAS

Figure 1. (Oncogenes shown in green, tumor suppressors shown in red) Extracellular signals such as EGF (epidermal growth factor), FGF (fibroblast growth

factor), PDGF (platelet derived growth factor) or HGF (hepatocyte growth factor) bind to corresponding receptors (EGFR, FGFR, PDGFR and c-Myc, respec-

tively) and induce signal transduction, which results in activation of RAS (exchange of protein-bound GDP (inactive form) to GTP (active form), accelerated

by guanine nucleotide exchange factors).13 NF1 negatively regulates RAS by increasing RAS GTPase activity and hence turning RAS-GTP to RAS-GDP.8

Active RAS leads to activation of BRAF (dimerization of non-mutated BRAF; BRAF V600E mutated protein can be active as a monomer) and subsequently

MEK. This cascade concludes in activation of ERK1 and ERK2, which can then translocate to the nucleus and regulate MITF, c-MYC and other transcription

factors, resulting in alteration of cell proliferation and senescence.6 Receptor tyrosine kinases (RTK) or RAS-GTP can activate the PI3K-AKT pathway, while

PTEN is a negative regulator, mutation of which leads to constitutive activation of AKT and is followed by changes in cell growth, motility and invasion.124
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wt melanomas analyzed by Krauthammer et al.8 Interest-

ingly, around 60% of these melanomas harbored co-

mutations in RAS-opathy genes (RASA2, PTPN11, SOS1,

RAF1 and SPRED1),8,16 which are known to be linked

with Noonan, Leopard and Legius syndromes.8

Melanomas referred to as triple wt show none of the

three previously mentioned mutations. This subgroup in-

cludes GNAQ, commonly found in uveal melanoma, or

KIT mutations. Interestingly, only 30% of triple wt mela-

nomas harbor a UV signature, compared to over 90% of

BRAF-, RAS- and NF1-subtypes, but more copy number

changes and complex structural arrangements are identified

in triple wt.7

Identifying mutations open opportunities for the devel-

opment of new therapeutic agents, identification of predic-

tive biomarkers and aid in understanding of melanoma

genesis. Shain et al. evaluated genetic alterations in 37 pri-

mary melanomas and their adjacent antecedent lesions.17

Interestingly, histologically benign lesions harbored

V600E mutations only, while intermediate lesions harbored

additional BRAF as well as NRAS mutations. Compared to

benign and intermediate lesions, more Telomerase reverse

transcriptase (TERT ) promoter and copy-number alter-

ations were identified in melanoma, whereas Phosphatase

and tensin homolog (PTEN ) and tumor protein p53

(TP53) mutations were only found in advanced primary

melanomas.7,17 This suggests that BRAF mutations are suf-

ficient for nevus formation, but additional oncogenic alter-

ations are needed for malignant transformation.

Driver mutations as prognostic factors in melanoma?

One of the major questions raised in the last years is

whether the identification of driver mutations has prog-

nostic or predictive clinical significance.

Long et al. were initially able to demonstrate an associ-

ation between BRAF mutations and inferior clinical

outcome in a prospective cohort of 197 Australian mela-

noma patients, albeit with no influence on disease free sur-

vival (DFS).18 Similarly, NRAS mutant melanoma patients

were also reported to have impaired survival with a higher

incidence of central nervous system (CNS) involvement in

a retrospective setting; however no difference in overall

survival (OS) between BRAF mutated and wt melanomas

was noted.19

Since then, several studies have been conducted, none of

which were able to show an influence of BRAF or NRAS

mutation status on OS.20e26

A subsequent prospective Australian study (n ¼ 308)

was not able to confirm the previously reported impact on

OS of BRAF mutant melanoma patients. However, one-

year survival from diagnosis of metastasis was significantly

longer for patients with BRAF mutant melanoma treated

with a kinase inhibitor than those without (29%,

p < 0.001), or for BRAF wt patients (37%, p < 0.001).27

Similarly, Frauchiger et al. confirmed that BRAF mutant

melanoma patients treated with selective kinase inhibitors

have a statistically significant longer OS compared to wt

patients (OS 14.5 vs 10.6 months, p ¼ 0.14).24

Relating to immunotherapy, it has recently been shown

that harboring an NRAS mutation increases the response

rate (RR) to checkpoint inhibitors with no significant

impact on OS and progression-free survival (PFS).28,29 A

recent retrospective study affirmed this assumption:

although mutational status had no influence on OS in

anti-CTLA-4 treated patients, a non-statistically-

significant trend for superior clinical outcome in NRAS

mutant patients was observed.30

As outlined previously, the third most commonly re-

ported mutation is the inactivating mutation of NF1, which

shows similar OS compared to BRAF-mutant, NRAS-

mutant or triple wt melanomas.8 No correlation between

the loss of NF1 and response to treatment with MEK or

ERK inhibitors has been noted in vitro so far.8 Neverthe-

less, further large prospective clinical trials are needed to

address this issue.

Besides these most commonly observed mutations in

melanoma, other features seem to have prognostic impact.

TERT promoter mutations are associated with impaired

OS in cutaneous compared to acral, mucosal and uveal mel-

anomas31 and are present in approximately 70e80% of

BRAF-, NRAS- and NF1- compared to 7% of triple wt mel-

anomas.7 Furthermore, they were found in 61% of fast-

growing compared to 32% of slow-growing melanomas

(p ¼ <0.0001).32 Thus, it was suggested that the presence

of TERT promoter mutations can partly explain a more

aggressive clinical outcome, associated with an accelerated

growth rate. In contrast, BRAF and NRAS hotspot mutations

have not been found to be associated with increased

growth. Therefore, TERT promoter mutation may serve as

a future biomarker to identify aggressive tumors, which

could benefit from adjuvant treatment.

The prognostic significance of PTEN promoter methyl-

ation in clinical outcome of melanoma patients was

recently elucidated.9,33 In a cohort of 392 melanoma pa-

tients, PTEN was identified as an independent predictor

for impaired survival, highlighting potential therapeutic op-

portunities in this field.9

In summary, the mutation status alone does not seem to

be sufficient to predict the outcome of advanced melanoma

patients and cannot be used as an independent prognostic

factor. However, the identification of other genetic features

and their eventual prognostic significance are fundamental

steps in the field of melanoma management.

Multi-kinase inhibitors

Tyrosine kinase inhibitors

Among targeted therapies, monoclonal antibodies

(mAbs) and small-molecule inhibitors (SMIs) of multiple

tyrosine kinase activity present as ideal candidates for
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melanoma treatment.34 Tyrosine kinase inhibitors (TKIs)

block vital pathways in the context of cell growth and sur-

vival via binding to small intercellular molecules, which are

common phosphorylation sites of kinases (most commonly

tyrosine or serineethreonine kinases) that are either associ-

ated with growth factor receptors or downstream signaling

molecules. Several clinical trials have been performed over

the last years either with single agents or in combination

with chemotherapy. However, the demonstrated clinical

benefit with multi-targeted tyrosine kinase inhibitors

(mTKIs) was limited compared to selective BRAF and

MEK inhibitors.

Sorafenib

Sorafenib is an orally available, broad-spectrum mTKI

with anti-proliferative and anti-angiogenic effects.35 Sora-

fenib targets several RAF isoforms as well as other receptor

tyrosine kinase inhibitors (RTKI) like vascular endothelial

growth factor (VEGFR 2/3), platelet-derived growth factor

receptor beta (PDGFR-b), fms-related tyrosine kinase 3

(FLT-3) and c-KIT.30,35

In clinical trials with advanced melanoma patients, sor-

afenib showed no clinical benefit as a single agent.36,37 In

the context of evaluating combination therapies, Flaherty

et al. presented encouraging preliminary results of sorafe-

nib combined with carboplatin and paclitaxel (CP).38 The

combination showed a 37% partial response (PR) rate in

the interim analysis while another 48% demonstrated stable

disease (SD).38 Nevertheless, phase III clinical trials failed

to show significant benefit.39,40

In addition, several phase I/II studies with sorafenib in

combination with dacarbazine (DTIC) or temozolomide

(TMZ) showed low anti-tumor activity and mainly achieved

SD.41e43 The beneficial 45.5% overall metabolic RR (PER-

CIST criteria) in a recent clinical trial did not result in last-

ing objective responses.44 Sorafenib in combination with

CP in uveal melanoma patients also failed to achieve clin-

ical benefit with the study being terminated early (PFS 4

months, OS 11 months, no confirmed objective tumor re-

sponses by RECIST criteria).45 However, the results of

the STREAM study in chemo-naive metastatic uveal mela-

noma patients are still pending.46

In general, sorafenib monotherapy and combination

therapies had a manageable toxicity profile, with the major-

ity of adverse events (AEs) being mild.36,37,39e41,47 Severe

adverse events (SAE) were reported in 51% of patients,

with the most common being hematologic toxicities.47

The most commonly observed drug-related AEs under sor-

afenib monotherapy were skin reactions (rash and palmar-

plantar erythrodysesthesia syndrome), gastrointestinal and

constitutional disorders (corresponding grade 1e2 inten-

sity).36,37 Combination treatments with sorafenib led to

hematotoxicity, fatigue, sensory neuropathy and skin

reactions.39,40,43

Based on the limited activity of sorafenib, doubts were

raised concerning the potential of RAF inhibition as a

therapeutic option. Therapeutic failure of sorafenib in

advanced melanoma was likely due to an inability to selec-

tively achieve RAF inhibition at maximum tolerated doses.

Subsequent trials with selective BRAF inhibitors (BRAFi)

followed, changing the era of melanoma treatment.

Pazopanib

Pazopanib is another orally-bioavailable, adenosine tri-

phosphate (ATP)-competitive TKI with selectivity for

VEGFR-1, -2, and -3, FDA-approved for renal carcinoma

and soft tissue sarcoma in 2009.48 Furthermore, it blocks

the PDGFR-a and eb as well as c-KIT.

Clinical trials in melanoma patients with pazopanib are

limited. None of the studies published so far reported sig-

nificant clinical benefit in advanced BRAF wt melanoma

patients.49,50 A recent single-center pilot study investi-

gating the metabolic response, the early cytokine and che-

mokine profile and the histological findings of metastatic

tissue under pazopanib and paclitaxel in the second line

setting showed moderate efficacy.51 17 patients with stage

III or IV melanoma were included. 5 out of 14 evaluable

patients showed partial metabolic response (using PRE-

CIST 1.0 criteria) after 10 days of pazopanib monotherapy.

No response was achieved at day 70 of combination treat-

ment. The median progression-free survival (mPFS) was

70 days, the median overall survival (mOS) 208 days.51

The drug was generally well tolerated with 87% of all AEs

being mild to moderate, such as loss of appetite, weakness,

skin reactions, bone marrow function impairment and neuro-

logical symptoms. 13% of AEs were grade 3 or grade 4.

Other multi-kinase inhibitors

Axitinib, another tyrosine kinase inhibitor against

VEGFR-1, -2, -3, PDGFR-b and c-KIT, showed promising

activity in combination with carboplatin and paclitaxel in

wt metastatic melanoma patients in a phase II clinical study

(RR 18.8%, 6-month-PFS of 33.9%).52 However, these

result warrants further testing in randomized phase III tri-

als. On the other hand, the multi-kinase inhibitor Lenvatinib

(E7080) achieved limited responses both in monotherapy

and in combination with TMZ in the phase I setting.53

KIT inhibitors

The KIT receptor protein tyrosine kinase is a transmem-

brane protein consisting of extra- and intracellular binding

domains and a signal transmembrane region. Most KIT mu-

tations are located in exon 11, which codes for the juxta-

membrane domain, and in exon 13, which codes for a

kinase domain.

Although amplifications or activating mutations of KIT

are generally rare in melanoma, they are more commonly

found in mucosal, acral and in melanomas arising from

chronically sun damaged-skin.54 As the number of
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advanced melanoma patients harboring KIT mutations is

low, the clinical experience of KIT inhibitors is limited.

The most widely investigated KIT inhibitor is imatinib,

which is FDA-approved for gastrointestinal stromal tumors

(GIST) and dermatofibrosarcoma protuberans.

Out of 51 KIT mutant melanoma patients in a phase II

clinical trial, 28 patients were treated with imatinib

400 mg orally bid. The overall response rate (ORR) was

16% with a median OS of 46.3 weeks.55 In a phase II clin-

ical trial of 43 KIT mutant melanoma patients, 23 had an

ORR (10 patients achieved PR and 13 SD).56 1-year OS

was 51%, 6-month PFS rate was 36.6%. The best predictor

of treatment response in both trials was the presence of mu-

tation in c-KIT exons 11 and 13. Most frequently observed

adverse events were hematologic toxicities (leukopenia and

anemia), fatigue, nausea, rash and periorbital edema.

Nilotinib is a BCR-ABL1 TKI that was rationally de-

signed to have increased potency and selectivity for the

oncogene BCR-ABL1. It also inhibits c-KIT with greater

potency than imatinib and is effective against several

known c-KIT mutations in vitro.57,58 Nilotinib achieved a

satisfactory disease control rate (DCR) in a phase II clinical

study of twenty-seven melanoma patients that had pro-

gressed on imatinib or in patients with brain metastases

(4-month DCR 27% and 12.5%, respectively).59

The effect of nilotinib (400 mg bid) was investigated in

another open-label single-arm clinical trial (TEAM Trial,

submitted for publication).60 Similarly, among 42 patients

in the nilotinib arm, the ORR was 26.2% (95% CI,

13.9%e42.0%; PRs, n ¼ 11; complete response (CR),

n ¼ 0). The median PFS was 4.2 months (95% CI,

2.1e5.8 months). At 6 months, the estimated PFS rate

was 34.6% (95% CI, 20.2%e49.3%).

Monoclonal antibodies

Bevacizumab

The prognostic implications of overexpression of VEGF

in clinical outcome and disease progression in melanoma

remain controversial.61 VEGF is assumed to be the domi-

nant growth factor in angiogenesis.62 The relevance of

angiogenesis/neoangiogenesis in tumor metabolism, prolif-

eration and the tumor microenvironment is unquestioned,63

thus the inhibition of the VEGF pathway offers a promising

therapeutic approach.

Bevacizumab, a monoclonal antibody against VEGF-A,

was the first anti-angiogenic agent on the market. It has

been approved for breast neoplasms, non-small cell lung

cancer, renal, ovarian, cervix and colorectal cancer.64 Ac-

cording to a recently published phase II clinical study,

nab-paclitaxel in combination with bevacizumab showed

an ORR of 36% in unresectable stage III and IV melanoma

patients (n ¼ 50) in a first line setting.65 The following

multicenter phase II clinical trial combining temozolomide

(TMZ) with bevacizumab showed limited efficacy.66 On the

other hand, current phase I/II clinical trials of bevacizumab

in combination with ipilimumab, erlotinib or imatinib

demonstrated no synergistic effect.67e69 Nevertheless,

well-controlled phase III clinical trials are warranted to

further investigate these results.

Tendency in clinical research opts in favor of combina-

tion therapies, since a certain immunomodulatory effect of

TKIs seems to be existent.70,71 Summarizing the literature,

multi-targeted TKI are not established as standard treat-

ment of advanced melanoma but are still discussed as po-

tential second line options in BRAF- and NRAS wt

melanoma patients.93

Etaracizumab

Etaracizumab (MEDI-522), a monoclonal antibody

against Integrin alphavbeta3, resulted in similar OS and

PFS rates when compared to combination with DTIC

(12.6 versus 9.4 months, respectively)72 and was not further

investigated in a phase III setting.

Intetumumab

The anti-aV-integrin monoclonal antibody showed only

a nonsignificant trend towards an improved OS in a ran-

domized phase II trial compared to DTIC.73

mTOR-inhibitors

Since the mammalian target of rapamycin (mTOR)

signaling is upregulated in metastatic melanoma, drugs tar-

geting mTOR seem to represent promising therapeutic tar-

gets. Everolimus (RAD-001), an orally administered

inhibitor of mTOR, achieved only SD as best ORR in a

cohort of 20 metastatic melanoma patients with a PFS of

3 months.74 It failed to show significant objective responses

in combination with TMZ over TMZ alone.75 A phase II

clinical study of Everolimus in combination with pasireo-

tide didn’t meet its primary endpoint in uveal metastatic

melanoma.76

Kinase inhibitors

Early developments

The successful development of kinase inhibitors marked

a milestone in the treatment of metastatic melanoma. Until

2010, no systemic treatment had demonstrated any

improvement of overall survival in metastatic melanoma.

Tsai et al. first discovered a potent, selective inhibitor of

BRAF V600E, using a scaffold-based drug design

approach.77 In preclinical studies, this compound showed

impressive antitumor activity in BRAF V600E mutated

cell lines by inducing cell cycle arrest and apoptosis, with

no such effect on BRAF wt cell lines. Oral administration

in xenograft models harboring the V600E mutation resulted
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in a substantial block of tumor growth and clinical regres-

sion without any apparent toxicity.77,78 Early clinical trials

confirmed that BRAF inhibition did in fact cause complete

or partial tumor regression in a large portion of patients

harboring the BRAF V600 mutation.79,80

BRAF inhibition

BRAF inhibition rapidly became standard of care in

BRAF mutated melanoma patients. Vemurafenib is an

orally bioavailable, ATP-competitive, small-molecule

(489.92 Da) inhibitor of BRAF. Dabrafenib (519.56 Da)

and encorafenib (540.01 Da) are similar molecules. The

change in paradigm of treatment of advanced melanoma

is mainly based on the results of the following two pivotal

trials.

The international, multicenter phase III randomized clin-

ical trial comparing vemurafenib to the reference chemo-

therapy dacarbazine (BRIM-3) showed a significantly

longer mOS in the vemurafenib group (13.6 months [95%

CI 12.0e15.2] vs 9.7 months [7.9e12.8]; hazard ratio

[HR] 0.70 [95% CI 0.57e0.87]; p ¼ 0.0008), as well as a

significantly increased mPFS (6.9 months [95% CI

6.1e7.0] vs 1.6 months [1.6e2.1]; HR 0.38 [95% CI

0.32e0.46]; p < 0.0001). OS and PFS were significantly

shorter in patients with increased LDH levels at baseline

in both groups. The RR amounted to 57% in the vemurafe-

nib group vs. 9% in the dacarbazine group.81,82 Following

this phase III trial, vemurafenib was approved by the

FDA in 2011 for treatment of Stage IIIC and IV metastatic

melanoma patients harboring a BRAF V600E mutation.

Moreover, the multicenter phase III randomized clinical

trial evaluating the BRAFi dabrafenib vs. dacarbazine

(BREAK-3) showed comparable results, with a mPFS of

6.9 months for dabrafenib vs. 2.7 months for dacarbazine,

hazard ratio (HR) 0.37 (95% CI 0.23e0.57; p < 0.0001).

The mOS in this study at last update was at 18.2 months

vs. 15.6 months, HR 0.76 (95% CI 0.48e1.21). The ORR

was 50% in the dabrafenib group and 6% in the dacarbazine

group.83,84 Dabrafenib received FDA approval in 2013.

Common AEs of BRAFi monotherapy with vemurafenib

include arthralgia (56% of patients), rash (41%), fatigue

(46%) and UVA-dependent photosensitivity (41%).85 The

most frequent grade 3e4 side effects include cutaneous

squamous cell carcinoma (19%) and keratoacanthoma

(10%), rash (9%) as well as abnormal liver function tests

(11%). Interestingly, 2.4% of patients developed a new pri-

mary melanoma during treatment.86 Treatment discontinu-

ation due to SAEs occurred in 7% of patients on

vemurafenib.81,82 Common side effects of dabrafenib

monotherapy comprise cutaneous AEs (hyperkeratosis

36%, alopecia 27%, skin papilloma 22%, palmar-plantar

hyperkeratosis 19%, rash 30%), pyrexia (16%), fatigue

(18%), headache (18%) and arthralgia (19%). 10% of pa-

tients developed cutaneous squamous cell carcinoma or

keratoacanthoma. Treatment discontinuation due to SAEs

occurred in 3% of dabrafenib patients.83,84 The most com-

mon grade 3e4 AEs for dabrafenib include cutaneous squa-

mous cell carcinoma (7%) and pyrexia (3%). Direct

comparison of AEs in these phase III trials is difficult. In

general, dabrafenib monotherapy exhibited a much lower

rate of photosensitivity (2%) compared to vemurafenib

(41%), as it has UVA-absorbing properties, while other

BRAF inhibitors do not.85 Further, dabrafenib showed a

lower rate of cutaneous malignancies, while exhibiting a

higher frequency of pyrexia.

In summary, BRAF inhibition proved to be very effica-

cious in BRAF-mutated patients, with a high response

rate and a rapid onset of response, but BRAFi monotherapy

is almost invariably followed by relapse due to acquired

drug resistance, most likely as a result of reactivation of

MEK and ERK.87e89

MEK inhibition

After observing that BRAF mutation is associated with

an increased and selective sensitivity to MEK inhibition

compared to BRAF-wt cells, Solit et al. suggested that

BRAF mutant tumors were dependent on MEK activity

and thus proposed MEK inhibition as a possible treatment

for metastatic melanoma.90 Initial trials with MEK inhibi-

tors (MEKi) confirmed this observation.91 MEKi are orally

bioavailable, non-ATP competitive, allosteric binding in-

hibitors of MEK. While trametinib (615.39 Da) and bini-

metinib (441.23 Da) inhibit MEK 1 and 2, cobimetinib

(531.31 Da) inhibits MEK1 only.

After positive phase I and II trials, monotherapy with

trametinib in BRAF mutant melanoma was investigated in

a phase III multicenter open-label trial. Chemotherapy

with dacarbazine or paclitaxel served as a comparison.

The mPFS was significantly prolonged compared to

chemotherapy (4.8 months vs. 1.5 months, HR 0.45 [95%

CI 0.33 to 0.63; p < 0.001]). The rate of OS at 6 months

improved as well, with 81% in the trametinib group and

67% in the chemotherapy group despite crossover (HR

0.54) [95% CI 0.32 to 0.92; p ¼ 0.01].92

In a phase II trial, MEKi monotherapy with binimetinib

was evaluated in patients with NRAS as well as in patients

with BRAF mutation, with a similar RR of 20% in BRAF-

and NRAS-mutated patients. Thus, MEK inhibition was the

first targeted therapy to show activity in patients harboring

an NRAS mutation. The median PFS was 3.7 months in pa-

tients with NRAS-mutated melanoma [95% CI 2.5e5.4] and

3.6 months [95% CI 2.0e3.8] in patients with BRAF-

mutated melanoma. The difference in PFS between this

and the aforementioned study might be explained by the

fact that patients previously treated with ipilimumab or

BRAF inhibitors were included in this trial, while being

excluded from the aforementioned one. Of note, this study

also showed evidence of MEKi activity in brain metasta-

ses.93 An ongoing phase III clinical trial of binimetinib in

patients with advanced NRAS-mutant melanoma (NEMO)
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recently met its primary endpoint of improving

progression-free survival compared to dacarbazine, with a

median PFS of 2.8 months for binimetinib versus 1.5

months for dacarbazine; HR 0.62, [95% CI 0.47e0.80],

p < 0.001.94

While MEK inhibition did show improvement in both

PFS and OS, the RRs seem to be inferior to those shown

for BRAF inhibitors. The molecular basis for this phenom-

enon remains unclear.

The side effect profile of MEKi differs greatly from

BRAFi. The most common AEs with trametinib were

rash (57%), diarrhea (43%) and peripheral edema (26%).

Frequent grade 3e4 AEs include hypertension (12%),

rash (8%) and fatigue (4%). Further side effects were fa-

tigue, acneiform dermatitis, nausea, alopecia, hypertension,

constipation and vomiting. Moreover, asymptomatic and

reversible reduction in left ventricular ejection fraction

(LVEF) and ocular toxic effects (blurred vision, reversible

chorioretinopathy) were observed.95 Dose interruptions

due to AEs occurred in 35% of patients. However, MEK in-

hibition did not seem to cause any cutaneous squamous-cell

carcinomas or hyperproliferative skin lesions.92 While both

classes have been known to cause a rash, MEKi seem to

cause a papulopustular rash, while BRAFi cause a hyper-

keratotic maculopapular rash.96

In addition, MEK inhibition was evaluated in combina-

tion with chemotherapy.97 However, there was no evidence

for an increase in efficacy compared to MEKi monother-

apy; hence, this was not evaluated in any further trials.

Combined BRAF- and MEK inhibition

With BRAF andMEK inhibitors both showing efficacy in

melanoma, preclinical studies suggested an enhanced anti-

tumor effect and a reduction of BRAFi-induced cutaneous

SCCwhen combining the two classes. Due to emerging resis-

tance to BRAFi as a result of MEK-ERK signaling reactiva-

tion, patients inevitably experience relapse.87,88The effect of

MEKi treatment after treatment resistance to BRAFi in pa-

tients harboring a BRAF mutation was evaluated in a small

cohort of patients, with no significant response.93,98

In contrast, early trials evaluating the combination of

BRAFi and MEKi were very promising (Table 1). A ran-

domized phase I/II clinical trial comparing the combination

of dabrafenib and trametinib vs. dabrafenib alone (COMBI-

d) showed a marked increase in PFS in the combination

group (9.4 months vs. 5.8 months, HR 0.39 [95% CI

0.25e0.62; p < 0.001]) and a higher RR (76% complete

or partial response vs. 54% in the monotherapy group

(p ¼ 0.03)).99

Subsequently, phase III of the abovementioned trial

(COMBI-d) confirmed the superiority of BRAF and MEKi

combination, with a significantly prolonged mPFS of 11.0

months (95% CI 8.0e13.9) in the dabrafenib and trametinib

group vs. 8.8 months (5.9e9.3) in the dabrafenib monother-

apy group (HR 0.67, 95% CI 0.53e0.84; p ¼ 0.0004). The

ORR were at 69% for combination vs 53% for monotherapy

(p ¼ 0.0014), while the mOS was 25.1 months (95% CI

19.2enot reached) for the combination and 18.7 months

(15.2e23.7) for monotherapy (hazard ratio [HR] 0.71, 95%

CI 0.55e0.92; p ¼ 0.0107).100 A recent survival update

showed landmark OS rates of 52% at 2 years and 44% at 3

years.101 The best outcome was seen in patients with normal

LDH levels and less than three disease sites.

Another open-label, phase III trial comparing the combi-

nation of dabrafenib and trametinib vs. vemurafenib mono-

therapy (COMBI-v) was able to produce comparable

results. The mPFS amounted to 11.4 months in the combi-

nation group and 7.3 months in the vemurafenib group (HR

0.56; 95% CI, 0.46 to 0.69; p < 0.001). The ORR was 64%

in the combination and 51% in the vemurafenib group

(p < 0.001).102 Most important, quality of life was rated

significantly better in the combination group using three

standardized questionnaires measuring health-related qual-

ity of life during treatment and at disease progression.103

Finally, a phase III clinical trial investigating the combi-

nation of vemurafenib and cobimetinib vs. vemurafenib and

placebo (coBRIM) found a significant difference in mPFS

(9.9 months in the combination group vs. 6.2 months in

the control group (HR 0.51; [95% CI 0.39 to 0.68;

p < 0.001])) and a significantly higher ORR of 68% in

the combination group vs. 45% in the BRAF monotherapy

group (p < 0.001).104 The vemurafenib and cobimetinib

combination reached a mOS of 22.3 months [95% CI:

20.3-not reached], compared to 17.4 months for vemurafe-

nib alone [95% CI: 15.0e19.8], HR: 0.70; 95% CI:

0.55e0.90, p ¼ 0.005. The OS benefit was seen in all

groups, including patients with high LDH at baseline.105

Table 1

Outcome of combined BRAF and MEK inhibition of several landmark studies.

Study Phase Experimental (combination) arm mPFS (months) mOS (months) 1-yr OS (%) 2-yr OS (%) 3-yr OS (%) Ref.

BRIM7 I Vemurafenib, Cobimetinib 13.8 31.2 83 64 37 106

coBRIM III Vemurafenib, Cobimetinib 9.9 22.3 n/a n/a n/a 105

Combi D II Dabrafenib, Trametinib 9.4 n/a 72 60 47 99,107

Combi D III Dabrafenib, Trametinib 11.0 25.1 74 51 44 100,101

Combi V III Dabrafenib, Trametinib 11.4 26.1 72 53 45 102,134

COLUMBUS III Encorafenib, Binimetinib 14.9 n/a n/a n/a n/a 111
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These data are supported by recent extended follow-up

results of a phase Ib trial of vemurafenib and cobimetinib

(BRIM7), with landmark survival for BRAF na€ıve patients

of 82%, 64%, and 37%, respectively at 1, 2, and 3 years,

and a mOS of 31.2 months.106

Addressing the question of long-term benefit, a recent

update on the randomized, phase II COMBI-d trial demon-

strated that there is, in fact, a subset of BRAFi-naive pa-

tients who experience long-term responses without

progression on combination treatment. Normal baseline

LDH levels were associated with a continued long term

response. Prolonged survival was associated with normal

baseline LDH levels and with fewer than 3 affected organ

sites. The OS at 1, 2, and 3 years for BRAFi-naive patients

receiving dabrafenib at standard dose 150 mg bid and tra-

metinib 2 mg qd was 72%, 60%, and 47%, respectively.

In the population with normal baseline LDH levels, OS at

1, 2, and 3 years was 88%, 75%, and 62%, respectively,

with a HR of 0.25 (0.12e0.53).107 Thus, long term OS rates

for BRAF/MEKi combination are similar to OS rates for

first line anti-PD1 treatment.108 The OS may have been

impacted by subsequent immunotherapy after progression

on kinase inhibitors.107

Further approaches to BRAF/MEKi combination

include trials with encorafenib and binimetinib. Encorafe-

nib is a BRAFi with increased affinity to BRAF and thus

a longer binding time. Results from a phase I/II clinical trial

confirm a RR and PFS consistent with other BRAF/MEKi

combinations (mPFS 11.3 months [95% CI 7.4e14.6]),

with a considerably higher PFS in the baseline low LDH

group, going along with previous reports.109 A phase II trial

evaluating encorafenib and binimetinib alone and in combi-

nation with a third agent after progression (LOGIC-2), re-

ported an ORR of 68% for BRAF- and MEK-inhibitor

na€ıve patients, and 20% for non-na€ıve patients, which is

in accordance to results from other combinations.110 Recent

results from a phase III trial demonstrated a mPFS of 14.9

months vs. 7.3 months for vemurafenib monotherapy with a

HR of 0.54 [95% CI 0.41e0.71, p < 0.001] vs. 9.6 months

for encorafenib monotherapy with a HR of 0.75 [95% CI

0.56e1.00, p ¼ 0.051].111

In general, similar percentages of grade 3-4 adverse

events were seen in both monotherapy and combination

treatment. Dabrafenib and trametinib combination treat-

ment was associated with a higher frequency of pyrexia

than BRAFi monotherapy (up to 71% of patients). Further-

more, gastrointestinal toxic effects (diarrhea, nausea, vom-

iting) were seen more frequently with combination.99,100,102

Acneiform dermatitis, a common dose-limiting effect of

trametinib, was reduced in combination treatment.99 Toxic

events related to paradoxical MAPK pathway activation

like cutaneous SCCs and hyperkeratosis were significantly

lower in all combination treatments.99,100,102,104,112

The vemurafenib/cobimetinib combination is associated

with a higher frequency of central serous retinopathy,

gastrointestinal events (diarrhea, nausea, vomiting),

photosensitivity (due to the UVA-absorbing property of

the molecule),85 elevated aminotransferase levels, and an

increased creatine kinase level, with the majority of events

being grade 1e2. Keratoacanthomas, cutaneous SCC, alo-

pecia and arthralgias were observed in a lower frequency

with the combination. The frequency of clinically signifi-

cant cardiac events (QT-interval prolongation and

decreased ejection fraction) was low and similar in mono-

and combination therapy, as was pyrexia.104 Encorafenib

and binimetinib exhibited lower rates of pyrexia and photo-

sensitivity than other combinations.109

Class effects of MEK blockade include reversible,

asymptomatic elevated CK levels, observed in 30% of pa-

tients in cobimetinib/vemurafenib,104 as well as transient

drug-induced retinopathy, which is reversible, and can be

managed with dose reduction or withdrawal of MEKi.

Overall, combination of BRAF and MEK inhibition is

well tolerated and markedly delays the onset of resistance

compared to BRAF monotherapy. Combination treatment

consistently exhibited a lower rate of secondary cutaneous

cancers compared to single drug BRAF inhibi-

tion.99,100,102,104 Long term follow-up confirms the safety,

response and tolerability and suggests long-term benefit

without progression for a subset of patients (approx.

20%).107 Thus, combination of a BRAF- and MEKi is

considered the current standard of care for patients

harboring BRAF mutations.

Perspective

As mentioned above, the combination of a selective

BRAF- and MEKi is the current standard of care. However,

about 80% of patients eventually develop resistance, most

notably patients with high LDH at baseline.107 Prolonged

responses may be achieved by adding additional molecules

(triple therapy). The choice of the third molecule could

potentially be determined by individual genetic alterations.7

Possible candidates include inhibitors of cell cycle control,

the PI3K-AKT pathway, and the surface receptors MET and

fibroblast growth factor receptor (FGFR).

Cyclin-dependent kinases (CDKs) are serine/threonine

kinases regulating cell division by promoting transitions

through the cell cycle (CDK 4, 6, 2 and 1) and modulating

transcription in response to several intra- and extracellular

signals.113 A number of alterations concerning the

p16INK4A:cyclin D-CDK4/6:RB pathway have been re-

ported in melanoma.7,114 Several different orally bioavail-

able, specific small molecule inhibitors of CDK 4 and 6

are currently available. By targeting CDK4/6, they inhibit

phosphorylation of retinoblastoma protein and thus prevent

CDK-mediated G1-S phase transition. Thus, the cell cycle

is arrested in the G1 phase, thereby suppressing DNA syn-

thesis and inhibiting growth of cancer cells.

PI3Ks are intracellular signaling proteins important for

inhibition of apoptosis. The PI3K-AKT pathway was found

to be activated in human cancers through multiple
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mechanisms, including activating PI3K mutations,

decreased expression or function of PI3K suppressors (e.g.

PTEN ), PI3K amplifications and activation of upstream on-

cogenes (e.g. NRAS ) or receptors.7,115,116 Thus, multiple

classes of inhibitors are available, including PI3K inhibitors

(pan-isoform and isoform-specific), dual PI3K-mTOR in-

hibitors, AKT inhibitors and mTOR (mTORC1 and dual

mTORC1/2) inhibitors. Several molecules are available for

each class, many of which are currently evaluated in clinical

trials.116 Initial trials combining Pan-PI3K-inhibitors with

BRAF- and MEK-inhibitors have shown exceptionally

high toxicity.

Most melanoma patients harboring a BRAF mutation

seem to have some degree of innate resistance to kinase in-

hibitors. One major cause of innate resistance is stroma-

mediated resistance. Secretion of hepatocyte growth factor

(HGF) by stromal cells leads to activation of the HGF-

receptor MET, reactivation of the MAPK and the PI3K-

AKT signaling pathways and immediate resistance to RAF

inhibition.117 Consequently, dual inhibition of RAF and either

MET or HGF serves as a potential strategy to counteract this

mechanism of resistance. Several small molecule, highly spe-

cific inhibitors of MET and HGF are currently being tested.

Human fibroblast growth factors (FGF) are polypeptide

growth factors that transduce signals by binding to trans-

membrane receptor tyrosine kinases, the FGFR,118,119 which

then activate important cellular pathways including the

MAPK and PI3K pathway.120 Amongst others, FGFs control

cell proliferation, migration, angiogenesis, apoptosis and dif-

ferentiation, and further play a role in neoangiogenesis, thus

aiding tumor vascularization.121 Hyperactivation of FGFR

signaling seems to be associated with growth and progres-

sion in several different types of cancers.122 FGF2 is overex-

pressed on melanoma cells, but not on normal

melanocytes,123 and has been linked to tumor progression

in multiple malignancies, including melanoma.122 BGJ398

is an orally bioavailable, potent and selective inhibitor of

FGFRs that selectively suppresses FGFR signaling and pro-

liferation in tumor cells with FGFR dependency and has an

effect on endothelial cells by blocking FGF-induced angio-

genesis, hence inhibiting tumor growth.124,125 It is currently

being tested in clinical trials.

Two ongoing trials are investigating the addition of a

third molecule to encorafenib and binimetinib. A phase

Ib/II trial is comparing the efficacy and safety of the triple

therapy with encorafenib, binimetinib and ribociclib (a

CDK4/6 inhibitor) versus the dual combination of encora-

fenib and binimetinib in BRAF-mutant metastatic mela-

noma (NCT01543698). A phase II clinical trial (LOGIC

2, NCT02159066) adds a third molecule based on an indi-

vidual profile of molecular alterations once patients prog-

ress on encorafenib and binimetinib.

Moreover, the combination of MAPK inhibitors

with immunotherapy represents an interesting therapy

approach.126 Upregulation of melanocyte differentiation

antigen expression by BRAF-mutant melanoma cells upon

exposure to BRAF inhibitors has been described in several

studies in human melanoma cell lines and melanoma bio-

psies.127e129 Similarly, MEKi also seem to increase expres-

sion of melanocyte differentiation antigens,127,130

improving antigen-specific T-cell recognition.127,131 This

might result in increased lymphocyte homing to tumor

cells, especially CD8þ cells, and improved lymphocyte

function.126,128 Thus, efficacy of immunotherapy may be

augmented by combination with kinase inhibitors. Howev-

er, long-term effects are uncertain and initial clinical trials

showed increased toxicity: a phase I study combining ve-

murafenib and ipilimumab was stopped due to liver

toxicity,132 while a phase I dose-finding trial investigating

the safety of the combination of dabrafenib and ipilimumab

and triple therapy with dabrafenib, trametinib, and ipilimu-

mab had to close the triple arm as intestinal perforation

(following colitis) was seen in 2 out of 7 total patients.133

Targeted- and immunotherapy have both demonstrated

impressive efficacy with profound impact on survival. To

date, there are no convincing clinical data available that

would justify one of the two as an established first line. Since

this question is highly relevant for daily clinical care, careful

investigation in further clinical trials is needed.

Targeted therapy with a BRAF- and MEKi combination is

a reasonable first- and second line treatment option in BRAF-

mutated melanoma. Furthermore, MEK inhibition appears

promising in NRAS mutated patients, especially after failure

of immunotherapy. New combination trials are ongoing.

There is justified optimism that these combinations will

further improve the outcome in BRAF- and NRAS-mutated

melanoma, but possibly also in other populations such as

NF1-, GNA- and GNAQ-mutated melanoma. Additional

benefit might be seen in the adjuvant and neoadjuvant setting.
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