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Introduction

Comparatively recently (1965} we published a rather detailed review [1] on
the theory of synchrotron radiation! It seemed that this review concerned
rather well established concepts and formulas  Certain methods and problems in
the area of further development of the theory of synchrotron radiation were, of
course, quite clear even then However, one could consider that these problems
were of no significance in principle Therefore, we did not believe that we
would soon be returning to the same theme  However, this occurred for a number
of reasons First of all, 1t was discovered that there were errors in the
theory of synchrotron radiation in the case of noncircular (spairal) movement of
particles True, as applicable to the problems and conditions discussed in [1]
(synchrotron galactic radiation and the radiation of discrete sources, the
expansion and movement of which occurs at nonrelativistic speeds) all of the
formulas used were actually correct However, the principal aspect of the
matter 1s also rather important  Also, conditions might be realized under
which more general formulas would have to be used Secondly, the theory of
reabsorption of synchrotron radiation underwent important development both with
and without a "cold" plasma in the radiating area  Third, 1t was discovered
that 1t was possible to encounter radiation sources in space moving at relativ-
i1stic speeds shells, jets and "clouds" of plasma ejected during explosions,

an example might be explosions in galactic nuclei leading to the formation of

I Review [1T] will be cited in the following as 1, and formulas from this
review will be represented, for example, as {1, 2.10}. We note that the term
synchrotron radiation arose by chance and seems to us an unfortunate selection
Therefore, we have used broadly, particularly in 1, the more significant term
Ymagnetobremsstrahlung "' However, i1t seems hardly possible at this late date
to change the accepted terminology, so that we have decided to go along with
the usage of the term ''synchrotron radiation' for magnetobremsstrahlung of
ultrarefativistic particles

—
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radiogalaxies) Thus, the necessity has arisen of analyzing synchrotron
radiation and its reabsorption for a rapidly moving cloud of relativistic
particles Of course, this problem 1s closely related to that noted above
_ All of these problems, as well as certain related problems, will be
discussed in thas article, since their significance for astrophysics may be

quite great (we will make broad usage in the following of materials contained

i [2])

f

2. Synchrotron Radiation in the Case of Noncircular (Spiral) Particle Movement
21 Elementary Analysis
An ultrarelativistic electron! moving in a vacuum (this 1s the only case
which will be of basic interest to us) radiates practically only in the

direction of its imstantaneous velocity or, more precisely, into a cone with an

apex angle - - 2 -
%

WS E s> e
E (2.1)

In this section, in our qualitative analysais of the problem, we will consider
the radiation to be acicular whenever possible, 1 e , we will consider angle ¥
to be small. As 1t moves through a constant, homogeneous magnetic field with'
intensity %, an electron generally moves along a spiral line with a velocity

%I = v cos 6 i1n the direction of the field and velocity V| =V sin 8 transverse
to the field (of course, the total velocity v = /;ﬁ_:_ﬁfi. The rotational

frequency Wy depends only on v and 1s equal to

Y For definition, we will speak of electrons However, of course, all of
the literal expressions relate to particles with charge e and rest mass m
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If the movement 15 circular (1 e , v = 0, v, = v), on the basis of the above,

the ultrarelativistic electron radiates only in the plane of 1ts orbit. An
observer in this plane (recording device) will '"see" bursts of radiation at
those moments when the electron 1s moving exactly in the direction of the
observer (of course, we must consider the delay, equal to the propagation time
of the radiation and equal in a vacuum to r/c, where r is the distance from the
electron to the observer) Obviously, the bursts will be repeated each period

(2nme/eH) (E/mc2)  As

or, in other words, follow at time intervals t = Zﬂ/wN
was shown 1n detail in 1, the characteristic duration of each burst under
ébndltlon (2 2) 1s on the order of At ~ gﬁ(ﬂéfgz and the observer will record a
field as shown schematically on Fagure 1l. Clearly, expansion of this field
into a Fourier series will lead to a spectrum consisting of the overtones of
frequency Wy All corresponding expressions for field intensity and the other
quantities presented 1n 1 and a number of articles are true, and there 1s no
reason to discuss them The improper formulas, as was noted above, are those
for noncircular movement, when the longitudinal velocity component

vy =V cos 8% 0, 1 e, angle 8§ # 7/2 The source of the error is bartlcularly
clear from the initial expression, for example in [3] and in 1, for the field

antensity of the radiation, which was written in the form

" This figure corresponds with Figure & from 1 if movement occurs in a
circle and H = Hsin 6 =H However, as we will see in the following, where

6 #* w/2, Figure h from 1 1s incorrect, since the puises follow with time separ-
ation t¢, not v = Zn/mH.



s o7 :g;:,'_‘wgt)
(2.3)
hwl ”

The problem 1s that where Vi # 0, the radiation pulses do not follow each other
at time intervals T = 27/w,, but rather at intervals t*, which differ from t as

a result of the Doppler effect
\
Figure 1 Figure 2!

Time t* can be easily found, using Figure 2 For the observer selected,
the radiation bursts arrive when the electron 1s located at points A, B, C, .
(for simplicity here and below we will consider that the radiation 1s strictly
acicular) In other words, at these points the electron '"looks' at the
observer The time intervals between moments when the electron passes through
points A and B, naturally, 1s equal to the period 1 = Zn/wﬂ The distance
between points A and B 1s vy T = VT cos 8 (8 1s the angle between ; and Ej, but
an impulse emitted at point A will travel path ¢t an this period of time. We
can see from Fagure 2 that an aimpulse emitted at point B will arrive at the

position of the observer with a delay with respect to the first impulse of tame

T - TAE ) - Leos 6) 2T hn 6 -

e 2 (2 4)
s e 92_7_7._. '&J’h} 9 -
o “n .

in which upon transition to the next te last expression, it is considered that

*Locations for figures are marked in the original text, but the figures
themselves are not presented -- Tr.



i
the entire calculation 1s performed for the limit case v - ¢  We note that the
usage of a picture in which radiation approaches the observer in the form of
individual pulses 1s suitable only for 6 » y ~ mc2/E  Actually, however,

V" cos €

‘expression t* = Tl - ) 1s general in nature and 1s unrelated to the

c
assumption of "acicularity'" of the radiation or to the possibility of dividing
the radiation into discrete pulses (in this case v cos 8 1s replaced by
%[ cos 8', see section 2 2)

Thus, the field of an ultrarelativistic electron in the wave zone consists
of the overtones of the frequency

* T K
“u =T Hnto (2.5)

In itself, this fact is not very essential, i1f we consider that in the cases

which interest us the overones are not resolved and we must concern ourselves With
a continuous spectrum The estimate of pulse widths at ~ gﬁ—{mgzaz presented

in 1, and therefore the characteristic frequencf w, 1/At are quite correct

(here and in the following H = H sin ) However, a change in the interval
between pulses influences not only the spectrum, but also all characteristics

of the radlgtlon field, 1n particular 1%5 intensity recorded at the cbservation
point Actually, suppose the electron in each revolution {(over time

T = Zw/wH) loses energy AE = Pt to radiation Then, on the basis of the above,

it 1s obvious that this energy will arrave at the "observers' located on a

certain fixed sphere at distance 1t from the electron in time t* and, conse-

quently, the mean observed radiation poﬁer (total energy flux) will be equal to



—

T ¥ o * =%'n,2'£9 (2 6)

p* 4t Pv P

At first glance 1t might seem that this 15 a contradiction with the law of
conservation of energy. The electron loses energy P per unit time (the value
of P 1s determined by the well known formula, see formula (1, 2 10) oxr formula
(2 29) below) All of this energy goes over to radiation and, 1t would seem,

should equal the total radiation flux through the sphere in question  This

e

approach 1s frequently used -- the radiation losses of the pa;tlcle are
calculated and set equal to the total radiation flux In the stationary case
and for a radiator whose center of gravity i1s nonmoving, of course, this
approach can be used In general, however, as 1s well known, the work per-

formed by a radiator per unit tame (power of losses P) 1s equal to the total
flux through a certain surface plus the change in field energy gE{(EE~%;§EJdV
in the volume enclosed by this space  In the case of interest to us, the area
of the space occupied by the radiation located between the moving electron and
the surface, which 1s fixed in space, and over which the observation 1s per-
formed, decreases continually The energy enclosed in this space also
decreases, so that the power of the radiation received P* is greater than the
power of the losses P (In01deqta11y, 1n number of work upon transition to
spectral quantities the power of losses P has been used ) This approach, of
course, cannot lead to correct expressions for radiation intensity recorded on
a certain nonmoving surface 1f movement of theiradlator 1s taken into consider-
ation However, if the radiatin particles are located in a fixed volume (for
example, thé envelope of a supernova star) or, more precisely, if the distribu-

~

tion function of the radiating particles does not change with time, the
\“-
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intensity of the radiation of the set of particles corresponds to the spectral
power of the losses  This conclusion is clear from the law of conservation of
energy and, of course, i1s confirmed by direct calculation (see section 2 3).
This 1s the essence of the matter We assume that the fact that all of
this essentially quite elementary problem has remained so long unclear and has
led to the usage (1in particular, by us ourselves) of formulas not always of not
completely correct, justifies this detailed explanation The corresponding
general notes, naturally, relate to radiation of any nature,inot only synchro-
tron radiation (as an example, [2] presents a discussion of the case of Cerenkov

radiation arising when a particle passes through a flat plate of material).

2.2. Synchrotron Radiation of an individual Particle Moving at Arbitrary

Angle 8 to a Magnetic Field
Figure 3

Let us select a system of coordinates in correspondence with Figure 3 such
-> > >
that the axis &g 1S directed along the external magnetic field H = Hes. The
-
particle with charge e moves in field H along the trajectory

o -_"-ﬁ;[-_) Y LS, (2,5
"Z‘,[f)—'c'::— Ef,wwgﬂg%nw#z}stga}ﬂft
i (2.7)

Blo)=p, (@ meut Lo ) 2, .

+
Here B 1s the speed of the particle in units of the speed of light ¢, Bu and B,

are the values of its projections in the direction of the field and in the

direction transverse to the field, Wy 1S defined by expression (2 2). For a

~ negatavely charged particle QH‘< 0. Faigure 3 shows that the trajectory of a

-7 -



negatively charged particle (for example an electron)

At large distances from the particle, in the wave zone, the Fourier

components of the vector potential and the electric field intensities of the

particle are, respectively (see [4], paragraph 66)

A e + oD . Y -
T eo'ck* e / -'f"fzt)ec[éﬂ--c"h’m:; GF
(od !ﬂt_wf >
——-).w — e TP D s =2 D eep =D (2 8)
£l L[ RLH ET]- &P 1)
>
where K 1s a umit vector in the direction of the radiation (in the direction

-2 -+
from the particle to the observer), r = rk, r 15 the distance between the

observer and the position of the electron at a certain fixed moment in time, we

> > >
consider that vector k lies in the plane (32’93) and makes anglie 8' with the

L2 ,— '
direction of the magnetic field, 1 e , E”.—_—f@) /(’z ,1{3}: {0,9'3”'6) é% Q.} v
- - . N - - -

-

We recall that the angle between v and H 1s represented

by 8 (see Figure 3}

-
As follows from (2 8) the expression fox € includes only the velocity

component transverse to the direction of radiation

F‘E’E"EG?E): e fp, ey b 4(E, -8 Ka) x

(2.9)
"O&”z"’“ ot - o Kz ).
> e -!:
It 15 convenient to introduce the three unit vectors Zl’ 12, k such that
- — - P —
-fz-: &Ky, =6 s, {'ﬂ-/"[gz kJ:"'e: (2.10)



> Y
Vector 12 15 directed along the projection of H on a plane perpendicular to the

direction of observation (plane of the figure), 1 e , along the vector
-> 3 ¥+
ey - k(es-k).

»

From expressaons (2 8), (2 9) and (2 10) we derive

) w7
¢ e

— L e *P7, 5/5(,-&(‘:_—':’- o(zf-))
ot graw [ Pille ol

¥

-
~

(2.11)

1

where

—— A,

—_D — -_—
ﬁt(&)mﬁ,ﬁa Hn “’Hé-é()@_,_%wgw z-B, k, )= 212)

For the calculation of integral (2 11), we note that the exponent of the

integrand 1s (see (2 7})

Lo~ -‘é’— /ffc_:/f):/fy,,ﬁg)a,z‘ ~2FH

(2.13)
(2% '
=g St 2
Further, we use the representation ’
- € =Y T.l(He > (2.14)
C T .

ned

where In(z) 15 a Bessell function of the first kind.

Integrqzigﬁ with respect to t leads to the appearance of é-functions.



—2 ci""t
re e S [0 gl -

o K=-soD

- ['é;(j&.LK‘S =p, Lc,_)ybfz)}é’ [/J—j?,, % Jew-n wﬂ} i(2 15)

Consequently, the radiation has a discrete spectrum with frequencies

! &
L= wn = — :;HQ (9/ ' (z 16)
| ol T Kz /E’ V& ced
In the ultraviolet case 8 =+ 1 and the radiation, practically, is directed along
oy
the instantaneous particle velocity, 1 e , angle 6 = §' and | W= 04O =
1’1—&.);{ - — j_“ .
-4 2,00 = Hed, which 1s in agreement with (2 5) The

— -

Fourier integral of “the electric field of the radiation of the particle 1s thus

: fo

reduced to the series —_> o -ta;?‘ > &4hzf5 Z;}

5] 2 S B Z Ee

:;, =) 5~ 7T o
Re P [é’) /,{) 40;04’; ;6'5».:}‘9& /3;1)})

wTet (1-pes @ eag9)*

\ f%‘“@’ﬁ:”@r-“‘ T 2.47)
o
v b —
i _A-peeds ed @'

-

This expression (2 17) completely defines the radiation field created at a
certain sufficiently remote point in space by a particle moving at an
arbitrary angle to the magnetic field In the following 1t will be convenient

to use the "radiation tensor," which by definition 1s equal tol

H

= .

* As far as we know, the name of the tensor B o has not been estabiished,

and we certainly shall not insist on the term "radiation tensor" which we have
"used, T

- 10 -



H

e
pa(/jg [h)= _é}; 6‘1& 6?»5/3 (2.18)

where a,B = 1,2 and ey o 2T the components of the electrical vector (12 17)
L

Here, the mean energy flux density over the period (pointing vector) in the

n-th harmonic 1s equal to !

~ . ~ ”(--J_"\.a :_c___ = = ,
., /Dna-SP&JB(‘L“):B:'t/O-zz gfﬂ/ép}“/ (2.19)

For ultrarelativistic particles

Feme?/E « 4

(2 20)

and the ma:m role 1s played by rada.atlon in the higher harmonics

Wy 927‘ V
-~ w-&{ ~ c /f&, we -»_’f {(see 1 and (2.23)), concentrated

within the small angle

2
YVep-p /é . e
‘ )Y A (2.21)

- N M

The frequencies radiated {see (2.5) or (2.16}) with B;- 1and 6 = 6' are equal

to

In order to go—over to the ultrarelativistic lmmat 1n (2.17), we can use the

approximate expression for Bessell functions with high values of index and

- 11 -



argument This leads to the following expression for the amplitude of the n-th

harmonic of the electric radiation field of an ultrarelativistic electronl

—3, .ZewH [g@- ’W)/Z (5)445 V/}’

£l aen Brer '51#567 (2.22)
3ﬁf Jrr 43t25ﬁv;{}
where )
Ve 3/2 n &
%( 5; 2,»’[ 5° =) V},,Z-Dze ’
34w 2 23)

V. = ,gguﬁffﬁah 69 .362!L{Z (f £
¢ 4,7?-§3 T ygme

In the area of higher harmonics, the radiation spectrum is practically

contanuous and in place of the polarization tensor for radiation at the n-th

harmonic (2.18), 1t 1s more expedient to use the "spectral density of the

yadiation tensor "

| ’f;'-;’é;w) ,gﬁrm) ol “?Z:"" © 5 RIS

* Here and 1n the following we will consider that w, > 0 and, consequently,
1n expression (2.17) for the field of the electron frequency w_ > 0 Here, the
n

change of the sign of the charge e corresponds to transition to complex-

conjugate amplitude gkn in (2,17)  Therefore, for a posittvely charged

particle (forqexamp]e a positron), the amplitude is complex-conjugate with
respect to (2 22), corresponding to opposite direction of rotation of the

electrical vector -

——

w12 -



From this and from expressions (2 18}, (2 22) we can find the spectral density

of the radiation fluxes with two main directions of polarization

2 :
//[v)47;2z2. jﬂ;ﬁ Q(V)/f }-z) 2/3[5./)

(2 25)

2 /38 LIy V 'z'w-z
R} {) 4’/7222'(‘1 z,qu P ( )""é{’/-ﬁ
Z, 2 (2.26) .
- 3 LI,

§E7 7

3e" H L
Pm.( V)= P;, (V)" 49:4,[,5:§z%k?§ [%)9;) /{’L

g”;" )L, (3.)8,(3.)

(2.27)

where g, = &, {see (2 23))

We note here that formulas (2 22), (2 23) and (2 25)-(2 27) are easily

generalized to cover the case when the radiating particle is located in a

""cold" plasma, the index of refraction of which can with good approximation be

considered equal to fi = 1 - %éZE where w

of electrons 1in the plasma

> w(g) = el/mc. Under these conditions in formulas (2,20)-(2 23) and

o = V4wNee2/m, Ne 1s the concentration

This approximation is correct 1f > wy and

(2.25)~(2.27) we should replace the quantity £ where it appears explicitly by

R R

As 1s clear from the preceding, 1t 1s assumed in this case that n < 1

- 13 -


http:2.25)-(2.27

P Lo,

considered that [’f"?bzﬁ .a) -T['/"/‘/“ w%"‘) 37#:)] zﬁ”%)i “%4-___. h 2
Expressions (2 25)-(2 27) and, correspondingly, the Stokes parameters for
radiation of an individual electron d:ffer from those used 1n 1 (see (1, 2 17)
and (I, 2 18}) in the appearance of the factor sin? 0 in the denominator (this
conclusion was reached by us [2] and a number of other authors, for example,
see [5; 6a] , 1t 1s in this respect that the expressions for the intensity and
Stokes parameters presented in 1 and a number of other articles are incorrect,
1f we are considering the radiation of an aindividual particle or combination of
particles moving in space

However, 1f, as occurs in most cases, we are interested in the radiation
of particles from a volume fixed in space, we must use the expressions presented
in 1. Let us now go over to analysis of this problem

2.3‘, Radiation of System of Particles

If we use (2 25)-(2 26) to calculate the total energy flux of radiation
through a fixed surface, 1 e , calculate the integral of the flux density with
respect to all particles and directions, we will find that it is 1/s1n? 6 times

greater than the known expression for energy losses of an ultrarelativistic

particle

O/E 2e W / f)“‘
Pt “afe® Tme®

(2.29) "

As was indicated in section 2,1, this difference 1s caused by the nonstationary
nature of the radiation field. Namely, the total energy flux through the fixed
surface

W



2 a
ZE: *IL/P 5?/I7-
b4

P =g pas=P-57/
s .

15 determined not only by work P performed by the particle, but also by the
change in field energy within volume V, limited by surface S The change in
field energy obviously 1s related to the forward movement of the particle and
becomes essentaal when the velocity of the forward movement of the particle is
comparable to the speed of light

Actually, this result 1s caused by the delay resulting from the finite
speed of propagation of the elect;omagnetlc field Actually, let us analyze
the radiation of an individual electron aintersecting an element of volume
r2drdQ at distance r from the observer (Figure 4) The electron 1s located in
the volume element in question during taime dt' = dr/vr, where V.. 1s the
projection in the direction of the observer of the mean velocity of the
forward movement of the particle i Obviously, V. =V cos o' = v cos 8"
cos 6', If r(t) is the variable distance to the particle, moment of observ-
ation t 1s related to the moment of radiation t' by the relationship
t =t + r(t')/c (having in mind radiation an a vacuum). Therefore the
radiation emitted by an electron in time dt', corresponding to movement over

distance dr will be received by the observer over time

NI S

It follows from this that the energy radiated over time dt' and passing through

- 15 -



a unit surface at the observation point in time dt 15 equal to (ﬁv = @ci) +

i

+ 52, (see (2 25) and (2 26))

-

a/ll = - ___‘_Z__. ./: / .
A £ &1 = )y/z’ = Ly at’, (2.31)
where p represents the quantity

pu""Puf’f" %}:ﬁ;/{~%m§m9) 2 32)

ot

As follows fxom (2 31), this quantity P, has the sense of the flux demsaty of
the energy radiated by the electron per unit time It 1s not difficult to see
that the 1nteéral of p, with respect to all frequencies and directions leads to
the proper expression for the energy losses (1 e , in the ultrarelativistic
case to expression (2 29})

Thus, relationship (2 32) establishes the connection between the observed
flux B, of radiation and the "power" radiated by the electron P, Obviously,
a similar relatzonship can be written for all components of the radiation
polarization tensor (see (2.18) and (2 24)):

1

t

P&.ﬁ(w)) - ,,’ZL;[V)({- Ueos©cos ).

- -

T

In the ultrarelativistic case (v € e, 6 = 6') 1t follows that

- 16 -
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S ,
.\&ﬁ[l_)):/féﬁf‘))"”‘“& (2 34)

" e

Figure 4

Let us now show that i1f we are concerned with the radiation of partrcles

from a fixed volume, quantity PaBCU) should be used. Actually, this 1s

clear from {2 31), since this relationship {2 31) shows that the energy

recerved by an observer from trajectory sector dr 1s determined by the value

of Pug and time dt' = dr/vr, during which the electron passes through this

sector Let us now analyze this problem in somewhat more detail, in order

to produce an expression for the intensity and other Stokes parameters

Suppose we are interested in the intensaty of radiation of a set of

5 >

particles, the distribution function of which 1s N(E,t,r,t) By definition,

A

- >
quantity N(E,T,r,t)dEdanv 1s equal to the number of particles with energies in

the interval E,E + dE and velocity directions within the solid angle dQT

contained at moment t in the volume element dV = r2drdQ

> >

The volume element being analyzed (see Figure 4) Teceives er(E,T,r,t -

- éﬁdEer x r2dQ particles per unit time, here t 1s the moment of observation,

tt =t - %-15 the moment of radiation from the fixed point in space  Each

particle radiates from the volume element 1n question an energy of (see

dr
(2 31)) pdt’ = p =
ky

received are

As a result, the total flux and intensity of radiation

- 17 -



F, =/Pu /V/g@’ ¢ -E-)t DR a/E;?"fé@l ,

._? v\ 2 (2.35)
n_—m - Ip /I//,g:g b~ S Fel 2,
Analogous expressions obviously occur for all components of the tensor
2 ~
j [v)ﬂf/E AT Aol FolSl,
465 {2.36)

4/ I+Q UV
'5 U, V T & Dé.P =74

vhere I1,Q,U,V are the Stokes parameters of the radiation received
For a stable distribution function, under conditions such that
-+ > > >
N(E,T,r,t) 2 N(E,T,r), expressions {2 35} and (2 36) correspond to those
presented 1n 1
If we are analyzing an area (cloud) of moving particles, the observed

intensity Iv {or flux Fv) 15 essentially determined by the dependence of the

distribution function on time _In particular, for an individual electron

&

JU[E"E:‘Z t- 'C',_,C"‘) 6\95& ? ?){,’ (t- %)) and as a result of integration

with respect to r in (2 35) we produce

N Y 4

~ )~
=B =B RS @

F: P !
~(7/c)

v
7=
as should be 1n correspondence with (2,25) and (2 26) Let us now assume that

We are concerned with the stationary "cloud" of particles moving as a unit

- 18 -



+
whole with velocity V and projection of velocity in the dlrectlon toward the

4

obsexrver V Thas means that in (2 35) the function l_/\f/&' = ,12 e

) The intensity of radiation from such a cloud 1s egual
=N, [ET ~VL/ ) Y q

to

1,-171- ) 7 fPa/\f/E i Y dEA,. | e

£ (0)

v
s
No[E,T,r) the same as for a moving cloud at fixed moment t

Here 1s the radiation intensity of the nonmoving cloud wath distribution

Reabsorption of Synchrotron Radiation by Ultrerelativistic Particles?
- 31 General Notes

If there 1s a sufficiently large number of particles over the ray of
vision, absorption and forced (anduced) radiation by the radiating particles
themselves begin to have an influence This process 1s usually called reab-
sorption  Reabsorption can 1n<£r1nc1p1e change the intensity and polarization
of radiation quite essentially Furthermore, under certain conditions negative
reabsorption 1s possible, 1 e , amplification of radiation Of course, the

nature of reabsorption is closely related to the nature of the radiator in

question Here we will be interested in reabsorption of synchrotron radiation,

= At this point for simplicity we are Using the velocity ave aged over the
period of movement | e » velocity Vi In this conhection, N{(E, r rt) should be

taken to mean the mean expression over the period, so that the dependence of N
>

on T |s reduced to the dependence on angle 8 alone

2 The authors are indebted to V.V Zheleznyakov and V N Sazonov for
their help in~writing this section of the article and their permission to use
their unpublished results
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1 e , the radiators will be considered to be charged relativistic particles
movaing 1n a magnetic field This radiation and 1ts reabsorption may change
essentrally 1f the radiating area contains a "cold" plasma in addition to the
relativistic elecirons (see 1, section 4 3 and (2 28) above) For example, 1n
the case of radiation in a vacuum, reabsorption in any system of relativistic
electrons with asotropic velocity directions is posaitive (1 e , under these
conditions absorption occurs, see [7, 8] and below) When a "cold'" plasma 1s
present, reabsorption of synchrotron radiation may become negative [8, 9]
This means that the corresponding system (for example layer or cloud) of
relativistic electrons with isotropic distribution of the velocities will act
like a maser

In investigating reabsorption earlier (see 1 and the bibliographic refer-
ences thereto) expressions for intensity of radiation of an individual particle.
were used which were averaged with respect to all directions  The conditions
of acceptability and even the very nature of such an approach 1s not known in
advance, and 1t 1s not suatable for determination of changes in polarization.
Suffice 1t to say that the radiation has finite angular distribution, and its
polarization properties depend essentially on angle ¥ = 0 - 6' between the
direction of the velocity and the direction of the radiation (see (2 25}-
‘(2 27) Therefore, in an investigation of reabsorption (and particularly
negative reabsorption) considering the polarization of the radiation, a
stricter analysis of the angular and polarization properties of synchrotron
radiation 1s necessary It should be addeﬁ“that a "cold" plasma 1in a magnetic
field is anisotropic (magnetoactive) and in many cases, even in a weak field,
can be considered 1sotropic with index of refraction fi = 1 - w§/20w? with
sufficient accuracy The polarization characteristics are particularly
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sensitive in this respect, since the rotation of the polarization plane
£

(Faraday effect) 1s integral,; increasaing with length of the path traveled by
the wave (for example, see formula (1, 4.6))
The overall problem requiring investigation in individual particular cases
1s as follows Within a certain area ('source'), the distribution functions of
> >

.+
relativistic electrons N{p,r), concentration of '"cold" plasma Ne(xr) and

*

magnet:ic field intensaty H(r) are fixed We must determine the radiation field
both within this area {(at the source) and in particular at some distance from
1t Usuvally we speak in this case of the radiation of the source itself, but
the necessity ma} arise of determining the influence of this Vsource" on
radiation passing through it from another source located farther from the
reception point (for this reason, the term source 1s conditronal in nature).

In the preceding we considered the source stationary and therefore time t
has no part to play We cannot use this limitation for moving or expanding
sources (see section 4 1) In practice, other lamitations are possible in
addition to the assumption of stability  For example, under space conditions,
due to the existence of a number of anstabilities, the anmisotropy of electron
distribution by velocrties rather rapidly disappears or, in any case, 1§ .
sharply reduced (for example, see [10]). 1In this connection in most cases it
can be considered that the distribution function for relativistic electrons
depends only on their energy, 1 e., We can use concentration NI%,?)

-

Furthermore, the dependence of N, Ne and H on the coordinates 1s always
extremely slow in comparison to the radiation wavelength under space condi-
tions, Thepgfore, generally speaking, the approxlmatlog of geometric optics
can be used and frequently we can simply consider all quantities constant over

. the ray‘of vision in an area of length L  Another possibility is te conmsider
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-3
that over length L concentrations N and Ne are constant, but field H 1s chaotic

with intensity H
In order to describe the radiation in the general case we must use Stokes

parameters I, ¢, U and V, related to tensor Ia by the following relationships

g
(¢ = 1,2)

7 -4 I+Q UV Tl +L, V=((1,-1,)
wp 2l y-V T/’ (3.1)
é?=3zL "-Z;z) Lf‘*Z;, +'2;z

~a
- -

The indexes 1 and 2 here correspond to the x and y axes perpendicular to the
ray of vision

Expression (3 1} was used above (2 36), but the concrete expression of IaB
through N in {2 36) relates to the case of radration in a vacuum without
consideration of reabosorption The relationship between the Stokes parameters
and the intensity of radiation I, degree of polarization II, ratio of axes of
polarization ellipse p and angle X, determining the orientation of ithis ellipse

1s such that (for more detail see, for example, [11] and [18], paragraph 6, as

well as 1)

2p024 Y% |
= VQE / ;ﬁfﬁ? é%fs'zz b/- 7
§%u 4 V+  (3.2)

}5:%@‘% P s '% ["?’){J=lf/‘g .

The Stokes parameters used (and any quantities expreésed through them)} relate
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to radiation an a certain frequency interval 3v <€ v and correspond to averaging

of the squared field expressions over time At ® 1/Av, In an anisotropic medium
-
or in particular in a magnetoactive medium, electric field E generally

-

-
speaking, 1s not perpendicular to k, whereas the induction vector D. is always
-
orthogonal to the wave vector k In this connection 1t 1s more convenient 1in

an anisotropirc medium to define the tensor I f12] as I =D D* a=1,2
oB af ¢ B -

The Stokes parameter in quantity (3 2) will now also relate to the vector D,
_).
not to E It should be kept in mind that intensity I = SPIaﬁ S DllDi‘l +

+D22D’2‘=2 in the general case 1s not proportional to the energy flux. When
radiation 1s recexved far from 1ts source {in a vacuum or, more precisely,

outside an anisotropic medium) this factor 1s generally unimportant,

3 2 Transfer Equation for Tensor |

af

In order to determine the tensor Ia we must use the transfer equation

g
which has been 1nvestigated and discussed in recent years in a number of works

[12-16, 2] (a particularly detailed discussion 1s in [12]) In a homogeneous

medium for the stationary case (Ia independent of t), the transfer equation

B
has the form

O/’Z"'L T 3.3
—;/;ﬁzg“f+/£o§gﬁ’:/<4}ﬁ)la’5\ .

i

Here

I

e S

"‘:ﬁ:—‘/&: z/?d’ﬁ ,/[f/f'; ;L’T:‘f dEa/Qé." (3.4)
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1s the radiative capacity of a unit volume, 1 e , the power of spontaneous
radiation from a unit volume per unit solid angle and unit frequency interval.
For synchrotron radiation, which we will discuss for concreteness, expressions
Pug are determined by formulas (2 25)-(2 27) and (2 34), here, as concerns
quantity €49 1t may be necessary to supplement expression {2.27)—with teyms of
higher order with respect to & = mc2/E (see [15]). In the presence of a plasma,
we can also replace E by n in these formulas (see (2 28))

Furthermore, tensors R and k' in (3.3) characterize the change 1in

aByd aByd

due to Faraday rotation and absorption of radiation respectively  The

IaB
tensors RaBYG and KaBYG are expressed through parameters characterizing the

"mormal' waves capable of propagation in the medium in question

-

In an anisotropic medium i1n which spatial dispersion 1s ignored, two
"normal' waves can propagate, which in the case of monaxial crystals and

magnetoactive plasma are called ordinary (0 or index 2) and extraordinaxy (e or
—>+:t

index 1) waves Al quantities [of the field E,D,H) in normal waves in a
-~
homogeneous medium depend on t and r according to an exponential rule and, for

example,

2L . =h %:ee e (5.5)

ge ''ge

Here, as in (3.3), the waves are considered to propagate along the z axis, Ko e
3

1s the absorption coefficient with respect to amplitude (absorption coefficient

with respect to power Ko o 1S equal to'ZKO o0 frequently x 13 used to represent
2 _)_.’

s

the absorption index cp/2w), w = 2mv and 15 the wave vector (k =

0,e 0,e
+
W
= =i, _, where i 1s the i1ndex of refraction). The complex vectors y
c O,C 0,e 0,3
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characterize the pelarazation of noxrmal waves (AO o and «a are the arbitrary
2

0,e
amplatudes and phases of these waves) In a magnetoactive plasma when
absorption 1s ignored {1 e , 1n practice with rather weak ahsorption) we can

assume

where summation 1s performed with Tespect to ¢ = 1,2, as 1s done throughout
with the Greek indexes encountered twice (in other words, for example
T&gTGQ = SPYquGO, for a more detailed presentation on normal waves in a
magnetoactive plasma see, for example, [I17, 18])

The induction cowmponent of the arbitrary radiation field in the frequency

interval Aw has the form

- eme g mmey— e . m— . —map

,%d [8; Zl):gﬂe a‘d‘o %ﬁf-&’ez-;ﬁf"ode A z)} oo +

- :_”‘Eé/d%__@? exp {“9%55 ’”’"/ﬁ{f"’éo‘%ng)]ﬁ/w -

Forming the tensor DGDE from these components, and also calculating the
derivative fraction %;{Dang), after averagaing with respect to time over the
rather narrow frequency interval Aw, we can arrive at equation (3,3) {12], with

whach (not confusing index y with the polarzzatzon vector y!)
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We note that expression (3 7) was produced in [13], but the expressions like
(3 8} from [13] are inaccurate, since the radiation absorbed was not expanded
into normal waves

If the absorption i1s sufficiently great, the normal waves cannot be
considered orthogonal (see (3 6)) and formulas {3 7)-(3 8) are no longer
accurate This occurs, 1n particular, under conditions when the relativistic
particles ("hot" plasma and "cold" plasma) make a comparable contraibution to
the real and (ox) imaginary anisotropic parts of the dielectric premeability
tensor elj. Transfer equation (3 3) without assumption (3 6) is analyzed in
[15, 41], although only under conditions when the influence of the plasma can
be considered faixrly weak

a

If the medium includes radiation of only one type (ordinary or extra-

—

ordinary), 1 & , tensor Ia consists only of fields type e or type 0, then

g
RaBYﬁlYG = (0 Thas result can easily be produced formally, but 1is clear from

the beginning, since according to the definition of normal waves in a homo-
geneous medium. their polarization is unchanged. It 1s also obvious that for

one normal wave K I = -2

aBysLys and the transfer equation (3 3} takes on

Ka,0lag

"the following form where there are no radiation sources
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(e.0)

d 1o ' (e.0) o ré0)
Lo-gp 7 - (;C)j } (3.9)
- 2 ﬂ&-.: = / ? ol -
0/2 o B €0 f o r‘/;’eo / /9

- .

Relationshap (3 9) 1s obvious from the beginning, since 1t reflects the fact
-

that in normal waves the field vectors (in particular vector D), due to the
“K_ L2
influence of absorxrption, change according to the rule e e,0 (see (3 5))

-> . I
The quantities 2Ke 0 = Me O(k) are the absorption coefficients with respect to
> L
->
power (intensity) along the wave vector k  If the direction of the phase and
- - >
group velocities (direction of vectors k and vgr = dw/dk) correspond, then of
course quantities 2Ke 0 correspond to the coefficients of absorption along the
3
rays pe,O In iﬁe generil case ue,O = ZKe,O cos §e,0’ where ﬁe,O are the

angles between k and v Under conditions (3 9), only the intemsity of
e,0 gr,e,0 N

radiation I = ImE + Iyy will change along X (1.e , along the z axis), since for
e,0)
EEEET__-z —ZKe OI[G’O) As concerns the quantities H,p (or B8)

the intensity
and X, as was stated, they remain unchanged for normal waves  Formerly, the

same thing follows from (3 2) and (3.9), and 1s related with the fact that the
quantities I, p and x depend only on the ratio of the Stokes parameters. It is

also obvious that constancy of M, p and x occurs in the case when the medium

contains only one type of radiation source In this case

(@9) )
e (e:%) 3y . (9O
....-07;—-- 5@0 ‘Q,DQGOI E{o-juem(%) I (3.10)

This equation can be generalized to the case of a heterogeneous medium 1f the
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approximation of geometrical optics 1s justified and, consequently, we can use
the concept of rays (the possibility of a ray interpretation is limited also by
the condition of weak absorption [17]) The corresponding transfer equations

for intensity I(e’o) of waves of one type has the form (for the conclusion see

[1s])

RN AN
%, 32 feas ) 92 K= )“‘9/“ ¢

Here I = I(e’g), and all remaining expressions also relate to waves of types e

Y
or 0 at frequency v Chere Vgr 1s the group velocity, ¢ 1s the angle between k
-
and vgr, k = %ﬁ 15 the wave vector and u = 2x cos ¢ 1s the coefficient of

absorption along the ray, tie element of ray length 1s de) Here, whereas in
(3 10) the quantity I(e,O) in the magnetoactive plasma 1s generally not propor-
tional to the energy flux (see above), an (3 11) we are concerned with the
antensity in the true sense of the woxd, 1.e , the energy flux per unit solad
angle

Generalization of equation (3 11) to the case of simultaneous presence of
radiation of two types, as far as we know, has never been done In a homo-
geneous and stable medium this generalization evolves to equation (3.3) This
equation 15 doubtless correct for the functions EGB, RGBYﬁ and KaBYﬁ’ which
depend rather slowly on the céordlnates However, as we can see from compar-
ison of equations (3.11) and (3 3), this latter equation in a hetexogeneous

=

medium can be correct only 1f we i1gnore refraction (curving of rays) and the
——

derivataives of dii/dz in comparison with dIuS/dz Also, of course, the usual

approximation of geometric optics should be correct, 1 e , all quantities
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should change little over one wavelength in the medium A = 2ws/fie  For
de -

example, the conditiomn A dgs < eaB should be observed However, generally

IR, ~ o~
speaking, the more rigid condition /\/________é’,()/ A /He - ko/ 1s also

A2

fulfilled. This inequality, like the condition of correctness of the geome-

trical optics approximation, is typical for weakly anisotropic media in the
calculation of polarization (see [17], paragraph 26 and [18], paragraph 24)

We attempted above to illuminate the problem of the transfer of radiation
from a rather general point of view It 1s quite obvious that highly complex
or at least cumbersome and difficult solutions may be produced for IaB or the
Stokes parameters. The situation is even more complicated 1f the "cold" plasma
1s rather dense and the magnetic fields rather strong Under these conditions,
a consideration of the influence of the plasma can not be done by replacing the
quantity £ = mc2/E by n = W (see (2 28)) In connection with this
problem, see {20-24] The specific nature’of the problem also appears if the
distraibution function of the relativistic electrons with respect to velocities
1s anisotropic [15, 16, 25]  Further, even for isotrcpac distribution of
electrons with respect to velocities, special analysis 1s required for the case
when the function N(E) depends rapidly on energy In this case, function N(E)
can be considered rather smooth and the expressions presented below for the
coefficient of reabsorption can be u;ed 1f N(E} changes little over the
interval of energies AE corresponding to radiation of neighboring overtones of

frequency wﬁ = eH/me-mc?/e s1n? 8 The radiated frequency w = nwﬁ and,

consequently, /[Aw/ =
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1s the wavelength (radiation in a vacuum) This condition of smoothness of

change of the function N{E), therefore, has the form

-

y N _eH o I e
~—=‘-0!¥A[AE”JE o™ "dE drane “N e

This condition 1s necessary where 6 = /2 Where 6 < %/2, condition (3 12) 1s
sufficient, but not necessary due to the dependence of wﬁ on 6 (for more

-

detazl, see [16])

Condition (3 12) can hardly be disrupted in most cases encountered in
astrophysics (energy interval AE = %%AO even in the meter wave band is less
than or on the order of 105 Nev and may be rather great only in areas with
strong fields H > 10e) !

Discussion of the entire range of problems which we have touched upon
would require at least a special review A number of problems related to this
area have not yet been analyzed. We will limit ourselves in the following,
therefore, to a discussion of the two narrowest problems concerning the reab-
sorption of synchrotron radiation in a vacuum and in a plasma with quasi-
longitudinal distribution These cases, however, are in all probability the

most important_from the point of view of application to radio astronomy

Before discussing these calculations, 1t would be expedient to make several
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notations concerning the usage of the method of Einstein coefficients for

&
polarized radiation.

33 Usage of the Einstein Coefficient Methed for Polarized Radiation

Both in an ainvestigation of the transfer equation (3.3), and in other

-

similar equations for the intemnsity of normal waves or Stokes parameters, 1t

1s necessary to calculate the coefficients ¢ for (3.3), the

b’ Rapys® Fapys

coefficients and p = 2¢ in the case of equations (3 10), etc As
e,0 9

e,0

concerns the radiating capacity e the basis used must be formula (3 4). The

ap’
other quantities can in the general case be calculated by the kinetic equation

method [15, 25, 26] Here, 1f we are speaking of the classical area

(condition hv € E}, we must use the classic relativistic kinetic equation  The
corresponding calculations are rather cumbersome  Both for this reason and due
to the natural tendency to produce results by the simplest and most obvious

method, a significant role in analysis of reabsorption 1s played by the method

of Einstein coefficients This method 1s generally well known, but its
application to the case of a medium and particularly an anisotropic medium,

and also when polarization of the radiation 1s taken into consideration is

somevwhat specific  Therefore it 1is expedient here to make a few notations

concerning the method of Einstein coefficients as applicable to radiation in a

"

medium (see [27], [18] paragraph 27, [17] paragraph 12)

In 2z weakly absorbing (formally, in a transparent) medium, energy quanta

- - h__ - >
in normal waves have energy hw and momentum hk = =25 (w,s)s, where
+ + 3. ] =1 and the index j corresponds’to the'given wave (an a

k. =k_s,
magnetaqctlve plasma, we are concerned with ordinary, extraordinary and plasma

waves) In the classical area, the results of calculations are independent of

the quantum constant h = h/2w, but there 1s no reason not use quantum
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concepts 1f they are convenient The energy flux and energy density in type J
waves are equal to IJdmdQ and pjdmdﬂ, where d© is an element of the solid angle

and for convenience we shall temporarily use the spectral densities related to
-+

“the interval dw = 2Zndv  The following relationship also occurs (Vgr -
>

+
= dw/ko 1s the group velocity for type j waves)

I f j/zc/ “f/ /cmf// (3 13)

B" and Bm, such that Aldwd® 1s
it n m

Let us introduce the Einstein coefficients A;,
the probability of spontaneous radiation per unit time upon transition between
states m -+ n with radiation of a quantum of the given normal wave in the inter-
vals dw and 4@ Further,BEpdwdQ 1s the probability of the same induced
transition and B;pdmdﬂ 1s the probability of absorption of a quantum upon

transition n +m  The coefficients A;, B; and Bﬂ are connected by the

relationships

" " h, e ) o '—
,Bm __./3 ) gm_‘ /ﬁ&@) .

—Ng_#w /a/w;u/ (3.14)

From this in a vacuum we produce the ordinary relationship

Con fame)i gl
a__ﬁl_gm thc 54 Av3 @Q (3.15)
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Here 1 and m mean any two states in the momentum space for which the energy
difference Em - En = hw = hv  If we were concerned with the transition between
energy levels, we would be requared to consider the stataistical weights of
these levels  Essentially, relationship (3 15) 1s concerned with waves with a
single polarization If we define the probabilaity of an ainduced transition in
vacuumn as ﬁnI dvd® (as 1is done 1n 1, section 4 2}, then gn = ¢ in where
ava m v ’ o ? m  hvo m’
Agdvdﬂ = ZwAzdde 1s the probability of spontaneous emission in the intervals
dv and d@  Fanally, 1f Aguvdﬂ 15 taken to mean the probability of emission of

waves with both possible polarizations, we can utilize the relationship

ﬁ; = %;;g%;, which was used an 1  However, this sets up a source of insuffi-
clent completeness and definition of expressions First of all, this method of
transition to nonpolarized radiation is not well founded, although 2t might be
expected that this produces the mean value of p for both possible polariza-
taons  Secondly, 1n a vacuum or an isotropic medium, polarization degeneration
occurs (possibilaty of selection of normal waves with any polarization), as a
result of which the polarization relationship can be produced only by addi-
tional analysis

Let us represent by N, and Nm the concentration of electrons in states n
and m with energies E and Em’ such that Em - En = hw £ hv  Then, on the

strength of (3 14), the absorption ccefficient uJ along the ray for a wave of

type j will be
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o 2 = 1 7
/i Ly -/0/00 et Ymen
] . a’f:’j (3 16)

—

H

For samplicity we will immediately consider in the following that [ﬁJ -1 <1
and |cos ﬁJ] = 1, Further, analyzing the ultrarelativistic case (acicular
radiation, 1 e , radiation only in the direction of the particle velocities)

and considering the distribution function isotropic, we can produce Nn = Nm =

i‘/VPb "‘/UM i

s

= WP~ K )= ~M(P - '6%) - A= - & e

Here 1t 1s considered that in the classical case being analyzed hv < cp ® E.

Finally, the radiating capacity in the interval dv 1s equal to

& Z RN, V= Z A, My AY

and by comparison with (3 4) 1t 1s clear that A; = A;/Zw in (3 16) can be '
2
T
replaced by E;EGPJ(v’E)’ where pJ(v,E) 1s a function of the type of PaB(v) in
(2 34), but related to a type j wave The significance of this will be
analyzed below We present now the final expression for u_, under the
J

assumptions which we have made
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where

~

. z_
%.[u, )= [z /3//\45)0/'& -

%

/|

e e o mma e ma o m ———— TE -

and where the equalities E

-

¢cp and N(p}4wp2dp = N(E)JE, 1t should also be
P pj4mp=dp

h

explained that when summation in (3 16) 1s replaced by integration, the
élement of the phase volume 1s equal to p2dpdQ, where dR 1s the element of the
solid angle in which spontaneous radiation occurs (by definition, angle ¥
between ; and ; 1s small). Formula (1, 4.17) for the reabsorption coefficient
1s produced from (3 18), 1f we assume qJ = 1/2p(v,E), vhexre p{v,E) 1s the
spectral density of the power of the.total radiation of one electron (1, 2 21)
As was already emphasized, thexre 1s no particular basis for this assumption,
according to (3.17)-(3 18), the problem of calculation of uJ consists of
clarification of the sense of the quantities pJ(v,E) oT qJ(u,E) In an
anisotropic medium, this procedure is quite clear, since qJ 15 the spectral
density of the power radiated by an electron in the form of normal type }

waves However, 1n a vacuum or 1n an 1isotropic medium, where polarization

degeneration occurs, we must clarify just what sort of waves are to be
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considered normal in calculating reabsorption coefficient gJ At first glance,
it 1s true, it might seem that the result of calculations should be inde-
pendent of the selection of polarization of normal waves, since this
independence 1s the essence of polarization degeneration Of course, with
sequential performance of calculations by the kinetic equation method, this 1s
how 1t 1s. definite selection of polarizations of normal waves in the case of a
vacuum, and in principle the usage of normal waves itself in any medium, is not
obligatory, However, in the method of Einstein coefficients, we are concerned
only with probabilities (intensities), not with amplitudes of probability
(fields) Therefore, coherence of various normal waves, which generally occurs
in the case of degeneration, cannot be taken into consideration in the

Einstean coefficients method In other words, based on the very essence of

this method 1ts usage generally involves determination of the type of waves

for which the absorption coefficient 1s being calculated

3 4 Reabsorption of Synchrotron Radiation 1n a Vacuum

For a true vacuum, of course, it 1s impossible to state'unamblguously the
types of waves which are normal. However, in this case the problem of
reabsorption does not occur. If we are speaking of reabsorption in a vacuum,
we have in mind only the p0551b111t¥ of ignoring the influence of a "cold"
plasma on radiation and reabsorption A relativistic plasma at the source
influences absorption of waves according to the very sense of the problem of
reabsorption This plasma should also have some influence on the index of
refraction, in that the medium 1s amisotropic This 15 gbvidus, 5InCe we are

concerned with relatavistic particles (a plasma) in a magnetic field and,

consequently, there 1s a physically distinguished direction in the system -- the
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direction of the field As we know (see 1), 1f the distributaion function of
ultrarelativistic particles is not sharply anisotropic, their radiation is
linearly polarized, and the electrical vector in the waves is maxamal in the
direction perpendicular to projection ;& of vector ; to the plane of the
figure (in the following these waves will be called polarized perpendicular to
the field for brevity, while waves with vector g parallel to ;L will be called
waves polarized along the field) Under these conditions it i1s natural to

expect that normal waves will also be polarized along the field and perpendic-

ular to the field (we recall that we are limiting ourselves to angles

2
8> E§~q 1 e , we are not analyzing the radiation of particles whose velocity
2
¢
directions make the small angle L) S ii;S with the direction of
!

the field, in this case linear polarlzétlon also occurs only under thas
condition (8 > mc?/E) Calculations [41] confirm this assumption Thus, when
formulas (3 17)-{3 18) are used to calculat§ the coefficients of reabsorption
of synchrotron radiation by ultrarelativistic particles 1n a vacuum, we must
calculate the coefficients By and M for polarazations across the field and
flong the field Here as Pl(“’E) and Hl(v’E] in (3 18), as i1s clear from the

above, we must take expression (1, 2.20¢) multiplied by 2% sin 8 Consequently,

b4

'E y Fn8
?l(u,gjz% //3 NOrEr %[—5;)]

(3 19)
g (v B rg’;:j‘?'g"“ "f{ K (2 - -k, ("’)]
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We have presented here for convenience expressions which are correct in the
presence of an isotropic plasma with fi = 1 - w§/2w?,|1 - #i|< 1, although 1in the
remainder of this section we will assume n = £ = mc2/E In the ultrarelativ-
1stic case in question with isotropic (or weakly anisotropic) distribution of
radiating particles by velocity darections, waves with elliptical polarization

are not considered {with an accuracy to terms on the order of

= V{me*/E)* + wf/w?) .

P

Due to this fact in the analysis of natural radiation of the source we can limat
ourselves to the Stokes parameters and ! or the intensaties

The spectral density of the total radiated power

‘?[‘}E) G 0= A re?;d”ﬁ"g‘)éa,//f‘)a/z s 21)

- - A

in a vacuum

~

L Omitted 1n original text -- Tr.
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whaich, of course, corresponds with (1, 2.21)

Let us introduce the representation

J"'J_ [9)=/‘"(9)+ﬂ[9)}f4“;:/‘4[6‘)-./\[9) (3.23)

+
ot

1t 1s easy to see that p(8) = 3

corresponds precisely to expression
(I, 4 17), used earlier as a coefficient of reabsorption. This result 1s
natural, since u(8) is the arrthmetic mean of B oF u“ For the power-law

spectrum N{E)} = KeE"Y, we have [2, 14]

{+'%s 72y T

ﬂ[@vwohfﬁ) if&;{’r%/fm"c /"j /—7/ V Z (3 24)

-~

Thas formula corresponds with (1, 4.18), in whach g(y) 1s determined by formula

(1, 4.18) Here we present once more only the numerical values of g(y} (see
Table 1}
The pelarization of synchrotron radiation in a vacuum without considering

reabsorption for the case of a power-law spectrum of electrons (see 1, 3 28) 1s
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o ,C o)+ ];, 3 5 & _7;() /77 .
Table 1

S I 2 | 3 4 5
2(¥ ) 0,95 0,70 | 0,65] 0,69 | 0,83
o g"[‘z.:) 0,69 17 0,47 | 0,400 0,44 | 0,45

i {

At the same time, according to (3 23) and (3 24)

6yt é

/MJ' “/“ - 30”+/o/“ S A'Sa’ﬁo/“

2
o./M” /./u-’-r /M+A 3b’+5’

(3.26)

The transfer equation lake (3 10) obviously has the following form in this

case

dl,, . .
ol 2 LN ‘/M.LH"'”/ ? (3.27)

!

where
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The radiating capacity (3 28) can be easaly calculated for a power-law spectrum

by usaing expressions (3 19) and (1, 3 25) Let us limit ourselves at this

—

time to the note that where there 1s no reabsorption for the natural radiation

of a homogeneous source with dimensions L

) 10y B "
Iﬂ?)::éo Z' _[_‘ ..é:'f_.-r 3&'1".5. (3 29)
A e O~ Y =] o
oL b1 a4 / -Z;ky gﬂv\ A

This cleaxr from (3.25)
In consideration of reabsorption, integrating equation (3.27) under the

condition that at the beginning of the layer (where z = 0) Il e 0, we produce
El

P - —_— —

, -
ey et ) 7 - ;;f/,/e/" J

For a thin layer (source with dimension L, By “L < 1 and
L}

-

e — -

1 I-t ffﬂ_-_—.._.
s_.._--""d'

Iﬂ - I(O) 5’”" 921

,;/” !
= /7, fa’“‘ s (3.31)

!

g J——

r

For a thick layer w "L > 1 and
3
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(3.32)

Lzé.‘_g M{_‘ 33’*’-.3 nj/? 'Z:i ];, 3
L & o 0P /T, 4 5%/3

v . (
0f course, those expressions from (3 31) and (3 32) which do not contain the vy
have general saignificance, in addition to their sagnificance for a power-law
spectrum  We recall that when a power-law spectrum i1s used 1t 1s assumed in
the calculations that y > 1/3 (see 1)

We assume that on the ray of vision, the magnetic field is directionally
chaotic on the average Let us assume further that as the waves propagate 1n
this field the polarization of the waves does not change with a change in
direction of the field (this occurs i1f the approximation of geometric optics
1s 1napplicable for the description of the polarization of normal waves due to
mentioned above

ol

in section 3.2, for more detail, see [18], paragraph 24} Under these condi-

nonobservation of copditions such as A[ane D/dzl < |n, -n
3

tions when the waves are propagated in a chaotic field the anisotropy of

absorption disappears and waves with any polarization will be absorbed identic-

.ally with a certain absorption coefficient u  With the given angle 6, the mean

; ; i = u(6) In order to produce E} 1 e., the mean
-+

value of u(®) wath respect to angles 6 between the field H and the ray of

absorption coefficient

vision (velocity of radiating electrons), we must form the expression
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In [2] 1t 1s shown that expression (3 33), not concluded strictly above, 1s

actually the coefficient of reabsorption for a chaotic field The numerical
values of the function g(y) are shown in Table 1  For convenience, we also

present the following expression (see 1, 4 20)

_Y
2 /

— vooo {2 -
]ﬂn?[d’)ﬁ?ﬁ/ﬁfffﬁ—/ﬁ?) K, H%—\) et (3 34)

Concerning reabsorption in a heterogeneous field, see [40] The formula for n
in the case of a ''monointergetic' spectrum of electrons i1s presented below (see
3 47)

) The question naturally arises of the area of applicability of these
formulas as concerns the possibility of ignoring the influence of a "cold"
plasma ££ order for this influence to be agnored, 1t 15 required first of all
that the "cold" plasma have no influence on the radiation of the relativistic

electrons, From thas, we come toc the conclusion (see (1, 4 26)) and the

following section 3 5) that
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Secondly, it zs required that the rotation of the plane of polarization of the

"cold'" plasma be siight, from which we come to the conclusion (see (1, 4 6})

Vv =540 © Y Me AT (3 36)

This condition, of course, 1S not required 1f the polarization of normal
waves 15 detexrmined by the relativistic particles (this occurs if the inequal-
ity the inverse of inequality (3 41) 1s observed Thard, norpal waves are
linearly polarized only with observation of the same condition of the inverse
inequality to (3 41) All of these three conditions together are sufficient
for the influence of the plasma to be completely ignored. However, this is

also possible in certain cases with less rigid requirements

3.5 The Reabsorption of Synchrotron Radiation in the Presence of a
. "'Cold" Plasma

If there 1s also a 'cold" plasma in the radiating area, we must first of
all consider the influence of the cold" plasma on the process of radiation ahd
secondly consider its anfluence on the propagation of waves, It was stated

above that under the conditions

—

] - - ) P
L) 5> G«JH(): __}%ééf: 1 #6170 ?'/j) W = %i“w% = (3.37)
=56 10" Ve
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in calculating the radiation, the plasma can be generally considered isotropic,

where

- <
- b vN wa

- S
o =k, =7

, [1-W [k (3 38)

In this case the influence of the plasma on radiation i1s reflected, for
example, in formulas (3 19)-(3 20)

As concerns the propagation of waves, in order to ignore the anisotropy,
conditions (3 37) are of course insufficient However, an essential simplifi-
cation can be achieved under these conditions, first of all as a result of
the possibility in most cases of considering wave propagation quasi-

longitudinal, in which case

2 ‘ 2
W o Yoo e
€ defw-wy,y 7 Lefeo 120, 5 39)
' 2
~ o~ L aJl. ()
yle-‘pxo‘ z 3 ;) Y, = L, CH &

@

It 15 assumed here that |ne’0 - 1] € 1. The e and zero waves are both polar-
1zed circularly with opposite direction of rotation of the field vectors. In
the extraordinary wave e, these vectors rotate in the same direction as the
electron located in the magnetic field The conditions of applicability of the

quasi-longitudinal approximation (3 39) under the conditions of interest to us

are as follows (see [17], paragraph 2 3'
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&cu co4 EQ
It 1s easy to see that in radio astronomy formulas (3 39) are practically
always applicable 1f the influence of relativistic particles on the index of

refractzon 15 slaght an comparison to the influence of the "cold" plasma

considered in {3 39)

As a result of the influence of relativistic particles [41]
[ﬁ - 1| “’%au(e) = %Eu(e), whexre p(6) 1s the coefficient of reabsorption (3.24)
or {3.33)-~(3 34) Consequently, the role of relativistic particles in the

calculation of #i can be ignored under the condztlonThO - ﬁe) >‘§au, which gives

us -

Jé>>mc2/_ﬁg 3)372 /&145‘) ,U H Z. —-f’{a

. (3 41)

Under conditions of applicability of formulas (3.39), the problem of the
transfer of radiation 1s greatly simplified. The tensors R and K take
afyd aByd
on a very saimple form under these conditions, so that equation (3 3) can be

written in the following form upon transition to Stokes parameters [12]
r 1
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oW
Here ke,O = Eﬁe,ﬂ and €1 v Q,U are combinations of xp corresponding to the
transition from tensor IaB to Stokes parameters (see (3 1), for example,

Ep = g ¥ EZZJ The Faraday effect is defined by the difference

n, - Ny = g{ke - ko) and has no influence on equations for the intensity of I
and the degree of circular polarization Pe = V/I, but influences the degree of
linear polarization o = Q% + U%/1 and the orientation of the ellipse x (we

recall that tam 2x = U/Q) It 1s convenient to introduce the intensities of

extraordinary and ordinary radiation

= 7 (3.43)

According to (3742) and (3 43)
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-
This result (3 44) is rather obvious from the beginning 1in the linear medium

being analyzed, the intensity (energy flux) in each of the normal waves is
independent of the intensity of the other wave. Thas conclusion relates to any
normal waves, but with arbitrary (elliptical) polarization of the waves,
intensities I and I0 are expressed in a compleX manner through the Stokes
parameters and the expediency of using them 1s not clear. At the same time,
even with quasi-longitudinal propagation, complete characterization of the
radiation requixes that all four Stokes parameters be used (solution to
equations (3 42), see [12])

Nevertheless, we will limit ourselves in the following to a disucssion
only of the problem of a change in intensity of the waves e and 0, 1 e , we
will base ourselves on equation (3 44) When waves of only one type are
present, the polarization 1s fixed and equation (3 44) describes the radiation
completely, This situation occurs in particular with negative reabsorption for
a sufficiently thick layer. Actually, with negative reabsorption the intensity
of waves 1;creases exponentially upon passage through the layer Therefore,
upon leaving the thick layer, radiation consisting of those normal waves for
which the absolute value of the coefficient of reabsorption u 1s greater will
dominate. ‘

As 'was-indicated, under conditions (3.37) the influence of plasma on

radiation 1s considered by formulas (3.19)-(3 21) In this case, with an
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accuracy to terms on the order of mc2/E, one half of the total radiation pover
q(v,E) = p(v,E) defined by formula (3 21) goes over anto each-nommal;

oo f-u.a/ L (L) o fy 2ol
mz/’fﬁi)ﬂ {E"/E/u g)jdE

p(s E-E-EE4 - %;’-* /ﬁ&)?%‘"‘fﬁ/ fe)ole
Vo~ 2 (5 T3 /%JJ’““ et

(3.45)

For better undexstand of these gormulas and their comparison with other
v
expressions, We note that 1 + ;g{ﬁgzaz =

S GEVEET ) 2y £ 70,

It 1s clear from (3 45) that the influence of the plasma on synchrotron

radiation and 1ts reabsorption is not essential under the condition

2", " .
Y}D"" “"-é.z) iy 4. (3.46a)

This condition leads us (see (1, 4 25)) to the inequality (3.35) already
presented In area (3 46a), the contribution of integral (3.45) for Mo g 1S
4 ¥
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positive, from which 1t follows that in this case o g 0 always Since 1in a
vacuum condition (3.46a) is always possable, in a vacuum p > 0 (see [7-91)1

If

L - - -
v /,.g;’ o),
VA& (me? 4 (3 46b)

—

the influence of the plasma 1s definitive  In thas case, with the proper
selection of electron spectrum N(E), the coefficirent ue,O may be negative

[8, 9, 16, 25, 26, 28] For the power-law spectrum of electrons N(E} = KeE—Y
1t 18 clear directly from (3 45} that negative value of ue,o 15 possible only
where y < -2, 1 e , for a spectrum which pgrows i1n a certain area more rapidly
than E2  Otherwise, the integrand in (3 45) 15 always positive (function
p(v,E) positave) The area where the function N(E) increases with increasing E
usually cannot be very large and, in any case, with further ancrease in E 1t 1s
replaced by the area where function N(E) decreases Therefore, in the case of
negative reabsorption in question the power-law spectrus 1s not of particular
interest (a spectrum of the form N(E) = KEY’, v' > 2 where E1 < E < Ez and

N(E} = Q0 where E > E2 and E < El 1s analyzed 1n [8]) There 1s great signif-
icance in a spectrum with a rather sharp maximum at a certain energy E1 (the
width of the spectrum should satisfy the condition AE < SeHLv2/4ﬁmev8, this

condition 15 quite compatible with inequality (3 12). For such a spectrum [8]

T This note 15 correct only for a rather smooth function N(E), when the
expressions used for p (see (3.17) and (3 145)) are correct For very ''sharp"
functions N{E) and anisotropic distributions of velocities, negative values of
4 may be encountered in a vacuum.
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where Ei-@ E2_, E, = mc?v/vy (see (3 45))

4?3’h%cl\} JrC J)
No |= e (3 47)
5/3/”‘/? =22 H

-v el

if Ei > BE%, = (mc® v/vg)? (see (3 46), then

7 A3edts e N Pz,
ﬂ(g/mf '-Wg?ﬁ'}n\)% E“’ ‘ )9
Jrme Y Ec. . (3.48)

fg%) =28‘Z}J5/5[”)0{M"3 /6)5/3 /V) e VFeH, V2 e ®

-

In (3 47) and (3 48), Nl 1s the concentration of electrons with the energy in

question El » mc?

Expression (3 47) 1is always positive, 1n case there 1s no plasma, this

expression 1s correct for all energies, which 15 1n accordance to that stated
aboye. Function @(zl) may be negative, and in the corresponding area of values
of z the coefficient uII < 0 Coefficient uII 1s negative in an area on the
order of (0 7-1 3) Voax? where Vioox 1S the frequency at which the value of

|NII| 1s maximal At this frequency

g 77 -4 VIO s, .
[hax MC Vaox - V, ax (3.49)

_At the same time, coefficient ux at the maximum of the frequency spectrum (at
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frequency v, See (1, 2 23)) 1s equal to

/!

L 5. .
)NQ 410 -/{t—/ff—/gﬁ)w; Y., ¥QO¥ —— ek, /mc) (3.50) °

'QLT\-!

A number of estimates of the negative coefficient of reabsorption as applicable
to various space sources are presented in [8, 28].
In the preceding we have analyzed only the case of quasi-longitudinal

propagation, in which the difference in coefficients Mg - was 1ignored

o
In [25], transverse propagation (angle 6 = w/2) 1n a plasma 1s analyzed, and
negative reabsorption 1s found possible. In [26], expressions are produced for
He and Hy with any angle 6 between the field and the ray of vision The
coefficients p} may be negative with any 6 but, of course, only for spectra
N(E) of a definite type and not through the entire frequency range

Furthexrmore, an expression 1s produced in (26} for the difference By = with

Yo

quasi-longitudinal propagation of waves This difference 15 slight, since

&

N o s

where a, b and d are coefficients on the order of unlty At the radiation

fo) me%, w~2,2)Y2 () me™ -3
, -
maxamum w:(f{ff_ = /{ nﬁ) = H E IZ 5
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and, consequently, in this case

Ipepal{oiiiry - 5es 1* dyf

As 1s clear from conditions (3 46a) and (3 46b), in the area where the influ-
w

2
ence of the plasma 1s essential but still not too great ;2{55292 ~1 ~ ICZ

»
and, consequently, ]ue - uOI ~ mc2/E  In the broad and most important area of

values of the parameters, where w§/w? < mc2/E, the dafference ]ue - pol ~q =

= /(mc?/E)¢ + w§/w® In most cases, the factor n 1s small, so that even with
l”e,oLL > 1 1t 1s difficult to expect observation of the condition

Lue - pOIL > 1 If nevertheless this condition is fulfilled wath negative
LT one of the waves will predominate in the synchrotron radiation of the
s;urce, 1.e., 1n this case total carcular polarization should be observed (the
general expression for the degree of circular polarization under condition
|ue’0|L > 1 1s presented 1n [12])

In the approximation in which He = and the radiating capacities

Yo
€, = £ circular pélarlzatlon cannot appear However, the linear polarization
may also change in the ;ase when the plasma has no influence on absorption

and radiation of waves Namely: 1f condition (3 36) 1s not fulfilled,

not only yotation of the plane of polarization, but also depolarization of

radiation will be observed The problem 1s that under the influence of

Faraday rotation alone, the degree of linear polarization i1s decreased by the

factor [;’9‘;11[%//\)@ '-KO)Z’][:ZL/J( k'o)A] z . where k_ o = %ﬁ and

e,0 -
L 15 the dimension of the radiating area along the ray of vision {for example,

v el = = = wowee w - e o

see [11, 12]). 'The degree of circular polarization from a thick layer with

u>0 1sx(see [1z])
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where upon transition:to this latter expression 1t 15 assumed that

I

- b) &~
//“e /‘“0/“‘/% -/4 P 5;45“*’ &

Estimate jp_ - u.| has already been produced (see (3 51)), as 1s clear from
e 0 P

formulas (3.17), (3.18) and (3.28), in the area of applicability of these

Pe "o . (0
2u P

on the assumption of acicular radiation, 1 e., by ignoring terms on the order

formulas On the other hand, formula (3 17) for My was produced

of mc*/E It 1s known that in a vacuum ptg) ~ mc2/E (see [1, 2, 29])

Combining the various estimates, we come to the conclusion that usually (where

(0

¥ > 0), the degree of circular polarization p o 0T P, 1S slight and on the

order of

2 ol ?@,
STE s ) )
- |

Thus, the appearance of circular or elliptical polarization of the synchro-
tron radiation 1s significant, since in the simplest cases this radiation 1s
always linearly polarized The circular or elliptical polarization of
synchrotron radiation for the set of quasi-isotropic radiating electrons can
arise only upon transition to relativistic energies which are not too high, or
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upon consideration of the influence of anisotropy of the plasma (consideration
Z
of terms on the order of - /Wc?'_ Q‘.,. J, Z )}  Under
LA ) T
conditions of negative reabsorption, i1n addition to changes in polarization,
the dependence of the coefficients of reabsorption ¥y ! or He 0 on angle ©
2 L
between the field and the ray of vision may be significant As a‘result, 1f
the field at the source i1s heterogeneous but not completely chaotic, with y < 0

radiation will be preferentially amplified in directions with maximal |u]

»

Therefore, where |u|L > 1, and especially where |u|L > 1, indivadual areas of
the heterogeneous source will appear anomalously braightly

We have discussed only a small portion of the problem of the influence of
a “cold" plasma on synchrotron radiation and its reabsorptlog In this area,
we must analyze a number of additional problems and p0551b1lit1es (primarily we

must be concerned with the negative reabsorption and polarization relationships

under various conditions and as applicable to sources of various types).
4. Some Problems Related to the Theory of Synchrotron Radiation

4 1. The Radiation of Sources Moving at Relativistic Velocities

Until recently, 1t was considered that under space conditions we must deal
with relativistic velecities of macroscopic radiation sources (galaxies, stars,
gas clouds and streams) only for very remote sources participating in the
expansion of the universe. In other words, i1t was assumed that in the areas
with red shift parametér = %E:—Lﬂ, < 1, all velocities of macroscopic radiation

3
sources are nonrelativistic  This statement is actually correct in most cases,
i

- H
in particular for such sources of synchrotron radiation as galactic clouds of
i

i
- 1
supernova stars, the speed of the center of gravity of these clouds and the
rate of their expansion 1s quite small in comparison to the speed of light ¢
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(ancidentally, clouds are known which expand at speeds v = 10% cm/sec, so that
v/c ® 3+10°2), For sources moving at nonrelativistic speeds, the intensity of
radiation 1s practically the same as the intensity of the same, nonmoving
source (see formula (2.38))

Some observations of radio galaxies and quasars give us reason to believe,
however, that in these cases the radiation producing “clouds' and shells may
have relativistic speeds {[30-34] This conclusion does not seem particularly
strange 1f we are speahing of sources of synchrotron radiration formed as a
result of powerful explosions If as a result of an explosion (concretely an
exp1051qn in a galactic nucleus or quasar nucleus) ultrarelativistic particles
are formed with tremendous total energies (apparently this energy for powerful
radiogalaxies reaches values on the order of 1052 erg), the expansion of a
cloud of such particles might quite possibly occcur at relativistic speeds.
This expansion could be contained only by a rather powerful magnetic field or
by the presence of a large quantity of gas surrounding the ar;a of the explo-
sion or coexistlng with the relativastic particles (having in mind the presence
of a rather dense '"cold" plasma in an area filled with relativistic particles,
1.e., cosmic rays) As was stated above, data are avallableiwhlch indicate
that in the radiogalaxies and quasars at least in some cases the braking
factors are insufficiently effective and the expansion actually does occur at
rather high velocities v ~ c.

In section 2 of this article we saw that for a cloud moving at relatav-
1stic velocity Vr 1n the direction of the obssrver, the intensity of radiation
increases by (1 - Vr/c)-l times (see (il38)) But this is not the extent of
the matter For a rapidly moving cloud, the estimates concerning magnetic

field intensaty, concentration of relativistic electromns, reabsorption and
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kinematic characteristics of sources all change [32, 33]

Let us discuss first of all the basically elementary problem of the change
in angular dimensions of the source !

Let us assume that a certain source 1s being observed (the nature of its
radiation 1s insignificant in this case), the angulas dimersien ofwhich ¢
changes with velocity w = d%/dt  Using ordinary 'monrelativistic" consider-
ations, 1t could be concluded that the distance to such a source R cannot
exceed the value c¢/w  Obviously, this conclusaon 1s based on the assumption
that the velocity of the surface of the source perpenélcular to the ray of
vision (assuming, let us say, that the source 15 a cloud) v, = wR and cannot
exceed the speed of laight ¢ (from this, R < ¢/w) However, in the case of
relativistic speeds, this esélmate of R 15 quite erroneous The source of the
error i1s actually the failure to consider the finite nature of the speed of
propagation of light  Actually, let us analyze a certain spherical shell
(product of explosion), whose surface moves at constant velocity v. The
explosion occurred at point 0 (Figure 5) at moment ty and the signal concerning
this explosion reached the point of observation P at moment t. =0 Obviously,
te = —R/c,‘ﬁhere R 1s distance OP and the influence of the medium on the
propagation of the signal (laght, radio waves) 1s 1gnored Let us now find the
location of the points (the "visible' shell), radiation from which reaches the
observer at moment t =t The points on the "visible" surface will be char-

- -

acterized by distance r from point 0 and angle 6 between vector r and line OP

(Figure 5) The time of emission T corresponding to point (r,8) and the time

of observation t 1s t'e =t - R'/c= ¢t - B-+ 3—59§~93 where R' #* R - 1 cos 8,

—_— c c
on the basis of the assumption r €< R. On the other hand, obviously

-t =t %-= /v, since path r 15 traveled at speed v  Combining these
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two expressions for t' , we produce
e

vl o,

7-Fees B (4 1)

<

g

j
The factor (1 - %-cos 6) ! corresponds here to the factor which appeérs in the
formula for the Doppler effect This 1s understandable, since in both cases
the essence of the matter 1s consideration of the delay or, which amounts to
the same thing, consideration of the finite nature of the speed of propagation
of the radiation It is curicus that the difference between the true form of a
rapidly moving object and 1ts form visible from some one fixed point, remained
unnoticed for some time, and, in any case, has not been emphasized in the
literature In recent years, however, this fact has been noted several
times (see review [35]) and was discussed as applicable to quasars in [32].

The speed of the "visaible" envelope perpendicular to the ray of vision

U = §5-51n 8 = v sin ® and o = @ 2L Velocity U, 1s maximum where
1 T3t T - v/c cos 8 WEI TR city Yy 1
qu/de = 0 for a certain angle 6 ax’ where cos emax = v/c  From this

~

! o il
P o = == ©(4.2)
“_’H_L,; oN [——2"{_ 77 ) e 2 r“*—,/’_ 7)%; 2

The speed u = dr/dt = V35 maximum where 6 = 0 and 1n th£§ point

v
1l -—cos 8 :
c

v
1s equal t = m———e :
q © Ynax 1 -v/c

Thus, the "apparent" rate of change of the dimensions of the envelope

W .. May be_greater than the speed of light c¢. It 1s therefore clear that
» ——

observation of the change in angular dimensions of an object can lead to an

estimate of the distance to the object only 1f we assume nonrelativistic speeds

- 58 -



of expansion of the object. If we know the distance to the object, measurement
of the rate of expamsion Y onax allows us to find the velocaty of its surface

z

v. Incidentally, it is assumed here that we are concerned with the movement of
an envelope, for example as formed by an explosion If we are observ1;g only
the expansion of some luminous area, other possibilities also exist in
pranciple First of all, material transfer may not be taking place at all
Let us assume, for example, that the role of the explosion at point 0 is played
by a burst of radiation The radiation propagating through the medium (for
example a gas cloud} at velocaty v, which may reach ¢, can cause secondary
radiation (luminescence, scattering) [34] The envelope which we record at
point p in rays of secondary radiration 1s described by the same equation as in
the case of an explosion (4 1) Secondly, the expansion of a luminous area may
correspond to the evolution of the object itself, not to i1ts expansion Let us
assume as an example that we have a large cloud of gas (protogala%zlL 1n which
stars have not yet been formed The cloud evolves, and a situation i1s possible
in which rapid star formation might begin almo;t samultaneously throughout the
entire cloud The cloud will therefore become visible, or more precisely
speaking, 1ts brightness will change essentially However, this does not
represent the propagation of explosion products or of any 'signal" (in other
words, the change in brightness of various areas 1in the cloud 1s not causally
related) Therefore, the changes in angular dimersions of the source provide
no legitamate estimate of the distance to the source This example is probably
quite unrealistic if we are speaking of changes in dimensions of a remote
object (galaxy, quasar) over a period of several years We wish however to
— .

emphasize that when changes of angular dimensions of a source are cbserved, the

distance to which 1s unknown , 1ts distance or the upper limat of possible
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distance can be estimated only on the basis of far-reaching assumptions. In
practice, for quasars when raﬁld changes in the form of the luminescent form-
ations surrounding them are observed, the most probable assumption 1s that of
the movement of these formations at relativistic velocities

Macroscopic sources moving at relativistic¢ velocicies relative to the
observer (relative to the earth) will be referred to for brevity as simply
relatavistic sources The simplest model of a relativistic source 1s some
formation ("cloud") moving as a whole at constant velocity v, forming angle 0
with the direction of the observer (x axis 1s line OP on Figure 5) If the
velocity dastrabution function of the radiating particles 1is known, calculation

of the intensity of radiation I and of tensor I,g 10 general can be performed

B
using formula (2 36) However, this formula does not consaider reabsorption and
furthermore the problem of the selection of distribution function N requires
special analysis This is also true of the selection of all other parameters
of the "cloud,” such as magnetic field intensity, densaty of "cold" plasma,
etc In this connection, another approach i1s more efficient for a "cloud"
moving as a unit whole the introduction of a collocated system of coordinates
in whach the "cloud" is not moving Calculation is then preformed in this
system, then the antensities and other quantities are converted to the coordin-
ate system of the observer (laboratory system) Here, which 1s the essential
feature, in the collocated system the parameters of the 'cloud" are naturally
selected as 1s done for nonrelativistic objects (for example, in the collocated
system the distribution function of particles and the magnetic field can be
considered 1sotropic on the average, the "cold plasma' can also be considered
— :
1sotropic and homogeneous, etc.) This analysis was performed as applicable to

N
a number of relativistic sources 1n [33] (see also [32]). Let us represent by .
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-+ >
g'v,(r,t) and u'v,(r,t) the radiating capacity and coefficient of absorption

(includaing reabsorption) of radiation at frequency v' respectively in the
collocated cooxdainate system (for simplicaty we will consaider the radiation
nonpolarized, T and t are the coordinates and tame in the system of the
observer) Then, the values of €y and Hy, related to the system of the observer

are expressed as follows
7 2
f\;f{)'f)?i*é“ &, /ﬂf)
/W\JT ¢)=

Cm@) (4.3)
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These relationships are simplest to establish by considering the 1elativistic
invariance of the number of protons in an element of phase volume As was
stated, i1n relation to e'v, and u'u, 1S natural to make the same assumptions as
for "ordinary'" nonmoving sources Furthermore, for intensities of nonpolarized
radiation in any inertial coordinate system (1 e., in the collocated system and

.

in the system of the observer), the following transfer equation 1s correct

AR Y ‘.
{-—-—-&(-H:’g?)fu -C‘/C"u‘/w-z’) . (4.4
Integration of this equation for certain simple models of relativistic sources
1s performed in [33] Here in the expression for the radiation flux
!
Fv = IIUdQ, quite large additional factors sometimes appear (in comparison with

the expression for the flux of radiation from analogous nonmoving sources)
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Tnus, for a nontransparent (optical thickness 1 ® 1) nonexpanding cylinder
moving toward the observer at velocaty Vs the factor § ~ {1 - V%/cz)ﬁl/4
appears If expansion of the cylinder 1s also important, in some conditions

z~ (L - ”\ri/c?-)_w/4 For a nontransparent sphere, the center of which 1s

nonmoving, but the surface of which expands at speed v, £ ~ (Il - vz/cz)"9/4.
The total energy of the relativistic electrons in the sources with fixed flux
Fv decreases simultaneously by z3 times Also, the change 1n intensity of )
nonstationary sources with time varies, differently for diafferent frequencaies
New possibilities also appear with respect to the polarization of the radiation
of the socurces Briefly speaking, analysis of relativastic sources opens a
completely new chapter in astronomy (of course this problem was partiaily
analyzed long ago for the case of remote sources participating in the expansion
of the universe) It has been our purpcse simply to emphasize that for
relativistic sources the ordinary (see 1) estimates of energy of radiating
particles, field intensity, influence of reabsorption and othexr factors are
generally not correct A more detailed analysis of the problem of relativistic
sources might be the theme of a special article, and at the same time would be
possible at the present time only to a very limited extent It might be

thought that in the near future, a great deal of new progress might be

expected in this area both as concerns the theory and as concerns observations

k.2  Synchrotron Radiation of Protons

Usually, when we speak of synchrotron radiation, we have in mind the
radiation of electrons (and positrons} The existence of this radiation for
protons and other charged particles is, of course, beyond doubt. However, the

2

very simplest estimates indicate that in the overwhelming majority of realistac
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cases, synchrotron radiation of protons is not of interest
The synchrotron losses of energy for ultiarelativistic parvi€les with

total energy E, mass M and charge eZ are equal to

oE 2/e2)”
P ar \97/‘/’3'3/"‘ /e 4 )& @

LA
1.e , they differ by a factor of Eﬁ?‘ from the losses for electrons (mass m,

charge e) For protoms, consequently, the losses are (M/m}"* ~ 1013 times less
than for electrons The radiation of protons will be maxaimal at the following

frequency (see (1, 2 23)})

® el, ) E i /6 2
) -.;qo':'mﬁf-?;,_ 70 L/_L E)

(4.6)

and the spectral power of the radiation at the maximum will be M/m = 1836 times
less than for electrons (see (1, 2 24)) . -

For the envelopes of supernova stars and in radiogalaxies, H 1073,

S
consequently, for protons with E 1012 ov, frequency v(g) =z 106 and

(p) _ _c
A m ( )~ 300 m, 1 e , the radiation lies beyond the hounds of the radio

astronomy range The power of the radiation, as 1s clear from the above, is
also relatively low  All of this can be confirmed with respect to the sun
True, the field on the sun can be great, but usually protons are not acceler-
ated with E > 10%-10*0 ev  With H ~ 102 and E 5 1017 ev, frequency vcg),s 107

and A(i) > 30 m These estimates, performed 15-20 years ago, led to a
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cessation of the discussion of the synchrotron radiation of protons (see
{36a]) However, in recent times, 1n connection with the proﬁlem—g‘f}he study
of quasars, this question has once more attracted attention [36] The reason
1s that for quasars in the area of their "nucleir," responsible for the short
wave radiation (infrared invisible portion of the spectrum), the magnetic
field may be quate strong (this fact was noted some time ago, for example, see
37]) Wath H ~ 2-10% oe and E ~ 2-1011 ev, as 1s assumeé.ln 1361, v ™ 1012
and k'm = c/vm ~ 3+1072 cm Permissible values are produced for the total
energy of relativistic protons at the source in this case and, in general, the
corresponding model 1s noncontradictory Incidentally, i1f the radiation
actually does come from an area with a strong field, the usage of the ordinary
"electron' synchrotron mechanism involves difficulties resulting from the
necessity of extremely rapid replacement of energy lost by the electrons. From
this point of view 1t 1S only natural that protons should be considered
resposible for the radiation, since the losses for protons are considerably
less, relativastic electrons "do not survive'" in the strong field More
precisely, they could survive only under condltlogs of very effective acceler-
ation or rapid diffusion from an area with a weak field This need not be
understood as a conclusion in favor of the proton ;ynchrotron nechanism of
radiation of quasars Quasar models are not being discussed here, and in most
;f them the particles responsible for the radiation are electrons, and various
difficulties can be avoided to some extent by the selection of the required
configurations and intensities of the magnetic field, as well as by considering

the relativistic velocity of the envelopes (see section 4 1) The purpose of
Sl

this section is only to recall the possibility, in the case of strong fields,

Al i

A
«0f looking upon proton synchrotron radiation as a realistic mechanism for
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radiation at high frequencies All of the general formulas produced in 1 and-
above can be converted to this case 1f the mass of the particle mTs taken as
the proton mass M (a degree of caution 1s required in consideration of the
anfluence of the '"cold" plasma, the Langmuir frequency of the plasma

wy = Vd7e?Ne/m contains the mass of the electron m, naturally, regardless of

"
the rest mass of the radiating or absorbing relativistic particle)

4.3 The Change in Magnetic Field Related to Deceleration {Energy LOSSES)i

of Particles Moving 1n a Field

In analyzing the radiation of a charged particle moving 1n a magnetic
field, and also 1n considering losses or gains in energy by this particle due
to any other mechanisms, the magnetic field itself is usually considered given
It 15 quite obvious that this statement of the problem has a limited area of

applicabilaty  Actually, a particle moving in the magnetic field creates 1ts

- -
own magnetic field Hl’ which weakens the external field HO (dramagnetic
-3
effect] Field Hy depends on the energy of the particle E and, concretely, 1is
decreased as this energy 1s decreased E = mc2/v1 - v¢/c?. Therefore, in
-

considering energy lossei flild Hi 1s decreased, which ian lead to a change not
only of the total field H = HO - Hl’ but also of field HO {consideration of
mutual induction, see below} As a result of the change in the magnetic field,
the induction electric field : arises, which may in turn change the energy of
the particle In this connection, the question has been raised as to whether
the particle can "scoop' energy from the field and thereby lose not only its
kinetic energy E, = E - meZ, but also high energy [38]. As will be shown

below, this conclusion would be incorrect, but still the energetic relationships

o and - i

involved in the movement of a particle in a magnetic field considering losses
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(ox geans) of energy are doubtless interesting, and so we will now discuss

<hem
-

When a particle moves in a homogeneous magnetic field with intensity? HO,

the particle with charge e and mass m has magnetic moment

- L — -

—3
- ?ﬂvlzﬁ/a /e/'(‘u?)l /'7 ‘____?EﬂLE //:7)

./M T:')/)Fgépz\/'f- v%t T e H, - ;Zez,é/a 1',5/;/ 47N

Actually, the rotational frequency of the ﬁartlcle an the magnetic field

et :
¥y =~‘l@! Ho me :[@//’_/e L//_ 7}-% 2 and the radius of the
K me £ = me : > ‘

projection of the orbit on the plane pérﬁéhdlcular to HO’ Ty = VL/mH =
-+ -

= myl/|e[H0¢1 ~ v&/c?  Finally, magnetic moment p

It

%E[rv], from which we

arrive at (4 7), where v, 1s the projection of the velocity v in the plane
>

perpendicular to the field H0 The sign in (4 7) can be selected from general
considerations, since we know that the gas of charged particles is diamagnetic
(without considering the spin). If there are many particles and they move

independently, their moments are simply added In this case the natural field
-

of all particles 1s small in comparison with the external field HO (this field
1s created by sources located outside the area in consideration) under the

e
condition ‘that 4aNu <€ Hyo where 1 = |u| and N 1s the concentration of particles

-

{moments) More precisely, if we are concerned with particles with various
values of p, the role of Nu 1s played by the total moment of a unit volume,

1 e , magnetization M The inequalaty 4«M <€ H,, in terms of the theory of

OJ

magnets, obviously means that B = H, +"4nM =~ Hy {from which the appearance in

G

¢ - -

T"We are essentially concerned with magnetic inducttion B0 in the fol-
-+ -+
-~ 10wung; however, fields H and B will not be distinguished, although this may be
useful In the macroscopic approach to the problem being discussed {see the end
of article [2])

1
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this inequality of the factor 4w 1s also clear).
Considering (4 7), consequently, we come to the condition ‘of weakness of

the diamagnetic effect in the form

4

o, EN « Moo
Ye? o

9 (4.8)

where the overline indicates averaging with respect to the energy spsctrum
Wath 1sotropic distribution of ultrarelativistic particies (for defimition we
will Keep 1n mind cosmic rays) as to the directions of their velocities

2
v

L

= = 2/3, and condition (4 8) can be written in the fornm

= — 2,
4 = = % 2
W('/L 6.Wm, W% E‘/V: Wm"""}-?]——- P £>>/‘7’10 (4 9}
A
where the value of particle mass m 1s insignificant
Thus, in order for the influence of the relativistic particles themselves

on the magnetic field to be weak, their energy density must be small in
comparison to the magnetic energy density  However, under space conditions in

many cases

Wy ™~ Wil (4 10)

Under these conditions, the relativastic particles obviously influence the
field, but generally speaking, the field may still be rather strong (in the
sense that the—-field in the medium 1s on the order of the external field HO)

- 67 -



If as sometimes occurs

A
Wep, 2> Wy = S}i;f J
the dynamic effect could lead to total screening of the field, instabilities,
etc. The development of these considerations allows us, as might be expected,
to produce additional information concerming the relationship between W and W
under various cond:tions,

Without discussing this interesting problem in greater detail (see [39]
for some notes on the subject), let us analyze the case of a single particle,
the properties and states of which are described by values of e, m,

E = mc?/v1 = vZ/c%, and v, , for definition, we will consider the external field
;0 to be homogeneous, created i1n a long solenoid (Figure 6) The curxent
flowing through the "winding" of the solenoxd per unit length of the solenoid

1 = fydr = %FHO' where j 1s the density of the current in the "winding"
{without considering screening 1 = jd, where d 1s the thickness of the
"winding")} Let us consider that the trajectory of the particle is located
completely in the solenoid, but rather far from 1ts walls The volume of the

solenoid

! 'V-:.:W'COZL ) \'Z, > Co

—— - h T e

The equation of the movement of the particle has the form
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“2/": ?% *e[cmz *[U/./]} | l“\‘(4.113

pre 5
where £ 1s the "force of friction' leading to the energy loss. From this,

s
after multiplying by velocity v, we produce

——

.éii_, ? > nac 2z -
e eé’yf P /“?;/“; /Df’ﬁ' (4 12)

Of course, 1f acceleration occurs rather than losses, then P < 0, the force of

radiation friction obviously is included i1n the expression for f

->
Let us represent the density of the currents creating the field as ), the
o

current related to the particle being analyzed will not be included here, its

> >
density 1s evS{r - re(t)) Then, the pointing theorem, which follows from the

field equations, should be wraitten in the form
¥

N 2
55_ 6;?7 f@g?f(y(&""'% )“""—9/”7[5/'/](/ (4 13)

n

or, after integration with respect to a certain volume V and consideration of _

equation (4 12), in the form

df f@"wz;/vwE}“ngmo/G’-fo;fa/v“ 73 6.10)

\
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where the pointang vector § = EE{EH] 1s integrated on the surface limiting
-

volume V (obviously, n _1s the external noxmal in this surface) ;
Expressions (4.11)-(4 14) are, of course, general in nature, but we will

apply them to the case of the field in the solenoid (with no particle, field
-> - -+ -> - >

H= HO = const) Withan the solenoid, the total field H = H0 + Hl’ where Hy 1s

the field created by the particle itself  For simplicity, we will consider it
to move 1n a circle At a sufficiently great distance r > Ty from the particle

trajectory, 1ts field avéfaged over the period 1s equivalent to the field of

-

the magnetic moment (4.7) wzth v, =V Consequently, far from the particle

i A o, R
= A .
}12 ﬁgg?a?go el { 6?’ C Qgngq:

.

5 (4.15)

+
where the value of u(t') should be taken at moment t' =t - r/c (see [4],

paragraph 72)
Figure 6

Let us now consider that the winding of the solenoid 1s located at distance
r-from the particle, much less than the wavelength A = c/t, where v is the
characteristic time of change of ‘the moment due to losses (du/dt = u = u/x)

In this case, 1 e , 1gnoring delay,
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H "“’1{‘/) 3/6/{?/4}}/&”6 04,"“[‘77&"”]?]9

“'P (4.16) ]
c’:’,?-—— [V 9/’]"’7/ 3/;3] T

Let us now apply relationshap (4.14), selecting the internal surface of a
cylindrical "winding" as the integration surface Fields Hl and €, are small

quantrties in comparison with H, and therefore 1t can be shown that (for more

detail see {2])

_—
gf—-ﬂf[ffﬁcjmo{o“u—”’“%) - {am

Let us assume now that field H, 1s maintained constant in spite of the

0

+
change in the moment of the particle n resulting from losses This can be
done, of course, only by the work of external sources of emf ('batteries'),

included into the circuat of the winding Under these conditions, considering
+

(4 17) and the assumption that H, = ¢onst, equation (4 14) takes on the form

0
N - . me_,z
!: /é_ ““P/g) 7 "'"'" {_‘ ‘U,Z.E' (4 18)
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1 e.,, the commonly used equation for particle energy in the presence of losses

1s produced Of course, this result is immediately clear from (4.12), since

> >

where HO = const to the electrical field € = 0 However, this analysis allows
us to see what occurs wath the magnetic field and magnetic energy The total

energy of the field in volume V (1n the solenoid), according to (4 7) and

1

(4.17), 1s equal to

/2'“ /L/ ) ﬁ__P-
_gf-a/w wwﬂ/w __.2/-+/4,@;
A LS

(4.19)

—_— —

7 Ze®

-

where we assume v = v, (movement in a carcle) As the particle loses energy,

moment u = Ip] 15 decreased and the total magnetic energy increases, since
5
uHO < 0. This ancrease occurs as a result of the energy flux flowing inside

the solencid At the end of the process (the particle has lost energy and its
-).

moment u = 0) field HO, according to the assumption, remains unchanged, and the *

%

"batteries' have expended energy

{9) 7 - 'zrf;) o .20
. 8

———

->

vhere argument t = 0 indicates the initial values of u, v and E~ A somewhat
PN
more interesting statement of the problem is that in which field HO 15 not

—

considered fixed, but the "winding" of the solenoid 1s closed and formed by a
flux of electrons experiencing no impedance (1 e , the electrons describe
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circles with radius Ty f11lling 2 than layer wath thickness d, see Figure 6}
Since the conductivity of the medium in a cosmic plasma 1s very great, thas
case has certain features near those encountered in reality. The degree of
this samilarity should not be overestimated, however, since under space
conditions the entire medium within the solenoid would also have to be
considered conducting  Furthermore, for simplicity we will consider that the
"winding" does not distort the field of the particle, 1 e., the field of moment
: This means that the "winding" must be rather thin (d € §, where

= VEEZ7EEEZN6'1S the depth of penmetration of the field into the "winding"!)
under these conditions, we place the surface limiting the volume analyzed in
{4 14) outside the winding  Here H0 = 0, on assumption (4 17) the energy flux

= 0 and if screening 1s ignored as before %ﬂ{gldv = :;6 ({see (4 1?)) As a

result, equation (4 14) takes on the form

_Q/_ —v',,_JM +E}"‘~P /J{d?f’ 4 21)

-
where [jedv 1s taken with respect to the volume of the "winding " Obviously

T"For a free electron gas € = | - 4me“N /mm and where € < 0, |e] ® 1, the

field attenuates according to the law
i

oz ¥ -2 g me®
=€ , CS’ 4.//@’2./1{'

 tm e i B mewm e mae e e [SPO

-
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integral ;Zdv = dt'K where 'fj-* T ‘:2\77’30 ol A /U(:’ 1s the

kinetic energy of ordered movement of electrons in the "winding," responsible
for creation of field HO (ZerdL 1s the volume of the '"winding," Ne 15 the
concentration of electrons considered nonrelativistic) As was already stated,

the current density 1/d = CH0/4ﬁd and, on the other hand, j = eNeu It 1s easy

>
to show that under condition 252/r0d'< 1, consideration of the term fjedv in

(4 21) would only mean the introduction of a small correction to the term

d .H - -
"zfgév)

In addation to Equation (4 21), solution of the problem requires that
> ->
we use equation (4 12), expressing € through dHO/dt As a result (see [2])

- = - "

— ol Hs -
?,‘Zm?& ;/‘{" %E.ﬁ””v‘z o g]@/[/ p (4.22)

em% .z,F“f“ Al

where in the second eXpression we assume V =V, {circular movement)
Using equation (4 21) without the last texm and equation (4.22), we can
establash the relationship between the field HO(O) at moment t = 0 (here
= E®0), v =v(0) and 1 = p(0)} and the field HO(W) at tlﬁ; t + «, when the

particle has lost all of its energy (u(») = 0, v(«) = 0). This relationship 1s

as follows [38, 2]

-

- "H—O_QJ ] Hoﬂ’/‘mo) :\ 7@2'2‘—7@_ 0 (4.23;
M g ge =L

_ " % . -

- v2(0)E(0)
The sense of relationship (4.23), in which the equalaty g =

= —n(O)Ho(O) follows from (4.7), where v, = v, 1t 1s quite clear 1f we
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recall the discussion related to formulas {4 19) and (4 20) Namely, the total

3

energy of the magnetic field in the solenoid (see (4 19)) 1s

HE U,
"f.gb‘r ol v gﬁv—+/u

Further, on the assumption u(w)Ho(w) = 0, relationship (4 23) 1s a simple

condition for retention of the full magnetic energy. In this case, however,
-+ -+ -

the field H = HO + Hl changes and 1s redistributed as the absolute value of

moment p 15 decreased, field Hl also decreases, therefore, in order to yetain

the total magnetic energy we must also decrease the homogeneous field H
> -

!
field H1 15 divected opposite to field H0 (diamagnetic effect)

g Since

Thus, the situation finally turned out to be rather trivial everything is
reduced to consideration of the diamagnetic effect which occurs as charged
particles move through a magnetic field, as well as the usage of the law of
conservation of energyt(polntlng theorem). In both of the problems here

>

analyzed (constant field Hy» and solenoid with "short circuited winding') the
particle loses only its energy and cannot "scoop'" energy from the magneglc
field.

In order to make the picture complete and, more importantly, having in
mind the possibility of generalization to a more complex case of a set of
radiating particles, the problem discussed in this section 1s analyzed in [2]

by a macroscopic method as well.

The results, of course, agree completely with those outlined above.
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4. L Synchrotron and Other Mechanisms of Cosmic Radiation

One of the clearly expressed tendencies appearing in modern astronomy 1S
an ever broader consideration of relativistic phenomena and effects In
particular, 1t has been determined that relativistic particles (cosmic rays)
have a primary dynamic and energetic role to piay in the universe=f39], Ever
greater attention 1s being turned to macroscopic relativistic objects (clouds,
surges, see section 4 1) The synchrotron mechanism of radiation is essen-
tially relativistic and 1ts utilization for explanation of an ever broader
range of observational data 1s quite natural, due to the "relativization" of
astrophysics just mentioned. The most amportant thing, of course, 1s that the
synchfotron mechanism 1s effective in a vacuum and, consequentlyx in the most
rarefied areas of outer space At the same time, the magnctic field intensaty
H may also be comparatively low. g

Let us explain this statement by comparing synchrotron radiation with
Bremsstrahlung and the "plasma" mechanisms of radiation

_The intensity of Bremsstrahlung (for example, in a hydrogen plasma} 1s
ﬁroportlonal to NgT, where Ne 1s the electron concentration and T 1s the
temperature (assuming that hv € kT)  Obviously, thas braking mechanism 1s
effective only in a rather dense plasma and, furthermore, the effective
temperature of radiation will not exceed the plasma temperature T. Here, 1t 1s
true, we have in mind an equilibrium plasma  But absorption 1n general changes
little for a nonequilibrium plasma containing an increased number of higher
speed particles. -

-

The "plasma' mechanisms of radiation involve the excitation of various
.v'_h‘—-—-
"normal" electromagnetic waves™ 1n the plasma considering subsequent transform-
ation of these waves into the radiation observed Waves may be excited by
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beams, shock waves and i1n general as a result of most perturbations of the
equilibrium state of tne plasma However the influence of the plasma on the
propagation of high frequency waves 1s determined primarily by the ratio of the

carrier frequency w = 2mv to the plasma and gyrofrequenciles respectively

® - ) off 7
4 ~ .
cu°=l/4'”;"/<’~ = 56Y 10 NFE, W = 5ma = ¥E IV w2y

True, the characteristic frequency W, defining the influence of the plasma may

0° mc ~ w(g) or

w, "~ Yuf + {wcg)]z For a moving plasma w_ depends also on 2mu/X, where u 1s

be more complex, but for a plasma at rest usually 6, "~

the velocity of the plasma and A\ = AO/ﬁ x5 the wavelength i1n the medium (an a
vacuum, of course, A = AO = 2nc/w) For nonrelativistic ob;ects in most cases
2wv/h ~ wufc € w and consideration of plasma movement introduces nothing new in
principle. It can be affirmed in this case that the influence of the plasma 1is

generally slight under the condition

‘ 2 2y, i (4 25)
Ld?y'@CN\/Z% "'[‘JH ]2' :

In interstellar space, in the envelopes of supernova stars, in the galaxies and
radiogalaxies (with the exception of their nuclei) according to well known

estimates N < 10% em 3, H < 1072 ce E?g, consequently, u; < S,10°,
i7e v

(0) 5 » 6 — B el ?
s 107 and w, < 5-10°, Ac = 2 ~ 5’0("7.44 (for the area of the

- (=% .
galactic disk, Ne <1, H<10 5 and lc > 30 km} These estimates demonstrate
that for the galaxies and many galactic nebulae, the "plasma' mechanism of
radio radiation is ineffective or, more precisely, has no role to play in the
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typircal radio astronomical wavelength range At the same time, well known
estimates of frequencies and intensities of synchrotron radiation indicate the
effectiveness of this mechanism 1n weak fields (H =< 1072 and even H 5 107%)
with permissible concentrations of radiating relativistic electrons

All of the above 1s elementary and well known, but we have recalled the
situation in order to emphasize with the greatest possible clarity the
nonuniversality of the synchrotron mechanism  Whereas in the beginming of.the
1950's, the usage of the synchrotron mechanism in astronomy encountered
difficulties (in the most part apparently of a psychological nature), after the
successes achieved by applying the synchratron mechanism, an attraction of the
opposite sort was observed  Specifically, some of the limitations which arise
when the synchrotron mechanism 1s applied to quasars came to be looked upon as
indications of the possible closeness of the quasars, etc  Actually, whereas
the more or less ordinary synchrotron model of the source encounters daffi-
culties (suffice 1t to say that with fixed dimensions and consideration of
reabsorption, the luminosity of the synchrotron source is limited), a number of
other possibilities arise without even changing the assumed distance to the
source Thus, all estimates can be essentially varied for sygchrotron, but
relativaistic sources (see [32, 33] and section 4 1 above)  Furthermore, for
sufficiently dense sources the synchrotron mechanism loses its exclusive
position, since inequality (4 25) may not be observed In the case of the
radio radiation of the sun, the possibility and necessity of analyzing non-
synchrotron mechanisms has long been well known (for example, see [17, 18])
The same thang 1s true of quasars and the compact source of long wave radio
radiation in the Crab nebula in the sense that the "plasma" mechanisms can be
rather effective for these objects in principle [40] In all probabilaty, the
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mechanism of radiatior of the pulsing radio sources (pulsars) 1s also a
"plasma" mechanism [43]

It should be added to the above that synchrotron radiation, wnich is
analyzed 1n astronomy under conditions in whach reabsorption is nonessential,
rs coherent -- the intensity of the radiation of the sources proportional
to the number of radiating particles or 1n homogeneous conditions to their.
concentration N  Reabsorption (both positive and negative) makes up a definite
class of ccoherent phenomena  Suffice it to say that the reabsorption coeffi-
crent p depends on N and, consequently, the intensity of the source including-
consideration of reabsorption 1s a nonlinear function of N {in the simplest

case I ~ Ne~“CN)L)

In a sufficiently dense source, particularly in the
presence of various movements, the formation of instabilities and turbulence, a
coherent radiation of a slightly different type appears -- the grouping of
rad1at1ng_part1c1es 1n areas é;mparable to a wavelength The intensity of the
radiation of a cloud of particles with characteristic dimensions 1< 2)1s
proportional to N2 (for a quasi-spherical cloud, I ~ N22%)  Obviously, the
nonlinear dependence of I on N is retained in a much more general .casec as well.
The generation, propagation and mutual transformation of various waves in a
medium {1sotropic or magnetoactive plasma) are also coherent (collective)
processes, involving many particles in the medium (concretely, a "cold"

plasma) In dense sources, when relativistic electrons and a "cold" plasma are
present, it 1s generally impossible to distinguish various coherent processes,

and the boundaries between the synchrotron and "plasma' mechanisms disappear

0f course, this 1s also true of relativistic sources {(for relativistic '"plasma"

2
sources parameter qu = Q%E 1s comparable with w and the possibilities for

(g),gﬂu) are even more widely expanded)
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It 1s therefore clear that the theory of dense sources can be based on concep-
tions concerning the noacoherent synchrotron mechanism of radiation, supple-
mented by a consideration of reabsorptiom, only i1n certain particular cases

One of the most important problems for further investigation 1s a more detailed
and comprehensive analysis of coherent processes and effects an dens: cosmic

radiation sources (in this connection, see [7, 17, 18, 27, 40, 42, 437).
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