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21 Abstract

22 Microbial bio-transformations of the essential trace element selenium are now 
23 recognised to occur among a wide variety of microorganisms. These transformations 
24 are used to convert the element into its assimilated form of selenocysteine, which is at 
25 the active centre of a number of key enzymes, and to produce selenium nanoparticles, 
26 quantum dots, metal selenides and methylated selenium species that are indispensable 
27 for biotechnological and bioremediation applications.  The focus of this review is to 
28 present the state-of-the-art of all aspects of the investigations into the bacterial 
29 transformations of selenium species, and to consider the characterization and 
30 biotechnological uses of these transformations and their products. 

31 Keywords

32 selenium species, bacterial selenium bio-transformation, selenium nanoparticles, 
33 selenides, selenium-containing quantum dots, methylated selenium species

34 Introduction

35 The phylogenetical diversity and distribution of bacterial Se bio-transformations are 
36 now recognised to be widespread. (1, 2) A variety of methods and techniques have been 
37 used in a bid to elucidate the different mechanisms that are involved in the microbial 
38 transformation of selenium species. The emphasis in most studies has been to 
39 demonstrate that selenite or selenate is transformed by the bacterium or bacterial 
40 consortia. Invariably, the products from such reactions are selenium nanoparticles 
41 (SeNPs), metal selenide and quantum dots (3), or the methylated selenium species 
42 concomitantly produced in the headspace and solution medium. (4-6) In other 
43 investigations, the focus was to localize where the biotransformation reactions are 
44 occurring in the cells (see Scheme 1).The experiments were conducted assuming that 
45 the detected selenium species are produced solely by the biochemical reactions that take 
46 place in the microorganisms under the incubation conditions. However, this may be a 
47 simplified interpretation of what is likely to be occurring. Until recently, complex 
48 interactions between bacterium cells forming biofilms, and the probability of abiotic 
49 reactions involving selenium-containing reactants generated by the biotic processes 
50 have been given scant attention. (4, 7, 8)

51 The aim of this review is to critically appraise information from recent literature on the 
52 microbial transformations of selenium species, their characterization, and to examine 
53 the developments and potential biotechnological uses of bacterial inspired selenium-
54 containing products and related processes.

55

56
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57

58 Outline of mechanisms of bacterial transformation of selenium species 

59 Over the last decade, to the best of our knowledge, there have been no reports of the 
60 direct oxidation of reduced selenium compounds by microorganisms. Solubilization of 
61 elemental selenium (Se0) can be mediated by microbial release of reactive sulfur 
62 compounds such as sulfite (SO3

2-), sulfide (S2-) and thiosulfate (S2O3
2-) via the 

63 formation of soluble selenosulfur complexes, as has recently been reported by Goff et 
64 al. for a Bacillus sp., presenting an example of “bio-induced” chemical weathering of 
65 Se0. (9) Thus from the applied microbiology and biotechnology view point the 
66 reduction reactions of selenium oxyanions producing Se0 or selenides Se2-, which 
67 ultimately form nanostructures, and volatile selenium species, are of particular interest. 

68 The oxyanion, selenate (SeO4
2–) can be reduced by microorganisms during the course 

69 of anaerobic respiration, where it acts as the ultimate electron acceptor, and the process 
70 is mediated by selenate reductases. This has been shown for bacteria such as Salmonella 
71 enterica (10) and E. coli. (11) For Thauera selenatis, its selenate reductase was shown 
72 to be very similar to thermostable nitrate reductases (pNAR) found in 
73 hyperthermophilic archaea. (12) Other anaerobic methane-oxidizing bacteria have been 
74 recently shown to be capable of coupling methane oxidation to selenate reduction (13), 
75 suggesting a possible link between the biogeochemical cycles of selenium and methane. 
76 Subedi et al. have reported the simultaneous selenate reduction and denitrification by a 
77 consortium of bacteria from a mine-impacted natural marsh sediment.(14) Tan and co-
78 workers have demonstrated a competitive reduction between SeO4

2- and structurally 
79 similar sulfate (SO4

2-) for the obligate aerobic bacterium Comamonas testosterone. 
80 When the genes responsible for the reduction of SO4

2- ions are deleted, the reduction of 
81 SeO4

2- ions to red Se0 was not observed indicating that the reduction of selenate was 
82 catalysed by enzymes of the sulfate reduction pathway. (15) 

83 The pathways of the more common SeO3
2- reduction by different microorganisms 

84 include: (i) the so-called Painter-type reactions involving thiol groups (16); (ii) 
85 processes involving the thioredoxin – thioredoxin reductase system; (iii) siderophore-
86 mediated reduction; (iv) sulfide-mediated reduction, and (v) dissimilatory reduction. 
87 Details of these mechanisms can be found in (1). According to Rauschenbach et al. (17) 
88 selenite reductases have not been characterized thus far, and investigators have failed to 
89 identify any for Desulfurispirillum indicum strain S5, a novel obligate anaerobe 
90 belonging to the phylum Chrysiogenetes, a dissimilatory selenate-, selenite-, arsenate-, 
91 nitrate- and nitrite-reducing bacterium. For Rhizobium selenitireducens, besides nitrite 
92 reductase involved in SeO3

2– reduction, another protein showing selenate reductase 
93 activity was characterized. (18) It was shown to be a member of a protein family 
94 termed old-yellow-enzymes (OYE); the latter are often involved in protecting cells 
95 from oxidative stress and are generally active on a wide variety of substrates. 
96 Furthermore, a novel aerobic selenite reductase (CsrF) was identified in Alishewanella 
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97 sp. WH16-1, a facultative anaerobic bacterium isolated from mining soil capable of 
98 reducing SeO3

2– to Se0 nanoparticles as well as chromate (VI). (19)  Recently, a selenite 
99 reductase in Bacillus selenitireducens specific for SeO3

2– but not SeO4
2-, AsO4

3- or 
100 S2O3

2- has been identified. (20)

101 A generalized scheme of the biotransformation of selenium compounds in a bacterial 
102 cell is shown in Scheme 1. Selenite is reduced to Se0 mainly in reactions involving 
103 thiol-containing molecules and various oxidoreductases, while other proteins may also 
104 be involved in the reduction of both oxyanions. (16) Selenium oxyanions reduction 
105 results in the formation of amorphous red and other allotropic Se forms. The formation 
106 of intra- or extracellular SeNPs has been shown for the commonly studied T. selenatis 
107 (21); the plant-growth-promoting rhizobacterium Azospirillum brasilense, (16) 
108 methane-oxidising bacteria Methylococcus capsulatus and Methylosinus trichosporus 
109 (22) and many others. Information on the types of microorganisms (bacteria and fungi)
110 involved in the reduction of selenium oxyanions has been published. (1-3, 23) 

111 Volatile methylated species have been identified during Se biotransformation and these 
112 include: dimethyl selenide (CH3–Se–CH3), dimethyl diselenide (CH3–Se–Se–CH3) and 
113 dimethyl selenenyl sulfide (CH3–Se–S–CH3). (24)  Interestingly, while the methane-
114 oxidizing bacterium Methylosinus trichosporium was found to produce dimethyl 
115 diselenide and dimethyl selenenyl sulfide only, another methane-oxidizing bacterium, 
116 Methylococcus capsulatus, produced five volatile Se-containing substances. Besides the 
117 three dimethylated forms mentioned above, methyl selenol (CH3–Se–H) and 
118 methylselenoacetate (CH3–Se–C (=O) CH3) were detected in the headspace (22). 
119 Reduction of organic forms of Se can result in the formation of volatile and highly toxic 
120 H2Se, although ultimate microbial dissimilatory reduction of selenium species to 
121 selenides is limited in environmental microorganisms. (25)

122 Selenium oxyanions reduction mechanisms have been relatively well studied and 
123 reported in a number of articles and reviews (see for example: (1, 2, 16)).However, the 
124 formation of SeNPs (i.e., their assembly from precursors), and the factors regulating 
125 this process are yet to be elucidated. Processes for SeNPs formation inside cells with 
126 their subsequent release, as well as the removal of Se0 precursors after the intracellular 
127 reduction of selenium oxyanions may involve unknown transport systems.(26-30) 
128 Tugarova et al. (31, 32), have shown that proton-dependent transport is involved in 
129 SeO3

2- reduction. Inhibition of proton-dependent transport resulted in Se0 accumulated 
130 as intracellular crystallites without formation of extracellular SeNPs.(32)

131 It has been proposed that SeNPs formation can proceed via Ostwald ripening. (26-27) 
132 However, biogenic SeNPs in contrast to chemically synthesized ones are always capped 
133 by various biomacromolecules, mainly proteins, polysaccharides and lipids (see for 
134 example (16,31,33-36), indicating that SeNPs formation is more complex than the 
135 Ostwald ripening process would suggest. A recent proposal is that the precursor for the 
136 Se0 formation in methane-oxidizing bacteria is methyl selenol, and that the semi-
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137 volatile methylated Se species polymerise to form particulate selenium allotropes (4). 
138 Lampis et al. proposed a possible biosynthetic mechanism of selenite reduction with the 
139 formation of SeNPs by the bacterium Stenotrophomonas maltophilia. They also 
140 identified an alcohol dehydrogenase homologue, possibly associated both with the 
141 biogenic synthesis of SeNPs and also involved in their stabilization. (27)

142 Cell-surface-bound SeNPs formation may have another role in addition to 
143 detoxification and that is to protect the microbial cells from high level of harmful 
144 effects of UV radiation via light absorption and/or scattering. Similar action of 
145 intracellular granules of polyhydroxyalkanoates (PHA; carbon and energy storage 
146 materials biosynthesized and accumulated by many prokaryotes) have been reported 
147 recently. (37, 38) Noteworthy is that both biogenic SeNPs (see (22, 32, 39, 40) ) and 
148 chemically synthesized analogues (41, 42) have similar optical spectra of their aqueous
149 suspensions, including their absorption in the UV region.Understanding the processes 
150 involved in the synthesis of SeNPs could be useful in the study of the biogeochemical 
151 origins of individual selenium -containing mineral deposits. Indeed, study of the genetic 
152 bases and diversity of the reduction processes will no doubt result in predictable and 
153 efficient production of useful industrial materials. These aspects are discussed below.

154 Diversity and distribution of selenium transforming organisms (gene analysis and 
155 culture-independent metagenomics) 

156 The study of the diversity and speciation of selenium transforming microorganisms and 
157 communities by means of the metagenomic approach using high throughput sequencing 
158 analyses has been poorly represented when compared to studies based on culture 
159 dependent methods. In a majority of investigations, the focus was on highly speciated 
160 microbial cenoses inside specific conditioned environments, such as Se-amended 
161 bioreactors intended for the biosynthesis of valuable end-products, or in granular sludge 
162 from wastewater treatment plants. However, sparse information is available on the 
163 assessment of microbial communities in soil or plant rhizosphere.

164 Bai and co-workers reported changes in the microbial community structure found in a 
165 bioreactor designed for the oxidation of methane coupled to selenite reduction by 
166 bacteria. (43) There was a remarkable shift in the makeup of the denitrifying anaerobic 
167 methane oxidation (DAMO) community when selenite replaced nitrate as the electron 
168 acceptor after prolonged nitrate reduction. Alpha-, Beta- and Gammaproteobacteria as 
169 well as Igavibacteria increased in the presence of selenite, whereas Methanomicrobia 
170 and Nitrospira significantly decreased when compared to the composition of the 
171 community in the presence of nitrate. At genus level, Methylococcus, Lautropia, 
172 Verribacter and Denitratisoma – all belonging to Beta- and Gammaproteobacteria – 
173 were the most abundant in the presence of SeO3

2-. 

174 A metagenomic approach was also chosen in order to understand the composition of the 
175 microbial community selected after exposure to SeO3

2- in anaerobic granular sludge 
176 from a fullscale reactor treating brewery wastewater. (44) High-throughput sequencing 
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177 of 16S rRNA gene showed that Negativicutes, Gammaproteobacteria and Clostridia 
178 were the most abundant classes in SeO3

2- reducing microbial aggregates, with 
179 Veillonellaceae (ca. 20%) and Pseudomonadaceae (ca.10%) as the main families 
180 represented. 

181 High-resolution phylogenetic analysis of anoxic contaminated soil amended with 
182 selenate revealed that the relative frequency of an operational taxonomic unit (OTU) 
183 from the genus Dechloromonas increased  markedly from 0.2% to 36%. Multiple OTUs 
184 representing less abundant microorganisms from the Rhodocyclaceae and 
185 Comamonadaceae showed significant increases as well. (45) In a study of the 
186 rhizomicrobiome of Se hyperaccumulator and non-hyperaccumulator plants grown on 
187 seleniferous soil, Cochran and co-workers investigated the effect of selenium-
188 hyperaccumulator plants on the diversity and composition of rhizosphere microbiomes. 
189 They found higher diversity of the OTUs in the rhizosphere of hyperaccumulator plants 
190 when compared to non-accumulators and the bulk soil.(46)The microbiome of the 
191 seleniferous soil was composed of taxa belonging mainly to Crenarchaeota (Archea), 
192 Acidobacteria and Actinobacteria, in contrast to hyperaccumulator plant rhizospheres in 
193 which Acidobacteria, Crenarchaeota (Archea) and Proteobacteria were dominant.

194 There are few examples of the exploitation of mixed microbial cultures for selenium 
195 species biotransformation.  A consortium of four selenium tolerant rhizosphere aerobic 
196 bacteria belonging to Bacillus spp. was used to remove the element from Se enriched 
197 natural soils. (47) The strains were isolated from Se contaminated soils in the region of 
198 Punjab, India, by culture enrichment, and the consortium developed was tested on 
199 SeO3

2- or SeO4
2- spiked soils. While complete removal of Se was observed in SeO3

2- 
200 augmented soils, 72% removal was recorded for the SeO4

2- contaminated soils after 120 
201 days. A methanogenic granular sludge from a bioreactor used for the treatment of paper 
202 waste streams has been shown to produce selenium sulfide (SeS2) in a new process to 
203 recover Se from SeO4

2-and SeO3
2- polluted  streams, where the former is reduced first to 

204 the latter which in turn reacts with sulfide to form SeS2. (48) (See also the discussion on 
205 biofilms below.)

206 The recent reduction in the cost of high throughput sequencing analyses will allow the 
207 accumulation of a wide range and variety of sequencing data of microbial communities 
208 involved in selenium tranformation in different environmental matrices. The 
209 information will enable better understanding of the biogeochemical cycle of selenium in 
210 the environment and will probably furnish interesting information on the microbial 
211 species involved in the biotransformation of the element. At the same time, the 
212 information would be useful in identifying appropriate cultural conditions to apply in 
213 order to obtain new microbial isolates in axenic cultures for biotechnological 
214 exploitation.

215 The role of biofilms in the biotransformation of selenium species
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216 Selenium biotransformation has been extensively described for planktonic cells; 
217 however, in the environment, microorganisms are commonly found as biofilms (49) 
218 where resistance to toxic metals is up to 600 times higher than in planktonic forms. (50) 
219 Moreover, bacteria at any stage of biofilm development are generally believed to be 
220 physiologically distinct from those in the planktonic state. (51)

221 As with planktonic cells, selenium also undergoes biotransformation into less 
222 bioavailable species in biofilms. (8, 52,53) The presence of Se altered the microbial 
223 diversity and induced structural changes in the biofilms. (8,53,54) Yang et al. (53) 
224 observed that a multispecies biofilm consisting of selenium-resistant Rhodococcus sp., 
225 Pseudomonas sp., Bacillus sp. and Arthrobacter sp., incubated aerobically in the 
226 presence of selenate or selenite transformed the selenium oxyanions into SeNPs, with 
227 SeO3

2- more readily reduced than SeO4
2-. The results showed that specific regional 

228 communities within the biofilms were responsible for selenium detoxification, as 
229 indicated by the localised distribution of reduced selenium species within the biofilm 
230 structure. The formation of SeNPs (size range 50−700 nm) was observed inside the 
231 bacterial cells and also shown to be associated with proteins and polysaccharides from 
232 the extracellular polymeric substances (EPS). Bioaccumulation of Se has also been 
233 observed in more complex, heterogeneous biofilms containing not only bacteria, but 
234 also diatoms and filamentous algae. Interestingly,  in the more heterogeneous biofilm 
235 community, Se partitioned differently into the various components of the biofilm, with 
236 diatoms containing approximately two-thirds of the Se. Also, density-separated algae 
237 fractions from the biofilms showed that the concentration of Se was significantly higher 
238 in the fraction not containing filamentous green algae compared to the filamentous 
239 green algal fraction. (55) 

240 The immobilization of selenium has also been observed under anaerobic conditions. A 
241 recent study by Tan et al. (8), using biofilms from an anaerobic sludge inoculum in the 
242 presence of SeO4

2-, revealed that colloidal SeNPs were formed by microbial reduction 
243 within the biofilm matrix, and retained in the biofilm system. The study also addressed 
244 how the biofilm structure was affected, not only by the presence of SeO4

2-, but also by 
245 the presence of other electron acceptors such as NO3

- and SO4
2-. Relatively thin and 

246 compact biofilms were formed in the presence of SeO4
2- alone, while thicker biofilms 

247 occurred in the presence of NO3
- or SO4

2-. The thicker biofilms in the presence of NO3
- 

248 or SO4
2- revealed gas pockets within the biofilm matrix, likely to be due to the 

249 microbial production of gases. With respect to Se removal, the presence of NO3
- did not 

250 have a stimulating effect showing similar removal efficiency to that grown in the 
251 presence of SeO4

2- only. In contrast, the presence of SO4
2- showed higher removal 

252 efficiencies and greater biomass growth when compared to SO4
2- free treatments. A 

253 possible explanation for the increase in Se removal in the presence of SO4
2- could be 

254 related to abiotic reactions possibly occurring between Se-containing species and S 
255 compounds within the biofilm matrix. (8, 56)
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256  In biofilm-mediated biotransformation the biogenic elemental Se formed is retained in 
257 the biofilm matrix. In contrast, when using planktonic cultures, one major drawback is 
258 that the biogenic Se0 remains in suspension as SeNPs for prolonged periods. (57-59) 
259 Under these conditions, further treatment such as electrocoagulation or precipitation is 
260 required to remove the SeNPs. (1,60, 61) The study of biofilms has provided evidence 
261 that selenium is immobilised in the biofilm matrix, thus modifying both its stability and 
262 bioavailability in the environment. (53) In addition, biofilms are to be preferred for 
263 effective and reliable biotransformation and sequestration of selenium. 

264  Since diet is the primary route of Se exposure and uptake in vertebrates, Se 
265 bioaccumulation in biofilms, as the base of the food chain, could serve as the primary 
266 food source for benthic invertebrates and higher trophic organisms. (62) Moreover, 
267 differences in the proportions of bacteria, filamentous algae and/or diatoms in naturally 
268 occurring biofilms could lead to variations in Se accumulation in these ecosystems, as 
269 observed by Arnold et al. (55) Depending on how Se partitions between these various 
270 components, Se exposure via ingestion by higher organisms could vary, because these 
271 organisms may preferentially feed on specific biofilm components and, thus, be 
272 exposed to different concentrations of Se. (55,62) The use of biofilms for Se 
273 sequestration represents an important and viable means of Se-laden wastewater 
274 treatment and bioremediation of selenium-contaminated areas such as mine-impacted 
275 sites. (52, 53, 63)

276 Selenium immobilisation by biofilms is a complex phenomenon and has distinct 
277 dynamics and controlling factors. The composition of the microbial communities is a 
278 major determining factor in Se uptake and biotransformation by biofilms, and therefore 
279 the behaviour of each would be different.While Yang et al. (53) used a multispecies 
280 biofilm consisting of selenium-resistant bacteria, and Tan et al. (64) studied inocula 
281 from a reactor treating Se-laden wastewater, other biofilm communities may be 
282 severely affected by the presence of Se. Recently it was shown how SeNPs disrupted 
283 the quorum sensing signalling system of Pseudomonas aeruginosa, provoking a 
284 reduction of 80% in the volume of the bacterial biofilm, and demonstrating the potential 
285 use of SeNPs as effective antibacterial agents. (65) Physicochemical and environmental 
286 factors affect the growth of EPS-producing cells, influence the structure and 
287 composition of the biofilm matrix, and its role in Se uptake. (66) As described by Tan et 
288 al., (64) the presence of other electron acceptors (or, in general, other reducing or 
289 oxidizing species) may also affect the efficiency of Se uptake by biofilms. Aerobic or 
290 anaerobic conditions, maturity of the biofilm, duration of the interactions are 
291 parameters which determine the extent of Se uptake and thus biotransformation. 
292 Therefore, close monitoring and regulation of the experimental conditions is 
293 recommended in order to yield maximum Se removal. (66)

294 It is envisaged that the use of multispecies biofilms rather than isolated planktonic 
295 microorganisms for the remediation of Se-compounds in water reservoirs, the 
296 development of more efficient biofilm-based reactors (8,64, 67,68), the use of such 
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297 bioreactors for selenium removal from wastewater (69) and the exploitation of the 
298 biofilm microbes for the manufacture of biogenic Se nanospheres and nanorods will be 
299 the focus of future research. (69, 70) It is still unclear how biofilms are affected or 
300 modified in response to the stress caused by exposure to high levels of Se oxyanions, 
301 and what effects these changes have on the metabolic pathways of the element. In 
302 addition, the effects of the presence of selenium resistant microorganisms on the 
303 composition and overall behaviour of a mixed culture are poorly understood. More 
304 importantly, the impact on molecular level mechanisms describing quorum sensing 
305 signalling processes of transcription and translation of enzyme genes are yet to be 
306 elucidated. Studies aimed at reducing the knowledge gaps and to expand our 
307 understanding of the natural microbial interactions, dynamics and ecology in these 
308 bacterial communities, will greatly enhance the advantages of the use of biofilms for the 
309 biotransformation and immobilization of selenium. Developments in the knowledge 
310 underpinning the behaviour of biofilms will lead to the production of engineered 
311 synthetic microbial consortia with increased robustness, featuring communities able to 
312 compartmentalize functions, with simultaneous execution of multiple tasks and 
313 metabolic division-of-labour. (71)

314 Multidisciplinary approach for the characterization of selenium speciation in  
315 bacterial transformations

316 Over the years, a suite of complementary microscopic, spectroscopic, chromatography-
317 mass spectrometric and synchrotron-based techniques have emerged for the 
318 characterization of the physical (size, morphology, structure, crystallography, etc.) and 
319 chemical (oxidation state, elemental composition, local coordination, chemical 
320 speciation, etc.) properties of selenium biotransformation products (22, 31-34, 72-75). 
321 A list of the techniques and the information they provide are summarized in Table 1.

322 The characterization of Se-containing particulates by Raman spectroscopy and Raman 
323 microscopy have been used to determine their size, morphology (76, 77), and to obtain 
324 structural data. (4, 22, 31, 32) Raman spectroscopic measurements can be used to 
325 differentiate between the various Se allotropes. The Se–Se stretching vibration mode in 
326 Raman spectra can be used to identify the structure of Se. Amorphous SeNPs exhibit a 
327 broadened Se–Se band at ~250 cm−1 as reported for SeNPs biosynthesized by 
328 azospirilla. (31, 32) Raman peaks corresponding to the symmetric stretching mode of 
329 trigonal Se occurs at 234 cm−1, (72) the corresponding peak for monoclinic Se is located 
330 at 264 cm−1, (78) while covalently bound sulfur can be revealed by the Se–S band 
331 around 352–377 cm–1. (32, 73)

332 The nature of the organic matter (lipids, proteins, polysaccharides) associated with 
333 biogenic SeNPs has been investigated by infrared (IR) spectroscopy. (4, 22, 31, 34) IR 
334 spectroscopy has enabled the identification of the presence of polymeric materials 
335 surrounding the NPs and demonstrated their role in increasing the thermodynamic 
336 stability of biogenic SeNPs. (33) Amorphous Se (a-Se) is thermodynamically unstable 
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337 and undergoes transformation to trigonal Se at increased temperatures. Monoclinic Se 
338 (m-Se) is metastable and could also eventually undergo conversion to the trigonal form 
339 (t-Se). (79) Transformation of SeNPs from monoclinic nanospheres to t-Se nanorods by 
340 the cells of Pseudomonas alcaliphila was revealed by the use of a combination of TEM 
341 and Raman spectroscopy. (74) Ho et al. (80) described the process of transformation of 
342 a-Se nanospheres produced by Shewanella to t-Se nanostructures (e.g. nanowires,
343 nanoribbons, nanorods, etc.) where organic solvents such as DMSO play a major role. 
344 In addition, the anaerobic biotransformation of a-Se nanospheres to t-Se nanorods has 
345 been shown for microbial granular activated sludge at a high temperature (55 °C). (75) 
346 Results from time-dependent SeNP experiments have shown that the cells of the strain 
347 Stenotrophomonas bentonitica and their proteins are able to transform amorphous Se0 
348 nanospheres to one-dimensional (1D) t-Se nanostructures (hexagons, polygons and 
349 nanowires) under mesophilic conditions. 

350 Recently, modern spectroscopic and imaging techniques based on synchrotron radiation 
351 have been used to investigate the biotransformation of selenium by multispecies 
352 biofilms avoiding damage to the sensitive samples. (53) Information from the Se K-
353 edge EXAFS analysis was used to demonstrate the ability of the biofilm to reduce 
354 selenite to SeNPs. In addition, nanoscale Se LIII edge Scanning Transmission X-ray 
355 Microscopy (STXM) showed the co-localization of elemental Se with microbial cells, 
356 EPS and lipids using the carbon K-edge. Structural and chemical data from the reaction 
357 products can be used to investigate Se biotransformation mechanisms (oxidation, 
358 reduction, etc.), to study the stability of the products and to inform the development of 
359 strategies for Se remediation.  

360 Beside measurements on the bacterial material, samples from the headspace and 
361 medium should be included as a matter of course. The information produced by these 
362 measurements will serve to fill in the gaps in our understanding of the metabolic and 
363 non-metabolic processes that are involved in the biotransformation of selenium-
364 containing species. Recently, Eswayah et al. have shown that it is possible using 
365 sorptive extraction followed by thermal desorption-gas chromatography-mass 
366 spectrometry (TD-GC-MS) to investigate both the volatile and semi-volatile selenium 
367 species produced during the biotransformation steps, and based on their findings have 
368 proposed the mechanisms for the formation of SeNPs. (4) 

369 All the above mentioned bulk spectroscopic and microscopic techniques are useful for 
370 the investigation of the chemical speciation and physicochemical properties of biogenic 
371 SeNPs. However, the heterogeneity that exists in SeNPs generated by complex 
372 biological systems (e.g. biofilms, granular activated sludge, microbial consortia) often 
373 makes it difficult to interpret chemical speciation and structure data by means of bulk 
374 techniques such as EXAFS spectroscopy. In recent years, the development of 
375 microscopic resolved synchrotron radiation using micro- or nano-focused based 
376 techniques (for example: micro (µ)EXAFS/XANES, µXRD, µinfrared spectroscopy, 
377 etc.) has created new opportunities for the investigation of the speciation and spatial 
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378 heterogeneity of the chemical elements associated with the selenium species (see, e.g.
379 (81,82) for detailed discussion of some of these techniques). Other techniques which 
380 could provide information on the distribution of selenium species in bacteria include 
381 laser ablation-inductively coupled plasma-mass spectrometry and matrix assisted laser 
382 desorption ionisation-MS which can be used to localize and identify selenium-
383 containing species and biomolecules associated with the selenium particulates, 
384 respectively.

385 Both the quantitative and qualitative distribution of the different Se species, and 
386 structures within complex biological/environmental samples can now be studied. The 
387 information from in-situ kinetic and thermodynamic properties of the 
388 biotransformations of SeNPs using synchrotron based techniques would provide the 
389 basis for comprehensive understanding of the processes which control the size and 
390 structure of the selenium-containing particulates. It is particularly so, since their 
391 environmental stability and industrial applications are intimately linked to their 
392 structural characteristics. 

393 Bioremediation of selenium contamination 

394 Remediation technologies involving microorganisms (bioremediation) offer an 
395 environment-friendly approach for the clean-up of pollution. (2, 8, 52, 83-85)
396 Bioremediation of selenium in various environmental niches results in the reduction of 
397 selenium oxyanions and precipitation of solid Se0 (SeNPs), together with the formation 
398 of volatile methylated selenium compounds (2, 22, 24, 25) thus reducing the total Se 
399 burden in the immediate vicinity of the pollution source. 

400 In an approach developed by Barlow et al. (86) the selenite-reducing bacteria (Bacillus 
401 subtilis) were encapsulated in semi-permeable biodegradable polymeric membranes 
402 (polymersomes) to rapidly reduce dissolved SeO3

2-. The bacteria remained viable 
403 throughout the synthesis of the polymersomes followed by proliferation when the 
404 incubation temperature was raised to 37 ºC, with rapid formation of biofilms and the 
405 conversion of soluble selenite (3 mM) to individual and clustered spherical SeNPs 
406 (~200–350 nm). The SeNPs remained entrapped in the membrane and as a result they 
407 were easily retrieved from the solution. 

408 A new Cronobacter sp. isolated and enriched from domestic waste water was found to 
409 grow heterotrophically, using organic substrates such as acetate, lactate, propionate or 
410 butyrate as the electron donor, and to reduce selenite to SeNPs under microaerobic 
411 conditions. (87) The latter conditions were favourable for its growth and resulted in 
412 several-fold increased SeO3

2- removal when lactate was used as the electron donor. In a 
413 different study, a UASB reactor was successfully used for ex situ bioremediation, where 
414 Se-rich soil was leached with water, followed by treatment of the leachate in which 
415 90% of the Se was removed at a rate of ca. 44 μg Se per gram of granular sludge. (88) 
416 It has been shown that it is possible to remove selenite (20–100 mg L–1) from high-
417 salinity (70 g·L–1) artificial waste water with removal efficiency of up to 98% using 
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418 aerobic sequencing batch reactors with activated sludge derived from a municipal 
419 wastewater treatment plant. (89) Mass balance analysis showed that bio-volatilization 
420 was the main route of selenium removal. A similar sequencing batch reactor with 
421 activated sludge under oxygen-limiting conditions has been successfully used to 
422 reductively remove up to 98% SeO4

2- (1 mM) from waste water in the presence of 3% 
423 NaCl, with most of selenium accumulating in the sludge as micrometer-sized particles. 
424 (90)

425 Recently, biofilm of selenate-reducing bacteria was utilized in a model of a membrane 
426 biofilm reactor with H2 as the electron donor, for simultaneous reduction and removal 
427 of SeO4

2- (maximum removal efficiency up to ca. 50–61% depending on the conditions 
428 applied) and nitrate (up to 97–99.9%) from aqueous solutions.(91) It is generally 
429 accepted that microorganisms isolated from selenium-contaminated environments are 
430 more tolerant of Se compounds, and therefore more suited for selenium bioremediation. 
431 An example is the use of two Lysinibacillus spp. (L. xylanilyticus and L. macrolides) 
432 isolated from a Se-rich soil and shown to be capable of using both SeO4

2- and SeO3
2- as 

433 electron acceptors to produce Se0 nanospheres (80–200 nm). (92)

434 The reduction of selenite to Se2– by E. coli resulting in the formation of insoluble and 
435 thus much less toxic metal selenides, makes selenite-reducing microorganisms possible 
436 candidates for bioremediation of not only selenium-polluted lands, but also when 
437 mercury is presnt. (93) Mercury immobilization (Hg0 is formed when Hg2+ is reduced) 
438 by biogenic SeNPs can be improved in the presence of soil-borne dissolved organic 
439 matter (DOM). DOM enhances the stability of the SeNPs resulting in up to 99% Hg 
440 immobilization. (94) The extent to which toxic methylmercury is formed in the 
441 presence of methylated selenium species and their effect on plant growth is of interest. 
442 (95)

443 Soil bacteria with phytostimulating properties and tolerance for selenium oxyanions can 
444 be used for the dual purpose of soil bioremediation and the promotion of plant growth. 
445 Several strains of bacteria of the widely studied genus Azospirillum, many of which 
446 display plant-growth-promoting traits, have been shown to be relatively tolerant to 
447 SeO3

2- and to efficiently reduce it to SeNPs (31,32, 34, 35, 96, 97) and also to 
448 selenium–sulfur mixed NPs (Se8-nSn) in the presence of both selenite and high 
449 concentrations of sulfate (~0.8 g L–1). (73) Recently, a Herbaspirillum sp., a plant-
450 growth-promoting endophyte specific to the tea plant Camellia sinensis (L.), has been 
451 shown to be capable of reducing selenate (via selenite) to SeNPs in culture medium. 
452 Indeed, more than two-fold higher Se content was found in the plant leaves grown on 
453 selenate-spiked soil compared to the control plants. (36) The combined utilization of 
454 selenium oxyanion conversions to Se0 and possibly other Se species that are relatively 
455 non-toxic and bioavailable to plants in addition to their plant growth-promotion traits 
456 are definitely of potential agricultural and agrobiotechnological significance. 

457 Bacterial transformations in the production of biotechnologically useful products
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458  Examples of biotechnologically useful selenium-containing products are summarized 
459 in Table 2. (29,30,32,40,48,73,77,87,99,100–116)

460 Se2- ions can form largely insoluble metal selenides in the presence of appropriate 
461 heavy metal species, such as Hg2+, Cd2 +, Cu+ or Cu2+, etc. Microorganisms such as 
462 Pseudomonas aeruginosa, Bacillus subtilis and Saccharomyces cerevisiae have been 
463 shown to reduce SeO3

2- in the presence of the corresponding cations to form cadmium 
464 and zinc selenides (98–101). Incubation of the plant pathogenic fungus 
465 Helminthosporum solani in aqueous solution with CdCl2 and SeCl4 has been shown to 
466 produce small nanospheres of CdSe. (102) The Gram-negative bacterium Pantoea 
467 agglomerans was found to form Cu2+- and Cu+-containing black nanocrystallites (Cu2-

468 xSe) in the presence of Cu2+–EDTA and SeO3
2-, (103) exhibiting the ability to 

469 simultaneously reduce copper(II) to copper(I) and SeO3
2- to Se2-. 

470 The first complete genome data have been recently reported for B. cereus (strain CC-1 
471 isolated from marine sediments), a selenite/selenate-reducing and metal selenide-
472 producing bacterium. (104) The putative genes involved in selenate/selenite reduction 
473 as well as in salt and metal resistance were identified, and the bacterium was shown to 
474 be capable of producing SeNPs (in the absence of heavy metal ions) or 
475 photoluminescent Bi2Se3, PbSe and Ag2Se NPs when Bi3+, Pb2+ or Ag+ nitrates, 
476 respectively, are present. The addition of 5 mM glutathione (GSH) significantly 
477 inhibited the formation of cell-bound Bi2Se3 nanosheet-like particles and instead SeNPs 
478 were formed. (105) Hence it was proposed that specific enzymes, instead of thiols, were 
479 responsible for the formation of metal selenides in this bacterium. In contrast, 
480 Lysinibacillus sp. was found to synthesize both extra- and intracellular Bi2Se3 
481 nanosheets, formation of which was faster when 5 mM GSH was added indicating the 
482 existence of different mechanisms of biogenic nano-Bi2Se3 formation. (105)

483  Recently, there have been reports on the applications of microbial synthesized Se-
484 containing NPs in chemotherapy, drug delivery, as well as in cancer diagnostics, 
485 prevention and treatment. (117–118) Biogenic SeNPs have been shown to exhibit 
486 antioxidant and anti-tumour activity, immunostimulatory and anti-inflammatory 
487 effects in animal models (106); for recent reviews, see (118,119–121). Investigations 
488 into the antimicrobial and antibiofilm activities of microbial synthesized SeNPs have 
489 shown that the surface bioorganic layers characteristic of biogenic nanostructures play 
490 important roles in their biochemical behaviour. (122)

491 Bacterial selenoproteins and selenoproteomes

492 Although the focus of this review has been on the visible changes in the chemical 
493 speciation of selenium species in the presence of bacteria, and the uses of the products 
494 of the biotransformation reactions, it is important to note that selenium is an essential 
495 element for bacteria. It is incorporated in a variety of prokaryotic selenoproteins, 
496 which are involved in biochemical redox functions. The mechanism and the genes 
497 responsible for the synthesis and insertion of selenocysteine, the amino acid at the 
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498 active centre of these proteins, have been described.(123-126) The unique genetic 
499 signature of this mechanism has provided researchers with the information that has 
500 enabled them to easily establish if a particular bacterium has the ability to synthesize 
501 selenoproteins from the examination of its complete sequenced genome.(127-129) 
502 Over 70 prokaryotic selenoprotein families have so far been identified but the 
503 biochemical roles of some are yet to be elucidated.(130) The variety of the 
504 selenoproteomes in each bacterium presents clues as to the extent to which it utilizes 
505 the element in it metabolism and its ability to tolerate exposure to high levels of 
506 selenium species. The deployment of the genomic approach for the screening and 
507 selection of suitable selenium-tolerant bacteria and to the study of selenium-rich 
508 environmental niches will yield information on how bacteria have evolved to use the 
509 element. In addition, it is probable that bacteria with the desirable characteristics, 
510 which can be harnessed to produce useful biotechnological products, will be 
511 identified. 

512 Concluding remarks and future directions

513 The complexity of bacterial biotransformation of selenium species has only recently 
514 began to emerge. It is now clear that selenium biotransformation is widespread in 
515 diverse prokaryotes, some anaerobes, and certain clostridial species, while the focus 
516 of current research has been on planktonic microorganisms and their ability to convert 
517 selenium species to reduced selenium anions, elemental selenium, metal-selenide and 
518 quantum dots, methylated volatile and semi-volatile compounds. A holistic approach 
519 is therefore now required in order to gain a better understanding of the types of 
520 reactions that are not only occurring on the surfaces and inside  bacterial cells but also 
521 in the culture medium and to characterize the products of such reactions. There have 
522 been few studies which replicate the conditions in selenium-rich environmental niches 
523 in which the microorganisms thrive by interacting with each other to form biofilms, 
524 and utilize selenium oxyanions in order to conserve energy. The application of 
525 functional gene analysis and metagenomics to the study of these microbial niches will 
526 provide a better understanding of how selenium biogeochemical cycle interacts with 
527 those of other elements leading to the identification of the key factors which 
528 influence, determine and underpin selenium biotransformation. These developments 
529 will enable the discovery and introduction of innovative biotechnological applications 
530 of the products thereof. 
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Table 1
Microscopic and spectroscopic techniques used to investigate the speciation of selenium and 
the structure of SeNPs produced by microorganisms

Technique Information provided

X-ray Absorption
Spectroscopy, XAS:

(X-ray Absorption Near Edge 
Structure, XANES*;  

Extended X-Ray Absorption 
Fine Structure, EXAFS**)

Element specific technique

Determination of local coordination of Se:

*Oxidation state; VI, IV, 0, -II

**Structural parameters of biogenic Se species: number 
and chemical identities of near neighbours atoms and 
the average interatomic distances up to 5-6 Å. 

X-ray Photoelectron
Spectroscopy

Surface chemistry of purified biogenic SeNPs (oxidation 
state, nature of functional groups of organic matter 
adsorbed to SeNPs surfaces, etc.)

Elemental composition of surface-bound Se NPs of 
whole cells (outermost 10 nm of the cell wall) 

X-Ray Diffraction Determination of size and phase of SeNPs (amorphous, 
monoclinic, trigonal)

Infrared Spectroscopy Compositional data: nature of organic matter (lipids, 
proteins, polysaccharides) associated with biogenic 
SeNPs

Monitoring molecular-level changes in the structure and 
composition of cellular macrocomponents involved in 
the interactions with SeNPs.

Raman Spectroscopy Sensitive to differences in various allotropic changes 
(amorphous, monoclinic, trigonal) and crystallinity of 
Se in SeNPs

Composition of SeNPs (presence of Se-S, etc.)

Scanning Transmission 
Electron Microscopy (STEM) 
coupled with a High Angle 
Annular Dark-Field (HAADF)

Cellular localization of the biogenic SeNPs

Elemental composition (S, Se, P, etc.) 

Crystallographic properties of the SeNPs 

Variable Pressure Field 
Emission Scanning Electron 
Microscope (VP-FESEM)

Determination of size and chemical composition of 
SeNPs (interactions with organic matter including 
proteins, EPS, etc.)

Dynamic light scattering and 
zeta potential analysis

Particle size and surface charge
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Table 2
Biotechnologically useful selenium-containing nano-sized products of microbial origin and 
conditions of their biogenic synthesis*

Compo-
sition

Micro-
organisms

Electron 
donors 
(medium) / 
electron 
acceptors 

Conditions Localisation, 
properties, 
morphology, size

Notes Refer
ences

Se0 Cronobact
er sp.

Acetate, 
lactate, 
propionate or 
butyrate / 
selenite

Microaerobic Extracellular 
(aggregates)

Selenite 
bioreduction rates 
0.10–0.24 mM·d–1

(87)

Se0 Cronobact
er sp.

Graphite felt 
electrode / 
selenite

Anaerobic 
electrotrophic 
bioreduction 
(at –0.3 V vs. 
SHE)

NPs (50 to 300 nm) 
attached to the 
electrode

Selenite 
bioelectroreductio
n rate 0.03 mM·d–

1

(87)

Se0 Pseudomo
nas putida

LB broth / 
selenite

Aerobic Extracellular 
spherical NPs and 
aggregates (100–
500 nm)

High selenite 
bioreduction rate 
(0.444 mM·h–1) 

(107)

Se0 Pseudomo
nas 
aeruginosa

Peptone 
nutrient broth / 
selenite

Aerobic Extracellular (cell 
surface-bound), 
spherical, 
amorphous (~47–
165 nm; average 
size ~96 nm)

Covered with a 
bioorganic layer 
(NPs 
characterised by a 
range of 
instrumental 
techniques)

(77)

Se0 Tetrahyme
na 
thermophil
a

Proteose 
peptone 
medium / 
selenite

Aerobic Intracellular 
amorphous 
spherical (50–500 
nm), with irregular 
NPs

Covered with a 
bioorganic layer 
(including 
proteins); NPs 
characterised by a 
range of 
instrumental 
techniques)

(108)

Se0 Staphyloco
ccus 
carnosus

LB culture 
medium / 
selenite

Aerobic Intracellular 
(isolated by cell 
disruption and 
separated); 
spherical (average 
sizes ~440–525 nm)

Associated with 
proteins. NPs 
showed 
considerable anti-
nematode and 
antimicrobial 
activities

(109)

Se0 A 
microbial 
community 
of 
anaerobic 
sludge

Lactic acid / 
selenate; 
selenium 
sulphide 
(SeS2)

Anaerobic 
bioreduction 
of selenate or 
SeS2 
(precipitated 
during 
reduction of 
selenite by 
sulphide)

Amorphous 
nanospheres; 
hexagonal acicular 
crystallites (not 
attached to 
biomass) 

Higher pH and 
temperatures are 
favourable for 
obtaining crystals 
(without a 
bioorganic 
‘coating’) 

(40,4
8)

Se0 Escherichi
a coli 
(weakly 
virulent α-
hemolytic 

Culture broth / 
selenite

Aerobic Intracellular 
spherical or ovoid 
NPs; 30–120 nm

Promising as an 
adjuvant (for the 
immunisation of 
livestock and 
poultry against 

(110)
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strain B-5) colibacillosis)
Se0 Escherichi

a coli 
(selenite 
reductase 
CsrF 
overexpres
sing strain)

LB culture 
medium / 
selenite

Aerobic Intra- and 
extracellular 
irregular 
nanospheres (60–
105 nm)

Covered with a 
bioorganic layer. 
High potential for 
adsorption and 
removal of dyes

(111)

Se0 Lactobacill
us casei

MRS culture 
broth (Sigma) 
/ selenite

Anaerobic Intracellular 
spherical NPs; 50–
80 nm

Promising as a 
probiotic 

(106)

Se0 Azospirillu
m 
brasilense

Autotrophic 
(in 
physiological 
solution) / 
selenite

Microaerobic Extracellular, 
spherical (~50–100 
nm), amorphous

Covered with a 
bioorganic layer

(32)

Se8-nSn Azospirillu
m 
brasilense

Malate-
containing salt 
medium + 1 
g·L–1 
(NH4)2SO4 / 
selenite

Aerobic 
(selenite 
reduction in 
the presence 
of an 
increased 
concentration 
of sulphates)

Extracellular, 
spherical (~400 
nm), amoprhous

Covered with a 
bioorganic layer 
(NPs 
characterised by a 
range of 
instrumental 
techniques)

(73)

Se0 Mariannae
a sp.

Modified 
Martin 
medium with 
1 g·L–1  
glucose / SeO2

Aerobic (at 
varying SeO2 
concentrations 
and pH 5–12)

Intracellular (~45 
nm) or extracellular 
(~212 nm) 
crystalline spherical 
NPs

Extracellular 
localisation of 
NPs at alkaline 
pH. NPs 
associated with 
proteins

(30)

Se0, 
Se0–Te0

Microbial 
community 
of 
methanoge
nic 
granular 
sludge

Anaerobic 
granular 
sludge (with 
lactate) / 
selenite + 
tellurite

Anaerobic 
(simultaneous 
reduction of 
selenite and 
tellurite)

EPS-entrapped 
crystalline Se0, Te0 
and mixed
Se0–Te0 irregular 
anisotropic 
nanostructures

First 
demonstration of 
mixed Se0–Te0 
NPs formed by 
anaerobic 
microorgaisms

(112)

CdSe Veillonella 
atypica

H2 / selenite 
(with 0.1 mM 
AQDS as an 
electron 
shuttling 
compound)

Anaerobic 
(with further 
filtering the 
Se2–-
containing 
culture and 
adding CdII–
GSH solution)

Fluorescent QDs; 
2.3–3.6 (± 1.2) nm

Associated with a 
range of proteins 
and GSH as a 
capping agent

(100)

CdSe Helmintho
sporum 
solani

Incubation in 
aqueous 
solution of 
CdCl2 / SeCl4

Aerobic 
(ambient 
conditions)

Extracellular 
monodisperse 
spheres (QDs; mean 
diameter 5.5 ± 2 
nm)

Characterised by 
a range of 
instrumental 
techniques

(102)

CdS0.5Se0.5 Staphyloco
ccus 
aureus

GSH / selenite Aerobic; 
intracellular 
reduction 
(further 
interaction 
with Cd2+)

Intracellular 
uniform 
monodisperse 
nanocrystals (1.8 ± 
0.5 nm; fluorescent 
QDs)

Low crystallinity; 
possible presence 
of a capping 
protein/peptide 
layer

(113)

CdSe Bacillus 
subtilis

LB culture 
medium / 
selenite

Aerobic; 
intracellular 
reduction 
(further 

Blocks of 
intracellular 
nanocrystals
with angular shape 

No isolation and 
chemical analysis 
of CdSe was 
performed

(99)
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interaction 
with Cd2+)

(fluorescent QDs)

CdSe Saccharom
yces 
cerevisiae

Sterilised 
yeast extract 
peptone 
medium / 
selenite

Aerobic; SeIV-
exposed cells 
(in fresh 
medium) 
added to 
CdCl2 solution 

Intracellular QDs 
(isolated by cell 
lysis and 
homogenisation 
with further 
separation); ~2.8 
nm

Biosynthetic 
protocol 
optimized by 
concentrations 
and times of 
exposure

(101)

CdSe Shewanell
a 
oneidensis

LB medium / 
selenite

Anaerobic 
(incubation 
with selenite 
followed by 
CdCl2 
addition)

Intracellular high-
purity uniform 
fluorescent QDs 
(~3.3± 0.6 nm)

Highest CdSe 
bioproduction 
rates. 
(Extracellular Se0 
NPs also 
obtained) 

(29)

CdSe; 
CdSe/CdS

A 
methanoge
nic 
microbial 
consortium 

Anaerobic 
granular 
sludge (with 
lactate) / 
selenite

Anaerobic 
(selenite 
reduction in 
the presence 
of Cd2+–NTA 
complex)

Extracellular 
fluorescent CdSe 
and CdSe/CdS 
core-shell NPs (10–
190 nm)

CdSe NPs capped 
by extracellular 
polymeric 
substances 
(contain impurities 
of Se0 NPs)

(114)

CdSe Pseudomo
nas stutzeri

GSH / selenite Aerobic 
(selenite 
reduction in 
the presence 
of Cd2+)

Intracellular 
fluorescent QDs 
(isolated by cell 
disruption and 
separated); < 10 nm

Covered with a 
bioorganic layer 
(QDs 
characterised by a 
range of 
instrumental 
techniques)

(115)

CdS1-xSex Tetrahyme
na 
pyriformis

Proteose 
peptone 
medium / 
selenite

Aerobic 
(incubation 
with selenite 
followed by 
CdCl2 
addition)

Intracellular 
fluorescent QDs 
(isolated by cell 
lysis and disruption, 
separated and 
purified); 8.3 ± 0.8 
nm

Optimised 
biosynthetic 
protocol; QDs 
characterised by a 
range of 
instrumental 
techniques

(116)

Cu2-xSe Pantoea 
agglomera
ns

Glucose-
containing salt 
medium (with 
EDTA–Cu2+) / 
selenite

Anaerobic Extracellular 
uniform crystallites 
(~80 nm)

Capped by 
proteins (NPs 
characterised by a 
range of 
instrumental 
techniques)

(103)

Bi2Se3 Lysinibacil
lus sp.

Tryptic soy 
broth / selenite

Aerobic 
(selenite 
reduction in 
the presence 
of Bi3+ nitrate)

Extracellular (also 
intracellular) 
crystalline 
nanosheets (~60 
nm; average 
thickness 5–6 nm)

Covered with a 
bioorganic layer 
(proteins). 
Promising for 
photothermal 
therapy against 
cancer cells

(105)

Se0,
Bi2Se3, 
PbSe, 
Ag2Se

Bacillus 
cereus

Tryptic soy 
broth / selenite

Aerobic 
(selenite 
reduction to 
Se0 or, in the 
presence of 
either of metal 
ions, to metal 
selenides)

Extra- and 
intracellular 
trigonal Se0 NPs 
(without metal 
ions); extracellular 
crystalline 
photoluminescent 
PbSe and Ag2Se, 
cell-bound Bi2Se3 
(~10–50 nm)

Adding 1% PVP 
to the culture 
medium changed 
the size and 
morphology of 
Bi2Se3 and PbSe 
NPs

(104)
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* Abbreviations: AQDS, anthraquinone-2,6-disulphonate ; EPS, extracellular polymeric
substances; GSH, reduced glutathione; LB, liquid Luria-Bertani broth; NPs, nanoparticles;
NTA, nitrilotriacetic acid; PVP, polyvinyl pyrrolidone; QDs, quantum dots; SHE, standard
hydrogen electrode
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Arrows indicate different processes:
Anaerobic respiration
Detoxification
Assimilation
Transport

G – glutathione;
R = thiol-containing proteins such as thioredoxin, bacillithiol;
M = metal (Cd, Cu, Pb, Hg).

SeO42–

SeO32–

HSePO32–
Biological forms of Se
 (selenoproteins, etc.)

GSSeSG
(RSSeSR)

SeO32–

HSe–

Se0

SeO32–/SeO42–

GSSe–

(RSSe–)

Se0

MSe

MSe

Se0

Se0

Se0

(CH3)2Se, (CH3)2Se2
Volatile selenium 

species

Se0

(CH3)2Se, (CH3)2Se2
Volatile selenium 

species
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