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Tensor networks (TNs) have become one of the most essential building blocks for various fields of theoretical physics

such as condensed matter theory, statistical mechanics, quantum information, and quantum gravity. This review provides

a unified description of a series of developments in the TN from the statistical mechanics side. In particular, we begin

with the variational principle for the transfer matrix of the 2D Ising model, which naturally leads us to the matrix

product state (MPS) and the corner transfer matrix (CTM). We then explain how the CTM can be evolved to such MPS-

based approaches as density matrix renormalization group (DMRG) and infinite time-evolved block decimation. We also

elucidate that the finite-size DMRG played an intrinsic role for incorporating various quantum information concepts in

subsequent developments in the TN. After surveying higher-dimensional generalizations like tensor product states or

projected entangled pair states, we describe tensor renormalization groups (TRGs), which are a fusion of TNs and

Kadanoff-Wilson type real-space renormalization groups, focusing on their fixed point structures. We then discuss how

the difficulty in TRGs for critical systems can be overcome in the tensor network renormalization and the multi-scale

entanglement renormalization ansatz.

1. Overview

Tensor networks (TNs) have been providing deep insights

for understanding essential physics embedded in quantum and

classical many-body systems. Also, several developments in

TN simulation techniques incorporating the concept of quan-

tum entanglement enable us to quantitatively analyze various

interesting phenomena inherent in the many-body systems. A

main reason for such successes of the TNs is that it can pro-

vide a clear answer to a fundamental question in physics; How

can we extract effective degrees of freedom representing es-

sential physics embedded in a huge number of degrees of free-

dom/huge dimension of the Hilbert space of the many-body

systems? This question is deeply related to the concept of

renormalization group (RG). Thus, theoretical backgrounds

of the TN have been an essential issue from both viewpoints

of theoretical physics and practical computational physics.

We focus on the theoretical background behind the TN

formulation of quantum and classical many-body problems,

rather than the technical aspects. Of course, the TN already

has various styles and many applications,1–9) all of which we

cannot cover in this review. Thus, we particularly cut into

the issue from such a statistical mechanical problem as vari-

ational approximation for two-dimensional (2D) Ising model,

and then evolve the argument to quantum lattice systems. This

is because the path integral representation directly relates the

dD quantum many-body problems with the (d + 1)D classical

lattice statistics. In other words, the transfer-matrix formalism

of (d + 1)D classical lattice models is mathematically equiv-

alent to the imaginary-time formulation of quantum many-
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body systems, where the quantum Hamiltonian can be in-

terpreted as an anisotropic limit of the transfer matrix. For

the classical lattice statistics, however, the space and (imagi-

nary) time structure of the lattice can be treated on the equal

footing, which provides a clear view for the matrix product

state (MPS) decomposition of the maximal eigenvector of the

transfer matrix (the ground-state wavefunction of the Hamil-

tonian for the quantum case). After explaining the fundamen-

tals of the TN structure for 2D classical or 1D quantum sys-

tems, we proceed to other related developments in TNs such

as higher dimensions, real/imaginary time evolution, tensor

renormalization groups, etc. We think that this route would be

the best approach to the unified understanding of the TN, with

emphasizing the notion that the concept of many-body entan-

glement is equally relevant to the transfer matrix/Hamiltonian

formulations for classical/quantum many-body systems.

In the TN formulation of classical spin systems, the maxi-

mal eigenvector of the transfer matrix (the ground-state wave-

function of the Hamiltonian for the quantum case) is repre-

sented as a contraction of local tensors with respect to auxil-

iary spin indices. Then, there are two essential requirements

to obtain the optimal TN state. One is the variational princi-

ple for the TN state and the other is how to construct efficient

RG-like transformations to extract effective degrees of free-

dom. A key ingredient satisfying these requirements is sin-

gular value decomposition (SVD) for a variational TN state

through its matrix/tensor representation. For the 2D classical

model, the low-rank approximation based on the SVD was

implicitly used in the form of a corner transfer matrix (CTM)

in the bulk limit through the matrix eigenvalue problem.10, 11)

A combination of the SVD and a real-space RG for 1D quan-

tum systems was explicitly introduced by S. R. White in

the density matrix renormalization group (DMRG).12, 13) Af-
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ter the DMRG, several TN algorithms assisted by quantum

information ideas have been rapidly expanded to various as-

pects of many-body problems. In particular, the application

of SVD to a quantum many-body state is essentially equiv-

alent to Schmidt decomposition14, 15) in the quantum infor-

mation context, and entanglement entropy (EE) and entan-

glement spectrum respectively defined as the von Neumann

entropy and the logarithm of the singular value spectrum pro-

vide very useful information for characterizing its entangle-

ment structure. Interestingly, such entanglement analysis in-

spired by quantum information has given a rise to significant

feedback to the formulation of real-space RGs. On the basis of

the area law of EE with the log-correction term, entanglement

renormalizations, i.e. multi-scale entanglement renormaliza-

tion ansatz (MERA)16) and tensor network renormalization

(TNR)17) were designed. These entanglement RG approaches

enable us to extract numerically exact critical phenomena in

the framework of the real-space RG for the first time since

Kadanoff’s proposal in 1966.18, 19)

In the following sections, we explain the TN from statis-

tical mechanical viewpoint. In §2, we briefly summarize his-

tory of the TN and associated researches from the modern

viewpoint. If a reader is directly interested in the formulation

of the TN, he/she may skip this section, but a history of the

TN often provides interesting and instructive information. In

§3, we introduce the square-lattice Ising model as a typical

example of the TN. We discuss the variational evaluation of

the partition function and the free energy on the basis of Bax-

ter’s CTM, where the MPS is introduced in a very natural way

without passing through the Schmidt decomposition. In §4,

we explain the corner transfer matrix renormalization group

(CTMRG), which is a prototype of modern TN approaches.

We then proceed to discussions of a variety of MPS-type algo-

rithms for 1D quantum systems in §5. In this section, we also

mention the role of the DMRG in the context of the modern

TNs. In §6, we consider higher-dimensional generalizations

of the MPS: tensor product states (TPS) or projected entan-

gled pair states (PEPS). In §7, we discuss the relation between

TN approaches and real-space RGs, where we particularly fo-

cus on the fixed point structures of tensor-renormalization-

group (TRG) type algorithms. We then explain how the TNR

and MERA overcame the difficulty in the TRGs for critical

systems. In §8, we briefly mention recent trends and possible

developments in the TN. In Appendix, we provide a list of

useful TN packages.

2. Tensor network history

Around the beginning of the 21st century, the concept of

MPS, which has been a fundamental part of the TN, was in-

tegrated from several pioneering studies independently devel-

oped in various research fields in theoretical physics. Let us

begin with the chronological sequence in the earlier develop-

ments which led to the modern MPS formalism.

2.1 Early Development of Matrix Product State

To our knowledge, the earliest example of MPS dates

back to the Kramers-Wannier approximation for the 2D Ising

model in 1941.20) A key idea of the approximation was that a

variational state for the row-to-row transfer matrix was repre-

sented as the thermal equilibrium state of the 1D Ising model

under an effective magnetic field, which can be written as

a product of 2 × 2 matrices of effective Boltzmann weight.

Thus, the variational state of the Kramers-Wannier type can

be viewed as a prototype of the MPS.21) A systematical gen-

eralization of the 1D variational state was proposed by Bax-

ter in 1968 for an analysis of the dimer model on a square

lattice,10) which is basically equivalent to the infinite MPS

nowadays. This variational state was constructed as a con-

traction of 3-leg tensors aligned in the row(or equivalently

column) direction, where the local 3-leg tensor with the aux-

iliary degrees of freedom is a generalization of the effective

Boltzmann weight in the Kramers-Wannier case. Assuming

the uniform MPS in the bulk limit, moreover, he derived a

closed form of self-consistent equations for the corner trans-

fer matrix (CTM).10, 11) Note that the product of four CTMs is

basically equivalent to the reduced density matrix under the

half-infinite bipartitioning of a 1D quantum system. A recur-

sive method optimizing the variational state through matrix

diagonalization of CTMs was explained in §13 of his text-

book,22) where some of the fundamental ideas of TNs were

presented about two decades earlier than any other else.

A quantum-system counterpart of the MPS can be at-

tributed to the valence-bond solid (VBS) state, which is the

exact ground-state wavefunction of Affleck-Kennedy-Lieb-

Tasaki (AKLT) chain proposed in 198723, 24) for understand-

ing physics of the Haldane conjecture. In the VBS state, phys-

ical S = 1 spins are correlated or entangled through the aux-

iliary S = 1/2 spins. Then, an essential point is that the con-

nectivity of the auxiliary S = 1/2 spins can be represented

in the matrix product form, which enables us to straightfor-

wardly construct the MPS representation of the VBS state.

Using the uniform and finite-dimensional MPS, Fannes et al

proved that the correlation length of the VBS states is always

finite.25–27) The term ‘matrix product ground state’ firstly ap-

peared in Refs. 28–30, where the VBS state was also explic-

itly written down in the MPS form. Recently, the VBS state is

well known as a typical example of the symmetry-protected

topological (SPT) order/entanglement in quantum many-body

systems.31, 32)

Here, it is worth mentioning that the nonlocal string or-

der characterizing the VBS state was originally proposed by

Rommelse and den Nijs for the disordered flat phase of a re-

stricted solid on solid model.33, 34) Moreover, the variational

state in Baxter’s form was used for a precise estimation of

the ground-state energy of S = 1 Heisenberg chain35) in the

context of the Haldane conjecture,36) though the recursive for-

mulation for the CTM was not directly applied to 1D quan-

tum systems at that time. Nevertheless, it is worth noting that

the MPS structure of the eigenvector is assumed in the ex-

act solution of the eight-vertex model,37) and in the vertex

operator approach to the XXZ chain.38) The direct and ex-

plicit connection between the MPS and the algebraic Bethe

ansatz39, 40) for 1D quantum integrable systems was revisited

in recent works.41–43) These suggest that the statistical me-

chanics viewpoints often played an intrinsic role in revealing

quantum many-body physics.

2.2 After Density Matrix Renormalization Group

The modern stream of the TN began in 1992 with the in-

vention of the DMRG by S.R. White.12, 13, 44) After the success

of DMRG for the S = 1/2 and S = 1 Heisenberg chains, it

has been extensively applied to 1D quantum many-body prob-
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lems and been established as a de-facto-standard numerical

RG method for condensed matter physics.1, 2) Strictly speak-

ing, however, the DMRG is not a conventional real-space RG,

although its name contains “renormalization group”. This is

because no rescaling of the length scale is involved in its

formulation where the bipartitioned system is iteratively up-

dated with the combination of the low-rank approximation of

SVD for the ground-state wavefunction and insertion of lo-

cal two sites at the center of the system Hamiltonian. The

detailed analysis of the iteration process in the DMRG was

analyzed by Östlund and Rommer, and it was clarified that

the DMRG can be viewed as a variational method based on

an MPS-type wavefunction.45, 46) Then, some acceleration al-

gorithms of DMRG were proposed in light of the MPS rep-

resentation.47–49) Here, it should be noted that the successive

use of SVD in the DMRG corresponds to the Schmidt decom-

position of the ground-state wavefunction in quantum infor-

mation terminology, which drew much interest of quantum-

information researchers to the MPS/TN around 2000.

The statistical mechanical counterpart of DMRG was for-

mulated by Nishino for the transfer matrix of the 2D Ising

model in 1995, regardless of the MPS formulation by Bax-

ter.50, 51) This approach was straightforwardly generalized to

finite temperature problems of quantum spin chains,52–56)

on the basis of the quantum transfer matrix57) constructed

through the Suzuki-Trotter decomposition.58, 59) Nevertheless,

the asymmetricity of the quantum transfer matrix and the pe-

riodic boundary condition in the imaginary time direction is

technically cumbersome. After 2000, thus, a research trend of

the TN based on the Suzuki-Trotter decomposition turned to

direct simulations of real/imaginary time evolution problems.

Meanwhile, the formulation of DMRG for the transfer ma-

trix naturally stimulated us to clarify its relation to Bax-

ter’s formulation of the CTM and MPS in 1996.60) Unifying

the DMRG and CTM, Nishino and Okunishi developed the

CTMRG,61, 62) which is efficient for two-dimensional lattice

models. In addition, the spectrum of the CTM was clarified

to be essential for understanding the entanglement spectrum

for the setup of half-infinite bipartitioning in 1D quantum sys-

tems.63–66) The algorithm of the CTMRG has been combined

with flexible use of the SVD by Orus and Vidal, inspired by

subsequent developments in TN algorithms.67) Recently, nu-

merical convergence of the CTMRG in the thermodynamic

limit was improved by Fishman et al.68)

In the field of the nonequilibrium statistical mechanics,

the exact MPS description of stochastic processes on 1D lat-

tices was formulated independently at almost the same tim-

ing as the appearance of DMRG. Derrida introduced the “ma-

trix product ansatz” for steady states of asymmetric exclusion

processes in 1993,69) and a variety of extensions have been

proposed.70, 71) In the context of TN algorithms, the DMRG

was firstly extended to the asymmetric exclusion process72, 73)

and reaction-diffusion processes.74) A particular point for the

stochastic process is that the transition matrix is usually asym-

metric and the norm of its eigenvector is defined by the 1-

norm, in contrast by the 2-norm (Euclidean norm) usual in

quantum mechanical problems.75) This suggests that how to

construct the reduced density matrix has been a nontrivial

problem for the stochastic process.76) Recently, this problem

was revisited in light of various developments in TN algo-

rithms,77, 78) where possible ways of tensor constructions are

carefully examined depending on the physical property of

steady states.

As mentioned above, the MPS formalism in the DMRG

and the CTM is basically equivalent, as far as the uniform

bulk limit is concerned. However, we should remark that

the finite-system-size DMRG has played a more significant

role than the CTM approach for the development of TNs in

the 21st century. This is because the finite-system-size algo-

rithm of DMRG possesses two particular features, which are

not involved in the Baxter-type variational formulation based

on the thermodynamic limit. The first one is that the finite-

system size algorithm established the position-dependent up-

date scheme of local tensors, which led us to more flexible

tensor-construction methods based on SVD. The other is that

the finite-system-size algorithm can treat 1D quantum sys-

tems with long-range interactions up to moderate chain length

within realistic computational cost. Through mapping to ef-

fective 1D quantum systems with long-range interactions, the

application range of the DMRG was expanded to a wide va-

riety of quantum systems such as finite-size 2D quantum sys-

tem,79) bosonic systems,80)dynamical quantities,81) random

systems,82) momentum space,83) quantum Hall systems,84)

quantum chemistry, etc.85) We think that the development of

the TN algorithms was certainly inspired by these features of

the finite-system-size DMRG.

2.3 MPS and quantum information

In the 21st century, quantum many-body physics met the

concept of quantum entanglement originating from quantum

information. In particular, the EE provides a useful marker to

extract nonlocal quantum correlations between a subsystem

and its complement in the total wavefunction. For instance,

extensive analyses of 1D quantum many-body systems based

on the EE provided renewal understanding of quantum phase

transitions86, 87) and SPT orders,31, 32) complementarily to con-

ventional physical quantities such as order parameters, corre-

lation functions, etc. Moreover, the EE is also easy to handle

through the SVD of wavefunctions in the framework of the

MPS. Thus, such intensive entanglement analyses stimulated

researchers to several MPS algorithms such as time-evolved

block decimation (TEBD),88) infinite TEBD,89) variational

uniform matrix product state algorithm (VUMPS)90) as well

as time-dependent DMRG.91, 92) Here, it is worth mentioning

that, in some early works, the EE was eventually used for

setting up effective sweeping pathways in finite-size DMRG

computations, without calling “entanglement entropy” .93–95)

When looking back to these MPS-based algorithms from

the modern perspective, we have two intrinsic theoretical

backgrounds; The first one is the statistical/quantum mechan-

ical variational principle for extracting the nature of bulk sys-

tems, where the self-consistent matrix/tensor equations satis-

fied in the thermodynamic limit are primarily deduced, as in

the case of Baxter’s CTM. The other is of course the quan-

tum information viewpoint, where the entanglement among

quantum-mechanical particles/states is a primal problem to

be analyzed. The most significant benchmark model for un-

derstanding the quantum many-body entanglement has been

the AKLT chain, where singlet pairs of the auxiliary spins in

the VBS state can be interpreted as a nontrivial accumula-

tion of Bell pairs. Accordingly, the MPS from quantum infor-

mation was constructed as a generalization of the VBS-type

3
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ground state, and the RG transformations in the MPS algo-

rithms can be interpreted as sequential operations to control

entanglements among auxiliary spin degrees of freedom.

Of course, the above two standpoints should be consis-

tent with each other if the tensor optimization is properly

done. For example, it is well known that the DMRG gener-

ates the exact MPS for the AKLT model. Also, the row-to-

row transfer-matrix formulation in the statistical mechanics is

basically equivalent to the matrix product operator (MPO) in

the quantum information context.96) In our view, the TN algo-

rithm inspired by quantum information tends to use more flex-

ible operation of local tensors, while those based on statisti-

cal mechanics are more careful about the stability of its global

fixed point. In this review, we begin with the fixed point varia-

tional equations for the MPS and then discuss their relation to

the modern MPS-type algorithms, with putting a special em-

phasis on the role of finite-system-size DMRG to bridge the

gaps between the above two backgrounds.

In addition, the quantum information viewpoint has played

a crucial role in the generalization of TN algorithms beyond

the MPS. In particular, the area law of EE97) provides a guid-

ing principle to design the connectivity of tensors in general

TN algorithms. It is well established that the ground states

of 1D gapful systems can be well approximated by the tree-

type TN states including MPS. This is generally the case of

the TN algorithms for higher dimensional systems, as will be

explained in the next subsection. For critical systems, mean-

while, the log-correction to the area law of EE dwarfs the ca-

pacity of the tree-type TN states. In order to settle the log-

correction problem, the idea of disentangler that intrinsically

changes the connectivity of tensors was introduced in the

MERA.16, 98) The development of the MERA network led us

to the curious connection of the TN to the holography of quan-

tum gravity.99, 100)

2.4 higher dimensions

Inspired by the success of DMRG for 1D systems, several

numerical RG techniques have been examined for 2D quan-

tum systems or equivalently 3D classical models so far. The

first trial was a naive extension of CTMRG to the 3D Ising

model,101) which was also mentioned in Baxter’s book.22)

However, the result of this approach was not so good, mainly

because the decay of spectra of reduced density matrices

for 1D or 2D cuts in the 3D lattice was very slow, com-

pared with the CTMRG for the 2D Ising model. At that time,

whether the optimization scheme of tensors or the TN struc-

ture could be the reason for such not so good accuracy was

not clear. Thus, Okunishi and Nishino directly examined the

Kramers-Wannier variational approximation for the layer-to-

layer transfer matrix of the 3D Ising model,102) focusing on

the origin of the CTM variation. The estimated transition tem-

perature was much better than the expected, despite of only

two variational parameters contained. This result suggests that

the variational state based on the statistical lattice model also

works well for higher dimensional systems. In analogy with

Kramers-Wannier approximation, they formulated a direct

variational algorithm for a trial state constructed as a product

of local plaquette tensors, incorporating the CTMRG for the

double-layered environment tensors.103, 104) Further, the ten-

sor product state (TPS) consisting of vertex tensors carrying

auxiliary degrees of freedom with D = 2 , 3105, 106) was in-

troduced, which systematically improved the accuracy of es-

timated transition temperatures. Note that the TPS algorithm

particularly for 5-leg vertex tensors is basically equivalent to

the variational update scheme107) for “infinite projected en-

tangled pair state” (iPEPS) for quantum cases.108)

For quantum systems, meanwhile, the higher dimensional

version of the VBS state was already included in the AKLT

paper.24) For instance, the 2D VBS state can be represented as

a contraction of local tensors with respect to auxiliary spins.

However, how to efficiently contract such a 2D array of ten-

sors was a nontrivial problem at that time, in contrast to the

1D chain. To our best knowledge, the TN approach to the

2D quantum system was initiated for the anisotropic version

of the S = 3/2 Honeycomb lattice AKLT model,109) where

a variant of DMRG was used for evaluation of the double-

layered 2D classical model associated with the norm of the

2D VBS state.110) A generalization of the TPS-based algo-

rithm for quantum spin systems,111) and an optimization algo-

rithm through the vertical reduced density matrix in the imag-

inary time direction112, 113) were examined. In the context of

quantum information, Verstraete and Cirac also proposed the

variational state of 5-leg tensors as a generalization of the 2D

VBS state for weakly entangled 2D finite-size quantum sys-

tems, which is now well established as PEPS.114)

In PEPS algorithms,108, 114, 115) the optimal tensor is com-

puted through the environment tensor similar to the TPS algo-

rithm for the classical system, so as to minimize the distance

between an approximated PEPS and a targeted state gener-

ated by the imaginary time evolution. This update scheme

combined with the imaginary-time evolution to calculate the

ground-state wavefunction of 2D quantum systems is usu-

ally called “full update”. As mentioned before, on the other

hand, the update scheme of the local tensor based on the

direct variation for the bulk ground-state energy is called

“variational update” in the PEPS literature.107) Moreover, a

cheaper but less accurate version of the tensor optimization

scheme, which is called “simple update”,67, 116) is also used

to prepare a good initial tensor for the full- or variational-

update schemes. Recently, several optimization algorithms of

TPS/PEPS have been widely used as a standard numerical

tool for analyzing 2D quantum models and 3D statistical sys-

tems.

In addition, we should notice that the PEPS has been ex-

tensively used for analyzes of (symmetry protected) topo-

logical states of 2D quantum systems,7, 117–123) as can be ex-

pected from its origin. Also the PEPS/TPS representation of

2D VBS states and their extensions was utilized for describ-

ing the measurement-based quantum computation.124–127) In

this sense, the TN formulation for 2D quantum systems made

a certain contribution to the development of quantum many-

body physics beyond the framework of the variational calcu-

lation of the ground state.

2.5 Real-Space Renormalization revisited

The real-space RG18, 19, 128) has been an important concept

in physics of many-body problems for a long time. How-

ever, such a conventional real-space RG as block-spin trans-

formation often fails in estimating correct scaling dimensions

of second-order quantum/thermal phase transitions. In accor-

dance with the success of SVD in the DMRG/CTMRG, Levin

and Nave formulated a simple real-space RG scheme based
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on SVD —tensor renormalization group (TRG) method129)—

, which explicitly accompanies rescaling of the lattice space

in contrast to the DMRG/CTMRG approaches. Moreover, the

TRG-based scheme combined with the higher-order SVD,

which is often abbreviated as HOTRG,130) was also pre-

sented. Since the higher dimensional extension of the HOTRG

is straightforward, it is often used for lattice gauge mod-

els.131, 132) The accuracy of these TRG-based methods is sig-

nificantly improved compared with the conventional block-

spin-transformation approach. For example, the transition

temperature of the 3D Ising model estimated by the HOTRG

is comparable with recent Monte Carlo simulations.133) How-

ever, the above TRG methods always generate tree-type TN

states and their fixed points are characterized by corner double

line (CDL) tensors,129, 134) which bring a certain length scale

determined by a number of retained bases even at a critical

point. Here, we note that the CDL tensor for the 2D classical

system has basically the same structure as the corresponding

CTMs.135) Thus, the TRG approaches are not capable of rep-

resenting the log-correction to the area law of EE associated

with critical phenomena, although the use of SVD certainly

contributed to improving the reliability of the real-space RG.

For retracting the log-correction to the area-law of EE, the

MERA was formulated by G. Vidal for 1D quantum sys-

tems, where a unitary operator bridging tensors in the lay-

ered tree network structure —the concept of disentangler—

was first introduced.16, 98, 136) For 2D classical systems, then, a

TRG-based algorithm equipped with the disentangler, which

is named tensor-network renormalization (TNR), was inte-

grated by Evenbly and Vidal.17) The development of the TNR

was achieved on the basis of several insights into the entan-

glement controlling associated with the MERA. From the RG

viewpoint, however, we would like to mention that the TNR

involves a more natural framework of the RG transformation,

whereas the MERA algorithm can be viewed as a finite-size-

system version of the TNR.137) This is because tensors in the

TNR can be optimized in a quasi-local way, while the varia-

tional optimization of tensors in the MERA basically consults

the global energy minimization.

A key role of the disentangler in the TNR is scale-

dependent filtering of short-range entanglements, which en-

ables us to suppress the CDL decoupling in TNR iterations

at the critical point. In other words, the TNR generates a

scale-invariant TN capable of representing the log-correction

to the area law of EE. The critical fluctuation can be prop-

erly taken into account and the correct critical indices of the

2D Ising model were extracted from the fixed point of the

TNR. We note that, recently, several entanglement filtering

techniques correctly describing critical phenomena were also

proposed.138–140)

As mentioned above, the algorithm of MERA for quantum

systems is composed of step-by-step updating of tensors in

its network so as to minimize the total ground-state energy,

in contrast to the TNR which is a one-way algorithm to flow

to the bulk fixed point. Instead, the connectivity of tensors

among different scaled layers is more visible in the MERA

network, where one can explicitly confirm that the entangle-

ment of a certain subsystem can be supported by the scal-

able loop structure of tensor legs. This particular feature of

the MERA leads us to the correspondence to the minimal

surface in the Ryu-Takayanagi formula of EE,99, 141) which

Fig. 1. A square lattice Ising model. (left) The Boltzmann weight is defined

on the plaquette of the 45◦-rotated square lattice. (right) The vertex-model

representation of the Boltzmann weight defined on a dual lattice. The relation

between two representations is given by Eq. (2). We basically consider the

vertex model, which is usually easy to see the correspondence to quantum

spin systems.

attracts much interest from quantum information and quan-

tum gravity sides. For quantum field theories, an interesting

correspondence between continuous MERA and AdS geome-

try was actually suggested.142, 143) In addition, the flexible ar-

rangement of disentanglers in the MERA allows us to con-

struct a lattice implementation of 2D conformal field theories

(CFTs).144, 145) In this sense, we think that TNR and MERA

can be a milestone in the context of physics of the real-space

RG. Since the computational cost of TNR or MERA is rela-

tively high compared with the MPS-type formulations, on the

other hand, there are fewer applications of them to practical

condensed matter problems.

3. MPS and CTM: variational principle for the transfer

matrix

Let us consider a square-lattice Ising model as a typical

example, which provides the most fundamental insight for

understanding physics of the TN. The Boltzmann weight of

the Ising model is defined for nearest-neighboring spins. For

later convenience in discussing the connection to quantum

systems, however, we adopt a vertex-model representation of

the Boltzmann weight, which is a 4-leg local tensor carrying

edge spin variables instead of spins on the lattice sites. There

are several approaches to map the Ising model to the vertex

model. Here, we present a simple approach based on the di-

agonal lattice in the left panel of Fig. 1, where black dots rep-

resent the Ising spins and gray dots indicates boundary spins.

We then regard the plaquette as a unit of the Boltzmann

weight containing four Ising spins at the corners. Explicitly,

the energy contained in the plaquette is written as

ε = −J(ts + st′ + t′s′ + s′t) , (1)

where J(> 0) is a coupling constant and s, s′, t, and t′ are the

Ising spins taking + or −. Then the local Boltzmann weight

on the plaquette is expressed as

W(ts t′ s′) = ��❅❅
��❅❅

q
q
q

q
s

t′

s′

t W =

s

t′

s′

t . (2)

The last term corresponds to the vertex representation of the

Boltzmann weight, which is viewed as a 4-leg tensor with

5
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edge spin degrees of freedom. Explicitly, we have

W(++++) = W(−−−−) =
1

W(+−+−)
= e4βJ ,

W(+−−−) = W(−+++) = W(++−−) = 1 , (3)

and their cyclic permutations with respect to the spin indices,

where β denotes an inverse temperature. Note that the empty

plaquettes in Fig. 1 do not contribute to the partition function

of the entire system. We can then map the diagonal lattice

Ising model to the square lattice vertex model as depicted in

the right panel of Fig. 1. An interesting aspect of the vertex

model is that its partition function is represented as a contrac-

tion of all of the local 4-leg tensors included in the system,

implying the Ising model itself can be viewed as an example

of the TN.

For a practical calculation of the partition function in the

bulk limit, we introduce the row-to-row transfer matrix. Let

us begin with the notation of tensors and their graphical repre-

sentation used in this section. For instance, we write the local

tensor of the Boltzmann weight at n site as

Wn ≡ W(tnsn tn+1s′n) =

sn

tn+1

s′n

tn , (4)

where the leg indices of the tensor Wn are omitted for simplic-

ity. If we specify a tensor element with explicit leg-indices, we

assign the brackets for the tensor, like W(tnsn tn+1s′n).

Using Eq. (4), we write the tow-to-row transfer matrix as

T =
∑

{t}

N
∏

n=1

Wn =

s1

tN+1

s′
1

t1

s2

s′
2

s3

s′
3

. . .

sN

s′
N

, (5)

which transfers the spins in the row direction (vertical direc-

tion in Fig. 1). Note that the connected lines between vertices

in the diagram indicate summations with respect to the corre-

sponding leg indices. If t1 = tN+1, the boundary condition of

T is periodic. For the ferromagnetic boundary case, W1 and

WN are respectively replaced with G1 and GN defined by

G1 ≡ W1

∣

∣

∣

∣

t1=+
=

s1

t2

s′
1

, GN ≡ WN

∣

∣

∣

∣

tN+1=+
=

sN

tN

s′
N

, (6)

which are illustrated as 3-leg boundary tensors.

The bulk partition function of the Ising model can be ba-

sically evaluated as the maximum eigenvalue Λ of T with a

sufficiently large M. Let us write the eigenstate of T corre-

sponding to Λ as |Ψ〉.146) We can then construct |Ψ〉 as fol-

lows,

|Ψ〉 = lim
M→∞

|Ψ(M)〉 , (7)

with

|Ψ(M)〉 ≡ T M/2−1|Ψ(0)〉 , (8)

where |Ψ(0)〉 is a certain “initial state” that does not orthogonal

to |Ψ〉. Here, note that M is an even integer corresponding to

the linear dimension of the system in the row direction.147)

In the low-temperature ordered phase, we usually set up the

ferromagnetic “initial condition” for |Ψ(0)〉 with the use of the

Fig. 2. (Color online) MPS decomposition of the trial state |Ψ(M)〉 =
T M/2−1 |Ψ(0)〉. (a) |Ψ(M)〉 is represented as a contraction of vertex weights on

the lower-half plane with an “initial state” |Ψ(0)〉. (b) Then, |Ψ(M)〉 is decom-

posed into a product of F tensors and corner tensors C, by regarding spins

surrounded by blue dotted lines in the column direction as collective spin

variables {µ}.

3-leg tensor

F(0)
n ≡ Wn

∣

∣

∣

∣

sn=+
=

tn tn+1

s′n

. (9)

Using F
(0)
n tensor, we can explicitly write |Ψ(0)〉 as a product

form

|Ψ(0)〉 =
∑

{t}

N
∏

n=1

F(0)
n = tN+1

s′
1

t1

s′
2

s′
3

. . .

s′
N

, (10)

where the lines connecting F
(0)
n tensors also represent the

summation of {t} spins. Note that this is a simplest example

of the MPS. If the periodic boundary is the case, t1 = tN+1 in

Eq. (10). For the ferromagnetic boundary case, F1 and FN are

respectively replaced with C1 and CN defined by

C
(0)

1
≡ F

(0)

1

∣

∣

∣

∣

t1=+
=

t2

s′
1

, C
(0)

N
≡ F

(0)

N

∣

∣

∣

∣

tN+1=+
=

tN

s′
N

,

(11)

which are illustrated as 2-leg corner tensors.

Let us set up a variational state for the transfer matrix T .

According to Eq. (7), |Ψ〉 is given by transfer-matrix mul-

tiplications to |Ψ(0)〉, which is equivalent to the Ising model

defined on the half-infinite plane with a set of initial tensors

{F(0)} and {C(0)}, as depicted in Fig. 2(a) . In a practical situ-

ation, we can use |Ψ(M)〉 with a finite but sufficiently large M

as an approximation of |Ψ〉. As shown in Fig. 2(b), then, we

can represent |Ψ(M)〉 as a contraction of the column tensors

Fn, where M basically indicates the number of layers stacked

in the row direction. Note that Fn can be viewed as a gen-

eralization of the initial tensor F
(0)
n . The dimension of Fn is

2 × 2M/2 × 2M/2, which originates from the s spin at the upper

surface layer and {t} spins in the column direction in Fig. 2. A

key idea is that Fn with truncated {t}-spin degrees of freedom

can be used as a good approximation of Fn with M → ∞.

6
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Explicitly, we write

Fn ≡ Fn(s′n|µnµn+1) =
µn µn+1

s′n

◦ , (12)

where s′n ∈ ±1, and µn and µn+1 denote indices of m-state

block-spin variables with m ≪ 2M/2. In the diagram of Eq.

(12), we have assigned a circle symbol at the joint of the ver-

tical line and the thick horizontal line representing the m state

block-spin variables. Using Fn, we can construct a variational

state as

|Ψ̃〉 ≡
∑

{µ}

N
∏

n=1

Fn = ◦ ◦ ◦ ◦ µN+1

s′
1

µ1

s′
2

s′
3

. . .

s′
N

, (13)

which is clearly in the MPS form reflecting the transfer-matrix

structure of the square lattice. For the periodic boundary, µ1 =

µN+1. For the open boundary, F1 and FN should be replaced

with the boundary corner tensors

C1 ≡ C1(s′1|µ2) =
� µ2

s′
1

, CN = CN(s′N |µN) =
�µN

s′
N

,

(14)

for which we have assigned a square symbol.

We consider the variation of T with respect to |Ψ̃〉. In the

following, we basically consider the transfer matrix with the

fixed boundary, implying that the boundary tensors G1 and

GN are attached at the left and right edges of T . We write the

expectation value of T for the variational state |Ψ̃〉 as

Λ = λ/λ′ , (15)

with

λ = 〈Ψ̃|T |Ψ̃〉 , λ′ = 〈Ψ̃|Ψ̃〉 . (16)

Then, we have to take variation of the above expression

of Λ with respect to any element of the tensor Fn, which is

basically equivalent to the variational principle of the MPS for

the 1D quantum system. However, it is still a tough problem

to precisely evaluate λ and λ′. An important idea by Baxter,

which leads to the CTM, is that the variational principle can

be used for evaluations of λ and λ′ again.10, 11)

In order to resolve the transfer-matrix structures embedded

in λ and λ′, we further define a set of tensors Xn as

Xn(tn+1µn+1µ
′
n+1|tnµnµ

′
n) ≡

∑

sn,s
′
n

Fn(s′n|µ′nµ′n+1)W(tnsnt′n+1s′n)Fn(sn|µnµn+1) , (17)

for 1 < n < N and

X1(t2µ2µ
′
2) ≡
∑

s1,s
′
1

C1(s′1|µ′2)G1(t2|s1 s′1)C1(s1|µ2) , (18)

XN(tNµNµ
′
N) ≡

∑

sN ,s
′
N

CN(s′N |µ′N)GN(tN |sN s′N)CN(sN |µN) ,

(19)

for n = 1 and N. The diagrammatic representation of Xn is

X1 =

�

�
C1

C1

G1 , Xn =

◦

◦Fn

Fn

Wn

, XN =

�

�
CN

CN

GN , (20)

Fig. 3. (Color online) CTM decomposition of the trial state |Φ(N)
X
〉 =

XN/2−1|Φ(0)
X
〉. (a) |Φ(N)

X
〉 is represented as a configuration sum of vertex

weights on the right-half plane with an “boundary” state |Φ(0)
X
〉. (b) |Φ(N)

X
〉 is

decomposed into a product of G tensor and the corner tensors C, by regarding

spins surrounded by blue dotted lines in the row direction as collective spin

variables ν or ν′.

which visualizes that Xn effectively plays the role of a transfer

matrix in the column direction, and X1,N corresponds to the

boundary tensor. Using the above Xn, we obtain a compact

expression of λ,

λ =
∑

{t,µ,µ′}

N
∏

n=1

Xn =

�

�

◦ ◦

◦ ◦

◦

◦

�

�

C1 F2 F3 FN−1 CN

C1 F2 F3 FN−1 CN

. . . . (21)

For λ′, we similarly define another set of tensors with

Yn(µn+1µ
′
n+1|µnµ

′
n) ≡
∑

sn

Fn(sn|µ′nµ′n+1)Fn(sn|µnµn+1) , (22)

for 1 < n < N, and the boundary tensors

Y1(µ2µ
′
2) ≡
∑

s1

C1(s1|µ′2)C1(s1|µ2) , (23)

YN(µNµ
′
N) ≡

∑

sN

CN (sN |µ′N)CN(sN |µN) . (24)

As in Eq. (20), these Y-tensors can be diagrammatically illus-

trated as

Y1 =

�

�

C1

C1

, Yn =

◦

◦Fn

Fn

, YN =

�

�

CN

CN

. (25)

We then obtain

λ′ =
∑

{s,µ,µ′}

N
∏

n=1

Yn =

◦ ◦

◦ ◦

◦

◦

�

�

�

�

C1 F2 F3 FN−1 CN

C1 F2 F3 FN−1 CN

. . . . (26)

7
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Note that Xn and Yn correspond to double-layer transfer ma-

trices in the MPS language.

As in Eqs. (7) and (8), we can now extract λ and λ′ from

the renormalized transfer matrices Xn and Yn. In the bulk

limit N → ∞, moreover, the tensor Fn is expected to be-

come position independent, implying that λ and λ′ can be

respectively extracted from the maximum eigenvalue prob-

lems of the renormalized transfer matrices X and Y, where we

have omitted the site index n. In order to construct the vari-

ational states for X and Y, moreover, we can use the same

arguments as Eq. (7) - Eq. (13). As depicted in Fig. 3(a),

for instance, the maximum eigenvector of X is represented as

|ΦX〉 = limN→∞ XN/2−1|Φ(0)

X
〉, where |Φ(0)

X
〉 is a boundary state

that does not orthogonal to |ΦX〉. This boundary state corre-

sponds to the XN tensor in Eq. (20).148) Clearly, we can do the

same thing for the Y tensor.

Taking account of the lattice structure in Fig. 3(a), we de-

compose |ΦX〉 into three pieces, as depicted in Fig. 3(b). We

then introduce new m-state renormalized spin variables ν and

ν′ originating from {s} spins in the row direction and then

write the variational states for X as

|Φ̃X〉 =
∑

νν′

C(µ′|ν′)G(t|νν′)C(µ|ν) =
�

�

◦

C

C

Gt

µ

µ′

. (27)

For the Y tensor, we also have

|Φ̃Y〉 =
∑

ν

C(µ′|ν)C(µ|ν) =
�

�
C

C
µ

µ′

. (28)

Here,the tensor (elements) of C and G are explicitly defined

by

C ≡ C(µ|ν) =
�µ

ν

, G ≡ G(t|νν′) = ◦t

ν′

ν

, (29)

where the thick vertical lines correspond to the ν or ν′ spins

and the thick horizontal line originates from the µ spin.149)

The dimension of C is m×m and that of G is 2×m×m. Note

that C is Baxter’s CTM.

Let us write the maximum eigenvalues of X and Y as ξ and

η, respectively. Using the above variational states, we then

obtain the following expressions,

ξ ≡ 〈Φ̃X |X|Φ̃X〉
〈Φ̃X |Φ̃X〉

=

∑

(CGC)(FWF)(CGC)
∑

(CGC)(CGC)

=

�

�

�

�

◦ ◦
◦

◦

C

C

G

FC

C

G

F

W

/

�

�

�

�

◦ ◦

C

C

G

C

C

G , (30)

η ≡ 〈Φ̃Y |Y |Φ̃Y〉
〈Φ̃Y |Φ̃Y〉

=

∑

(CC)(FF)(CC)
∑

(CC)(CC)

=
�

�

�

�

◦

◦

C

C

C

C

F

F

/ �

�

�

�

C

C

C

C

, (31)

where we have suppressed the leg-indices of tensors for sim-

plicity. However, the connectivity of the tensor legs is straight-

forwardly reproduced from the diagrammatic representation.

Using ξ and η, we finally obtain that λ ≈ ξN and λ′ ≈ ηN and

thus Λ ≈ (ξ/η)N .

In Eqs. (30) and (31), the variational parameters are in-

stalled as tensor elements of F,G,C. If we take the variation

of ξ and η with respect C and G, we then have variational

equations

(FWF)(CGC) = ξ(CGC) , (32)

(FF)(CC) = η(CC) , (33)

The diagram representations of Eqs.(32) and (33) are respec-

tively given by

�

�

◦
◦

◦

C

C

G

F

F

W
= ξ ×

�

�

◦

C

C

G , (34)

�

�

◦

◦

C

C

F

F

= η ×
�

�

C

C

, (35)

For ξ/η, we similarly take the variation with respect to F and

C to obtain

(GWG)(CFC) = ξ′(CFC) , (36)

(GG)(CC) = η′(CC) , (37)

with ξη′ = ξ′η. The corresponding diagrams are

��

◦ ◦
◦

C

G

C

G

F

W = ξ′ ×
�� ◦
CC F

, (38)

��

◦ ◦

C

G

C

G
= η′ ×

��
CC

. (39)

All tensor elements should be consistently optimized to enjoy

a set of variational equations above. Then, we finally arrive at

the partition function per unit vertex as

κ ≡ ξ/η = ξ′/η′ , (40)

with which the partition function for the N ×M lattice is writ-

ten as ΛM ≈ (ξ/η)NM . Note that if the Boltzmann weight W

has the 90◦ rotation symmetry, it turns out that F = G and C

is a real symmetric matrix, which gives ξ = ξ′ and η = η′.
In the above variational equations, an important point is

that, with help of CTM, the variational equations for the orig-

inal MPS of Eq. (13) were converted to the symmetric form in

the row and column directions. As in Eqs. (34) and (38), for

instance, FWF and GWG can be illustrated as the renormal-

ized version of the row-to-row and column-to-column trans-

fer matrices, and CGC and CFC play the role of the corre-

sponding eigenvectors. This provides an essential view for the

entanglement structure embedded in the variational problem

based on the MPS framework. Here, we note that in princi-

ple, the above relation for GWG and CFC can be respectively

translated to the renormalized Hamiltonian and the ground-

state wavefunction for a 1D quantum system, as will be dis-

cussed in §5.

4. CTMRG

In §3, the CTM was introduced as a corner tensor connect-

ing the renormalized spins in the row and column directions in

8
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the variational states for the renormalized transfer matrices X

and Y. For constructing a solution of the variational equations

of (32), (33), (36), and (37), it is not so efficient to directly

deal with the eigenvalue problems of the renormalized row-to-

row or column-to-column transfer matrices. Taking account

of the physical origin of F, G and C tensors, we can system-

atically formulate recursive relations for CTMs, which lead us

to a real-space-RG-like algorithm, i.e. corner-transfer-matrix

renormalization group (CTMRG).

In the CTMRG, the variational principle for the partition

function is reformulated with the use of SVD for the CTM.

We then demonstrate that the fixed point of the CTMRG satis-

fies the same variational equation as (32), (33), (36) and (37)

that are based on the MPS formulation. From the entangle-

ment point of view, an important point is that the singular

value spectrum of the CTM is essentially equivalent to that of

the reduced density matrix for the bipartitioned half-infinite

worldsheet of the system. Accordingly, the CTMRG satisfies

the area-law of EE consistently with the MPS description of

the 1D quantum system and enables us to obtain very accurate

numerical results in the off-critical regime.

4.1 Corner Transfer Matrix

As in Eqs. (11), (14) and (29), the CTM originates from

the boundary corner tensors in the MPS for the row-to-row

transfer matrix. Here, we directly introduce the CTM, taking

account of its physical meaning of transferring spins between

the row and column directions. Let us assume a 2N × 2N

square-lattice vertex model with the fixed boundary condi-

tion. Then, each matrix element of the CTM corresponds to

a partition function of the quadrant of the lattice with certain

edge-spin configurations in the row and column directions.

For example, the CTM for the lower right quadrant is explic-

itly defined as

C(N)({t}|{s}) =
∑

{s′,t′}

∏

i, j

Wi j =

t1

t2

.

.

.

tN

s1 s2 · · · sN

(41)

where
∏

i, j denotes the product of the vertices in the quadrant

and
∑

{s′,t′} represents configuration sum for the legs of all the

inside vertices. Also, spin configurations along the upper and

left edges are indicated by {s, t}, so that the matrix size of C(N)

is 2N ×2N . Note that the boundary condition along the bottom

and right edges are assumed to be fixed. We also define the

finite-size version of F and G as

F(N)(s|{t}{t′}) =
∑

{s′}

∏

j

W j =

t1

t2

.

.

.

tN

t′
1

t′
2

.

.

.

t′
N

s

, (42)

G(N)(t|{s}{s′}) =
∑

{t′}

∏

i

Wi =
s1 s2 · · · sN

s′
1

s′
2
· · · s′

N

t . (43)

As in Figs. 2(b) and 3(b), regarding {s} and {t} as collective

spin variables ν and µ respectively, we then introduce

C(N) =
�µ

ν

, F(N) = ◦µ µ′

s

, G(N) = ◦t

ν′

ν

.

(44)

Then, an important implication to solve the variational equa-

tions is that recursive relations of C(N), F(N) and G(N) between

N and N + 1 are straightforwardly constructed. With the dia-

grammatic representation, we draw the recursion relations as

follows,

F(N+1)(s′|tµt′µ′) = ◦
t t′

µ µ′

s′

F(N)

W

, (45)

G(N+1)(t|sνs′ν′) = ◦t

ν′

ν

s′

s

W
G(N) , (46)

C(N+1)(tµ|s′ν′) = ◦
◦ �

t

ν′

µ

s′

W

F(N) C(N)

G(N)

. (47)

Starting from N = 1, thus, we can systematically construct

C(N), F(N) and G(N) with iterative computations. In principle,

one can expect that C(N), F(N) and G(N) approaches the bulk

tensors satisfying the variational equations in the N → ∞
limit. However, bond dimensions of tensors are doubled in

each recursion step by bundling s ⊗ µ → µ and t ⊗ ν → ν.

For practical computations, we need to truncate the tensor di-

mension by m(≪ 2N), which specifies the total number of the

variational parameters.

4.2 Recursion relation of CTMRG

So far, we have basically used the tensor element repre-

sentation and taken contraction of them by specifying their

indices to be summed. Here, let us introduce the matrix no-

tation of tensors for later convenience. For example, C
(N) and

F(N)(s) denote the matrices whose elements are respectively

defined by
[

C
(N)
]

ν,µ
= C(N)(µ|ν) ,

[

F
(N)(s)

]

µ′,µ
= F(N)(s|µµ′) , (48)

where the matrix size is assumed to be m ×m. Here, note that

the bare spin index s in F(N)(s) is not regarded as a matrix

index. Similarly, C(N+1) and FN+1(s) are defined by
[

C
(N+1)
]

sν,tµ
= C(N+1)(tµ|sν) , (49)

[

F
(N+1)(s)

]

t′µ′ ,tµ
= F(N+1)(s|tµt′µ′) , (50)

whose matrix size is 2m × 2m. In the diagrammatic repre-

sentation, the index flow of matrix-matrix multiplication is

assumed to be in the anticlockwise direction around the cen-

ter of the system. If the vertex weight has 90◦-rotational sym-

metry, C(N) is real symmetric and the partition function for

the 2N × 2N lattice is compactly written by Z(N) = tr[C(N)4
].

In connection with the quantum system, we assume the par-

ity symmetry of the vertex weight, implying that the row-to-

row(or column-to-column) transfer matrix is symmetric, but

we do not assume the 90◦ rotational symmetry for generality.

For truncating the increased matrix dimension of C(N+1),

9
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we now employ SVD,

C
(N+1) = V

(N+1)
Ω

(N+1)
U

(N+1)† , (51)

where Ω denotes the diagonal matrix whose diagonal entries

are the 2m singular values, and U(N+1) and V(N+1) are the corre-

sponding singular vectors satisfying the orthonormal relation

U
(N+1)†

U
(N+1) = I , V

(N+1)†
V

(N+1) = I . (52)

Note that the matrix size of U
(N+1) and V

(N+1) is also 2m×2m,

and I is the identity matrix of 2m. Instead of the SVD, we may

use the “reduced density matrices”

ρ(N+1) = C
(N+1)†

C
(N+1)

C
(N+1)†

C
(N+1) , (53)

ρ′(N+1) = C
(N+1)

C
(N+1)†

C
(N+1)

C
(N+1)† , (54)

where the four CTMs respectively correspond to the four

quadrants of the system. We then diagonalize

ρ(N+1) = U
(N+1)
Ω

(N+1)4
U

(N+1)† ,

ρ′(N+1) = V
(N+1)
Ω

(N+1)4
V

(N+1)† , (55)

which also provide

Z(N+1) = Tr ρ(N+1) = Tr ρ′(N+1) = TrΩ(N+1)4
. (56)

Here, we should remark that these reduced density matri-

ces are basically equivalent to those for the half-bipartitioned

ground-state wavefunction of the corresponding 1D quantum

system if N is sufficiently larger than the correlation length

of the system. This is because the ground state wavefunction

can be represented as a half-infinite world sheet generated by

the Suzuki-Trotter decomposition [See also Fig. 5(d)]. More

explicitly, regarding the product of two CTMs as a wavefunc-

tion

Ψ(N+1)(sν|s′ν′) ∼
∑

tµ

C(N+1)(tµ|sν)C(N+1)(tµ|s′ν′) , (57)

we have ρ′(N+1)(sν|s′ν′) =
∑

s′′ν′′ Ψ
(N+1)∗(sν|s′′ν′′)Ψ(N+1)(s′′ν′′|s′ν) in the manner

consistent with the standard definition of the reduced density

matrix for 1D quantum systems150) [See Eqs. (89) and (102)].

From these, it follows that S EE ≡ −TrΩ4 logΩ4 and − logΩ4

respectively correspond to the EE and the entanglement

spectrum, where we have omitted a superscript of (N + 1)

for Ω. The property of the entanglement in the CTM/MPS

formulation is discussed later in §4.5.

In Eq. (51), we assume that the singular values in Ω are

aligned in the decreasing order, ω1 ≥ ω2 ≥ · · ·ωm ≥
ωm+1 · · ·ω2m(≥ 0). If decay of the spectrum is fast, then, we

can well approximate the CTM by retaining up to ω1, · · · , ωm

and the corresponding singular vectors in U
(N+1) and V

(N+1).

Note that this truncation gives rise to the best approximation

of Eq. (56) within the truncated number of singular values.

Thus, the CTMRG can be interpreted as a direct variational

approximation in the sense of maximizing the partition func-

tion (56).62) From an algorithmic viewpoint, an essential point

is that the matrix size of U(N+1) and V(N+1) of the retained sin-

gular vectors is reduced to 2m × m, which can be served as

renormalization transformation matrices. On the above basis,

we consider the renormalized representation of the matrices,

F̃
(N+1)(s) = U

(N+1)†
F

(N+1)(s)U(N+1) , (58)

G̃
(N+1)(t) = V

(N+1)†
G

(N+1)(t)V(N+1). (59)

In order to extract recursion relations for the renormalized

matrices, moreover, we further rewrite the matrices in Eq. (44)

for the system size N in the CTM diagonal representation,

C
(N) = V

(N)
Ω

(N)
U

(N)† , (60)

U
(N)†

U
(N) = I, V

(N)†
V

(N) = I , (61)

and

F̃
(N)(s) = U

(N)†
F

(N)(s)U(N) ,

G̃
(N)(t) = V

(N)†
G

(N)(t)V(N) ,

where the matrix size is m×m by definition. We also introduce

the RG transformation matrices in the form of the m×m block

matrix as follows,

[

Ũ
(N+1)†(t)

]

ξ,µ
=

◮

t

µ ξ
≡
[

U
(N+1)†

U
(N)
]

ξ,tµ
, (62)

[

Ṽ
(N+1)(s)

]

ν,ξ
=

◭

s

νξ
≡
[

V
(N)†

V
(N+1)
]

sν,ξ
, (63)

where the solid triangle indicates the direction of the renor-

malized leg index ξ that is connected to the singular values

Ω
(N+1). Here, note that, for example, U(N) in Eq. (62) is re-

spectively multiplied to U(N+1)† from the right for each t. Thus

µ, ν and ξ run from 1 to m and the matrix size of Ũ(N+1)(t) and

Ṽ(N+1)(s) for a given t or s is m × m. From the modern MPS

point of view, the above transformations by U(N) and V(N) is

nothing but a gauge transformation for the tensor legs of the

auxiliary degrees of freedom.

We can now reconstruct the recursive relations of Eqs. (45),

(46) and (47) for the renormalized matrices in the CTM di-

agonal representation. We summarize the practical CTMRG

algorithm in Fig. 4. Given F̃(N), G̃(N) and Ω(N), the exten-

sion of the CTM C̃(N+1) and its SVD to generate the trans-

formation matrices Ũ (N+1) and Ṽ (N+1) respectively correspond

to Fig. 4(b) and (c). Also, renormalization of the extended

F̃(N+1) and G̃(N+1) tensors are depicted as Fig. 4(d). In the ma-

trix notation, the corresponding recursion relation is explicitly

written down as,

F̃
(N+1)(s′) =

∑

stt′

W(tst′s′)Ũ(N+1)†(t′)F̃(N)(s)Ũ(N+1)(t) , (64)

G̃
(N+1)(t) =

∑

ss′t′

W(tst′s′)Ṽ(N+1)†(s′)G̃(N)(t′)Ṽ(N+1)(s) , (65)

Ω
(N+1) =

∑

ss′tt′

W(tst′s′)Ṽ(N+1)†(s′)G̃(N)(t′)Ω(N)
F̃

(N)(s)Ũ(N+1)(t) , (66)

in which the matrix dimension is self-consistently main-

tained to be m. Also, it follows from Eqs. (52) and (61) that
∑

t Ũ(N+1)† (t)Ũ(N+1)(t) =
∑

s Ṽ(N+1)†(s)Ṽ(N+1)(s) = I with I be-

ing the m-dimensional identity matrix, so that Eq. (66) corre-

sponds to the SVD for the extended CTM with the truncated

bases. Thus these recursive relations enable us to iteratively

increase system sizes of them by replacing N + 1 → N with

keeping the matrix dimension.

10
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SVD

(a) (b)

(c)

(d)

Fig. 4. Diagrammatic representation of the CTMRG algorithm. W is the

vertex weight of Eq. (2). (a) Ω(N) denotes the spectrum of the CTM after

N iterations. Also, F̃(N) and G̃(N) represent 3-leg tensors originating from

the MPS for the row-to-row or column-to-column transfer matrices, respec-

tively. (b) Contracting W, Ω(N), F̃(N) and G̃(N), we calculate an extended

CTM C̃(N+1). (c) Perform SVD of C̃(N+1) (or equivalently diagonalization

of the reduced density matrix) to obtain the new singular values Ω(N+1) and

the corresponding singular vectors Ũ (N+1) and Ṽ (N+1). d) Retaining the half

of Ũ (N+1) and Ṽ (N+1), we perform renormalization transformation for F̃(N+1)

and G̃(N+1). Then, we go back to (a) with replacing N + 1→ N.

4.3 Fixed point and variational equations

After a sufficient number of CTMRG iterations, the matri-

ces converge to the bulk ones. We then drop the labels of N

and N + 1 in the recursion relations: Ω(N) → Ω (C̃(N) → C̃),

F̃(N) → F̃ and G̃(N) → G̃, as well as the RG transformation

matrices Ũ
(N) → Ũ and Ṽ

(N) → Ṽ, which lead us to a couple

of self-consistent equations. In the matrix notation, we explic-

itly have

F̃(s′) = α
∑

stt′

W(tst′ s′)Ũ†(t′)F̃(s)Ũ(t) , (67)

G̃(t) = β
∑

ss′t′

W(tst′ s′)Ṽ†(s′)G̃(t′)Ṽ(s) , (68)

Ω = γ
∑

ss′tt′

W(tst′ s′)Ṽ†(s′)G̃(t′)ΩF̃(s)Ũ(t) , (69)

∑

t

Ũ
†(t)Ũ(t) = I ,

∑

s

Ṽ
†(s)Ṽ(s) = I , (70)

where α, β and γ are certain normalization constants. These

equations describe the fixed point of the CTMRG in the bulk

limit.

We demonstrate that the above fixed-point equations sat-

isfy the variational equations (32), (33), (36) and (37), which

consist of 7 equations in the unit of m × m matrix. In order

to eliminate Ũ and Ṽ from the fixed point equations (67)-(70),

we examine the similarity transformation for Ũ and Ṽ,

Ũ(t) = ΩG̃(t)Ω−1 , Ṽ(s) = ΩF̃(s)Ω−1 . (71)

Then, Eqs. (70) turn out
∑

t

G̃(t)ΩΩG̃(t) = ΩΩ ,
∑

s

F̃(s)ΩΩF̃(s) = ΩΩ (72)

which are equivalent to Eqs. (33) and (37) with η = 1 = η′ =
1. Here, note that G̃

†(t) = G̃(t) and F̃
†(s) = F̃(s), and the

orthonormal condition of the singular vectors naturally results

in η = 1 = η′ = 1. Substituting Eq. (71) into Eqs. (67) and

(68), we obtain
∑

stt′

W(tst′s′)G̃(t)ΩF̃(s)ΩG̃(t′) = κΩF̃(s′)Ω , (73)

∑

ss′t′

W(tst′s′)F̃(s′)ΩG̃(t′)ΩF̃(s) = κΩG̃(t)Ω , (74)

which are respectively equivalent to the variational equations

(32) and (36) with α = β = κ. Finally, using Eq. (73), we can

reduce Eq. (69) to be Eq. (72). We can then see that these

fixed point equations of CTMRG correspond to Eqs. (34),

(35), (38) and (39) within the gauge transformation. Thus,

the fixed point of the CTMRG is attributed to the variational

equations based on the MPS formulation. In other words, the

two variational principles, i.e. the variational principle for the

row-to-row transfer matrix and the low-rank approximation of

the CTM through the SVD, lead to the same equations. This

is the reason why the MPS algorithms are able to provide sta-

ble and accurate numerical results for 2D classical models as

well as 1D quantum systems.

4.4 MPS revisited

In the CTMRG, Ũ and Ṽ are computed as the singular vec-

tors for the CTM. At the fixed point of the CTMRG, neverthe-

less, we already see that Eq. (71) directly relate Ṽ(s) to F̃(s)

in the MPS for the row-to-row transfer matrix. Substituting

F(s) = Ω−1Ṽ(s)Ω = ΩṼ†(s)Ω−1 to the original MPS form of

Eq. (13), we can reconstruct other MPS representations of the

variational state as follows,

|Ψ〉 = · · · Ṽ(sn+1)Ṽ(sn)Ṽ(sn−1) · · · , (75)

= · · · Ṽ†(sn+1)Ṽ†(sn)Ṽ†(sn−1) · · · , (76)

= · · · Ṽ(sn+2)Ṽ(sn+1)Ω2
Ṽ
†(sn)Ṽ†(sn−1) · · · , (77)

which are respectively called left canonical, right canonical

and mixed canonical forms.151) A crude derivation of the MPS

from the CTM was also discussed in Ref. [152]. Note that

for the 1D quantum system, Ω2 in Eq. (77) corresponds to

the singular values for the bipartitioned wavefunction. From

Eq. (71) combined with the fact of F̃(s) being the symmetric

matrix, moreover, it follows that the relation

Ṽ(s)Ω2 = Ω2
Ṽ
†(s) (78)

holds for the transformation matrix. This implies that the lo-

cation ofΩ can be shifted in Eq. (77).47) These MPS represen-

tations extracted from the RG transformation matrix play an

essential role for 1D quantum systems where the background

transfer matrix and F matrix are not known apriori. In partic-

ular, the DMRG is formulated based on the mixed canonical

form, without explicitly referring to F and C tensors. Details

of the DMRG for 1D quantum systems will be explained in

the next section, where Eq. (78) can be generalized to the po-

sition dependent form for a finite-size system.

It is also worth noticing that relation of Eqs. (71) and (78)

can be used for acceleration of MPS-based algorithms. As

seen so far, convergence of the CTMRG type algorithms ba-

sically follows from the power method with respect to the

11
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renormalized transfer matrices. By imposing the uniform bulk

relation of Eqs. (71) and (78) to MPS tensors, an accelerated

algorithm can be formulated in Ref. [68]. This acceleration is

also possible for the variational MPS algorithm for 1D quan-

tum systems, which is dubbed as VUMPS.90) This algorithm

is useful for dealing with critical systems where convergence

of the power method becomes slow down.

4.5 accuracy of CTMRG/MPS and entanglement

Accuracy of the CTMRG is attributed to the low-rank ap-

proximation of SVD for the CTM or the reduced density ma-

trix and thus is controlled by a cutoff number of retained

basis (bond dimension) m.153) The intrinsic reason why the

CTMRG has succeeded in precisely calculating thermody-

namic quantities is that the spectrum Ω at the fixed point

is discrete and its decay is very rapid except at the critical

point. In the qualitative level, this is because the CTM in-

volving the sum with respect to the quadrant of the infinite

system would more directly reflect the bulk information, in

contrast to the row-to-row transfer matrix which generally

contains continuous excitation spectrum. As mentioned for

Eq. (57), moreover, the product of two CTMs corresponds

to the ground-state wavefunction for 1D quantum systems

through the Suzuki-Trotter decomposition (See also §5). We

also note that the row-to-row transfer matrix and the corre-

sponding Hamiltonian for the integrable model have simulta-

neous eigenstates. Thus, the situation of Ω basically holds for

MPS approaches such as DMRG and infinite TEBD for 1D

quantum systems.

From the entanglement viewpoint, an essential point is that

the EE, say S EE, for a certain bipartitioning of the ground-

state wavefunction of quantum systems in the off critical

regime generally exhibits so-called area law; it is asymptot-

ically proportional to the area of the interface between sys-

tem and reservoir parts, S EE ∼ ℓd−1, where ℓ is the lin-

ear dimension of a system part and d is the spatial dimen-

sion of the ground-state wavefunction. In particular, we have

S EE ∼ const for ℓ ≫ 1 for a 1D quantum system. Since the

upper bound of EE represented by the CTM/MPS with the

bond dimension is given by ∼ log m, the MPS/CTM with a

large but finite m is capable of well approximating the bulk

state. Actually, the rapid convergence and decay of Ω in the

CTMRG for the corresponding 2D classical system ensures

S EE = −TrΩ4 logΩ4 ∼ const consistent with the area law of

EE.

For quantitative analysis of the CTMRG accuracy, a pri-

mal problem is how the distribution of the CTM spectrum(or

equivalently the reduced-density-matrix spectrum) behaves

at the fixed point. Then, the exact CTM spectra calculated

for integrable models such as Ising model and eight-vertex

model154, 155) provide essential insight for general cases. The

asymptotic behavior of the spectrum was extracted in Ref.

[64] to show the universal form

ωm ∼ e−α(log m)2

(79)

where α is a nonuniversal dimensionless constant reflecting

a distance from the critical point. The same asymptotic for-

mula was also derived in the context of grand-canonical den-

sity matrices156) and perturbed CFTs.65) Although Eq. (79)

seems to show relatively slow decay with increasing m, a

practical point is that the coefficient α is usually moderately

large except at the critical point, which ensures very accurate

CTMRG results within m ∼ a few hundred and the consis-

tency with the area law of EE. For example, α of the Ising

model is of order of unity even at |T − Tc|/J ≃ 0.01, so that

the CTMRG yields numerically exact results with m ∼ 100

(e−(log 100)2 ∼ 6 × 10−10).

As the system approaches the critical point, the decay rate

α of the CTM spectrum also becomes small and the log-

correction to the area law of EE emerges reflecting the crit-

ical fluctuation. In principle, the exact spectrum at the critical

point is not normalizable in the bulk limit, for which Eq. (79)

breaks down. If the CTMRG with a finite m is applied to the

critical system, however, CTMRG iterations finally converge

to a certain approximated value of the partition function κ.

This finite m fixed point of the CTM was firstly investigated

in the framework of the low-temperature series expansion and

the crossover to the mean-field-like behavior was concluded

as T → Tc.
157) This suggests that an effective correlation

length ξe(m) specified by a finite m was brought into fixed-

point tensors of the CTMRG, which is often mentioned as

“finite-m effect” or “finite-entanglement effect”.

In the CTMRG framework, ξe(m) can be numerically evalu-

ated by the largest and second-largest eigenvalues of the effec-

tive row-to-row transfer matrix, e.g. T̃ ≡ G̃WG̃, constructed

from the fixed-point tensors. Recall that the iteration num-

ber N in the CTMRG is proportional to the system size. For

N ≪ ξe(m), thus, the finite-size scaling behavior of physical

quantities can be observed, while for N ≫ ξe(m), the CTMRG

calculation converges to the fixed point characterized by m.

With increasing m, the accuracy of the finite-m fixed point

is gradually improved toward the exact one corresponding to

m → ∞. Note that such analysis of the m-dependence of the

MPS at the critical point is recently termed as “finite-m scal-

ing” or “finite-entanglement scaling”.

The crossover between the finite-size scaling and the finite-

entanglement scaling can be described by the two-parameter-

scaling ansatz, which was originally proposed in Ref. [158].

According to recent developments in the MPS approach,

moreover, the effective correlation length ξe behaves

ξe(m) ∼ mθ (80)

for critical systems, where θ is a new phenomenological ex-

ponent characterizing the divergence of ξe(m) in the context

of the finite-m scaling.159) Moreover, an argument based on a

perturbed CFT combined with the MPS provides

θ =
6

c
(

1 +
√

12/c
) , (81)

where c denotes the central charge in the corresponding

CFT.160) The two-parameter scaling analysis combined with

the CTMRG has been successfully applied to exotic phase

transitions.161–163) For 1D critical spin systems, the two-

parameter scaling combined with the MPS approaches is also

confirmed.159, 164) Nevertheless, it is also known that some nu-

merical results suggest a weak violation of Eq. (81).162, 165)

Further investigations will be required to check the relation

(81).
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5. MPS-type algorithms for 1D quantum systems

In general, 1D quantum systems can be mapped into the

corresponding 2D classical models with the Suzuki-Trotter

decomposition.58, 59) Thus, it is expected that the CTM for-

mulation of the variational approximation based on the MPS

in §3 can be recast to the ground-state problem of the 1D

quantum systems. Historically, however, the DMRG was in-

vented as a numerical RG approach to 1D quantum systems,

independently of the CTM-based variational approximation.

More precisely, in the DMRG, the ground-state wavefunc-

tion of the super-block Hamiltonian is directly calculated, and

then reduced density matrices for subsystems of the left or

right halves are diagonalized to construct the RG transforma-

tion matrix, without exploiting the CTM representation. This

is because the 2D classical model generated by the Suzuki-

Trotter decomposition is usually a highly anisotropic system

with the periodic boundary in the imaginary time direction,

where the CTM representation of the ground-state wavefunc-

tion is not so convenient. Here, we discuss how the above dif-

ficulty can be bypassed in the formulation of infinite TEBD

(iTEBD) and DMRG for 1D quantum systems.

5.1 1D quantum vs 2D classical

Let us briefly review basic features of the Suzuki-Trotter

decomposition for such a typical system as S = 1/2 Heisen-

berg spin chain. The Hamiltonian is written as

Ĥ = Ĥe + Ĥo , (82)

where

Ĥe =
∑

n=even

ĥn,n+1 , Ĥo =
∑

n=odd

ĥn,n+1 , (83)

with

ĥn,n+1 ≡ JSn · Sn+1 . (84)

Here, S denotes the S = 1/2 spin matrices. We assume the

system length N with N being an even number. Note that

[Ĥe, Ĥo] = 0. Using the Suzuki-Trotter decomposition to Eq.

(82), we can rewrite the partition function at an inverse tem-

perature β ≡ 1/k
B

T as

Z(β) = Tr e−βĤ ≃ Tr
[

e−ǫĤe e−ǫĤo

]M
, (85)

with ǫ = β/M (M ≫ 1). As shown in Fig. 5(a), Eq. (85)

defines the 45◦-rotated vertex model with the local Boltzmann

weight

Un,n+1 = e−ǫJSn·Sn+1 =
�
��❅
❅❅

sn sn+1

s′n s′
n+1

, (86)

which is nothing but the local imaginary time evolution oper-

ator of a tiny time step ǫ in the S z-diagonal representation. In

this section, we will omit the leg indices of Un,n+1 for legibil-

ity.

In principle, it is possible to perform the CTMRG for this

45◦-rotated lattice. In the CTMRG, however, the periodic

boundary in the imaginary time direction is difficult to handle

and thus the infinite trotter number limit(M → ∞) is not well

controllable. Instead, the quantum transfer matrix approach

with a finite M is often used,53–57) but the double extrapo-

lations with respect to β → ∞ and M → ∞ is required.

(a) (b)

... ...

...

SVD

(d)(c)

Fig. 5. (Color online) The MPS and CTM structure behind the S = 1/2

Heisenberg chain. (a) The 45◦-rotated vertex model generated by the Suzuki-

Trotter decomposition. The half-infinite world-sheet of this vertex model cor-

responds to the ground-state wavefunction. (b) The diagram of SVD for the

local vertex weight Un,n+1, which is given by a contraction of two 3-leg ver-

tices with the horizontal dotted line representing an effective spin σ. (c) A

brick-wall lattice converted from the panel (a). (d) The renormalized tensors

F and C respectively correspond to the red and blue lines in the panel (c). The

thick horizontal broken lines of C and F represent the effective spins corre-

sponding to bunches of the horizontal dotted lines of σ spins in (c), while the

thick vertical line of C indicates the renormalized spin indices of the vertical

lines corresponding to bunches of physical spin legs in (c).

Also, the asymmetric quantum transfer matrix implies that

an efficient treatment of dual biorthonormal bases is required

for a stable computation.166) These difficulties basically origi-

nate from the fact that the 1D quantum system corresponds to

the highly anisotropic limit of the 2D classical model gener-

ated by Eq. (85). Thus, we had better directly deal with the

ground-state wavefunction of the Hamiltonian to avoid the

above cumbersome extrapolations. In addition, the local ver-

tex of Eq. (86) is a 4-leg tensor acting on two spins, which

should be contrasted to the vertex weight of Eq. (2) that only

has a single connection in the column and row directions. This

implies that an appropriate adjustment of the MPS algorithm

in the previous sections is needed for practical calculations.

5.2 iTEBD

As mentioned above, a direct evaluation of Z(β) with the

CTM accompanies some technical difficulties. We explain the

iTEBD for 1D quantum systems,89) which is a compact updat-

ing algorithm of local tensors based on the mixed canonical

MPS with an implicit use of the background CTM structure.

The basic idea is to represent the ground-state wavefunction

as |Ψ〉 = limβ→∞ e−βĤ |Ψ0〉, through the imaginary-time evolu-

tion based on the Trotter decomposition

e−τĤ ≃
[

e−ǫĤe e−ǫĤo

]M
, (87)

where τ ≡ ǫM with a small ǫ fixed denotes a discretized

imaginary time. Starting from an initial state |Ψ0〉, then, we

can systematically construct a final state at a sufficiently large

τ (M ≫ 1), which provides a good approximation of the

ground-sate wavefunction.

In analogy with the maximal eigenvector of the transfer ma-
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trix, the ground-state wavefunction in the bulk limit can be

represented as the half-infinite world-sheet of the 45◦-rotated

vertex model generated by the Suzuki-Trotter decomposition.

In Fig. 5 (a), certain two adjacent sites in the bulk wavefunc-

tion are labeled by n and n+1. In order to illustrate the hidden

CTM structure of the wavefunction, it is helpful to use SVD

of the local vertex weight,

Un,n+1 =

4
∑

σ=1

W(σ, s′n sn)ΣσW(σ, s′n+1 sn+1) (88)

where Σσ denotes singular values and W represents the corre-

sponding singular vectors. Note that Un,n+1 is a real symmetric

matrix with respect to sn s′n and sn+1 s′
n+1

due to the bond parity

of ĥn,n+1. Then, the singular vectors attached with the weight

of square root of the singular values, i.e.
√
ΣσW(σ, s′n sn) can

be regarded as a 3-leg vertex weight, as depicted in Fig. 5 (b),

where the horizontal dotted line represents 4 state index of σ.

Using this 3-leg vertex, we formally convert the 45◦-rotated

vertex model into the brick-wall-lattice model in Fig. 5(c).

The next step is to decompose the brick-wall lattice in Fig.

5(c) into four pieces surrounded by red and blue lines, reflect-

ing the two-sublattice structure. As in Fig. 5 (d), we then con-

struct two F tensors sandwiched by two C tensors, bundling

the vertical lines and horizontal dotted lines of the tensors into

the thick lines that represent the renormalized indices of cor-

rective spin degrees of freedom. Of course, the two F tensors

reflect the two-sublattice version of MPS and C corresponds

to the CTM.

For later convenience, we turn to the matrix representation

with the CTM-diagonal basis, which was already introduced

in the previous section. Assuming n=even, we may write the

wavefunction matrix as

Ψe(sn sn+1) = ΩF
†(sn+1)F(sn)Ω = ◦ ◦� �

F F†

sn sn+1

Ω Ω
, (89)

where F(sn) and Ω respectively denote matrix representations

of the F-tensor and the singular values of the CTM.151, 167) In

the diagram of Eq. (89), Ω is the singular values of the CTM,

which joints the horizontal dotted line with the vertical one.

This representation of the wavefunction clearly corresponds

to Eq. (57) for the CTMRG within a tiny deviation due to

the difference of the boundary conditions. Note that the bond-

parity symmetry of ĥn,n+1 yields F†(sn+1) at the n + 1th site.

As mentioned before, a direct application of the CTM to

the Suzuki-Trotter decomposed system may not be so conve-

nient. The iTEBD provides an easy-to-use iterative algorithm

of evaluating Eq. (89) with no explicit use of the 3-leg ver-

tex weight and the CTM. In order to improve F and Ω start-

ing from certain initial tensors, we directly operate the 4-leg

weight Un,n+1 to Ψe,

Ψ̄e(s′ns′n+1) =
∑

sn,sn+1

Un,n+1ΩF
†(sn+1)F(sn)Ω

= �
�❅
❅

◦ ◦� �
F F†

s′n s′
n+1

Ω Ω

, (90)

which is slightly improved toward the ground-state wavefunc-

tion. In the context of the 3-leg vertex weight, this process in-

creases the number of the vertices included in the F tensor by

one in the imaginary-time direction.

In order to extract an improved F tensor from Eq. (90), we

regard Ψ̄e(s′n s′
n+1

) as a symmetric matrix of 2m× 2m and then

perform SVD,

Ψ̄e(s′ns′n+1) = V̄(s′n+1)Λ̄V̄
†(s′n) , (91)

where Λ̄ and V̄ respectively denote the singular values and the

corresponding singular vectors. We then retain the larger half

of Λ̄ and the corresponding V̄ to maintain the matrix dimen-

sions. However, Eq. (91) has the sublattice structure shifted

from Eq. (89), reflecting the 45◦-rotated square (or brick wall)

lattice due to the Suzuki-Trotter decomposition. For the pur-

pose of restoring the improved F̄, an important point is that

Eq. (91) is in the mixed canonical form of the wavefunction;

On the basis of the bulk relations of Eq. (71), we can extract

F̄ tensor with

F̄
†(s′n) = Ω̄V̄

†(s′n)Ω−1 , (92)

or equivalently F̄(s′
n+1

) = Ω−1V̄(s′
n+1

)Ω̄, where Ω̄ ≡
√
Λ̄.

Here, note that the lhs of Eq.(92) is not F̄ but F̄†, because the

sublattice of F̄ is shifted. At the same time, the sublattice as-

sociated with Ω̄ has been also shifted by one site in the spatial

direction.

In order to proceed to the next step of optimization for the

F and Ω tensors, we should take account of the shift of the

sublattice structure. With moving n→ n+1, we next consider

Ψ̄o constructed from F̄ and Ω̄ for another sublattice,

Ψ̄o(s′n+1 s′n+2) = Ω̄ F̄
†(s′n+2)F̄(s′n+1)Ω̄ (93)

Then, we operate Un+1,n+2 to Ψ̄o,

¯̄
Ψo(s′′n+1s′′n+2) ≡

∑

s′
n+1
,s′

n+2

Un+1,n+2Ω̄F̄
†(s′n+2)F̄(s′n+1)Ω̄

= �
�❅
❅

◦ ◦� �

F̄ F̄†

s′′
n+1

s′′
n+2

Ω̄ Ω̄

, (94)

and perform SVD,

¯̄
Ψo(s′′n+1 s′′n+2) = ¯̄

V(s′′n+2) ¯̄
Λ

¯̄
V
†(s′′n+1) . (95)

Similarly to Eq. (92), we then extract an improved F-tensor

from Eq. (95) as

¯̄
F
†(s′′n+1) = ¯̄

Ω
¯̄
V
†(s′′n+1)Ω̄−1 (96)

with ¯̄Λ = ¯̄
Ω

2. Here, note that ¯̄
F(s′′

n+1
) and ¯̄

Ω respectively have

the same sublattice structures as F(sn+1) and Ω in Eq. (89).

Thus, we have established a closed loop of the iterative update

of the local tensor F and CTM spectrum Ω with replacing
¯̄
F→ F and ¯̄

Ω→ Ω.

Repeating the above recursive processes from certain initial

tensors, we can iteratively calculate the uniform MPS repre-

sentation of the ground-state. Here, note that the operation

of U in Eqs. (90) and (94) increases the system size in the

imaginary-time direction, while the insertion of F matrix at

the center of the wavefunction in Eqs.(89) and (93) corre-

sponds to extending the size in the spatial direction. These

processes ensure convergence of iTEBD iterations to the bulk

ground state. The error in the iTEBD comes from the cutoff

dimension m and the Trotter discretization ǫ.
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Fig. 6. (Color online) The left- and right-block Hamiltonians in the

DMRG. (a) The total chain is divided into three pieces: The center bond

Hamiltonian, ĥ N
2
, N

2
+1

,and the left and right block Hamiltonians, HL and HR.

(b) The block Hamiltonian HL(HR) is renormalized into the H̃L(H̃R) with

the renormalized spin indices νL and ν′
L
(νR and ν′

R
). Also, we write ĥl,r with

l ≡ N
2

and r ≡ N
2
+ 1. (c) Operation of the super-block Hamiltonian to a

wavefunction can be also decomposed into three parts, as in Eq. (106).

We comment on the relation to Vidal’s notation of

iTEBD,89) which is explicitly given by

Γ(sn) ≡ Ω−1
F(sn)Ω−1 = V

†(sn)Ω−2 (97)

with Λ = Ω2. Thus, the iTEBD algorithm based on the Γ − Λ
representation is equivalent to the CTM-based formulation

above, although the original iTEBD was formulated in the

context of the Schmidt decomposition for the bulk wavefunc-

tion.

5.3 infinite-size DMRG

As discussed in §5.1, numerical RG approaches for the 2D

classical system by the Suzuki-Trotter decomposition accom-

pany subtle problems due to the Trotter error and the periodic

boundary condition in the imaginary-time direction. In partic-

ular, it seems difficult to directly construct the recursive rela-

tion for the ground-state wavefunction without a priori knowl-

edge of such a local tensor as F(s|µµ′) in the background clas-

sical system. The DMRG is a milestone algorithm to eventu-

ally generate the MPS in the mixed canonical form of Eq. (77)

with the striking use of SVD for the ground-sate wavefunction

directly calculated from the total (superblock) Hamiltonian.

Moreover, various considerations about the DMRG mecha-

nism opened the door to further developments in the numeri-

cal RG assisted by quantum information theory.

In this subsection, we discuss the DMRG for 1D quantum

systems, under the light of the background 2D classical sys-

tem. As an example, we consider the S = 1/2 Heisenberg spin

chain containing N(=even) spins with the open boundaries.

The local Hamiltonian was defined by Eq. (84). As shown in

Fig. 6, the entire Hamiltonian (superblock Hamiltonian) in the

DMRG is bipartitioned into left and right block Hamiltonians,

HL(s′N
2

ν′L |s N
2
νL) =

N
2
−1
∑

n=1

ĥn,n+1, (98)

HR(s′N
2
+1
ν′R|s N

2
+1νR) =

N−1
∑

n= N
2
+1

ĥn,n+1 , (99)

where νL and νR respectively represent the block spin vari-

ables containing n = 1, · · · , N
2
− 1 and n = N

2
+ 1, · · · ,N.

Note that dimension of νL/R is 2
N
2
−1, but is usually truncated

by a certain number m(≪ 2
N
2
−1), which is of order of a few

hundred in practical computations. In the following, we put a

tilde symbol on a tensor (or matrix), if it is written in certain

renormalized bases with νL/R = 1, · · · ,m. We also introduce

sl ≡ s N
2

and sr ≡ s N
2
+1 for convenience. Then, the superblock

Hamiltonian is written as

H̃ = H̃L + ĥl,r + H̃R , (100)

where H̃L and H̃R are the renormalized version of Eqs. (98)

and (99). Note that H̃L/R might be associated with the G̃-

tensor in the CTM approach. However, we would like to re-

mark that the superblock Hamiltonian is represented as the

sum of the local Hamiltonians, while the effective transfer ma-

trix in the classical system is given by the product of the local

weights. This difference is technically important to formulate

the iterative algorithm for the quantum system. Also, we will

return to this subject in the context of matrix product operator

in subsection 5.5.

As mentioned before, a direct construction of the recursion

relation for the wavefunction is difficult. In the DMRG, thus,

the super-block Hamiltonian is directly diagonalized,

H̃|Ψ̃〉 = Ẽ0|Ψ̃〉 (101)

where Ẽ0 is the ground-state energy and |Ψ̃〉 is the correspond-

ing wavefunction. Of course, the computational cost of Eq.

(101) is rather expensive. However, bipartitioning of the sys-

tem helps us to reduce the computational cost. An important

step is to represent |Ψ̃〉 in the matrix form with respect to the

L and R subspace. For this purpose, we write the ground-state

wavefunction as

|Ψ̃〉 =
∑

sl,sr

m
∑

νL,νR=1

|sl〉|νL〉|sr〉|νR〉Ψ̃(slνL|srνR) , (102)

which is also consistent with Eq. (57) for the CTMRG. As in

the case of the CTMRG, we employ the matrix representa-

tion151) as
[

Ψ̃(sl sr)
]

νR,νL

= Ψ̃(slνL |srνR) , (103)

where the matrix size of the block with a given sl and sr is just

m × m and thus the total dimension of Ψ̃ becomes 2m × 2m.

We also write the matrix representation of H̃L/R as
[

H̃L(s′l |sl)
]

νL,ν
′
L

= HL(s′lν
′
L |slνL) , (104)

[

H̃R(s′r |sr)
]

ν′
R
,νR

= HR(s′rν
′
R|srνR) (105)

where the order of νL, ν
′
L

is inverted from that of νR, ν
′
R

in our

convention of matrix representation. Then, the operation of

H̃|Ψ̃〉, which is a core step in the Lanczos or modified Lanczos

diagonalization, is written as

H̃|Ψ̃〉 =
∑

sl

Ψ̃(sls
′
r)H̃L(s′l |sl) +

∑

sl sr

ĥl,rΨ̃(sl sr)

+
∑

sr

H̃R(s′r |sr)Ψ̃(s′l sr) , (106)

which can be diagrammatically illustrated in Fig. 6(c). The

three terms in Eq. (106) can be independently computed with-

out dealing with the full matrix elements of the superblock

Hamiltonian, where the computational cost is of the same or-
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der as the CTMRG. This allows us to directly manipulate Ψ̃

as a 2m × 2m matrix in Lanczos diagonalization with such an

optimized DGEMM routine. Thus, the dominant computational

cost in the DMRG is governed by the number of Lanczos it-

erations.

Suppose that the ground-state wavefunction matrix Ψ̃ is

calculated by the Lanczos method, where the dimension of

νL,R is assumed to be m. Regarding slνL and srνR as matrix

indices of Ψ̃, we then perform SVD

Ψ̃(sl sr) = ṼR(sr)ΛṼ
†
L
(sl) , (107)

whereΛ denotes the singular values and ṼL(sl) and ṼR(sr) are

the corresponding singular vectors. If we keep the larger m

singular values and arrange the block of sl[sr] in the column

direction, we can use ṼL(sl)[ṼR(sr)] as a RG transformation

matrix of the dimension 2m × m. Note that ṼL = ṼR if the

system has the parity symmetry.

As in Eqs. (65), the recursive relations for the left- ant right-

block Hamiltonians are respectively given by

H̃
′
L(s′

l̄
|sl̄) =

∑

sl,s
′
l

Ṽ
†
L
(sl)[ĥl,l̄ + H̃L(s′l |sl)]ṼL(s′l) , (108)

H̃
′
R(s′r̄ |sr̄) =

∑

sr,s
′
r

Ṽ
†
R
(s′r)[ĥr̄,r + H̃R(s′r |sr)]ṼR(sr) , (109)

where l̄ and r̄ denote spins newly inserted at the center of

HL/R. If H̃L/R contains N
2

spins, H̃′
L/R

contains N
2
+ 1 spins, but

its matrix size (including sl̄/r̄ and s′
l̄/r̄

) remains at 2m × 2m.

Thus, we can formulate the closed loop of DMRG iteration,

returning to Eq. (100) with replacing H̃′L/R → H̃L/R and N +

2→ N. Starting from a small N, we can recursively construct

the effective Hamiltonian and the wavefunction in the bulk

limit.

An essential point of the DMRG is that the recursive re-

lation of Eqs. (108) and (109) is established with no direct

reference to F tensor. However, once we obtained VR and VL

with the SVD of the wavefunction matrix, we can reconstruct

the mixed-canonical MPS from VR and VL. This implies that

it is also possible to set up the recursion relation for the wave-

function matrix within the framework of the DMRG, which

provides a good initial vector for the Lanczos diagonaliza-

tion. Actually, it was demonstrated that the drastic reduction

of the number of Lanczos iterations with help of the recursive

relation for the wavefunction.47, 49, 152, 168)

From the viewpoint of the underlying classical system, we

can expect that the relation of Λ ∼ Ω2, as seen in Eqs. (91)

or (95). Equivalently, we deduce Λ2 ∼ Ω4 for the spectrum of

the reduced density matrix ρ ≡ Ψ†Ψ. In particular, the rela-

tion was exactly established for integrable models,63, 64) where

the Hamiltonian and the transfer matrix have a simultaneous

eigenstate with help of the Yang-Baxter relation.22) However,

we should recall that the SVD approach to the bipartitioned

wavefunction in the DMRG was introduced independently of

the CTM variation. In order to obtain an well-approximated

wavefunction |Ψ̃〉 within the truncated number of basis, S.R.

White consider the minimization problem of the norm dis-

tance δ =
∣

∣

∣|Ψ〉 − |Ψ̃〉
∣

∣

∣

2
.12, 13) In the matrix representation, this

problem is equivalent to minimizing the Frobenius norm of

δ =
∣

∣

∣

∣

∣

∣Ψ − Ψ̃
∣

∣

∣

∣

∣

∣ , (110)

for which the low-rank approximation of SVD provides the

explicit solution. This corresponds to the variational approxi-

mation of Eq.(56) that maximizes the partition function from

the view point of the 2D classical model.

Meanwhile, the SVD for the bipartioned wavefunction is

also equivalent to the Schmidt decomposition in the quan-

tum information terminology. This fact attracts much interest

to the DMRG from the quantum information side. Recently,

the logarithm of the reduced-density-matrix spectrum, that is

− logΛ2, is called “entanglement spectrum” and has been ex-

tensively used as a quantitative measure of a nonlocal correla-

tion in the ground state. Moreover, Östlund and Rommer re-

vealed that the recursive use of SVD in the DMRG generates

the MPS without passing through the background classical

model.45, 46) They also formulated a direct variational algo-

rithm based on the MPS, where the VBS state for the AKLT

chain played the role of benchmark model of the MPS de-

scription. The VBS state can be exactly interpreted as a non-

trivial alignment of Bell pairs of auxiliary spins. Accordingly,

the MPS description in Refs. [45] certainly triggered fusion

of the DMRG and the concept of entanglement.

5.4 finite-size DMRG

So far, we have basically assumed the uniform ground state

in the bulk limit, where DMRG/CTMRG can be viewed as

iterative methods of solution for the self-consistent varia-

tional equations. Another important aspect of the DMRG is

on the finite-size algorithm, which established the position-

dependent update scheme for a position-dependent MPS. This

point also fits the construction of MPS by recursive use of

Schmidt decomposition in quantum information. Thus, the

finite-size DMRG not only enables precise analyses of a wide

class of 1D quantum many-body systems, but also accelerated

the subsequent development of TN algorithms. In this sense,

we think that the contribution of the finite-size DMRG is more

essential for the TN than the infinite-size DMRG.

Let us consider the S = 1/2 Heisenberg spin chain of N

sites with open boundaries again. We also divide the total

Hamiltonian into three pieces, H = H
(n)

L
+ ĥn,n+1 + H

(N−n)

R
,

but this time assume length of the left and right blocks to be n

and N − n respectively. The block Hamiltonians are explicitly

defined as

H
(n)

L
=

n
∑

i=1

ĥi,i+1 , and H
(N−n)

R
=

N−1
∑

i=n+1

ĥi,i+1 . (111)

where superscripts (n) and (N − n) indicating the block sizes.

Further, we introduce the renormalized version of the su-

perblock Hamiltonian as

H̃(n) = H̃
(n)

L
+ ĥn,n+1 + H̃

(N−n)

R
(112)

with the cutoff dimension m. In a practical set up of the finite-

size DMRG, H̃
(n)

L
and H̃

(N−n)

R
for all of 1 < n < N − 1 are

usually retained in computer memory space.

The n-dependent representation of the block Hamiltonians

yields the n-dependent wavefunctions. Using the matrix nota-

tion, we write the wavefunction in the mixed canonical form

at site n as

Ψ̃
(n)(sn sn+1) = Ṽ

(n+1)

R
(sn+1)Λ(n)

Ṽ
(n)†
L

(sn)

=
�◮

Λ(n)
◭

Ṽ
(n+1)

R
Ṽ

(n)

L

(113)
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where Λ
(n) denotes singular values and Ṽ

(n)

L
(sn) and

Ṽ
(n+1)

R
(sn+1) are the corresponding singular vectors. Using the

recursive relations (108) or (109), then, we can iteratively up-

date H̃
(n)

L
or H̃

(N−n)

R
with shifting n from left to right or right to

left.

In order to illustrate the MPS structure generated by the

finite-size DMRG, it is instructive to trace the iterative con-

struction of the renormalized block Hamiltonians. For in-

stance, the expectation value of the renormalized Hamiltonian

(112) with respect to Eq. (113), that is 〈Ψ̃(n)|H̃(n)|Ψ̃(n)〉, can be

restored into the following from,

〈Ψ(n) |H|Ψ(n)〉 =
✒

✓

✑

✏

�

�

◮ ◮ ◮ ◮ ◮

◮ ◮ ◮ ◮ ◮

H

Λ(n)
◭ ◭ ◭ ◭ ◭

◭ ◭ ◭ ◭ ◭

Ṽ
(n+1)

R
Ṽ

(N−1)

R
Ṽ

(n)

L
Ṽ

(2)

L
· · · · · ·

, (114)

which is nothing but the expectation value of the total Hamil-

tonian with the MPS wavefunction defined as

Ψ(n)(s1, · · · sn,sn+1, · · · sN) =

Ṽ
(N−1)

R
· · · Ṽ(n+1)

R
Λ

(n)
Ṽ

(n)†
L
· · · Ṽ(2)†

L
. (115)

This demonstrates that the DMRG is interpreted as a varia-

tional method for the MPS wavefunction. Nevertheless, it is

difficult to directly deal with the total Hamiltonian H and Ψ

with no compression of the Hilbert space. Instead, the DMRG

handles the eigenvalue problem of the renormalized super-

block Hamiltonian, which is depicted as

H̃(n) =

✒

✓

✑

✏

◮ ◮ ◮ ◮

◮ ◮ ◮ ◮

H

◭ ◭ ◭ ◭

◭ ◭ ◭ ◭

Ṽ
(n+2)

R
Ṽ

(N−1)

R
Ṽ

(n−1)

L
Ṽ

(2)

L
· · · · · ·

. (116)

and the wavefunction of Eq. (113). Clearly, the diagram of

Eq. (113) can be plugged into the “hole” of the above H̃(n),

which gives 〈Ψ̃(n)|H̃(n)|Ψ̃(n)〉 = 〈Ψ(n) |H|Ψ(n)〉. The DMRG cal-

culation gradually optimizes each tensor/matrix embedded in

Eq. (115) with the n-dependent update scheme, and finally

converges to the global fixed point satisfying the variational

condition for Eq. (114),

After convergence of the DMRG calculation, then, Eq.

(113) with various n gives the n dependent expressions of the

fixed-point wavefunction. Comparing Ψ(n) with Ψ(n+1), thus,

we obtain the finite-size generalization of Eq.(78),

Λ
(n+1)

Ṽ
(n+1)†
L

(sn+1) = Ṽ
(n+1)

R
(sn+1)Λ(n) (117)

with the “boundary condition” Λ(1) = Λ(N−1) = I. Moreover,

this relation gives rise to the one-site shift operation of Ψ̃(n),

which is explicitly written as

Ψ̃
(n+1)(sn+1 sn+2) =

∑

sn

Ṽ
(n+2)

R
(sn+2)Ψ̃(n)(sn sn+1)Ṽ

(n)

L
(sn) .

(118)

This shifting operation for Ψ̃(n) can be used for preparing a

good initial wavefunction for the Lanczos diagonalization in

the finite-size DMRG.48)

As already mentioned, the MPS representation of the wave-

function (115) in the finite-size DMRG is obtained with suc-

cessive use of SVD, which is also equivalent to the Schmidt

decomposition of the wavefunction. On the other hand, Eq.

(115) can be straightforwardly converted to the MPS of Eq.

(13) based on the transfer-matrix formulation, through the re-

lation of F(n) = Λ(n)−1/2
V

(n)

R
Λ

(n−1)1/2
= Λ(n)1/2

V
(n−1)†
L

Λ
(n−1)−1/2

(Recall Ω = Λ1/2). Thus, an important aspect of the finite-size

DMRG is that it explicitly bridges the above two aspects of

quantum information and transfer matrix formulation through

the position-dependent MPS. In addition, we point out that the

expression of Eq. (116) provides a prototype of the variational

approach based on TPS or PEPS in a higher dimension.

From the practical point of view, long-range and/or nonuni-

form interactions up to moderate chain length can be han-

dled by the finite-size DMRG within a realistic computational

cost, thanks to the stable position-dependent update scheme.

Thus, the application range of the finite-size DMRG was ex-

panded to wide variety of quantum systems such as finite-

size 2D quantum system,79) bosonic systems,80) dynamical

quantities,81) momentum space,83) random systems,82) quan-

tum Hall systems,84) quantum chemistry,85) numerical RG for

the Kondo impurity model,169) and so on. We think that these

features of the finite-size DMRG stimulated us to further de-

velopments in the TN algorithm.

5.5 matrix product operator

We explained the MPS on the basis of the variational state

for the transfer matrix which is defined as a product of local

vertex weights, and then extend it to the 1D quantum system

through the Suzuki-Trotter decomposition. In the context of

the MPS, the row-to-row transfer-matrix in the form of Eq.

(5) is theoretically more tractable than the Hamiltonian which

transfers the spin indices in the diagonal direction as depicted

in Eq. (86). The matrix-product operator (MPO) was intro-

duced as a systematical method bridging a gap between the

Hamiltonian and the transfer matrix formalism without using

the Suzuki-Trotter decomposition.96)

For the purpose of rewriting the sum of local operators, say

Ân, into a product of local operators, the basic idea of MPO is

to use an auxiliary matrix having the nilpotent property. As a

simple example, let us consider

M =
∏

n

(1 + S −Ân) (119)

where S − ≡ S x + iS y with ~S being the S = 1/2 spin matrices.

Note that S − acts on the auxiliary Hilbert space distinct from

the physical degrees of freedom in the system. As well known,

S − is nilpotent, i.e. (S −)2 = 0. Expanding M, then, we can

easily obtain M = 1 + S −(
∑

n Ân), which contains the sum of

Ân as (2, 1) element of the auxiliary matrix.

For the two-body interaction, we need to extend the size of

the auxiliary space and introduce two kind of nilpotent matri-

ces

τ =





















0 0 0

1 0 0

0 1 0





















, σ =





















0 0 0

0 0 0

1 0 0





















(120)

which satisfy τ2 = σ, τ3 = 0 and σ2 = 0. As in the case of Eq.

(119), we expand
∏

n(1 + τÂn). However, this generates two-

body interactions ÂnÂn′ for the all-to-all pairs with respect to
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n and n′ in the chain. In order to restrict the spatial range of

the interactions, we further introduce a projection matrix

P =





















1 0 0

0 0 0

0 0 1





















, (121)

which follows Pτ2P = PσP = σ, PτP = 0, P2 = P. We then

obtain

M =
∏

n

(P + σÂn + τB̂n)

= P + σ(
∑

n

Ân + B̂nB̂n+1), (122)

where Ân and B̂n denote local operators for the physical de-

grees of freedom at site n. If Ân = ΓŜ
x
n and B̂n = J1/2Ŝ z

n,

the coefficient of σ matrix in M gives the Hamiltonian of the

transverse field Ising model with the coupling constants, Γ and

J. By construction, a generalization to the Heisenberg inter-

action is straightforward. In addition, we note that the above

MPO formulation is generalized to 1D quantum systems with

spatially extended interactions by replacing

P→ Pλ =





















1 0 0

0 λ 0

0 0 1





















(123)

with 0 ≤ λ ≤ 1.170)

In Eq. (122), Ân and B̂n are local operators associated with

the physical degrees of freedom at site n, while τ and σ act

on the auxiliary Hilbert space, which corresponds to the hori-

zontal line of the row-to-row transfer matrix. In other words,

M has the same operator structure as the row-to-row trans-

fer matrix for the classical vertex model. This implies that

the Hamiltonian can be generally converted into the row-to-

row transfer matrix form defined on the square lattice of the

usual direction(not 45◦-rotated direction). Although the aux-

iliary degree of freedom gives rise to extra numerical cost, the

MPO representation is useful for systematically dealing with

1D quantum many-body systems in the MPS formulation.

In this subsection, we have explained the MPO in the con-

text of a way of converting the Hamiltonian to the transfer-

matrix form. Nevertheless, we should note that recently, the

term “MPO” is used in a wider context in the TN literature;

the row-to-row transfer matrix for the 2D classical model

itself is often termed as “MPO”. This situation may sound

slightly confusing in the statistical mechanics side. However,

they are basically the equivalent object in the level of mathe-

matical formulation.

5.6 time-dependent algorithms

The MPS approach has also a significant relevance to nu-

merical simulations of the real-time dynamics of quantum

many-body systems. To our knowledge, the first trial was car-

ried out for a point contact problem of two free fermionic

chains with the infinite-size DMRG.171) In this approach,

however, the renormalized Hamiltonian is not changed dur-

ing the time evolution, so that the time range where numerical

accuracy remains good is relatively short. More efficient MPS

approaches for general setups were formulated as adaptive up-

dating schemes for real-time evolution operators generated by

Suzuki-Trotter decomposition with small time slices.91, 92)

In the adaptive updating approaches, we assume the MPS

form of time-dependent wavefunctions at t and t + ∆t, which

are explicitly related by the time evolution operator with a

short time interval ∆t,

|ψ(t + ∆t)〉 = exp(−i∆tĤ)|ψ(t)〉 . (124)

As in Eq. (87), exp(−i∆tĤ) can be decomposed into

exp(−i∆tĤ) ∼ exp(−i∆tĤe) exp(−i∆tĤo) with help of Trot-

ter discretization. Given MPS representation of |ψ(t)〉, we

can sequentially generate exp(−i∆tĤe)|ψ(t)〉 → |ψ̄(t)〉 and

exp(−i∆tĤo)|ψ̄(t)〉 → |ψ(t+∆t)〉, where |ψ̄〉 denotes the wave-

function at a mid time step due to the Trotter discretization.

Then, an advantageous point is that exp(−i∆tĤe/o) are repre-

sented as a product of local two-sites operators and |ψ̄(t)〉 and

|ψ(t+∆t)〉 can be straightforwardly reconstructed into the MPS

form with use of SVD. Practically, the finite-size algorithm

of DMRG or the TEBD algorithm can be directly applied to

this problem. Also, the Lindblad-type time evolution operator

can be constructed as an MPS defined on the doubled Hilbert

space of the density operator172, 173)

From the variational point of view, the optimized tensors in

the time-dependent algorithms do not satisfy the static varia-

tion problem, unlike the DMRG for the ground state. Instead,

the time-dependent algorithms can be viewed as a variational

algorithm of minimizing an extended cost function,

δ ≡ |ψ(t + ∆t) − exp(−i∆tĤ)ψ(t)| (125)

at each time step. Note that the definition of the cost function

is not unique. For instance, another cost function,

δ ≡ | exp(i∆tĤo)ψ(t + ∆t) − ψ̄(t)|

+ |ψ̄(t) − exp(−i∆tĤe)ψ(t)| , (126)

originating from a least action principle also leads to a simi-

lar adoptive time evolution scheme based on the MPS.174) For

the case of Eq. (126), both of forward and backward iterations

with respect to the time-evolution direction are required for

the convergence of tensor optimization. More recently, an im-

proved formulation of the real-time evolution algorithm com-

bined with the MPS was also proposed175, 176) on the basis of

the traditional time-dependent variational principle attributed

to Dirac and Frenkel.177, 178) The algorithm based on the time-

dependent variational principle enables us to certainly extend

the time range where numerical accuracy is maintained, in

comparison with the previous ones.

The MPS-based time-evolution algorithms provide practi-

cal tools for the real-time simulation of 1D quantum systems

and have been extensively used for investigating real-time dy-

namics of ultra-cold atom systems as well as condensed mat-

ter problems. In this review, however, we will skip about ap-

plications and recent developments in the time-dependent al-

gorithm, and just refer the reader to Ref. [179].

6. Tensor product state and projected entangled pair

state

The success of the DMRG and the CTMRG in 1D quan-

tum and 2D classical systems prompts us to generalize the

algorithms to higher dimensions. A straightforward extension

of the MPS-type variational state for the transfer matrix of the

3D classical model is a tensor product state (TPS)180) consist-

ing of local tensors which carry a set of leg indices reflecting
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(a)

(b)

Fig. 7. (Color online) The TPS/PEPS for a cubic lattice vertex model. (a)

The layer-to-layer transfer matrix T and the TPS/PEPS representation of the

maximum-eigenvalue eigenvector |Ψ〉 of T , where the circles denote vertices

of local variational tensors. The thin vertical lines indicate the physical de-

grees of freedom connected to T , and the thick green lines represent auxiliary

leg variables carrying the entanglement among lattice sites. (b) The local ten-

sor A is defined as a 5-leg tensor with one vertical line of the physical degree

of freedom and four thick green lines of auxiliary degrees of freedom. The

bond dimension of the physical spin is denoted as q, whereas that of the thick

green lines is written as D.

the lattice structure [See Fig. 7(a)]. Then, the 3D version of

the variational argument in §3 naturally leads us to the corner

transfer tensor,22) which is illustrated in Fig. 8.

On the basis of the corner transfer tensor, the first chal-

lenge of the TN approach to the higher dimension was made

for the cubic-lattice Ising model.101) As in Fig. 8(b), we can

formulate the recursion relation for the corner transfer tensor,

in cooperation with 6 pieces of supplemental tensors corre-

sponding to the plane and edge structures of the lattice. In

practical numerical calculations, however, the spectra of the

reduced density matrices with a certain cut of leg indices ex-

hibit very slow decay even for a temperature moderately away

from the critical point, in contrast to the rapid decay in the 2D

case. Whether such a bad situation originated from a problem

of the optimization scheme or quality of the variational state

was not clear at that time. Thus, we should have primarily

examined the quality of the TPS as a variational state with a

direct variational calculation.

The basic idea of the direct variational approach to the

transfer matrix is attributed to the Kramers-Wannier approxi-

mation.20) For the 3D Ising case, the 2D Ising model in an ef-

fective magnetic field can be used as a trial state for the max-

imal eigenvector of the layer-to-layer transfer matrix, where

the effective coupling and the effective magnetic field play

the role of variational parameters.102) Then, an essential point

is that the CTMRG can be used for evaluating the norm and

expectation values with respect to the trial state that is com-

posed of the effective 2D Ising model. This mechanism can

be viewed as a dimensional reduction by the variational TPS

and allows us to directly optimize variational parameters. Al-

though the Kramers-Wannier approximation for the 3D Ising

model contains only two variational parameters, its result is

much better than the naive use of the corner-transfer-tensor

Fig. 8. (Color online) Building block tensors of a cubic lattice system. (a)

The local Boltzmann weight is represented as a 6-leg vertex tensor. (b) A

corner transfer tensor: three thick blue legs represent the renormalized spin

indices for the plane structure. (c) The recursion relation can be built up for

the corner transfer tensor in combination with the other types of vertex ten-

sors. The blue and green thick lines respectively represent the leg indices

corresponding to the plane and edge structures.

RG, suggesting that the TPS has sufficient potential to de-

scribe many-body effects in higher dimensions.

For the quantum system, a prototype example of the varia-

tional approach is the AKLT model on a honeycomb lattice,24)

where the ground state is exactly described by the 2D VBS

state. Here, we note that by definition, the 2D VBS state sat-

isfies the variational condition for the AKLT Hamiltonian. In

analogy with the 1D VBS state, the auxiliary spins in the 2D

VBS can be regarded as leg indices attached to the physi-

cal S = 3/2 spin, implying that the 2D VBS state is ex-

actly described by a TPS with a finite bond dimension. Note

that the TPS representation of the VBS state is equivalent to

the PEPS, which was introduced in the context of quantum

information. Then, an essential point is that the expectation

value of physical quantities is represented as a 2D double-

layer vertex model constructed from the local tensors of the

TPS/PEPS.[See also Fig. 9(a)]. This implies that the CTMRG

or DMRG can be used for efficiently evaluating the norm and

expectation values of physical quantities for the VBS state.110)

These results prompted us to generalize the TPS/PEPS as a

good variational state for 2D quantum lattice systems.

Here, we mention that the TPS/PEPS also satisfies the area

law of EE for the 2D gapful ground state. As discussed in

§4.5, the EE for the ground state of dD off-critical systems

satisfies S EE ∼ ℓd−1 with ℓ being the linear dimension of a

system part. For |Ψ〉 in Fig. 7(a), then, it is straightforward

to see that given a certain system part and its complement,

the number of bonds cut by the interface of the two subsys-

tems is proportional to the perimeter of the system part. This

also implies that the TPS/PEPS is capable of representing the

gapful ground state of 2D quantum lattice systems, from the

entanglement point of view.

Let us proceed to details of the TPS-based variational ap-

proximation for the 3D vertex model, which is illustrated in

Figs. 7 and 9. For a layer-to-layer transfer matrix T , its largest

eigenvalue eigenvector is written as the TPS form,181)

|Ψ〉 =
∑∏

n

A(n) (127)
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(a)

(b)

Fig. 9. (Color online) Double layer vertex models for the TPS/PEPS.

(a)The double layer representation of 〈Ψ|T |Ψ〉 and 〈Ψ|Ψ〉 for the TPS. The

right panels show the top views of the 2D double-layer vertex model. For the

case of PEPS, the transfer matrix T is usually replaced with the infinitesimal

(imaginary) time evolution operator. (b)The definition of the double layer ver-

tices, for which the bond dimensions of the leg variables are qD2 (left) and

D2(right).

where A(n) denotes a local tensor depicted in Fig.7(b) and the

product with respect to n runs over tensors arranged on the

2D lattice sites in Fig. 7(a). Further, the summation in Eq.

(127) is taken for the auxiliary degrees of freedom depicted

as the thick green lines in Fig.7(a). However, naive use of

SVD is not appropriate for the optimization of A(n), unlike the

CTMRG/DMRG scheme where the RG transformation ma-

trix due to the singular vectors can be connected to the MPS

tensor through Eqs. (71) or (78). These relations are no longer

the case for the 2D TPS, and the reduced density matrix with a

certain cut exhibits very slow decay of the spectrum. Thus, we

need a more brute force optimization of the local tensor based

on the direct variation of 〈Ψ|T |Ψ〉/〈Ψ|Ψ〉 (or 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉
for the 2D quantum case). Then, an essential point is that

〈Ψ|T |Ψ〉 and 〈Ψ|Ψ〉 can be calculated through the CTMRG

for the double-layer vertex models depicted in Fig. 9. Thus,

we already have practical numerical tools for optimizing the

local tensor so as to maximize the expectation value of T .

Here, we explain two typical approaches called “variational

update”, and “full update” of TPS/PEPS. We also mention

the role of “simple update”, which is a simple but less accu-

rate updating scheme of local tensors based on the SVD. In

addition, we just notice that there is a hybrid approach of the

imaginary time evolution and the RG transformation based on

the reduced density matrix with a cut in the imaginary time

direction (vertical density matrix ansatz).112, 113)

6.1 variational and full updates

In this subsection, we basically consider a uniform system

in the bulk limit, where we may omit the site index n and

Fig. 10. (Color online) The environment tensors X and Y . The red cages

located at the center of the environments indicate “holes” originating from

the variation with respect to the local tensor A. These environment tensors

can be efficiently calculated by inserting the impurity site after convergence

of the CTMRG iterations for the double layer vertex models in Fig. 9.

thus write A(n) → A. A solid optimization scheme of the local

tensor in the TPS is to use an environment tensor surrounding

the tensor to be optimized, which is assumed to be located

at the “center” of the system. In order to see structure of the

environment tensor, we take the variation of the maximum

eigenvalue

Λ ≡ 〈Ψ|T |Ψ〉〈Ψ|Ψ〉 (128)

with respect to the local tensor, A → A + δA. Assuming the

translation invariance in the bulk limit, we can write the opti-

mal condition for A in the form of the generalized eigenvalue

problem,

XA = ΛYA , (129)

where X and Y respectively represent effective environment

tensors defined in Fig.10. Note that Eq. (129) is a nonlinear

equation for A, since the environment tensors X and Y them-

selves are built from A.

The basic role of the X tensor is similar to the renormal-

ized Hamiltonian of Eq. (116 ) in the DMRG. As mentioned,

however, the singular vectors of SVD of the TPS cannot be

reduced to the local tensor A in the TPS, unlike the MPS in

one dimension [See Eq. (71)]. Thus, we formulate a more di-

rect iterative optimization scheme of A on the basis of Eq.

(129); Given a local tensor of A, we calculate X and Y with

the CTMRG for the effective double-layer vertex models. In

particular, X and Y can be computed by insertion of the “im-

purity” vertex corresponding to the red cages in Fig. 10 after

a sufficient number of CTMRG iterations for the double-layer

vertex models. Then, we establish the recursive relation,

Λ−1Y−1XA→ A′ , (130)

where A′ provides an improved local tensor for the TPS with

an appropriate normalization Λ. For an early stage of recur-

20



J. Phys. Soc. Jpn. FULL PAPERS

sive iterations, however, this relation usually causes a too

drastic change between A and A′ to achieve stable optimiza-

tion. Thus, we need to introduce an adjustment mechanism of

the optimization speed as follows,

Anew = A + ǫA′ ∼ eǫK̃ A , (131)

where K̃ ≡ Λ−1Y−1X and ǫ denotes a controlling parame-

ter of convergence to the maximum-eigenvalue eigenstate. A

typical value is ǫ = 0.01 ∼ 0.1 in practical situations. Updat-

ing A → Anew in Eq. (127), we now have the closed form of

an iterative variational algorithm for the TPS. Numerical re-

sults for the 3D Ising model demonstrated that the variational

update provided systematical improvements of the Kramers-

Wannier approximation.103, 105, 106)

If we replace T with a Hamiltonian Ĥ together with ǫ →
−ǫ, Eqs.(130) and (131) turn out to be the variational up-

date algorithm for the infinite PEPS.107) A particular point

for quantum systems is that the Hamiltonian is the sum of

two-body interaction terms rather than the product of local

vertices. Thus, all of the two-body terms in the Hamiltonian

must be carefully summed up during CTMRG calculations of

the effective double-layer models in Fig. 10. Here, one might

view the quantum version of Eq. (131) with H̃ = E−1
g Y−1X

as an effective imaginary time evolution based on a renormal-

ized Hamiltonian. In contrast to the DMRG for 1D quantum

systems, however, H̃ is transformed with the nonorthnormal

basis and its Hermiticity is explicitly broken. Thus, direct use

of H̃ is not appropriate usually.

Another update scheme of the local tensor is based on

the imaginary-time evolution combined with the environment

tensors, which is often called “full update” in PEPS literature.

The basic idea is similar to the variational update for the 3D

classical system above; The imaginary time evolution oper-

ator exp(−ǫĤ) with a small time slice ǫ plays a role of the

layer-to-layer transfer matrix T as in the case of TPS, since

exp(−ǫĤ) can be decomposed into a product of local weights

with the sublattice structure through the Suzuki-Trotter de-

composition. Given a state |Ψ〉 in the PEPS representation,

an improved PEPS |Ψ′〉 for exp(−ǫĤ)|Ψ〉 is constructed with

minimizing the distance defined by

δ =
∣

∣

∣|Ψ′〉 − e−ǫĤ |Ψ〉
∣

∣

∣ . (132)

The outcome tensor A′ in |Ψ′〉 is constructed so as to mini-

mize δ of Eq. (132) for the given input tensor A in |Ψ〉 at each

time step. Thus, the full update is based on an imaginary-time

dependent variation for the PEPS between two adjacent imag-

inary time slices, as in Eq. (125). Repeating updates along the

imaginary time evolution, one can finally obtain a good ap-

proximation of the ground-state wavefunction corresponding

to the β→ ∞ limit.

An interesting aspect of the optimal condition based on Eq.

(132) is that the environment tensors to determine A′ are for-

mally very similar to X and Y in Fig. 10. In the variational

update, however, the tensor A in |Ψ〉 are iteratively revised

through Eq. (130), which is a highly nonlinear equation of the

local tensor. In the full update, by contrast, the input tensor

A is already fixed at the previous time step, and thus roles

of A and A′ in the environment tensors are slightly different

from the case of the variational update. (e.g. See Sec.II in Ref.

[115], where A and B respectively correspond to the present

(a)

(b)

Fig. 11. (Color online) A simple update of the local tensors Ai and A j for

two adjacent i- j sites. (a) Apply the local imaginary-time-evolution operator

e−ǫĥi, j to the local tensors Ai, j attached with Ω, as in Eq. (89) for the iTEBD.

Regarding the dangling legs surrounded by the dotted lines as matrix indices,

we perform SVD, where Λ̄ indicate the singular values and Ū and V̄ with the

green and thick red lines represent the singular vectors. (b) On the basis of

the low-rank approximation of Λ̄, the improved tensors Āi, j with the red leg

renormalized is constructed from the singular vectors attached with Ω̄ ≡
√
Λ̄.

We can repeat a similar process for the other remaining green legs.

A′ and A in Eq. (132)) This implies that the states in interme-

diate steps of iterations may be different between the above

two algorithms, but the final wavefunctions after convergence

in the β → ∞ limit should become equivalent in principle.

We also note that the dominant computational cost is on the

environment tensor for both update schemes.

Here, we should remark that in the practical full-update al-

gorithm of infinite-system size PEPS (iPEPS), a simplified

version of the environment tensor is often used,108, 182) where

the imaginary time evolution operator is applied to only the

center sites of the environment block, on the assumption of

the translation invariance. Thus, the environment tensor used

in the iPEPS may not be exactly the same as that in the orig-

inal full-update algorithm for the finite-size system. The vari-

ational update for TPS/iPEPS achieves certainly accurate re-

sults compared with the iPEPS with the simplified environ-

ment tensor.107)

6.1.1 simple update

The computational cost of the variational update or the full

update for 3D classical or 2D quantum systems is basically

proportional to (qD2m)3, which is attributed to computation

of the environment tensor of X in Fig. 10, where m denotes the

number of retained basis in the CTMRG for the double layer

vertex model. This implies that the TPS/PEPS approaches be-

come expensive rapidly as the bond dimension D increases.

The simple update is a simple but less accurate updating al-

gorithm of the local tensor, which bypasses a direct compu-

tation of the environment tensor. A background idea may be

considered as a higher dimensional analogy of iTEBD for the

MPS, where the effect of the environment is partially taken

into account through singular values.67, 116)

Let us consider the imaginary-time evolution problem for

a 2D quantum system. As depicted in Fig. 11(a), we consider

two local tensors Ai and A j attached with Ω, where i, j indi-

cate two adjacent sites. Here, thisΩ corresponds to the square
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root of the singular values and is expected to include some

environment effect like Eq. (89) of the iTBED. We then apply

the local imaginary-time-evolution operator e−ǫĥi, j to the phys-

ical legs of Ai, j, where ĥi, j is the local Hamiltonian. Regarding

the dangling legs surrounded by the dotted lines as matrix in-

dices, we perform SVD to obtain the singular values Λ̄ and

the corresponding singular vectors Ū and V̄ . As in Fig. 11(b).

we then renormalize Ω̄ ≡
√
Λ̄ into the red leg indices and con-

struct new local tensors Āi, j, rearranging the matrix indices of

Ū and V̄ with Ω−1. Repeating these processes for all legs of

the local tensors, we can finally obtain those effectively ab-

sorbing the single-step evolution of eǫĤ in the imaginary time

direction.

In the simple update, direct computations of the environ-

ment tensors are skipped, so that its numerical cost is very

cheap. However, the renormalization due to Ω̄ attached to the

red legs may have missed some part of environment effects.

In contrast to the MPS for the 1D quantum system, the sin-

gular vectors in the simple update for the 2D quantum system

no longer generate the translation operation on the 2D lattice,

since they do not lead to such relations as Eqs. (71) and (78).

This implies that the result of the simple update does not meet

the optimal PEPS for the ground state and has a certain devi-

ation from the result of the variational or full update, even

for the gapful ground state with a short correlation length. In

practical situations, thus, the simple update should be used for

preparing initial local tensors for the full update or variational

update. From the theoretical viewpoint, thus, how canonical

forms of TPS/PEPS can be recovered from transformation

matrices due to SVD is an essential problem, which was ac-

tually discussed in Refs. [183, 184]. Also, this point may be

associated with how to construct the correct transformation

matrix in the vertical density matrix approach.112, 113)

Finally, we would like to comment on recent developments

in optimization schemes such as gradient method185) and au-

tomatic differentiation approach.186) These approaches enable

us to achieve accuracy comparable to the variational update,

with skipping direct computations of the environment tensors

that is the most costly part of numerical computations. An-

other interesting development is calculation of low-energy ex-

citations based on the PEPS.187, 188)

7. Real-space renormalization groups and tensor net-

works

As discussed so far, the CTMRG/DMRG type algorithms

provide iterative numerical methods of solution for the vari-

ational equation, where the eigenvectors of reduced density

matrices play the role of projective transformation with keep-

ing the important information in the bulk states. Also, the

linear system size of the renormalized tensors/matrices basi-

cally increases in proportion to the number of iterations. Thus,

they basically seem to share certain characteristics with real-

space RGs. In Kadanoff-Wilson type real-space RG, how-

ever, the length scale or the energy scale of the system are

changed in the exponential manner with respect to RG steps,

and then a response of the system against such an active con-

trol of the length scale combined with the coarse graining al-

lows us to extract information of the critical behavior. In the

CTMRG/DMRG, the system-size increase is just linear and

the spectrum of the reduced density matrix is not directly re-

lated to the low-energy spectrum of the system Hamiltonian.

In particular, the critical behavior described by the fixed point

of the CTMRG/DMRG with a finite m is basically of the

mean-field type.157, 158) Thus, in principle, the framework of

CTMRG/DMRG is insufficient to extract proper information

about the RG flow. Instead, we often combine the finite-size

or finite-entanglement scaling analysis to investigate critical

behaviors, as discussed in §4.5.

The TN approach incorporating the scale transformation

was initiated with the tensor renormalization group (TRG) for

the Ising model in 2007.129) An advanced point of the TRG

from the conventional real-space RGs is on massive use of

SVD for vertex-type Boltzmann weights instead of the Hamil-

tonian. The approximation based on the dominant singular

values and corresponding singular vectors practically works

very well. Moreover, the TRG involves the scale transforma-

tion equivalent to the conventional real-space RG. This sug-

gests that in principle the scaling dimension can be extracted

within the framework of the TRG formulation.189) Although

the TRG turns out to belong to a class of tree tensor net-

works (TTNs) and the resulting accuracy is of the same or-

der as CTMRG for the 2D case, it stimulates the following

development of TNs associated with the real-space RG. For

instance, the HOTRG, which is assisted by the higher-order

SVD,190, 191) makes it easier to a systematical extension of the

TN to higher dimensional systems,130) and is appreciated for

recent TN studies of lattice gauge theories.192)

In the context of the critical phenomena, moreover, a sig-

nificant development was achieved by the tensor network

renormalization group (TNR)17) or the multi-scale entangle-

ment renormalization ansatz (MERA) for 1D quantum sys-

tems,16, 98) both of which succeeded in extracting the numeri-

cally exact scaling dimensions beyond the mean-field level. In

particular, the concept of disentangler implemented in these

TNs enables us to filter out short-range entanglements ir-

relevant to critical behaviors, where the total network struc-

tures become capable of representing the log-correction to the

area law of EE. In this sense, the concept of the real-space

RG presented in the 70’s-80’s was finally justified by the re-

cent development of the TN in the quantitative level. Also,

the MERA clarified the interesting connection between the

TN and the Ryu-Takayanagi formula in the AdS/CFT,99, 141)

which stimulates us to further studies around the nexus of TN

physics and quantum gravity. In the followings, we overview

a series of developments in the TN from the TRG to the TNR,

focusing on their fixed point structures rather than technical

details. After that, we will discuss the MERA and related is-

sues. This is because the TNR is easier to see the connection

to the real-space RG, although the MERA was presented ear-

lier than the TNR.

7.1 tensor renormalization group

Let us begin with the local Boltzmann weight of the 2D

isotropic Ising model in the vertex representation,

W(s1 s2 s3 s4) = s1 s3

s2

s4

. (133)

In the previous MPS-based formulation, we have always con-

sidered the row-to-row transfer matrix and its maximal eigen-
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vector. In the TRG, meanwhile, the coarse graining and scale

transformations are directly realized with SVD for vertex

weights and their contraction. More precisely, we regard the

vertex weight as a matrix that transfers the spins, for example,

in the NE to SW direction and then perform SVD,

W(s1 s2 s3 s4) =

4
∑

σ=1

V(σ, s1 s2)ΣσV(σ, s3s4)

=
N

N♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♣

s1

s3

s2

s4

Σ

V

V

, (134)

where Σ and V respectively denote singular values and the

corresponding singular vectors. Note that σ can be viewed as

a coarse-grained spin variable originating from the two s spins

and the solid triangle in Eq. (134) indicates the direction of the

coarse graining. Using Σ and V , we construct a 3-leg vertex

tensor

Ṽ(σ, s1, s2) =
√

ΣσV(σ, s1s2) . (135)

Clearly, we can do the same computation in the SE to NW

direction of the vertex weight. We then connect four Ṽ tensors

and contract them with respect to s1, s2, s3, s4,

W′(σ1 σ2 σ3 σ4)

=
∑

s1,s2,s3,s4

Ṽ(σ1, s1 s2)Ṽ(σ2, s2 s3)Ṽ(σ3, s3 s4)Ṽ(σ4, s4s1)

=
N

N
N

N

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣♣♣♣♣
s1

s2

s3

s4

σ1 σ2

σ4 σ3

⇒ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣ ♣ ♣ ♣ ♣ ♣ ♣

�

σ1 σ2

σ4 σ3

, (136)

which gives a new 4-leg renormalized vertex W′. Then, this

new vertex W′ defines a 45◦ rotated square lattice with the

lattice space scaled by
√

2. Instead, a number of the effective

spin degrees of freedom in the renormalized vertex, which is

represented as dotted lines, are increased twice in the contrac-

tion step of Eq. (136). As expected, the small singular values

and the corresponding singular vectors should be truncated to

maintain the bond dimension of the renormalized legs con-

stant. In the following, let us write this bond dimension as

χ.153) For W′, we can further do the process from Eqs. (134)

to (136) again, which generate a square lattice vertex weight,

say W̃(s̃1 s̃2 s̃3 s̃4) in the original lattice orientation, where s̃i

with i = 1, · · · , 4 indicate renormalized spin indices of W̃.

Now, we have the closed loop of TRG iteration, which is

summarized as Fig. 12. For a square-lattice vertex model of

Fig. 12(a) , we decompose the local vertex tensor, using Eq.

(134). Then, the system is converted into an intermediate lat-

tice model of Fig. 12(b). Contracting out the solid lines in

Eq. (136), we obtain a coarse-grained square-lattice vertex

model in Fig. 12(c), where the renormalized vertices have 4

dotted lines of the renormalized spins. Rescaling the lattice

space in Fig. 12(c) by
√

2, we then have the square-lattice

vertex model, as illustrated in Fig. 12(d). Although the lattice

in Fig. 12(d) is 45◦ rotated, we can do the TRG iteration for

Fig. 12(d) again and then arrive at the renormalized square-

lattice vertex model of W̃(s̃1 s̃2 s̃3 s̃4) in the same orientation

as Fig. 12(a) with the scale factor 2 of the lattice space. Re-

(a) (b)

(c)(d)

Fig. 12. Iteration process of the TRG. (a) A vertex model of a certain

length scale (b) Perform SVD for the vertices in the NE-SW or SE-NW di-

rections. The dotted lines indicate the renormalized spin indices to which
√
Σ

is attached. (c) Contracting solid square lines in (b), we have a 45◦ rotated

vertex model. (d) Rescaling the vertex model in the panel (c) by the scale

factor
√

2, we have the effective vertex model in the original scale. Repeating

the same process of (a) - (d) for the 45◦-rotated vertex model again, we arrive

at the effective vertex model scaled by the scale factor 2.

placing W̃(s̃1 s̃2 s̃3 s̃4) → W(s1 s2s3 s4), we have the recursive

relation of the vertex weight in the TRG. After N iterations

of the above recursion process, we obtain the effective vertex

weight containing 2N × 2N number of the original vertices,

and finally arrived at the fixed point vertex representing the

bulk limit. Then, the partition function of the system with the

periodic boundary conditions is calculated as

Z =
∑

s,s′

W(ss′ss′) . (137)

The accuracy of the TRG algorithm is good, except for the

vicinity of the critical point.129)

For analyzing accuracy of the TRG algorithm, it is essential

to clarify the fixed point structure of the renormalized vertex.

Here, we assume that there is no topological entanglement in

the system. The cycle of the TRG iteration in Fig. 12 provides

an RG transformation with scale factor 2, implying that the

effective vertex after N iterations contains 2N × 2N number

of bare vertices. As shown in Fig. 13(a), then, each leg spin

index of the renormalized vertex represents a bunch of 2N legs

of the bare vertices. If the system is away from the critical

point and the correlation length ξ is finite, the TRG iteration

basically converges to the fixed point for 2N ≫ ξ. Then, an

essential feature of the fixed point vertex, say W∗(s1s2s3 s4),

is that the leg spin indices of the opposite sides of W∗, i.e.

s1 and s3 or s2 and s4, are spatially separated away beyond

ξ, where the entanglement between them is negligible. The

remaining entanglement involved in W∗ is attributed to the

correlations between the two edges around each corner of the

lattice, as depicted in Fig. 13(b). For the tensor representing

each quadrant, the inside boundaries (wavy dashed curves) are

sufficiently away from the outer corner. Thus the situation of

the corner tensor in Fig. 13(c) is basically the same as that of

the CTM with free boundaries. Gluing four decoupled CTMs,

then, we may represent the fixed-point tensor as

W∗(s1s2 s3 s4) = C(µ1|ν1)C(ν2|µ2)C(µ3|ν3)C(ν4|µ4)
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(a) (b)

(c) (d)

Fig. 13. The fixed point tensor of the TRG. (a) The effective vertex weight

after N iterations of the TRG contains 2N × 2N number of the original ver-

tex weights. (b) If the system is off critical and 2N ≫ ξ, the entanglement

between the two opposite edges of the effective vertex are totally decoupled

from each other. (c) A quadrant in the panel (b) corresponds to the situation

of CTM with free boundaries. (d) Diagrammatic representation of the fixed-

point vertex weight, which is called corner double-line tensor(CDL). Note

that the square symbol is not assigned for the CTMs in the CDL tensor.

= s1

µ4

µ1

s3

µ3

µ2

s2

ν1 ν2

s4
ν4 ν3

, (138)

where the leg spin variables {s} in W∗ consist of a bunch of the

double line indices of {µ} or {ν}. For instance, s1 ≡ µ1 ⊗ µ4,

s2 = ν1 ⊗ ν2, etc., where if the dimensions of {s} is χ, those

for µ and ν should be
√
χ. Thus, the fixed point vertex ten-

sor W∗ is often called corner double line (CDL) tensor.129, 134)

Here, we note that the square symbols are not assigned for the

CTMs in the CDL tensor for simplicity. Also, we assume that

C is a real symmetric matrix below.

An important nature of the CDL tensor is that it automati-

cally satisfies the fixed point condition of the TRG recursion

relation. In order to see this, we consider SVD of the CDL

tensor, which can be described in terms of SVD for CTMs in

Eq. (138). Let us write the SVD of the CTM as

C = UΩU† (139)

where the number of singular values in Ω is assumed to be√
χ and thus matrix size of U is also

√
χ × √χ. Here, recall

that C is assumed to be real symmetric. Then, the SVD of W∗

tensor [Eq. (134)] can be written as

W∗ = V∗Σ∗V∗† (140)

with Σ∗ ≡ Ω⊗Ω and V∗ ≡ U ⊗U, which can be diagrammat-

ically represented as

N

N♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♣

s1

s3

s2

s4

Σ∗ ⇒ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♣

s1

s3

s2

s4

Ω
Ω

U

U

U

U . (141)

An important point is that the matrix rank of W∗ is automati-

cally reduced to χ from χ2 due to the CDL property, since the

CTMs at the NE and SW corners in W∗ are decoupled from

each other. This implies that the singular values are repre-

sented as doubling of the CTM spectra, Σ∗ = Ω⊗Ω, which are

illustrated as two dotted lines respectively carrying the bond

dimension
√
χ in Eq. (141),

Assuming Eq. (141), we then rewrite the renormalized ver-

tex of Eq. (136) as

W′∗(σ1 σ2 σ3 σ4) =

♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣♣♣♣♣ ♣♣♣♣♣♣♣
s1

s2

s3

s4

σ1 σ2

σ4 σ3

⇒ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣♣♣♣
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♣♣♣♣♣♣♣♣ ♣♣♣♣♣♣♣♣

σ1 σ2

σ4 σ3

× ,

(142)

where the closed internal loop corresponds to a contraction of

the four inner CTMs. Since the dotted lines of the four outer

CTMs are decoupled from the internal loop, W′∗ becomes a

CDL constituting of the four CTMs again, with the overall

scalar coefficient of � ≡ TrC4. Of course, the same CDL de-

coupling also occurs in the next step of W′∗ → W̃∗. [Fig.12(c)

and (d)] In this sense, the fixed point of the TRG is basically

explained by the CTM in the CTMRG with the number of

kept basis
√
χ. In the TRG iteration, however, the number of

spins contained in the renormalized vertex exponentially in-

creases by the scale factor 2, and thus the convergence to the

bulk limit is much faster, compared with the linear increase

of the system size in the CTMRG. Instead, the CDL tensors

in the TRG may not satisfy the variational equations (73) and

(74). This is because any CDL tensor satisfies the fixed-point

condition of the TRG iteration, even if it deviates from the

CTMRG fixed point. In other words, once W causes the CDL

decoupling, it can never be improved with further TRG iter-

ations. Thus, we should always pay attention to the above-

noted features, if using the TRG algorithm.

The TRG is a one-way algorithm starting from a small sys-

tem size and has no mechanism of refining the fixed point

tensor after the CDL decoupling. The second renormalization

(SRG) is an improved algorithm allowing further optimiza-

tion of the renormalized vertex tensors with use of backward

iteration of TRG.193, 194) Constructing the environment tensor

for the vertex tensor of 2n × 2n from the renormalized vertex

of the size 2n+1 × 2n+1, and then update the building block

isometry, i.e. the singular vectors V connecting n + 1 and n,

toward the smaller size vertex. After repeating the backward

iterations down to n = 1, we turn to the forward updating

of the isometries again. And finally, we obtain the improved

renormalized vertex, which certainly provides a more accu-

rate result than the TRG. Note that, in the context of the TTN,

the SRG approach is to improve the quality of the isometry

tensors, but does not change the tree network structure of the

tensors.

Finally, we would like to comment on the critical behavior

of the TRG-based algorithm. At the critical point, the intrinsic

correlation length of the system diverges, while the effective

length described by the truncated tensors in the TRG is al-

ways finite. This implies that the effective tensors in the TRG

undergo the CDL decoupling after TRG iterations exceeding

the effective correlation length governed by the bond dimen-

sion χ. Thus, the CDL tensors embedded in W∗ always give

the mean-field nature, which may mask the true critical nature

of the system. In order to eliminate such mean-field behavior,

we need to introduce a disentangler, as will be discussed for
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the TNR.17)

7.2 HOTRG

The TRG is a simple algorithm to deal with 2D statis-

tical lattice models, but its generalization to higher dimen-

sional systems is not so easy, because the shape of the lat-

tice is changed under a renormalization process, where the

number of tensor legs may rapidly increase. Meanwhile, the

HOTRG, which is an abbreviation of tensor renormalization

group assisted with higher-order SVD,190, 191) was introduced

as a TRG based approach easy to generalize to higher di-

mensions.130) This could be a reason why it attracts much

interest particularly in the community of lattice gauge the-

ory,131, 132, 192, 195) although its fixed point is also described by

the CDL.

In the HOTRG, we recursively update the renormalized

vertex tensors, starting from the single site vertex tensor. The

differences from the TRG algorithm in the previous subsec-

tion are summarized as the following two points.

(I) The vertex tensor is sequentially renormalized

respectively in the x, y, · · · directions. This makes a

higher dimensional generalization straightforward.

(II) In order to extract important degrees of freedom

in the vertex tensor, the HOSVD for the vertex is

employed, instead of the SVD.

In practical situations, the isometry tensor (RG transformation

matrix) can be calculated with the usual matrix diagonaliza-

tion for a reduced density matrix constructed from a certain

contraction of the vertex tensors [See Eq. (146)], which is ba-

sically equivalent to a direct application of the HOSVD to the

vertex tensor.

Let us briefly describe the above process (I). For the case

of square-lattice models, two adjacent vertices of W in the

y (vertical) direction are contracted, and then the legs in the

x (horizontal) direction are renormalized by the isometry P

generated with the HOSVD. The graphical representation of

this process is given by

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣♣♣♣♣♣♣♣s̃1 s̃3

s2

s4

P P

W

W

◮◭ ⇒ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣♣♣♣♣
�s̃1 s̃3

s2

s4

W′
, (143)

where W′ is a new vertex coarse grained in the y direction and

P denotes the RG transformation bunching the two horizontal

legs of W. The next step is to do the similar process for two

W′ connected in the x direction,

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
� �s̃1 s̃3

s̃2

s̃4

Q

QN

H

W′ W′
⇒ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♦s̃1 s̃3

s̃2

s̃4

W̃ , (144)

where W̃ is the coarse-grained tensor in both of the x and y

directions, and Q merges the two vertical legs of W′. The re-

sulting W̃ contains 2 × 2 original vertices of W, implying that

its lattice space is doubled. The isometry P (Q) is constructed

from the vertex W (W′) with the use of the HOSVD. How-

ever, the HOSVD is not so popular algorithm. Instead, we can

equivalently calculate P (Q) from usual matrix diagonaliza-

tion of an effective reduced density matrix for W (W′). We

will explain the process (II) below.

Assume that the bond dimension of a vertex W is χ. We

then align two adjacent W in the y direction and then take a

sum with respect to the vertically connected link,

Mx
s1 s2,s

′
1
s′

2
(t1, t2) ≡

s1 s′
1

s2 s′
2

t1

t2

W

W

, (145)

which may be viewed as a minimal unit of column to column

transfer matrix. We then construct an effective reduced den-

sity matrix with Mx,

ρx ≡
∑

t1,t2

Mx†(t1, t2)Mx(t1, t2) =

��

��

��

��

✞ ☎

✝ ✆s1 s′
1

s2 s′
2

t1

t2

W

W

W

W

,

(146)

and calculate eigenvalues of ρx and the corresponding eigen-

vectors with the conventional matrix diagonalization (or

SVD),

ρx = PΣP† , (147)

where Σ is the eigenvalue matrix of dimension χ2 and P

is the χ2 × χ2-dimensional orthonormal matrix. Note that Σ

is positive semidefinite by construction. The low-rank ap-

proximation based on the larger χ eigenvalues in Σ yields

the transformation matrix P for Eq. (143), where its matrix

size is basically χ2 × χ. In the similar way, we construct

My(s1, s2) ≡ ∑x legs W′W′ with tracing out the leg indices in

the x direction, and then the low-rank approximation for the

reduced density matrix ρy ≡ ∑s1,s2
My†(s1, s2)My(s1, s2) also

gives the isometry Q of χ2 × χ for Eq. (144). Note that the

above sequential RG transformations in the y and x directions

may break the 90◦ rotational symmetry of the square lattice.

However, the numerical accuracy based on the low-rank ap-

proximation is sufficiently good except at the critical point.

The practical algorithm is summarized in Fig. 14.

After N times of HOTRG iterations, the number of vertex

weight included in the effective renormalized vertex is 2N ×
2N , implying that the situation of the renormalized vertex is

basically the same as the TRG case. Thus, the fixed point of

the HOTRG can be also described by the CDL tensor of Eq.

(13), as precisely discussed in Ref. [135]. For the CDL, the

reduced density matrix of Eq. (146) is decoupled into

ρx = αC2 ⊗C2 ⊗ (internal lines) , (148)

with α = (tr C4)(tr C2)2, where C denotes a CTM of the di-

mension
√
χ × √χ defined in Eq. (138). The decoupled inter-

nal lines consist of the leg-indices of the dimension χ× χ that

do not contribute to the eigenvalue problem of ρx. Thus, the

effective matrix rank of ρx is reduced to be χ×χ from χ2×χ2,

as in the case of TRG. The eigenvalues and the corresponding

eigenvectors of Eq. (148) are described by

Σ = αΩ2 ⊗Ω2 ⊕ (zero eigenvalues) , (149)

P = U ⊗ U ⊗ (internal lines) , (150)

where Ω and U respectively denote the singular values and

the corresponding singular vectors of the CTM defined by Eq.

(139), and α is the overall constant which can be absorbed

into the normalization. The decoupled internal lines originate
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(a) (b)

(c)

(d)

(e)

Fig. 14. Recursive algorithm of the HOTRG. (a) The square-lattice vertex

model in a certain length scale. (b) Every two horizontal links are renormal-

ized with Eq. (143), where the transformation matrix (isometry) P is gener-

ated by Eqs. (146) and (147). (c) The resulting vertex model with the renor-

malized horizontal links. (d) Every two vertical links are renormalized with

Eq. (144). (e) The coarse-grained square-lattice vertex model. By the scale

transformation, the vertex model in the panel (e) goes back to the vertex

model in the panel (a) with the renormalized vertex tensor.

from the zero eigenvalues of ρx, implying that the matrix-rank

reduction automatically occurs for Eq. (148), and thus the di-

mension of P becomes χ2 × χ. Of course, the CDL decou-

pling also occurs in W′ and ρy, implying that the correspond-

ing dimension of Q is χ2 × χ. In Ref. [135], it was actually

demonstrated that the fixed point spectrum of the HOTRG is

described by the doubling of the CTM spectrum.

As seen above, the fixed point of the HOTRG is described

by the CDL tensor, which is basically the same as that of

the TRG. The dominant computational cost of the HOTRG,

which is attributed to Eqs. (143), (144) and (145), is esti-

mated to be O(m4d−1) with d begin the spatial dimension. For

the 2D system, thus, the HOTRG is more expensive than the

TRG approach. In the HOTRG, however, sequential updat-

ing of the renormalized vertex with respect to the spatial di-

rections makes an application to higher dimensions straight-

forward.130) Thus, the HOTRG algorithm is often applied to

higher dimensional systems toward 4D lattice gauge mod-

els.131, 132) Then, a significant problem from a practical view-

point is how to reduce the computational cost of tensor con-

traction. Recently, anisotropic tensor renormalization group

(ATRG) provides an efficient algorithm whose computational

cost to realize the same accuracy as the HOTRG is scaled with

O(m2d+1).196)

7.3 TNR

The TRG-type algorithms can be considered as real-space

RGs consisting of contraction and truncation of local tensors.

Fig. 15. (Color online) Short range entanglements in the TRG algorithm

[Fig. 12]. Left panel: Short-range entanglements embedded in the vertex ten-

sor are schematically represented as blue and red dashed lines, which corre-

spond to the CDL tensor. Center panel: The short-range entanglements of the

blue dashed lines can be traced out by contraction of the isometry tensors gen-

erated by SVD of the vertex tensors [Eq. (136)]. Right panel: The short-range

entanglements of the red dashed lines always survive in the renormalized ver-

tex model in the larger scale, consistentwith the CDL fixed point of the TRG

algorithm. In order to maintain these short range entanglements, the critical

long-range entanglement is excluded in an early stage of the TRG iteration.

In particular, both of coarse graining and scale transformation

are eventually governed by the SVD for the vertex weight. As

shown in the previous subsections, however, the TRG-type al-

gorithms with a finite χ generally cause the CDL decoupling

in renormalized tensors, where the finite χ effect always intro-

duces an effective length scale into the tensors even at critical-

ity. In the context of the entanglement, this CDL decoupling

is attributed to the fact that the maximum EE that can be in-

volved in the TTN is basically bounded by logχ. Thus, the

TRG approaches are not able to handle the log correction to

the area law of EE at the criticality.

More precisely, the above difficulty in the TRG can be illus-

trated as Fig. 15. Short-range entanglements associated with

the CDL factorization are represented as blue and red dashed

lines on plaquettes in the vertex model. The TRG iteration

can trace out the short-range entanglements of the blue dashed

line by the contraction of Eq. (136). However, the red dashed

lines are never eliminated by such a renormalization process

and thus the corresponding short-range entanglements survive

in the larger length scale, resulting in the trivial CDL fixed

point of the TRG. In other words, the TRG has to always

spend its expression capacity of entanglements for maintain-

ing the short-range entanglements, so that the long-range crit-

ical entanglement has been missed in an early stage of the

TRG iteration.

In order to properly deal with the critical entangle-

ment, a scale-dependent controlling mechanism of correla-

tions/entanglements is needed. For this purpose, an important

concept is the disentangler, which is a unitary operator firstly

introduced in the MERA for 1D quantum systems16) and later

reformulated in the TNR for 2D classical systems.145) An es-

sential point of the disentangler is that it modifies the con-

nectivity of tensors from the tree type into a scale-dependent

loop network, which allows us to represent the EE up to the

log correction to the area law. In contrast to the TRG, the dis-

entangler in the TNR systematically filters out the short-range

entanglements that mask the long-range entanglement intrin-

sic to the bulk critical behavior. As a result, the long-range en-

tanglement can be properly maintained in the bulk fixed point.

The disentangler is implemented so as to trace out loops of

the red-dashed lines in Fig. 16 (a). As depicted as green square

box symbols in Fig. 16 (b), a pair of disentanglers u†u = 1

is inserted in every two plaquettes corresponding to the red-
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(a)

(c)

(d) (e)
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Fig. 16. (Color online) The TNR algorithm and reduction of short-range

entanglements. (a) Short-range entanglements in the 2D vertex model are il-

lustrated as red and blue dashed lines (See also Fig. 15). (b) Insertion of a pair

of disentaglers u†u = 1, which converts the red dashed lines into the green

dashed lines. (c) A pair of isometries vv† ≈ 1 are inserted at x symbols and

their equivalent positions on the lattice in the panel (b). Note that u and v are

obtained by minimizing δ defined by Fig. 18(b). Then, the blue dashed loops

are traced out by the isometries. Also the greed dashed lines are terminated at

the isometries. (d) The four-leg composite tensors of the blue square and of

the pink circle are respectively defined in Fig. 17(a) and (b). (e) The remain-

ing red-dashed loops can be traced out by the SVD and contraction depicted

in Fig. 17(c).

dashed loops. The disentangler is a unitary operator, which

transforms the red lines into green lines such that the entan-

glement carried by the red dashed line is disentangled. We

next insert pairs of isometries v and v† at pink “x” symbols

and their equivalent points around the disentanglers in Fig.

16 (b). Here, we note that the position of “x” is basically the

(a)

���

(c)

Fig. 17. (Color online) The renormalization of the composite tensors in-

cluded in Figs. 16(c), (d) and (e). (a) The cluster of four isometries is re-

garded as a four-leg tensor with the blue square symbol. The SVD in the

vertical direction yield two isometries of the blue triangles. (b) The compos-

ite tensor containing two disentanglers is regarded as a four-leg tensor with

the pink circle. The SVD in the horizontal direction yields the corresponding

isometries with the pink triangle. (c) The red dotted loops in Fig. 16(d) can

be traced out by a contraction of the isometries of (a) and (b), which provides

a new renormalized vertex in Fig. 16(e).

same as that in the TRG, if there is no disentangler.

In Fig. 16 (c), then, small plaquettes consisting of four

isometries illustrated as pink triangles trace out the blue

dashed loop, like in the case of the TRG. On the other hand,

the green dashed lines are terminated at the isometry, imply-

ing that the entanglements originating from the red dashed

lines can be eliminated by the combination of the disentangler

and isometry. As shown in Fig. 17(a), we regard the plaque-

tte, which contains the blue dashed loop, as a four-leg renor-

malized vertex with a blue square symbol. Also, we construct

the four-leg composite tensor with the pink circle as in Fig.

17(b) to obtain the vertex model on the 45◦-rotated lattice

as shown in Fig 16 (d), where the entanglements of the red

dashed loops are partially traced out. As in Fig. 17(a) and

(b), we further perform SVD of the vertices and then combine

the corresponding isometries to trace out the remaining loop

entanglements [Fig. 17(c)]. The renormalized vertex model

with the doubled lattice space is finally obtained in Fig 16 (e),

where the short-range entanglements in Fig. 16 (a) are totally

eliminated.

Let us illustrate roles of the disentangler and the isometry

in Fig. 18(a), which shows a magnification of the correspond-

ing part in Fig. 16 (c). A main issue is how to trace out the

red dashed line connecting two vertices labeled by A and B.

Since this red dashed line is independent of the other loops,

its entanglement can be controlled by a unitary acting on the

two legs coming out from A and B; The disentangler u in Fig.

18(a) converts the red dashed line of the entanglement into

the left and right green lines so as to be classically separable

from each other. However, the unitary never changes the size

of the (local) Hilbert space of physical degrees of freedom.

We further need to implement the isometry v to terminate the
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(a)

(b)

A B

Fig. 18. (Color online) (a) Roles of the disentangler and isometry in the

TNR. The disentangler converts the red dashed line representing the short

range entanglement into the green dashed lines such that their left and right

branches are separable from each other, and can be terminated at the isome-

tries. Accordingly, the uplinks of the dashed lines from the isometry have

capacity of encoding nontrivial long-range entanglement by
√
χ. (b) The def-

inition of the residual norm δ. The optimal disentangler and isometry in the

TNR can be constructed by minimizing δ.

green lines.

For a more precise discussion, we assume that the effec-

tive bond dimension for the red and blue dashed lines is
√
χ,

and thus the total bond dimension of the tensor leg is χ. The

closed loop of the blue dashed lines is traced out by the isom-

etry, as in the case of TRG, whereas the red dashed lines in the

outer side of A or B, which are supported by the bond dimen-

sion
√
χ, go to the upper layer passing through the isometry

v†. As in the TRG case, these red dashed lines will be elim-

inated in the next step of the TNR [Fig.16(d) and (e)]. On

the other hand, the bond dimension required for describing

the entanglement of the green lines is in principle reduced to

one by the disentangler, implying that the Hilbert space cor-

responding to the green dashed lines can be projected out by

appropriate isometries. As a result, a buffer of
√
χ of the ef-

fective bond dimension is generated in the up connecting link

from the isometry, in which one can encode intrinsic long-

range entanglements instead of the short-range entanglement

eliminated.

In a practical situation, balance of the short-range and long-

range entanglements encoded in the up connecting link de-

pends on the length scale of the tensors(or equivalently renor-

malization steps). In order to realize the optimal disentangler

and isometry, we consider the residual norm δ between ap-

proximated (truncated) tensors and the full tensors, which is

depicted in Fig. 18(b). An essential point is that the disentan-

gler and isometry are simultaneously optimized so as to min-

imize the cost function of δ. In practice, this optimization can

be formulated through SVD of quasi-local environment ten-

sors including both of the disentanglers and the isometries.

For the detailed algorithm of the optimization scheme, we

would like to refer readers to Refs. [145] and [197]. Here,

we particularly suggest a stable version of the TNR algorithm

in Ref. [197].

The above TNR algorithm actually reproduces the numer-

ically exact scaling dimensions for the 2D Ising model with

the bond dimension χ ∼ 24. Then, an interesting aspect of the

TNR is that the optimization based on the quasi-local environ-

boundary layer

(a) (b)

(c)(d)

Fig. 19. (Color online) (a) A half-infinite lattice system with the boundary

at the bottom layer. (b) The TNR iteration explicitly inserts a set of disentan-

glers and isometries in the bottom layer, where the four-leg tensor with the

green box denotes the disentangler u and the three leg tensor with the orange

symbol indicate the isometry V in the MERA network. (c) The next step of

the TNR iteration also generates a set of disentanglers and isometries in the

next layer. (d) The isometry V in the MERA network basically corresponds

to a composite of the isometries in Fig. 17(a).

ment tensors associated with δ in Fig. 18(b) does not refer to

the global TN structure corresponding to the total free energy.

In other words, the isometry and disentangler can be deter-

mined with the tensors of a particular length scale, allowing

us to eliminate the short-range entanglement without taking

variation of the global free energy. As will be discussed in

the next subsection, the TNR for the 2D vertex model is ba-

sically equivalent to the MERA for the 1D quantum system,

which was originally formulated as a variational method for

the global ground-state energy. By contrast, the quasi-locality

in the TNR algorithm is more important to discuss the con-

nection to the Wilsonian renormalization group from the field

theoretical viewpoint. To our best knowledge, the TNR is

the first numerical real-space RG approach that overcame the

difficulty in conventional real-space RGs since the Kadanoff

and Wilson, and succeeds in extracting the (numerically) ex-

act scaling dimensions. We therefore think that the TNR(and

MERA) can be a milestone of theoretical physics.

Recently, there are a couple of interesting and practical

entanglement filtering approaches similar to the TNR, e.g.

Loop TNR [138], entanglement branching operator [139]

and graph-independent-local-truncation (GILT) TNR [140],

etc. These approaches are also based on quasi-local envi-

ronment tensors to filter out short-range entanglements as-

sociated with the CDL tensor and successfully extract cor-

rect scaling dimensions for critical 2D classical systems with

the computational cost of O(χ6)(Loop TNR, GILT TNR) ∼
O(χ7)(HOTRG with branching operator). However, an effi-

cient controlling of short-range entanglements in higher di-

mensional systems has not been established yet. It may be

also necessary to clarify the nature of the 3D version of a

CDL tensor, which may be attributed to the failure of CTTRG

as discussed in Sec. 6.

7.4 MERA

The MERA is a variational method with respect to the

global ground-state energy of quantum many-body systems,
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based on the multilayered TN wavefunction.16) To be specific,

we discuss the MERA for the ground state of 1D critical quan-

tum systems in the following. The most important feature of

the MERA is that the disentangler is inserted into the TTN

of the conventional real-space RG and the resulting MERA

network turns out to be capable of representing up to the log-

arithmic correction to the area law of EE. Also, its connection

to the holographic EE99, 100) attracts much attention to physics

of the TN from the viewpoints of quantum information and

quantum gravity.141, 198)

Historically, the concept of disentangler was first intro-

duced in the MERA network by G. Vidal prior to the TNR.

Thus the TNR could not be invented without the establish-

ment of MERA, possibly. In this subsection, we rather dis-

cuss the MERA from the standpoint of the TNR.137) In par-

ticular, we illustrate the variational optimization algorithm of

the MERA as a finite-layer version of TNR for 1D quantum

systems, which provides a unified view for the TNR/MERA

in the context of the real-space RG.

As in Fig. 19(a), let us begin with a half-infinite vertex

model representing the world sheet of the ground-state wave-

function for a 1D quantum spin chain, where tensor legs at the

bottom boundary layer correspond to physical spin degrees of

freedom. Following the prescription in Fig. 16, we perform

the TNR iteration with inserting disentanglers u†u = 1 and

isometries vv† ∼ 1 into the lattice of Fig. 19(a). However, the

disentangler and the isometry that emerged at the boundary

layer cannot find the proper partners to form the bulk renor-

malized tensors. In Fig. 19(b), thus, such disentangler and the

isometry at the boundary layer explicitly connect the leg de-

grees of freedom in the adjacent length scales. Note that the

isometry V with the orange symbol in the MERA is a com-

posite tensor consisting of those in the TNR as illustrated in

Fig. 19(d). Applying the TNR iteration recursively to the bulk

region of tensors, we obtain the disentanglers and isometries

bridging to the next layer, as depicted in Fig. 19(c). With re-

peating the TNR iteration, thus, we can systematically gen-

erate the MERA network. In comparison with the TNR, an

important feature of the MERA network is that the connectiv-

ity of the tensors in the different length scales is manifest. As

the depth of layers increases, in particular, the number of ten-

sors decreases exponentially, consistently with the framework

of the real-space RG.

The TNR is basically a one-way algorithm toward the bulk

fixed point of the system, while the depth of layers in the prac-

tical variational MERA algorithm is usually terminated at a fi-

nite number. This implies that the MERA algorithm can be in-

terpreted as a finite layer version of the TNR. More precisely,

in the MERA algorithm, each tensor can be updated with re-

ferring to the global energy expectation value, through finite-

size sweeps in the up and down, and left and right directions

in the MERA network. This relation between the TNR and the

MERA is reminiscent of that of the infinite-size DMRG and

the finite-size DMRG. Of course, the MERA network struc-

ture is much more complicated than the MPS in the DMRG.

However, the explicit connectivity of tensors between adja-

cent scale layers in the MERA network visualizes the causal

structure of tensors in the network. From a practical view-

point, the unitarity of the disentangler u†u = 1 and the or-

thonormal condition of the isometry V†V = 1 ensure signif-

icant simplification of contraction of tensors in the MERA

Fig. 20. (Color online) Flow of the scale-dependent entanglements associ-

ated with the CDL tensor in the TNR. The red-dashed lines of local entangle-

ments are converted into the green-dashed lines representing classically sep-

arable states by the disentangler u, which can be terminated at the isometry

V of the orange symbol. The multi-layered structure of the MERA network

provides the scale-dependent entanglement-filtering mechanism.

wavefunction. Then one can update a set of tensors with

finite-size sweeps combined with SVD of environment ten-

sors, where the dominant computational cost is O(χ7), which

is of the same order as the TNR. The computational details

can be found in Ref. [136]. Here, it should be remarked that

the scale-invariant MERA that sets up a recursive relation of

tensors in the scale-invariant layers would contain a transi-

tional aspect between the variational MERA algorithm and

the TNR algorithm.199)

Figure 20 demonstrates how the scaled-dependent entan-

glements associated with the CDL tensor can be eliminated

in the MERA network. The relation between the TNR and the

MERA in Fig. 19 also provides an illustration of the entangle-

ment flow in the MERA network. The disentangler converts

the red dashed line coming from the lower layer into the two

green dashed branches disentangled from each other. Then

these green dashed lines can be terminated at the isometry of

the orange symbol consisting of three pieces of isometries in

the TNR, which was defined in Fig. 19(d). Although the pink

small triangle of v in the TNR can eliminate only a single

green broken line, the two triangles of v involved in V can fil-

ter out the two green broken lines coming up from both sides

of V . Thus, the isometry in the MERA network also filters out

the short-range entanglements, so that the longer-scale entan-

glements, which are illustrated as red and blue dashed lines

coming out from the top of the orange symbol of V , can be

encoded into the links to the upper layer.

The situation where the power of MERA can be strik-

ingly demonstrated is the ground state of 1D quantum crit-

ical systems. Actually, the MERA algorithm has succeeded

in extracting correct critical exponents for various models as-

sociated with 2D CFTs in the framework of the real-space

RG.144, 200) A more direct connection to 2D CFTs is also

studied in Refs. [145, 201]. Moreover, the multi-scaled-layer

structure in the MERA network provides an intuitive view for

the connectivity of tensors capable of representing the log-

correction to the area law of EE. This nature of the MERA

network revealed an interesting connection of TN physics to

quantum gravity; the entanglement between a finite-length re-

gion (system part) and its complement in the bottom layer is
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supported by the tensor legs along the minimal surface for the

system part,141) as in the case of the holographic EE in the

AdS space-time.99) This graphical correspondence between

the MERA and AdS/CFT is recently termed as AdS/MERA.

A continuous field theory version of the MERA142) was also

designed for a Gaussian model,143) which stimulates further

development of the entanglement renormalization in quantum

field theories.

As discussed so far, the MERA/TNR algorithm has estab-

lished a modern formulation of the quantum renormalization

group in the real space. However, it is still difficult to deduce

theoretical structure directly from very complex numeric of

tensor elements. In this sense, a simple model which allows us

to construct the analytic representation of a MERA wavefunc-

tion is highly desired. Recently, a real-space representation of

the MERA wavefunction is constructed with the wavelet ba-

sis for free fermion systems. A hint to the wavelet represen-

tation can be seen in the fast Fourier transformation (FFT) of

Danielson and Lanczos algorithm.202–204) To be specific, we

consider single-particle wavefunctions of a N site system, for

which we need to calculate N2 number of Fourier coefficients.

In the FFT, it is well established that the computational cost

is down to N log N with the use of the tree network struc-

ture based on recursive bipartitioning with respect to even or

odd sites. Moreover, a TN representation of the FFT is in-

terestingly realized as a quantum circuit by using a series of

unitaries.205)

A similar reduction of computational cost is also possible

for the wavelet basis, which results in the MERA-type net-

work of local unitary gates with log N layers.206) Moreover,

the many-body ground state of critical free fermion systems

can be properly reproduced by the modified wavelet basis tak-

ing the Fermi point effect into account,207) which also pro-

vides a quantum circuit interpretation of the scale-dependent

filtering of entanglements. Although the above approach is

specific to the free fermion case, it gives rise to an analytic

construction of the MERA, which will be of significant im-

portance in discussing the hierarchical structure of general

critical wavefunctions.

8. Other trends and prospects of tensor networks

In this review, we explained essential concepts included in

the formulation of various TNs, basically assuming bulk uni-

form many-body systems with short-range interactions such

as Ising model and S = 1/2 Heisenberg model. Recently,

however, the application range of TNs has been rapidly ex-

panding beyond such bulk uniform systems. In this section,

we would like to discuss some prospects of TN physics.

Nonuniform and complex systems and TNs: One of in-

teresting topics of the TN for nonuniform systems is ran-

dom quantum spin systems. In the analytic level, the per-

turbative strong-disorder RG (SDRG) was established as an

asymptotically exact real-space RG for the random singlet

fixed point.208, 209) Recently, the SDRG was reformulated as

tree-type TN algorithms,210–212) which actually improved the

quantitative reliability of the perturbative SDRG. To what ex-

tent the tree TN state is capable of representing possible fixed

points induced by randomness other than the random singlet

phase may be an interesting problem.

Another fascinating trend of the TN is quantum chemistry

problems, which also have complicated interactions among

electrons on atomic sites in the real-space representation. For

example, the finite-size algorithm of DMRG was examined

for small molecules by White and Martin in 1999.85) After

that, several DMRG based algorithms including tree TNs have

been applied to quantum chemistry problems such as organic

molecules.213–220) In addition, quantum chemistry is one of

the most promising targets of near-term quantum computers,

which also attract much attention from the viewpoint of quan-

tum circuit representation of TNs.

From the statistical mechanical viewpoint, neural networks

and machine learning problems are promising application tar-

gets of the TN. Actually, an MPS can be used for approxi-

mating the probability distribution for hand writing images of

numbers.221) Appearance frequency of words and their align-

ments in English texts is examined by means of MPS,222)

where exceptions in grammar can be naturally categorized.

Equivalence between a restricted Boltzmann machine and an

MPS is also discussed by Chen et al.223) Moreover, it is inter-

esting that an RG structure can be seen in the neural machine

learning assisted by TNs.224)

Quantum circuits and TNs: In accordance with the hardware

development of noisy intermediate scale quantum (NISQ)

computers,225) the connection between TNs and quantum cir-

cuit models attracts much attention from both of theoreti-

cal and practical viewpoints. Then, we can consider two di-

rections of researches. The first one is TN simulations of

quantum circuits on a classical computer. For example, well-

known algorithms such as Grover’s algorithm and Shor’s al-

gorithm are actually implemented in the MPS226, 227) or TTN

frameworks.228) Recently, the efficiency of TN simulations of

quantum circuits has come under the spotlight again,229, 230)

triggered by the recent development of NISQ devices. An-

other direction of the research is direct optimizations of TN

states with the use of quantum computers. For example, opti-

mization of TN states with the use of a quantum circuit was

proposed in Refs. [231,232]. Also, a combination of the vari-

ational quantum eigensolvers233, 234) and the TN formalism is

expected to become important in connection with quantum

chemistry problems.

Inspired by the development of quantum computers, non-

trivial entanglement physics associated with quantum circuit

models has been intensively studied from the viewpoint of

theoretical physics. For example, a measurement-induced en-

tanglement transition in random quantum circuit models has

attracted much attention.235–237) Of course, TN methods are

efficient numerical tools for simulating such quantum circuit

models. On the other hand, such a TN algorithm for thermal

equilibrium states as minimally entangled typical quantum

states238–242) may be viewed as a measurement-based sam-

pling algorithm for the MPS, which involves a certain similar-

ity to random quantum circuit models. Further development

of TNs for dynamical behaviors of quantum circuits associ-

ated with measurements is also an interesting problem.

Holography and TNs: Finally, we would like to mention

the close connection between the TN in Sec 7.3 and 7.4 and

the holographic descriptions of quantum many-body systems.

According to the connection between MERA/TNR and Ryu-

Takayanagi formula for the holographic EE, the TN has be-

come an essential tool for understanding the interdisciplinary

physics among quantum many-body systems, quantum grav-

ity, and quantum information. In addition to the continuous
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MERA approach,142, 143) recently, such a concept as quantum

circuit complexity in the path integral of quantum field theo-

ries has been developed.243–245) So far, the network structure

of a TN was designed by hands on the basis of qualitative con-

sideration about the physical situation of a target system at the

UV boundary layer. The path integral approach incorporating

the quantum information geometry seems very interesting in

the context of the TN, since it may provide a new quantitative

criterion for designing network structures of the TN state.

We can find another interesting direction of researches on

the TN and the holography; The MERA explained in this

review were basically introduced as a variational state for

a Hamiltonian (or transfer matrix) living on the UV bound-

ary layer. In contrast, holographic TN models are often con-

structed by covering a hyperbolic plane with tensors having

a particular property, away from the variational optimization.

In HaPPY code model,246) for example, tiling of perfect ten-

sors of the pentagon shape on a hyperbolic plane generates

a holographic quantum error collection code on the basis of

the bulk boundary correspondence. Also, physics of random

TNs attracts much attention in connection with the hologra-

phy,247, 248) where a nontrivial phase transition can be driven

by tensors arranged in the bulk regime rather than a Hamil-

tonian at the UV boundary. How these two competing direc-

tions of the TN, i.e. from the boundary to bulk or from the

bulk to boundary, can be consistent in the holographic de-

scription of the TN state may be an interesting problem. It

may be intriguing that the holographic geometry was numeri-

cally reproduced by a machine learning approach assisted by

the MERA network.249)

To summarize, the TN has been established as a practi-

cal and useful numerical method for investigating quantum

many-body systems and its application range has been cur-

rently expanding. In accordance with revealing rich physics

behind the TN , moreover, it has become an essential theoreti-

cal concept beyond the conventional classification of research

fields in physics. We hope that this review can play a role of

comps in navigating foundries of TN physics.
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36) F. D. M. Haldane: Phys. Rev. Lett. 50 (1983) 1153.

37) R. J. Baxter: Ann. Phys. (N.Y.) 70 (1972) 193 .

38) B. Davies, O. Foda, M. Jimbo, T. Miwa, and A. Nakayashiki: Com-

mun. Math. Phys. 151 (1993) 89.

39) L. Faddeev: Int. J. Mod. Phys. A 10 (1995) 1845.

40) V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin: Quantum inverse

scattering method and correlation functions (Cambridge University

Press, 1993), Vol. 3.

41) F. C. Alcaraz and M. J. Lazo: J. Phys. A: Math. Gen. 39 (2006) 11335.

42) H. Katsura and I. Maruyama: J. Phys. A: Math. Theor. 43 (2010)

175003.

43) V. Murg, V. E. Korepin, and F. Verstraete: Phys. Rev. B 86 (2012)

045125.

44) At that time, such a conventional real-space RG as block spin transfor-

mation was thought of as a less reliable method for low-dimensional

quantum many-body systems, since it often yielded even qualitatively

wrong results. In modern terminology, this is because the block-spin

transformation usually generates a tree-type TN, which may not be

appropriate to describe strong quantum fluctuations in one dimension.

We can guess that a lot of condensed matter theorists might have a

cautious attitude to DMRG. What happened on Whites’ DMRG paper

31



J. Phys. Soc. Jpn. FULL PAPERS

was stated in the preface of Ref.[1].
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and T. Nishino: Phys. Rev. E 101 (2020) 062111.

163) H. Ueda, K. Okunishi, S. Yunoki, and T. Nishino: Phys. Rev. E 102

(2020) 032130.

164) B. Pirvu, G. Vidal, F. Verstraete, and L. Tagliacozzo: Phys. Rev. B 86

(2012) 075117.

165) P. Schmoll, A. Haller, M. Rizzi, and R. Orús: Phys. Rev. B 99 (2019)
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Appendix: TN Packages

As discussed so far, the TN algorithms basically consist of

contraction and operation of various tensors. In developments

of their source cords from scratch, one often suffers from bug

fixing of complicated tensor operation. Recently, it becomes

standard to use TN packages. For readers’ convenience, we

list up some of TN packages widely used as quantum simula-

tors below, which also include lower-level functions of tensor

contraction and operation.

• “Itensor library” by M. Fishman, E. M. Stoudenmire, and

S. R. White.

http://itensor.org/

• ”Uni10: an opensource library for tensor network algo-

rithms” by Y.-J. Kao, Y.-D. Hsieh, and P. Chen,

https://uni10.gitlab.io/

• “Tensoroperations” by J. Haegeman.

https://github.com/Jutho/TensorOperations.jl

• “Tensor Network Python (TeNPy)” by J. Hauschild and

F. Pollmann,

https://tenpy.readthedocs.io/en/latest/

• “Tensortrace: an application to contract tensor networks”

by G. Evenbly.

https://www.tensortrace.com/

• “Tenes: Massively parallel tensor network solver” by T.

Okubo, S. Morita, Y. Motoyama, K. Yoshimi, T. Kato,

and N.Kawashima,

https://www.pasums.issp.u-tokyo.ac.jp/tenes/
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