
DEVELOPMENT OF THE THEORY OF SYNCHROTRON RADIATION  
AND ITS REABSORPTION  

Manuscript by V L Ginzburg and S . S,yrovatski,/  

_ _ _ _ _ _ _ _ _ (COE)~ 

NASA c O  O~A  M  R) (CATEO  Y)\ 

Translated  by peprcdu~c~d t  j  th 
f cf -r l Sc lcrIN &  cH-O5EI 

Te  ht r an  Cor p .  

Glen  Burnie,  Md i'f et  sprinit d 21 ,on 

under Contract NAS 5-14826  



Development of the Theory of Synchrotron  

Radiation and Its Reabsorption1  

V. L  Ginzburg and S I Syrovatskiy  

I Introduction  1  

2 Synchrotron Radiation in the Case of Noncircular (Spiral) Particle  
Movement 2  

2.1 Elementary Analysis  2  

2.2  Synchrotron Radiation of an Individual Particle Moving at  
Arbitrary Angle ¢ to a Magnetic Field 7  

2 3 Radiation of System of Particles 14  

3 Reabsorption of Synchrotron Radiation by Ultrarelativistic Particles 19  

3 1 General Notes  19  

3.2 Transfer Equation for Tensor I a  23  

3 3 Usage of the Einstein Coefficient Method for Polarized Fadiation 31  
3.4 Reabsorption of Synchrotron Radiation in a Vacuum 36  
3 5 The Reabsorption of Synchrotron Radiation in the Presence of a  

"Cold"  Plasma  44  

4. Some Problems Related to the Theory of Synchrotron Radiation 55  

4 1 The Radiation of Sources Moving at Relativistic Velocities 55  
4 2 Synchrotron Radiation of Protons 62  
4 3 The Change in Magnetic Field Related to Deceleration (Energy  

Losses) of Particles Moving in a Field 65  
4 4 Synchrotron and Other Mechanisms of Cosmic Radiation 76  

References  

' The bibliographic references for this review were gathered in May of  

1968 This review was written for the AnnuaZ Review of Astronomy and Astro­
physic8, Vol-7; 1969  

ii 



Introduction  

Comparatively recently (1965) we published a rather derailed review [1] on  

the theory of synchrotron radiation1 It seemed that this review concerned  

rather well established concepts and formulas Certain methods and problems in  

the area of further development of the theory of synchrotron radiation were, of  

course, quite clear even then However, one could consider that these problems  

were of no significance in principle Therefore, we did not believe that we  

would soon be returning to the same theme However, this occurred for a number  

of reasons First of all, it was discovered that there were errors an the  

theory of synchrotron radiation in the case of noncircular (spiral) movement of  

partdlces True, as applicable to the problems and conditions discussed in [1]  

(synchrotron galactic radiation and the radiation of discrete sources, the  

expansion and movement of which occurs at nonrelativistic speeds) all of the  

formulas used were actually correct However, the principal aspect of the  

matter is also rather important Also, conditions might be realized under  

which more general formulas would have to be used Secondly, the theory of  

reabsorption of synchrotron radiation underwent important development both with  

- and without a "cold" plasma in the radiating  area Third, at was discovered 

that it was possible to encounter radiation sources in space moving at relativ­

istic speeds shells, jets and "clouds" of plasma ejected during explosions, 

an example might be explosions in galactic nuclei leading to the formation of 

I Review []] will be cited in the following as 1, and formulas from this  

review will be represented, for example, as (1, 2.10). We note that the term  

synchrotron radiation arose by chance and seems to us an unfortunate selection  

Therefore, we have used broadly, particularly in I, the more significant term  
"magnetobremsstcahlung " However, it seems hardly possible at this late date  

to change the accepted terminology, so that we have decided to go along with  

the usage of the term "synchrotron radiation" for magnetobremsstrahlung of  

ultrarelativistic particles  
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radiogalaxies) Thus, the necessity has arisen of analyzing synchrotron  

radiation and its reabsorption for a rapidly moving cloud of relativistic  

particles Of course, this problem is closely related to that noted above  

All of these problems, as well as certain related problems, will be  

discussed in this article, since their significance for astrophysics may be  

quite great (we will make broad usage in the following of materials contained  

in [2])  

2.  Synchrotron Radiation in the Case of Noncircular (Spiral) Particle Movement  

2 1 Elementary Analysis  

An ultrarelativistic electronI moving in a vacuum (this is the only case  

which will be of basic interest to us) radiates practically only in the 

direction of its instantaneous velocity or, more precisely, into a cone with an 

apex angle ­ - ­
.V/,." , E >>ro
V5   (2.1) 

h   t 

In this section, in our qualitative analysis of the problem, we will consider  

the radiation to be acicular whenever possible, i e , we will consider angle  

to be small. As it moves through a constant, homogeneous magnetic field with'  

intensity H, an electron generally moves along a spiral line with a velocity  

[  = v cos e in the direction of the field and velocity v, = v sin 8 transverse 

to the field (of course, the total velocity v =  &-T-fl. The rotational 

frequency toH depends only on v and is equal to 

' For definition, we will speak of electrons However, of course, all of 

the literal expressions relate to particles with charge e and rest mass m 
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eu (2 2) 

If the movement is circular (i e ,  v,, =  0, v, =  v)L on the basis of the above, 

the ultrarelativistic electron radiates only in the plane of its orbit. An  

observer in this plane (recording device) will "see" bursts of radiation at  

those moments when the electron is moving exactly in the direction of the  

observer (of course, we must consider the delay, equal to the propagation time  

of the radiation and equal in a vacuum to r/c, where r is the distance from the  

electron to the observer) Obviously, the bursts will be repeated each period  

or, in other words, follow at time intervals T = 2 /w N = (2rmc/eH)(E/mc2) As  

was shown in detail in 1, the characteristic duration of each burst under  

m 2Smc  i c
condition (2 2) is on the order of At --C-M--2 and the observer will record a 

eH H  

field as shown schematically on Figure 11. Clearly, expansion of this field  

into a Fourier series will lead to a spectrum consisting of the overtones of  

frequency wN. All corresponding expressions for field intensity and the other  

quantities presented in 1 and a number of articles are true, and there is no  

reason to discuss them The improper formulas, as was noted above, are those  

for noncircular movement, when the longitudinal velocity component  

v11 = v cos a0 0, i e , angle 8 * i/2 The source of the error is particularly  

clear from the initial expression, for example in [3] and in 1, for the field  

intensity of the radiation, which was written in the form  

I This figure corresponds with Figure 4 from 1 if movement occurs in a  

circle and H = H sin 0 = H. However, as we will see in the following, where  

0 0 w/2, Figure-4 from I is incorrect, since the pulses follow with time separ­
ation T, not T = 

2 
/wH .  
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(2.3) 

The problem is that where v,, #0, the radiation pulses do not follow each other  

at time intervals T = 27T/w., but rather at intervals T*, which differ from T as  

a result of the Doppler effect  

Figure 1 Figure 21  

Time r*can be easily found, using Figure 2 For the observer selected,  

the radiation bursts arrive when the electron is located at points A, B, C,  

(for simplicity here and below we will consider that the radiation is strictly  

acicular) In other words, at these points the electron "looks" at the  

observer The time intervals between moments when the electron passes through  

points A and B, naturally, is equal to the period t = 2 /wH The distance  

between points A and B is v1iT = vT cos 8(( is the angle between v and H), but  

an impulse emitted at point A will travel path cT in this period of time. We  

can see from Figure 2 that an impulse emitted at point B will arrive at the  

position of the observer with a delay with respect to the first impulse of time  

'I 

in which upon transition to the next to last expression, it is considered that  

'  Locations for figures are marked in the original text, but the figures  

themselves are not presented -- Tr.  
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the entire calculation is performed for the limit case v c We note that the -

usage of a picture in which radiation approaches the observer in the form of  

individual pulses is suitable only for 6 > p mc2/E Actually, however,  
cos e 

,expression T* = T(I ­ c ) is generat in nature and is unrelated to the 

assumption of "acicularity" of the radiation or to the possibility of dividing 

the radiation into discrete pulses (inthis case v,, cos 0 is replaced by 

v cos 0', see section 2 2)  

Thus, the field of an ultrarelativistic electron in the wave zone consists  

of the overtones of the frequency  

f~'k'  2n­ (2.5) 

In itself, this fact is not very essential, if we consider that in the cases  

which interest us the overones are not resolved and we must concern ourselves with  

a continuous spectrum The estimate of pulse widths At -mc (c2 2 presented 
eHI  

in 1, and therefore the characteristic frequency wm 1/At are quite correct  

(here and in the following H. = H sin 6) However, a change in the interval  

between pulses influences not only the spectrum, but also all characteristics  

of the radiation field, in particular its intensity recorded at the observation  

point Actually, suppose the electron in each revolution (over time  

c= 24/H) loses energy AE = PT to radiation Then, on the basis of the above,  

it is obvious that this energy will arrive at the "observers" located on a  

certain fixed sphere at distance T from the electron in time T* and, conse­

quently,%the mean observed radiation power (total energy flux) will be equal to  
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At first glance it might seem that this is a contradiction with the law of  

conservation of energy. The electron loses energy P per unit time (the value  

of P is determined by the well known formula, see formula (1, 2 10) or formula  

(2 29) below) All of this energy goes over to radiation and, it would seem,  

should equal the total radiation flux through the sphere in question This  

approach is frequently used -- the radiation losses of the particle are  

calculated and set equal to the total radiation flux In the stationary case  

and for a radiator whose center of gravity is nonmoving, of course, this  

approach can be used In general, however, as is well known, the work per­

formed by a radiator per unit time (power of losses P) is equal to the total  

flux through a certain surface plus the change an field energy ar E2 +4  

in the volume enclosed by this space In the case of interest to us, the area  

of the space occupied by the radiation located between the moving electron and  

the surface, which is fixed in space, and over which the observation is per­

formed, decreases continually The energy enclosed in this space also  

decreases, so that the power of the radiation received P* is greater than the  

power of the losses P (Incidentally, in number of work upon transition to  

spectral quantities the power of losses P has been used ) This approach, of  

course, cannot lead to correct expressions for radiation intensity recorded on  

a certain nonmoving surface if movement of the radiator is taken into consider­

ation However, if the radiatin particles are located in a fixed volume (for  

example, th e-nvelope of a supernova star) or, more precisely, if the distribu­

tion function of the radiating particles does not change with time, the  
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intensity of the radiation of the set of particles corresponds to the spectral  

power of the losses This conclusion is clear from the law of conservation of  

energy and, of course, is confirmed by direct calculation (see section 2 3).  

This is the essence of the matter We assume that the fact that all of  

this essentially quite elementary problem has remained so long unclear and has  

led to the usage (in particular, by us ourselves) of formulas not always of not  

completely correct, justifies this detailed explanation The corresponding  

general notes, naturally, relate to radiation of any nature,,not only synchro­

tron radiation (as an example, [2] presents a discussion of the case of Cerenkov  

radiation arising when a particle passes through a flat plate of material).  

2.2. Synchrotron Radiation of an Individual Particle Moving at Arbitrary  

Angle 6 to a Magnetic Field  

Figure 3  

Let us select a system of coordinates in correspondence with Figure 3 such 

that the axis e3 is directed along the external magnetic field H =  He3. The 
+ 

particle with charge e moves in field H along the trajectory  

tZo [;=z- . . 
&'H  

(2.7)  

+ 

Here a is the speed of the particle in units of the speed of light c, l and  

are the values of its projections in the direction of the field and in the  

direction transverse to the field, wH is defined by expression (22). For a  

negatively charged particle " < 0. Figure 3 shows that the trajectory of a  
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negatively charged particle (for example an electron)  

At large distances from the particle, in the wave zone, the Fourier  

components of the vector potential and the electric field intensities of the  

particle are, respectively (see [4], paragraph 66)  

C &tif0 9 -c&­

8)
(2 

where K is a unit vector in the direction of the radiation (in the direction  

from the particle to the observer), r = rk, r is the distance between the 

observer and the position of the electron at a certain fixed moment in tame, we 

consider that vector k lies in the plane (e2 ,e3) and makes angle 0' with the 

direction of the magnetic field, i e, , 09 01 V 

We recall that the angle between v and H is represented  

by a (see Figure 3)  

As follows from (2 8) the expression for s includes only the velocity  

component transverse to the direction of radiation  

- ~y~4y>  Z~3- ~(2.9)eJ3.a~k  t 

­).  ­+  ­+ 

It is convenient to introduce the three unit vectors Z 12) k such that  

-3 .3 Al 
-7P3 

(2.10) 
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Vector 12 is directed along the projection of H on a plane perpendicular to the 

direction of observation (plane of the figure), i e , along the vector 
4 4-) 

e3 ­ k(e3 k). 

From expressions (2 8), (2 9) and (2 10) we derive 

I -e% )e (2.11) 

where  

- (2 12) 

For the calculation of integral (2 11), we note that the exponent of the  

integrand is (see (2 7))  

To ~  )to (2.13)  

Further, we use the representation  

> (2.14) 

where In(Z) is a Bessell function of the first kind.  

Integration with respect to t leads to the appearance of 6-functions.  



to  

-i j;k3 z%  J)J  [1tfn  sfck3­4  (215)­~~f, 

Consequently, the radiation has a  discrete spectrum with frequencies  

tj kL(2 
16)  

In the ultraviolet case 8 1 and the radiation, practically, is directed along  

the instantaneous particle velocity, i e , angle 0 =- ' and I6 O--­

which is in agreement with (2  5)  The 

Fourier integral of the electric field of the radiatkon of the particle is thus 

reduced to the series >w 7 1C C- L4V. 

- --- (2.17) 

-/f8eae9 ezasr9' 

This expression (2 17) completely defines the radiation field created at a  

certain sufficiently remote point in space by a particle moving at an  

arbitrary angle to the magnetic field  In the following itwill be convenient  

to use the "radiation tensor," which by definition is equal to  

As far as we know, the name of the tensor has not been established,  

and we certainly shall not insist on the term "radiation tensor" which we have 
,used.  
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(2.18)OVA/", 

= where a,$ 1,2 and enjct are the components of the electrical vector (12 17)  

Here, the mean energy flux density over the period (pointing vector) in the  

n-th harmonic is equal to  

/0g/ 't2 (2.19) 

For ultrarelativistac particles  

(220)  

and the main role is played by radilation in the higher harmonics 

7j~ 'n,) (see  1 and (2.23)), concentrated 

wiih'Y the small angle 

r~o' ' ~(2.21) -~'.= .-

The frequencies radiated (see (2.5) or (2.16)) with a 1  and e =  O' are equal 

to 

In order to -go-overto the ultrarelativistac limit in (2.17), we can use the  

approximate expression for Bessell functions with high values of index and  
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argument This leads to the following expression for the amplitude of the n-th  

harmonic of the electric radiation field of an ultrarelativistic electron
1  

6~ ~C13(2. 22) 

where  

(2 23)  

In the area of higher harmonics, the radiation spectrum is practically  

continuous and in place of the polarization tensor for radiation at the n-th  

harmonic (2.18), it is more expedient to use the "spectral density of the  

radiation tensor  

- -) N/ (2 24) 

1 Here and in the following we will consider that wH > 0 and, consequently, 

inexpression (2.17) for the field of the electron frequency mn  > 0 Here, the 

change of the sign of the charge e corresponds to transition to complex­

conjugate amplitude c'n  in (2.17) Therefore, for a positively charged
-

particle (for example a positron), the amplitude is complex-conjugate with  

respect to (2 22), corresponding to opposite direction of rotation of the  

electrical vector  
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From tnis and from expressions (2 18), (2 22)  we can find the spectral density  

of the radiation fluxes with two main directions of polarization  

'% ,3ewW-t.a 2 z al­

(2 25)  

2226 

?'~/7  Z,6)~t~ (2.26) 

where gv = gn (see (2 23))  

We note here that formulas (2 22),  (2 23) and (2 25)-(2 27) are easily  

generalized to cover the case when the radiating particle is located in a  

"cold" plasma, the index of refraction of which can with good approximation be  

considered equal to i = I ­ 2, where w0 =  rVTNIm, N is the concentration 
& e 

of electrons in the plasma  This approximation is correct if w >  0 and  

>j)H =  eH/mc. Under these conditions in formulas (2.20)-(2 23) and  

(2.25)-(2.27) we should replace the quantity  where it appears explicitly by  

(2.28)  

As is clear from the preceding, it is assumed in this case that n 4 1  

- 13 ­
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considered that (fktp t' 0;XAW )jjncgi4t% 2 

Expressions (2 25)-(2 27) and, correspondingly, the Stokes parameters for  

radiation of an individual electron differ from those used in 1 (see (1,2 17)  

and (1,2 18)) in the appearance of the factor sin 2 8 in the denominator (this  

conclusion was reached by us [2] and a number of other authors, for example,  

see [5, 6a] , it is in this respect that the expressions for the intensity and  

Stokes parameters presented in 1 and a number of other articles axe incorrect,  

if we are considering the radiation of an individual particle or combination of  

particles moving in space  

However, if, as occurs in most cases, we are interested in the radiation  

of particles from a volume faxed in space, we must use the expressions presented  

in I. Let us now go over to analysis of this problem  

2.3 Radiation of System of Particles  

If we use (2 25)-(2 26) to calculate the total energy flux of radiation  

through a fixed surface, i e , calculate the integral of the flux density with  

respect to all particles and directions, we will find that it is I/sin 2 0 tames  

greater than the known expression for energy losses of an ultrarelativastic  

particle  

As was indicated an section 2.1, this difference is caused by the nonstationary  

nature of the radiation field. Namely, the total energy flux through the fixed 

surface 
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is determined not only by work P performed by the particle, but also by the  

change in field energy within volume V, limited by surface S The change in  

field energy obviously is related to the forward movement of the particle and  

becomes essential when the velocity of the forward movement of the particle is  

comparable to the speed of light  

Actually, this result is caused by the delay resulting from the finite 

speed of propagation of the electromagnetic field Actually, let us analyze 

the radiation of an individual electron intersecting an element of volume 

r2drdo at distance r from the observer (Figure 4) The electron is located in 

the volume element in question during time dt' = dr/vr, where vr is the 

projection in the direction of the observer of the mean velocity of the 

forward movement of the particle v, Obviously, vr = v11 cos 0' = v  cos ew 

cos 0'. If r(t) is the variable distance to the particle, moment of observ­

ation t is related to the moment of radiation t' by the relationship 

t = t' + r(t')/c (having in mind radiation in a vacuum). Therefore the 

radiation emitted by an electron in time dt', corresponding to movement over 

distance dr will be received by the observer over time 

It follows from this that the energy radiated over time dt' and passing through  

- 15 ­



a unit surface at the observation point in time dt is equal to (p PcV)  + 

( 2 )+  .  (see (2  25)  and  (2  26)) 

where pV represents the quantity  

5") (232) 

As follows from (2 31), this quantity pV has the sense of the flux density of 

the energy radiated by the electron per unit time It is not difficult to see 

that the integral of p, with respect to all frequencies and directions leads to 

the proper expression for the energy losses (i e , in the ultrarelativistic 

case to expression (2 29)) 

Thus, relationship (2 32) establishes the connection between the observed  

flux P of radiation and the "power" radiated by the electron p . Obviously, 

a similar relationship can be written for all components of  the radiation 

polarization tensor (see (2.18) and (2 24)): 

t 

pcC")4"-L 46C gs(.3 

In the ultrarelativistic case (v e, a 0') it follows that  
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(2 34) 

Figure h 

Let us now show that if we are concerned with the radiation of particles  

from a fixed volume, quantity P (v) should be used. Actually, this is  

clear from (2 31), since this relationship (2 31) shows that the energy  

received by an observer from trajectory sector dr is determined by the value  

of p and time dt' = dr/vr, during which the electron passes through this  

sector Let us now analyze this problem in sonewhat more detail, in order  

to produce an expression for the intensity and other Stokes parameters  

Suppose we are interested in the intensity of radiation of a set of  

particles, the distribution function of which is N(E,T,r,t) By definition,  

quantity N(Ey,r,t)dEdP,dv is equal to the number of particles with energies in  

the interval E,E + dE and velocity directions within the solid angle dR  

contained at moment t in the volume element dV = r2drdfl  

The volume element being analyzed (see Figure 4) receives vrN(E, ,r,t -

­ dEd r x r
2d&2 particles- per unit time, here t is the moment of observation, 

c r  

t' = t - is the moment of radiation from the fixed point in space Each  
c 

particle radiates froiethe volume element in question an energy of (see  

(231)) p dt' = p L-As a result, the total flux and intensity of radiation  
r 

received are  
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F,,  p  I{2.5 

Z 

Analogous expressions obviously occur for all components of the tensor  

ACOvdtc 
- (2.36)dc/2 

where I,Q,U,V are the Stokes parameters of the radiation received  

For a stable distribution function, under conditions such that 

N(E,-t,r,t) = N(B,c,r), expressions (2 35) and (2 36) correspond to those 

presented in 1 

If we are analyzing an area (cloud) of moving particles, the observed  

intensity I (or flux F is essentially determined by the dependence of the  

distribution function on time In particular, for an individual electron  

and as a result of integration 

with respect to r  in (2 35) we produce 

Po-t A4 (2 37)-

as should be in correspondence with (2.25) and (2 26) Let us now assume that  

we  are  concerned  with  the  stationary  "cloud"  of  particles  moving  as  a  unit 

- 18 ­



whole with velocity V and projection of velocity in the direction toward the 

observer Vr This means that in (235) the function j  tf 

-' -) - The intensity of radiation from such a cloud is equal 

to 

~Lt~ ~/ 4  Jr )F ,r (238)[- IfoU 

Here 1(0) is the radiation intensity of the nonmoving cloud with distribution  

N0 (E,0,r) the same as for a moving cloud at fixed moment t  

Reabsorption of Synchrotron Radiation by Ultrerelativistic Particles2  

3 1 General Notes  

If there is a sufficiently large number of particles over the ray of  

vision, absorption and forced (induced) radiation by the radiatinggparticles  

themselves begin to have an influence This process is usually called reab­

sorption Reabsorption can in principle change the intensity and polarization  

of radiation quite essentially Furthermore, under certain conditions negative  

reabsorption is possible, i e , amplification of radiation Of course, the  

nature of reabsorption is closely related to the nature of the radiator in  

question Here we will be interested in reabsorption of synchrotron radiation,  

' At this point for simplicity we are using the velociLy averaged over the 

period of movement, i e , velocity v11 In this conhect ion, N(E,T~rt) should be  

taken to mean the mean expression over the period, so that the dependence of N  

on r is reduced to the dependence on angle 0 alone  
2 The authors are indebted t9 V V Zheleznyakov and V N Sazonov for  

their help in-writing this section of the article and their permission to use  
their unpublished results  
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i e , the radiators will be considered to be charged relativistic particles  

moving in a magnetic field This radiation and its reabsorption may change  

essentially if the radiating area contains a "cold" plasma in addition to the  

relativistic electrons (see 1, section 4 5 and (2 28) above) For example, in  

the case of radiation in a vacuum, reabsorption in any system of relativistic  

electrons with isotropic velocity directions is positive (i e , under these  

conditions absorption occurs, see [7, 8] and below) When a "cold" plasma is  

present, reabsorption of synchrotron radiation may become negative [8, 9]  

This means that the corresponding system (for example layer or cloud) of  

relativistic electrons with isotropic distribution of the velocities will act  

like a maser  

In investigating reabsorption earlier (see 1 and the bibliographic refer­

ences thereto) expressions for intensity of radiation of an individual particle. 

were used which were averaged with respect to all directions The conditions 

of acceptability and even the very nature of such an approach is not known in 

advance, and it is not suitable for determination of changes in polarization. 

Suffice it to say that the radiation has finite angular distribution, and its 

polarization properties depend essentially on angle V = 0 ­ &' between the 

direction of the velocity and the direction of the radiation (see (2 25)­

'(2 27) Therefore, in an investigation of reabsorption (and particularly 

negative reabsorption) considering the polarization of the radiation, a 

stricter analysis of the angular and polarization properties of synchrotron 

radiation is necessary It should be added that a "cold" plasma in a magnetic 

field is anisotropic (magnetoactive) and in many cases, even in a weak field, 

can be consideied isotropic with index of refraction ft= I - w6/2m2 with 

sufficient accuracy The polarization characteristics are particularly 
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sensitive in this respect, since the rotation of the polarization plane  

(Faraday effect) is integral; increasing with length of the path traveled by  

the wave (for example, see formula (1, 4.6))  

The overall problem requiring investigation in individual particular cases  

is as follows Within a certain area ("source"), the distribution functions of  

relativistic electrons N(p,r), concentration of "cold" plasma Ne(r) and  

magnetic field intensity H(r) are fixed We must determine the radiation field  

both within this area (at the source) and in particular at some distance from  

it Usually we speak in this case of the radiation of the source itself, but  

the necessity may arise of determining the influence of this "source" on  

radiation passing through it from another source located farther from the  

reception point (for this reason, the term source is conditional in nature).  

In the preceding we considered the source stationary and therefore time t  

has no part to play We cannot use this limitation for moving or expanding  

sources (see section 4 1) In practice, other limitations are possible in  

addition to the assumption of stability For example, under space conditions,  

due to the existence of a number of instabilities, the anisotropy of electron  

distribution by velocities rather rapidly disappears or, in any case, is  

sharply reduced (for example, see [10]). In this connection in most cases it 

can be considered that the distribution function for relativistic electrons  

+ ­

depends only on their energy, i e., we can use concentration N,(E,r)  

Furthermore, the dependence of N, Ne and H on the coordinates is always 

extremely slow in comparison to the radiation wavelength under space condi­

tions. Therefore, generally speaking, the approximation of geometric optics  

can be used and frequently we can simply consider all quantities constant over  

.the ray of vision in an area of length L Another possibility is to consider  
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that over length L concentrations N and Ne are constant, but field H is chaotic  

with intensity H  

In order to describe the radiation in the general case we must use Stokes  

parameters I, Q, U and V, related to tensor Ia$by the following relationships  

(a = 1,2)  

Z­­V) v=-Z'/ ,- j, 

1,­i  (3.1) 

The indexes 1 and 2 here correspond to the x and y axes perpendicular to the 

ray  of  vision 

Expression (3 1) was used above (2 36), but the concrete expression of aa 

through N in (2 36) relates to the case of radiation in a vacuum without 

consideration of reabosorption The relationship between the Stokes parameters 

and the intensity of radiation I, degree of polarization n, ratio of axes of 

polarization ellipse p and angle x, determining the orientation of-SL=s ellipse 

is such that (for more detail see, for example, [11] and [18], paragraph 6, as 

well as 1) 

/ ' fV (3.2) 

The  Stokes  parameters  used  (and  any  quantities  expressed  through  them)  relate 
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to radiation in a certain frequency interval av < v and correspond to averaging  

of the squared field expressions over time 6t i/Av. In an anisotropic medium  
+ 

or in particular in a magnetoactive medium, electric field generally 

speaking, is not perpendicular to k, whereas the induction vector D, is always 

orthogonal to the wave vector k In this connection it is more convenient in 

an anisotropic medium to define the tensor I [12] as I =  DD, a = 1,2 
a$a8 a%a 

The Stokes parameter in quantity (3 2) will now also relate to the vector D, 

not to E It should be kept in mind that intensity I = SpI = D DI + 

+D22D2 in the general case is not proportional to the energy flux. When 

radiation is received far from its source (in a vacuum or, more precisely, 

outside an anisotropac medium) this factor is generally unimportant. 

3 2 Transfer Equation for Tensor Ia  

In order to determine the tensor I we must use the transfer equation  

which has been investigated and discussed in recent years in a number of works  

[12-16, 2] (a particularly detailed discussion is in [12]) In a homogeneous  

medium for the stationary case (I independent of t), the transfer equation  

has the form  

Here  
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is the radiative capacity of a unit volume, i e , the power of spontaneous  

radiation from a unit volume per unit solid angle and unit frequency interval.  

For synchrotron radiation, which we will discuss for concreteness, expressions  

concerns Paa are determined by formulas (2 25)-(2 27) and (2 34), here, as 

quantity sl2 , it may be necessary to supplenent expression (Z27)--wiin terms of 

higher order with respect to m =  nc2/E (see [15]). In the presence of a plasma, 

we can also replace Z by q in these formulas (see (2 28)) 

Furthermore, tensors Rays and Kay, in (3.3) characterize the change in 

Ia due to Faraday rotation and absorption of radiation respectively The 

tensors Raa and K 8y6 are expressed through parameters characterizing the 

"normal"  waves  capable  of  propagation  in  the  medium  in  question 

In  an  anisotropic medium In which spatial dispersion is agnored, two 

"normal"  waves  can  propagate,  which  in  the  case  of  monaxial  crystals  and 

magnetoactive plasma are called ordinary (0or index 2) and extraordinary (e or  

index 1) waves Al quantities (of the field E,D,H) in normal waves in a  

4 
homogeneous medium depend on t and r according to an exponential rule and, for  

example,  

=A0e0 e(*o~e~ 
=1- 0 a .a* 35 

Here, as in (3.3), the waves are considered to propagate along the z axis, KO,e  

is the absorption coefficient with respect to amplitude (absorption coefficient  

with respect to power vO,e is equal to'2 0,e, frequently K is used to represent  

the absorption index cp/2w), w = 2v and K 0,e is the wave vector (KO,e = 

=  f0,e' where At is the index of refraction). The complex vectors y
,eOe  
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characterize the polarization of normal waves (Ao'e and a
00e are the arbitrary 

amplitudes and phases of these waves) In a magnetoactive plasma when 

absorption is ignored (i e ,  in practice with rather weak absorption) we can 

assume  

1 0 o­l  0 '1 eC3.6)a­e 

where summation 1s performed with respect to a = 1,2, as is done throughout  

with the Greek indexes encountered twice (in other words, for example  

Tf'y"0 - Syrtyo, for a more detailed presentation on normal waves in a  

magnetoactive plasma see, for example, [17, 181)  

The induction component of the arbitrary radiation field in the frequency  

interval Atd has the form  

A44c 

Forming the tensor DaD* from these components, and also calcuJating the  

derivative fraction d(-CD D*), after averaging with respect to time over the  
dz a  

rather narrow frequency interval Ae, we can arrive at equation (3.3) [12], with  

which (not,confusing index y with the polarization vector yl)  
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de~~e  ~~  X  tp  &  eeKS  -O 

(3.8)  

We note that expression (3 7) was produced in [13], but the expressions like  

(38) from [13] are inaccurate, since the radiation absorbed was not expanded  

into normal waves  

If the absorption is sufficiently great, the normal waves cannot be  

considered orthogonal (see (36)) and formulas (3 7)-(3 8) are no longer  

accurate This occurs, in particular, under conditions when the relativistic  

particles ("hot" plasma and "cold" plasma) make a comparable contribution to  

the real and (or) imaginary anasotropic parts of the dielectric premeability  

tensor s1) Transfer equation (3 3) without assumption (3 6) is analyzed in  

[15, 41], although only under conditions when the influence of the plasma can  

be considered fairly weak  

If the medium includes radiation of only one type (ordinary or extra­

ordinary), i  e , tensor I a consists only of fields type e or type 0, then 

R aysI Y = 0 This result can easily be produced formally, but is clear from  

the beginning, since according to the definition of normal waves in a homo­

geneous medium their polarization is unchanged. It is also obvious that for  

one normal wave Kay6I yS = -2Ke,Ia and the transfer equation (3 3) takes on  

'the following form where thereare no radiation sources  

- 26 ­



*(k et!eo (3.9) 

Relationship (3 9) as obvious from the beginning, since it reflects the fact  

that in normal waves the field vectors (in particular vector D), due to the  

- influence of absorption, change according to the rule e Ke,O (see (3 5))  

The quantities 2Ke, = p1e,(k) are the absorption coefficients with respect to  
+ 

power (intensLty) along the wave vector k If the direction of the phase and  

group velocities (direction of vectors k and v = dw/dk) correspond, then of gr 

course quantities 2Ke,0 correspond to the coefficients of absorption along the 

rays pe,0 In the general case pe,O =  2Ke, cos ae,0' where 0e,0 are the 

angles between ke, 0 and vgr,e, Under conditions (3 9), only the intensity of 

radiation I = I + I will change along K (i.e , along the z axis), since for 

the intensitythe0  dz =  -2K 1(e,0) As concerns the quantities TI,p (or ) 

and x, as was stated, they remain unchanged for normal waves Formerly, the 

same thing follows from (3 2) and (3.9), and is related with the fact that the 

quantities H, p and x depend only on the ratio of the Stokes parameters. It is 

also obvious that constancy of T1, p and x occurs in the case when the medium 

contains only one type of radiation source In this case  

4' 
A\

0 ,: C 
On( (10 C (3.10) 

This equation can be generalized to the case of a heterogeneous medium if the  
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approximation of geometrical optics is justified and, consequently, we can use  

the concept of rays (the possibility of a ray interpretation is limited also by  

the condition of weak absorption [17]) The corresponding transfer equations  

for intensity I(e O) of waves of one type has the form (for the conclusion see  

(19])  

(31  

Here I = I(e'O), and all remaining expressions also relate to waves of types e  

or 0 at frequency v (here v is the group velocity, 6 is the angle between k  
gr  

and vg, k = ! is the wave vector and V = 2K cos 0 is the coefficient of  
gr" C  

absorption along the ray, the element of ray length is ae) Here, whereas in  

(3 10) the quantity I(e O) in the magnetoactive plasma is generally not propor­

tional to the energy flux (see above), in (3 11) we are concerned with the  

intensity in the true sense of the word, i.e , the energy flux per unit solid  

angle  

Generalization of equation (3 11) to the case of simultaneous presence of  

radiation of two types, as far as we know, has never been done In a homo­

geneous and'stable medium this generalization evolves to equation (3.3) This  

equation is doubtless correct for the functions e0, R ya and Klys which ,  

depend rather slowly on the coordinates However, as we can see from compar­

ison of equations (3.11) and (3 3), this latter equation in a heterogeneous  

medium can be correct only if we ignore refraction (curving of rays) and the  

derivatives of dfl/dz in comparison with dI O/dz Also, of course, the usual  

approximation of geometric optics should be correct, i e , all quantities  
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should change little over one wavelength in the medium X = 2ns/w For 

example, the condition X e should be observed However, generally 

speaking, the more rigid condition /<4/e ­ 0 / is also 

fulfilled. This inequality, like the condition of correctness of the geome­

trical optics approximation, is typical for weakly anasotropic media in the 

calculation of polarization (see [17], paragraph 26 and [18], paragraph 24)  

We attempted above to illuminate the problem of the transfer of radiation  

from a rather general point of view It is quite obvious that highly complex  

or at least cumbersome and difficult solutions may be produced for I or the  

Stokes parameters. The situation is even more complicated if the "cold" plasma  

is rather dense and the magnetic fields rather strong Under these conditions, 

a consideration of the influence of the plasma can not be done by replacing the 

quantity = mc2/E by ii=  4 bj/7L (see (2 28)) In connection with this 

problem, see [20-24] The specific nature of the problem also appears if the 

distributaon function of the relativistic electrons with respect to velocities 

is anisotropic [15, 16, 25] Further, even for isotropic distribution of 

electrons with respect to velocities, special analysis is required for the case 

when the function N(E) depends rapidly on energy In this case, function N(E)  

can be considered rather smooth and the expressions presented below for the  

coefficient of reabsorption can be used if N(E) changes little over the  

interval of energies AE corresponding to radiation of neighboring overtones of  

frequency wj = eH/mc-mc2/e sin 2 0 The radiated frequency w = nw* and,  

consequently, /Aw/ = 
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".- ,f . .-4  
0­45  e/M P0  when 

is the wavelength (radiation in a vacuum) This condition of smoothness of  

change of the function N(E), therefore, has the form  

iii,  2. dX el/A_____" 

N d c d Iv' K (3.12) 

This condition is necessary where 0 7T/2 Where 0 < 712, condition (3 12) is  

sufficient, but not necessary due to the dependence of 1* on 0 (for more  

detail, see [163)  

Condition (3 12) can hardly be disrupted in most cases encountered in  

astrophysics (energy interval AE = -0 even in the meter wave band is less 
Zr 0 

than or on the order of 105 Nev and may be rather great only in areas with 

strong fields H > 10e) I 

Discussion of the entire range of problems which we have touched upon 

would require at least a special review A number of problems related to this 

area have not yet been analyzed. We will limit ourselves in the following, 

therefore, to a discussion of the two narrowest problems concerning the reab­

sorption of synchrotron radiation in a vacuum and in a plasma with quasi­

longitudinal distribution These cases, however, are in all probability the  

most importantfrom the point of view of application to radio astronomy  

Before discussing these calculations, it would be expedient to make several  
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notations concerning the usage of the method of Einstein coefficients for  

polarized radiation.  

3 3 Usage of the Einstein Coefficient Method for Polarized Radiation  

Both in an investigation of the transfer equation (3.3), and in other 

similar equations for the intensity of normal waves or Stokes parameters, it 

is necessary to calculate the coefficients e,,, Re 6 , Kaoy for (3.3), the 

coefficients and pe 0 =  2Ke, in the case of equations (3 10), etc As 

concerns the radiating capacity e ,, the basis used must be formula (34). The 

other quantities can in the general case be calculated by the kinetic equation  

method [15, 25, 26] Here, if we are speaking of the classical area  

(condition hv < E), we must use the classic relativistic kinetic equation The  

corresponding calculations are rather cumbersome Both for this reason and due  

to the natural tendency to produce results by the simplest and most obvious  

method, a significant role in analysis of reabsorption isplayed by the method  

of Einstein coefficients This method is generally well known, but its  

application to the case of a medium and particularly an anisotropjc medium,  

and also when polarization of the radiation is taken into consideration is  

somewhat specific Therefore it is expedient here to make a few notations  

concerning the method of Einstein coefficients as applicable to radiation in a  

medium (see [27], [18] paragraph 27, [17] paragraph 12)  

In a weakly absorbing (formally, in a transparent) medium, energy quanta  

innormal waves have energy hw and momentum hk =--R (w,s)s, where  

4. =  1 and the index j  corresponds to he3g iven wave (in a 
k = k s 
mlgnet~active plasma, we are concerned with ordinary, extraordinary and plasma 

waves) In the classical area, the results of calculations are independent of  

the quantum constant h = h/2w, but there is no reason not use quantum  
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concepts if they are convenient The energy flux and energy density in type 3  

waves are equal to I d ds and pjddfl, where do is an element of the solid angle  

and for convenience we shall temporarily use the spectral densities related to  

-the interval d = 2irdv The following relationship also occurs (vgr,=  

=  d/dkj is the group velocity for type 3 wavesj 

~/  ~ 
.Ad q  / ! J/eU/ t'/ (313) 

Let us introduce the Einstein coefficients An, Bn and B
m, such that Adwd is  

m n m  

the probability of spontaneous radiation per unit time upon transition between  

states m + n with radiation of a quantum of the given normal wave in the inter­

vals d and df Further,Bnpdwd is the probability of the same induced  

transition and B pdwdQ is the probability of absorption of a quantum upon  

transition n - m The coefficients An, B and Bm are connected by the  
m m n 

relationships  

A" Ak).a~w ~sw> (3.14) 

From this in a vacuum we produce the ordinary relationship  
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Here n and m mean any two states in the momentum space for which the energy 

difference E - E =  hw =  hv If we were concerned with the transition between 
m  n 

energy levels, we would be required to consider the statistical weights of  

these levels Essentially, relationship (3 15) is concerned with waves with a  

single polarization If we define the probability of an induced transition in  

-n 2 ;n c n  
a vacuum as B I dvdQ (as is done in 1, section 4 2), then where 

min n  

AndvdQ = 2wAnd d2 is the probability of spontaneous emission in the intervals m  m 

d\ and dS2 Finally, if A avds is taken to mean the probability of emission of  
m 

waves with both possible polarizations, we can utilize the relationship  

2 n c -n 
B =- , which was used in 1 However, this sets up a source of insuffi­

cient completeness and definition of expressions First of all, this method of  

transition to nonpolarized radiation is not well founded, although it might be  

expected that this produces the mean value of p for both possible polariza­

tions Secondly, in a vacuum or an isotropic medium, polarization degeneration  

occurs (possibility of selection of normal waves with any polarization), as a  

result of which the polarization relationship can be produced only by addi­

tional analysis  

Let us represent by Nn and N the concentration of electrons in states n  

and m with energies En and Em, such that Em - E = hw =_hv Then, on the 

strength of (3 14), the absorption coefficient p along the ray for a wave of 

type j will be  
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1Z -bzV1 A  4 Ii 
-Ti (3 16) 

For simplicity we will immediately consider in the following that IfiJ­ 11 

JJ 
and Icos a0 1. Further, analyzing the ultrarelativistic case (acicular 

radiation, i e ,  radiation only in the direction of the particle velocities) 

and considering the distribution function isotropic, we can produce Nn =  Nm = 

-k y/9w4p1P,- -,,/
rgP­ /A 

Here it is considered that in the classical case being analyzed hv <t cp E,  

Finally, the radiating capacity in the interval dv is equal to  

and by comparison with (3 4) it is clear that An =  An/2fr in (3 16) can be 
m in  

replaced by 2 (,), where p (Cv,E) is a function of the type of pa8(v) in  

(2 34), but related to a type j wave The significance of this will be  

analyzed below We present now the final expression for p,, under the  
a  

assumptions which we have made  
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7 ­ c fJ  p),Jy 

- (3.17),- ,e--v fr2-/E - E " 

where  

J(3.18)  

and where the equalities E =  cp and N(p)4p 2dp =  N(E)dE, it should also be 

explained that when summation in (3 16) is replaced by integration, the 

element of the phase volume is equal to p2dpd&, where dQ? is the element of the 

solid angle in which spontaneous radiation occurs (by definition, angle T 

between p and k is small). Formula (1,4.17) for the reabsorption coefficient 

is produced from (3 18), if we assume q, = l/2p(v,E), where p(v,E) is the 

spectral density of the power of the total radiation of one electron (1,2 21) 

As was already emphasized, there is no particular basis for this assumption, 

according to (3.17)-(3 18), the problem of calculation of p) consists of 

clarification of the sense of the quantities pj(vE) or q (v,E) In an 

anisotropic medium, this procedure is quite clear, since q) is the spectral 

density of the power radiated by an electron in the form of normal type j 

waves However-, in a vacuum or in an isotropic medium, where polarization 

degeneration occurs, we must clarify just what sort of waves are to be 
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considered normal in calculating reabsorption coefficient pI At first glance,  

it is true, it might seem that the result of calculations should be inde­

pendent of the selection of polarization of normal waves, since this  

independence is the essence of polarization degeneration Of course, with  

sequential performance of calculations by the kinetic equation method, this is  

how it is. definite selection of polarizations of normal waves in the case of a  

vacuum, and in principle the usage of normal waves itself in any medium, is not  

obligatory. However, in the method of Einstein coefficients, we are concerned  

only with probabilities (intensities), not with amplitudes of probability  

(fields) Therefore, coherence of various normal waves, which generally occurs  

in the case of degeneration, cannot be taken into consideration in the  

Einstein coefficients method In other words, based on the very essence of  

this method its usage generally involves determination of the type of waves  

for which the absorption coefficient is being calculated  

3  4 Reabsorption of Synchrotron Radiation in a Vacuum 

For a true vacuum, of course, it is impossible to state unambiguously the  

types of waves which are normal. However, in this case the problem of  

reabsorption does not occur. If we are speaking of reabsorption in a vacuum,  

we have in mind only the possibility of ignoring the influence of a "cold"  

plasma on radiation and reabsorption A relativistic plasma at the source  

influences absorption of waves according to the very sense of the problem of  

reabsorption This plasma should also have some influence on the index of  

refraction, in that the medium is anisotropic 1his is obviouS, s-in e we are  

concerned with relativistic particles (aplasma) in a magnetic field and,  

consequently, there is a physically distinguished direction in the system -- the  
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direction of the field As we know (see 1), if the distribution function of  

ultrarelativastic particles is not sharply anisotropic, their radiation is  

linearly polarized, and the electrical vector in the waves is maximal in the  

direction perpendicular to projection H. of vector H to the plane of the  

figure (inthe following these waves will be called polarized perpendicular to  

the field for brevity, while waves with vector E parallel to HI will be called  

waves polarized along the field) Under these conditions it is natural to  

expect that normal waves will also be polarized along the field and perpendic­

ular to the field (we recall that we are limiting ourselves to angles  

o > ­­ ,  i e , we are not analyzing the radiation of particles whose velocity 

directions make the small angle 5 - with the direction of 

the field, in this case linear polarization also occurs only under this 

condition (8> mc2/E) Calculations [41] confirm this assumption Thus, when 

formulas (3 17)-(3 18) are used to calculate the coefficients of reabsorption 

of synchrotron radiation by ultrarelativistic particles in a vacuum, we must 

calculate the coefficients pI and pIifor polarizations across the field and 

along the field Here as pL(v,E) and p,(v,E) in (3 18), as is clear from the 

above, we must take expression (1, 2.20) multiplied by 2w sin B Consequently, 

r 
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4ffM ' C Lif, j(3.20) 

We have presented here for convenience expressions which are correct in the 

presence of an isotropic plasma with fi = I ­ w6/2w 2,11 - tI4 1, although in the 

= remainder of this section we will assume n =  mc2/E In the ultrarelativ­

istic case in question with isotropic (or weakly anisotropic) distribution of 

radiating particles by velocity directions, waves with elliptical polarization 

are not considered (with an accuracy to terms on the order of 

n = V(mcz/E)Z +  w6/). 

Due to this fact in the analysis of natural radiation of the source we can limit 

ourselves to the Stokes parameters - and 1  or the intensities 

I =  l/2Iq) and1 1 =1 /2(1 - Q) 

The spectral density of the total radiated power  

;~9 ,9t-kAu411 % f4/9 /  (321) 

In a Vacuum  

. Omitted in original text ­­ Tr. 
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which, of course, corresponds watn (1,2.21)  

Let us introduce the representation  

~t  (3.23) 

it is easy to see that V(6) =  22  corresponds precisely to expression 

(1,4 17), used earlier as a coefficient of reabsorption. This result is 

natural, since t(6) is the arithmetic mean of 1, if For the power-law 

spectrum N(E) = KeE-7, we have [2, 14] 

JA1'~~A I~/ ~  I- Z  (324) 

This  formula  corresponds  with  (1, 4.18),  in  which  g(y)  is  determined  by  formula 

(1, 4.19) Here we present once more only the numerical values of g(y) (see  

Table  1) 

The polarization of synchrotron radiation in a vacuum without considering  

reabsorption for the case of a power-law spectrum of electrons (see 1, 3 28) is  
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. Z7t  7  'I "/ - - (3.25)
(07- (0) 

O17, 

Table 1 

019 7 8 4 5 

- I 

At  the  same  time,  according  to  (3 23) and  (3 24) 

(3.26)  

The transfer equation like (3 10) obviously has the following form in this  

case  

T.,,, - ,  
- T  (3. 27) 

I . 

where 
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E)yvy&E) cC(3.28)eI/(v =f (N{, 

The radiating capacity (3 28) can be easily calculated for a power-law spectrum  

by using expressions (3 19) and (1, 3 25) Let us limit ourselves at this  

time to the note that where there is no reabsorption for the natural radiation  

of a homogeneous source with dimensions L  

oS - (329) 

This clear from (3.25)  

In consideration of reabsorption, integrating equation (3.27) under the  

, condition that at the beginning of the layer (where z =  0) I =  0, we produce 

-/",T P_ J,,  
(3.30) 

For a thin layer (source with dimension L, pi I L < 1 and  

11Zi (3.31)­4 

For a thick layer p. 1L > 1 and  
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I LU _4-jrI 
Yr (3.32) 

Of course, those expressions from (3 31) and (3 32) which do not contain the y 

have general significance, in addition to their significance for a power-law 

spectrum We recall that when a power-law spectrum is used it  is assumed in, 

the calculations that y > 1/3 (see 1)  

We assume that on the ray of vision, the magnetic field is directionally 

chaotic on the average Let us assume further that as the waves propagate in 

this field the polarization of the waves does not change with a change in 

direction of the field (this occurs if the approximation of geometric optics 

is inapplicable for the description of the polarization of normal waves due to 

nonobservation of conditions such as XIaneQo/dzI <  Ine - n0 , mentioned above 

in section 3.2, for more detail, see [18], paragraph 24) Under these condi­

tions when the waves are propagated in a chaotic field the anisotropy of 

absorption disappears and waves with any polarization will be absorbed identic­

ally with a certain absorption coefficient p With the given angle 0, the mean 

absorption  coefficient  + =()  In  order  to  produce  p,  i e.,  the  mean 

value  of  v(0) with  respect  to  angles  e  between  the  field  H and  the  ray  of 

vision (velocity of radiating electrons), we must form the expression  
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In [2] it is shown that expression (3 33), not concluded strictly above, is  

actually the coefficient of reabsorption for a chaotic field The numerical  

values of the function g-y) are shown in Table 1 For convenience, we also  

present the following expression (see 1, 4 20)  

Concerning reabsorption in a heterogeneous field, see [40] The formula for P  

in the case of a "monoantergetic" spectrum of electrons is presented below (see  

3 47)  

The question naturally arises of the area of applicability of these 

formulas as concerns the possibility of ignoring the influence of  a "cold" 

plasma In order for this influence to be ignored, it is required first of all 

that the "cold" plasma have no influence on the radiation of the relativistic 

electrons. From this, we come to the conclusion (see (1, 4 26)) and the 

following section 3 5) that 
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Are (335) 

Secondly, it is required that the rotation of the plane of polarization of the 

"cold" plasma be slight, from which we come to the conclusion (see (1,4 6)) 

y,  j-/ A4M0a O (336) 

This condition, of course, is not required if the polarization of normal  

waves is determined by the relativistic particles (this occurs if the inequal­

ity the inverse of inequality (341) is observed Third, normal waves are  

linearly polarized only with observation of the same condition of the inverse  

inequality to (341) All of these three conditions together are sufficient  

for the influence of the plasma to be completely ignored. However, this is  

also possible in certain cases with less rigid requirements  

3.5 The Reabsorption of Synchrotron Radiation in the Presence of a  

"Cold" Plasma  

If there is also a "cold" plasma in the radiating area, we must first of  

all consider the influence of the cold" plasma on the process of radiation and  

secondly consider its influence on the propagation of waves. It was stated  

above that under the conditions  

S>' W>>0p (3.37) 
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in calculating the radiation, the plasma can be generally considered isotropic,  

where  

5 8) 

In this case the influence of the plasma on radiation is reflected, for  

example, in formulas (3 19)-(3 20)  

As concerns the propagation of waves, in order to ignore the anisotropy,  

conditions (337) are of course insufficient However, an essential simplifi­

cation can be achieved under these conditions, first of all as a result of  

the possibility in most cases of considering wave propagation quasi­

longitudinal, in which case  

It Jto - ---­
e( 3 9 )  

e  (j.1i 

It is assumed here that ine,0 ­ 11 < . The e and zero waves are both polar­

ized circularly with opposite direction of rotation of the field vectors. In 

the extraordinary wave e, these vectors rotate in the same direction as the 

electron located in the magnetic field The conditions of applicability of the 

quasi-longitudinal approximation (3 39) under the conditions of interest to us 

are as follows (see [17], paragraph 2 5' 
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(340) 

It is easy to see that in radio astronomy formulas (3 39) are practically  

always applicable if the influence of relativistic particles on the index of  

refraction is slight in comparison to the influence of the "cold" plasma  

considered in (3 39)  

As a result of the influence of relativistic particles [41]  

­ n )= -j(), where p(O) is the coefficient of reabsorption (3.24) 

or (3.33)-(3 34) Consequently, the role of relativistic particles in the 

calculation of iican be ignored under the condition ­ he) >  -, which  gives0  

us  

>-> s p , -Xer 
,1-"<- s­/­ 6,z -,I M 19(3' 41) 

Under conditions of applicability of formulas (3.39), the problem of the  

transfer of radiation is greatly simplified. The tensors Rat and K 8ys take  

on a very simple form under these conditions, so that equation (3 3) can be  

written in the following form upon transition to Stokes parameters [12]  
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d/I- feI  74­-

- (3.42) 

Here ke = W eand , are combinations of e6 corresponding to the  

eO c e,O IVQ,1Ja 

transition from tensor Ia to Stokes parameters (see (3 1), for example, 

r 1 91+ '  2 2 )  The Faraday effect is defined by the difference 

ne-no ke ­ k.) and has no influence on equations for the intensity of I 

=and the degree of circular polarization pc V/I, but influences the degree of 

linear polarization pe = Ir i and the orientation of the ellipse x (we 

recall that tan 2x = U/Q) It is convenient to introduce the intensities of 

extkaordinary and ordinary radiation 

According to (3-4-2) and [3 43)  
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o  I 

St 8  g  (3.44) 

This  result (3 44) is rather obvious from the beginning in the linear medium 

being analyzed, the intensity (energy flux) in each of the normal waves is 

independent of the intensity of the other wave. This conclusion relates to any 

normal waves, but with arbitrary (elliptical) polarization of the waves, 

intensities Ie and 10 are expressed in a complex manner through the Stokes 

parameters and the expediency of using them is not clear. At the same time, 

even with quasi-longitudinal propagation, complete characterization of the 

radiation requires tiat all four Stokes parameters be used (solution to 

equations (3 42), see [12]) 

Nevertheless, we will limit ourselves in the following to a disucssion 

only of the problem of a change in intensity of the waves e and 0, i  e , we 

will base ourselves on equation (3 44) When waves of only one type are 

present, the polarization is fixed and equation (3 44) describes the radiation 

completely. This situation occurs in particular with negative reabsorption for  

a sufficiently thick layer. Actually, with negative reabsorption the intensity  

of waves increases exponentially upon passage through the layer Therefore,  

upon leaving the thick layer, radiation consisting of those normal waves for  

which the absolute value of the coefficient of reabsorption p is greater will  

dominate.  

As was--axdicated, under conditions (3.37) the influence of plasma on  

radiation is considered by formulas (3.19)-(3 21) In this case, with an  
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accuracy to terms on the order of mc2/E, one half of the total radiation power 

q(v,E) = p(x;,E) defmned by formula (3 21) goes o,cx into  each-noilr-; 

circularly polarized wave Thus, qe = 1/2 p(v,E) and, according to (3.17) 

0 
A/YE) 

t (5.45) 

Asth4 ~  eC 
Ve-r'-ct l.Cla, o// -:-7., 

For better understand of these formulas and their comparison with other  

)2 
expressions, we note that 1 + V- 

It is clear from (3 45) that the influence of the plasma on synchrotron  

radiation and its reabsorption is not essential under the condition  

(3.46a) ~+{  k~  
This condition leads us (see (1, 4 25)) to the inequality (3.35) already  

presented In area (3 46a), the contribution of integral (3.45) for pe,O is  
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positive, from which at follows that in this case Pe,0>,0 always Since in a  

vacuum condition (3.46a) is always possible, in a vacuum p > 0 (see [7-9])i  

If  

hC 2./ >(3 46b)  

the influence of the plasma is definitive In this case, with the proper  

selection of electron spectrum N(E), the coefficient ve,0 may be negative  

[8, 9, 16, 25, 26, 28) For the power-law spectrum of electrons N(E) = KeE  

it is clear directly from (3 45) that negative value of 
pe,0 is possible only  

where y < -2, i e , for a spectrum which grows in a certain area more rapidly  

than E2 Otherwise, the integrand in (3 45) is always positive (function  

p(v,E) positive) The area where the function N(E) increases with increasing E  

usually cannot be very large and, in any case, with further increase in E it is  

replaced by the area where function N(B) decreases Therefore, in the case of  

negative reabsorption in question the power-law spectrus is not of particular  

interest (a spectrum of the form N(E) = KEN, y' > 2 where E < E < E2 and  

N(E) = 0 where E > B2 and E < EI is analyzed in [8]) There is great signif­

icance in a spectrum with a rather sharp maximum at a certain energy EI (the  

width of the spectrum should satisfy the condition bE - 3eUH v2/4nmevB, this  

condition is quite compatible with inequality (3 12). For such a spectrum [8]  

I This note is correct only for a rather smooth function N(E), when the  

expressions used for P  (see (3.17) and (3 45)) are correct For very "sharp" 

functions N(E) and anisotropic distributions of velocities, negative values of  

p may be encountered in a vacuum.  
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-/C 4r$,V~  . (3,47) 

2 
where E2 <E , 2~  

1 E mcr 
2v/vO (see (3 45))  

If E2 >"E2. = (Mc2 V/vO) 2 (see (3 46), then 
1  

-~ ~  x  e3  Iac  /$ b/a) 

04Pr mCVP 45 (3.48) 

In C3 47) and (3 48), N is the concentration of electrons with the energy in  

2  
question EI > mc 

Expression (3 47) is always positive, in case there is no plasma, this  

expression is correct for all energies, which is in accordance to that stated  

aboye. Function 4 (z1) may be negative, and in the corresponding area of values  

of z the coefficient p < 0 Coefficient pII is negative in an area on the  

order of (0 7-1 3) vmax' where vmax is the frequency at which the value of  

111I1 is maximal At this frequency  

,-., V., (3.49)  

At the same time, coefficient p at the maximum of the frequency spectrum (at  
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frequency Vm see (1, 2 23)) is equal to  

)U , (3.50) 

A number of estimates of the negative coefficient of reabsorption as applicable  

to various space sources are presented in [8, 28].  

In the preceding we have analyzed only the case of quasi-longitudinal  

propagation, in which the difference in coefficients pe - 110 was ignored  

In [25], transverse propagation (angle 6 = ri/2) in a plasma is analyzed, and  

negative reabsorption is found possible, In [26], expressions are produced for  

le and p0 with any angle e between the field and the ray of vision The  

coefficients p may be negative with any e but, of course, only for spectra  

N(E) of a definite type and not through the entire frequency range  

Furthermore, an expression is produced in (26) for the difference pe - PO with  

quasi-longitudinal propagation of waves This difference is slight, since  

Y-%a .j4o(3 s1) 

where a, b and d are coefficients on the order of unity. At the radiation  

maximum. 
(0) 2.. ro 
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and, consequently, in this case  

As is clear from conditions (3 46a) and (3 46b), in the area where the influ-d  

2 , -­
of the plasma as essential but still not too 

great 
ence 

and, consequently, Ite - P01[ mc2/E In the broad and most important area of 

values of the parameters, where w /w2 < mc2/E, the difference Ie 
e 

- 01
0 

­ n  = 

=  V(mcL/E)L + 6/w'  In most cases, the factor n as small, so that even with 

lpe,0oL > 1 it is difficult to expect observation of the condition 

1-e - p0 1L Z 1 If nevertheless this condition is fulfilled with negative 

Pe,O, one of the waves will predominate in the synchrotron radiation of the 

source, i.e., in this case total circular polarization should be observed (the  

general expression for the degree of circular polarization under condition  

iiie,0L > 1 is presented in [12])  

In the approximation in which Vie = 10 and the radiating capacities 

Ce = E0 , circular polarization cannot appear However, the linear polarization 

may also change in the case when the plasma has no influence on absorption 

and radiation of waves Namely, if condition (3 36) is not fulfilled, 

not only rotation of the plane of polarization, but also depolarization of 

radiation will be observed The problem is that under the anfluence of 

Faraday rotation alone, the degree of linear polarization is decreased by the 

factor 1, IIt[ J4. . ... ... k)].e,0 where k -,'O)ZIIY/k­e  and. .. . . ce,O 

L  is  the  dimension  of  the  radiating  area  along  the  ray  of  vision (for example, 

see [11, 12]). 'The degree of circular polarization from a thick layer with 

> 0 is  (see [12]) 
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:140*f  4(e Fe I 'p I (3.52) 

where upon transationtto this latter expression it is assumed that  

/ 4 << --

Estimate lpe .01 has already been produced (see (3 51)), as is clear from  

formulas (3.17), (3.18) and (3.28), in the area of applicability of these  

formule - 10 - p(O) On the other hand, formula (3 17) for pi was produced  

on the assumption of acicular radiation, i e., by ignoring terms on the order  

of mc2/E It is known that in a vacuum p(O) - mc2/E (see [1, 2, 29]) 

Combining the various estimates, we come to the conclusion that usually (where 

(0) o cz lgtado h 
p > 0), the degree of circular polarization p0 or p is slight and on the 

order of  

2­,  or k- CZj St 

Thus, the appearance of circular or elliptical polarization of the synchro­

tron radiation is significant, since in the simplest cases this radiation is  

always linearly polarized The circular or elliptical polarization of  

synchrotron radiation for the set of quasi-isotropic radiating electrons can  

arise only upon transition to relativistic energies which are not too high, or  
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upon consideration of the influence of anisotropy of the plasma (consideration 

of terms on the order of 1£W 1  12 ) Under 

conditions of negative reabsorption, in addition to changes in polarization,  

the dependence of the coefficients of reabsorption "1',1 or Pe,O on angle 6  

between the field and the Tay of vision may be significant As airesult, if  

the field at the source is heterogeneous but not completely chaotic, with p < 0 

radiation will be preferentially amplified in directions with maximal li 

Therefore, where IL > 1, and especially where IpIL > 1, individual areas of 

the heterogeneous source will appear anomalously brightly 

We have discussed only a small portion of the problem of the influence of  

a "cold" plasma on synchrotron radiation and its reabsorption In this area,  

ive must analyze a number of additional problems and possibilities (primarily we  

must be concerned with the negative reabsorption and polarization relationships  

under various conditions and as applicable to sources of various types).  

4. Some Problems Related to the Theory of Synchrotron Radiation  

4 1. The Radiation of Sources Moving at Relativistic Velocities  

Until recently, it was considered that under space conditions we must deal 

with relativistic velocities of macroscopic radiation sources (galaxies, stars, 

gas clouds and streams) only for very remote sources participating in the 

expansion of the universe. In other words, it was assumed that in the areas 

with red shift parameter z =  P < 1, all velocities of macroscopic radiation 

sources are nonrelativistic This statement is actually correct in most cases, 

in particular for such sources of synchrotron radiation as galactic clouds of 

supernova stars, the speed of the center of gravity of these clouds and the 

rate of their expansion is quite small in comparison to the speed of light c 
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(incidentally, clouds are known which expand at speeds v 109 cm/sec, so that  

v/c - 3"10-2). For sources moving at nonrelativastic speeds, the intensity of  

radiation is practically the same as the intensity of the same, nonmoving  

source (see formula (2.38))  

Some observations of radio galaxies and quasars give us reason to believe,  

however, that in these cases the radiation producing "clouds" and shells may  

have relativistic speeds [30-34] This conclusion does not seem particularly  

strange if we are speaking of sources of synchrotron radiation formed as a  

result of powerful explosions if as a result of an explosion (concretely an  

explosion in a galactic nucleus or quasar nucleus) ultrarelativistic particles  

are formed with tremendous total energies (apparently this energy for powerful  

radiogalaxies reaches values on the order of 1062 erg), the expansion of a  

cloud of such particles might quite possibly occur at relativistic speeds.  

This expansion could be contained only by a rather powerful magnetic field or  

by the presence of a large quantity of gas surrounding the area of the explo­

sion or coexisting with the relativistic particles (having in mind the presence  

of a rather dense "cold" plasma in an area filled with relativistic particles,  

i.e., cosmic rays) As was stated above, data are available which indicate  

that in the radiogalaxies and quasars at least in some cases the braking  

factors are insufficiently effective and the expansion actually does occur at  

rather high velocities v - c.  

In section 2 of this article we saw that for a cloud moving at relativ­

istic velocity Vr in the direction of the observer, the intensity of radiation 

increases by-(l - vr/C)­ times (see (2.38)) But this is not the extent of 

the matter For a rapidly moving cloud, the estimates concerning magnetic 

field intensity, concentration of relativistic electrons, reabsorption and 
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kinematic characteristics of sources all change [32, 33]  

Let us discuss first of all the basically elementary problem of the change  

in angular dimensions of the source  

Let us assume that a certain source is being observed Cthe nature of its  

radiation  is  insignificant  in  this  case),  the  rngula±  dn.ers;on  of-wfrich a 

changes with velocity w = d&/dt Using ordinary "nonrelativistic" consider­

ations, it could be concluded that the distance to such a source R cannot  

exceed the value c/ Obviously, this conclusion is based on the assumption  

that the velocity of the surface of the source perpendicular to the ray of  

vision (assuming, let us say, that the source is a cloud) v, = wR and cannot  

exceed the speed of light c (from this, R < c/w) However, in the case of  

relativistic speeds, this estimate of R is quite erroneous Te source of t.e  

error is actually the failure to consider the finite nature of the speed of  

propagation of light Actually, let us analyze a certain spherical shell  

(product of explosion), whose surface moves at constant velocity v. The  

explosion occurred at point 0 (Figure 5) at moment te and the signal concerning 

this explosion reached the point of observation P at moment tr = 0 Obviously, 

te = -R/c, where R is distance OP and the influence of the medium on the 

propagation of the signal (light, radio waves) is ignored Let us now find the 

location df the points (the "visible" shell), radiation from which reaches the 

observer at moment t =  t. The points on the "visible" surface will be char­
r+  

acterized by distance r from point 0 and angle 0 between vector r and line OP  

(Figure 5) The time of emission t' corresponding to point (r,e) and the time e 

of observation t is t = t r R'/c t + r cos  where  RI - R - r cos 0,ec c 

on the basis of the assumption r < R. On the other hand, obviously 

t, ­ to = t +_R =  r/v, since path r is traveled at speed v Combining these 

e 0 c 
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two expressions for t'e, we produce  

Th 6L/-C 9  (41) 

The factor (1 ­ cos e)-' corresponds here to the factor which appears in the 
c 

formula for the Doppler effect This is understandable, since in both cases  

the essence of the matter is consideration of the delay or, which amounts to  

the same thing, consideration of the finite nature of the speed of propagation  

of the radiation It is curious that the difference between the true form of a  

rapidly moving object and its form visible from some one fixed point, remained  

unnoticed for some time, and, in any case, has not been emphasized in the  

literature In recent years, howevar, this fact has been noted several  

times (see review [35]) and was discussed as applicable to quasars in [32].  

The speed of the "visible" envelope perpendicular to the ray of vision  

dr v  sin 8  dO U1 
UI =d­tsin  =  1 - v/c cos 0 and w =  t­ =  - Velocity U1 is maximum where 

dU1/dO = 0 for a certain angle max' where cos 8ma x  = v/c From this 

(4.2)  

The speed u = dr/dt =  v is  maximum  where  e  = 0  and  in  thjs point
- -cos a 

cV 
is equal to umax v/c -

Thus, the "apparent" rate of change of the dimensions of the envelope  

U1,max may be greater than the speed of light c. It is therefore clear that  

observation of the change in angular dimensions of an object can lead to an  

estimate of the distance to the object only if we assume nonrelativistic'speeds  
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of expansion of the object. If we know the distance to the object, measurement  

of the rate of expansion ul,max allows us to find the velocity of its surface  

v. Incidentally, it is assumed here that we are concerned with the movement of  

an envelope, for example as formed by an explosion If we are observing only  

the expansion of some luminous area, other possibilities also exist in  

principle First of all, material transfer may not be taking place at all  

Let us assume, for example, that the role of the explosion at point 0 is played  

by a burst of radiation The radiation propagating through the medium (for  

example a gas cloud) at velocity v, which may reach c, can cause secondary  

radiation (luminescence, scattering) [34] The envelope which we record at  

point p in rays of secondary radiation is described by the same equation as in  

the case of an explosion (4 1) Secondly, the expansion of a luminous area may  

correspond to the evolution of the object itself, not to its expansion Let us  

assume as an example that we have a large cloud of gas (protogalaxy), in which  

stars have not yet been formed The cloud evolves, and a situation is possible  

in which rapid star formation might begin almost simultaneously throughout the  

entire cloud The cloud will therefore become visible, or more precisely  

speaking, its brightness will change essentially However, this does not  

represent the propagation of explosion products or of any "signal" (in other  

words, the change in brightness of various areas in the cloud is not causally  

related) Therefore, the changes in angular dimesLons of the source provide  

no legitimate estimate of the distance to the source This example is probably  

quite unrealistic if we are speaking of changes in dimensions of a remote  

object (galaxy, quasar) over a period of several years We wish however to  

emphasize that when changes of angular dimensions of a source are observed, the  

distance to which is unknown , its distance or the upper limit of possible  
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distance can be estimated only on the basis of far-reaching -ssumptions. In  

practice, for quasars when rapid changes in the form of the luminescent form­

ations surrounding them are observed, the most probable assumption is that of  

the movement of these formations at relativistic velocities  

Macroscopic sources moving at relativistic v locicies relative-fo the  

observer (relative to the earth) wall be referred to for brevity as simply  

relativistic sources The simplest model of a relativistic source is some  

formation ("cloud") moving as a whole at constant velocity v, forming angle 0  

with the direction of the observer (x axis is line OP on Figure 5) If the  

velocity distribution function of the radiating particles is known, calculation  

of the intensity of radiation I and of tensor Ia in general can be performed  

using formula (2 36) However, this formula does not consider reabsorption and  

furthermore the problem of the selection of distribution function N requires  

special analysis This is also true of the selection of all other parameters  

of the "cloud," such as magnetic field intensity, density of "cold" plasma,  

etc In this connection, another approach is more efficient for a "cloud"  

moving as a unit whole the introduction of a collocated system of coordinates  

in which the "cloud" is not moving Calculation is then preformed in this  

system, then the intensities and other quantities are converted to the coordin­

ate system'of the observer (laboratory system) Here, which is the essential  

feature, in the collocated system the parameters of the "cloud" are naturally  

selected as is done for nonrelativistic objects (for example, in the collocated  

system the distribution function of particles and the magnetic field can be  

considered isotropic on the average, the "cold plasma" can also be considered  

isotropic and homogeneous, etc.) This analysis was performed as applicable to  

N 

a numbe of relativistic sources.in [33] (see also [32]). Let us represent by  
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s ,(r,t) and p' ,(r,t) the radiating capacity and coefficient of absorption  

(including reabsorption) of radiation at frequency v' respectively in the  

collocated coordinate system (for simplicity we will consider the radiation  

nonpolarized, r and t are the coordinates and time in the system of the  

observer) Then, the values of e, and p related to the system of the observer  

are  expressed  as  follows 

'-d, f4L) (4.3) 

These relationships are simplest to establish by considering the ielativistic 

invariance of the number of protons in an element of phase volume As was 

stated, in relation to e'\ and p',  is natural to make the same assumptions as 

for "ordinary" nonmoving sources Furthermore, for intensities of nonpolarized 

radiation in any inertial coordinate system (i e., in the collocated system and 

in the system of the observer), the following transfer equation is correct 

Integration of this equation for certain simple models of relativistic sources  

is performed in [33] Here in the expression for the radiatiop
I 
flux 

FV = fi do, qui-t-e large additional factors sometimes appear (in comparison with  

the expression for the flux of radiation from analogous nonmoving sources)  
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Thus, for a nontransparent (optical thickness T > 1) nonexpanding cylinder 

1 /4 
moving toward the observer at velocity vr, the factor 4 (1 - v2/c2) " 

r, r  

appears If expansion of the cylinder is also important, in some conditions  

- 13/4 (i - v2/c2) For a nontransparent sphere, the center of which is 
r  

- nonmoving, but the surface of which expands at speed v, C - v2/c2) 9/4.  

The total energy of the relativistic electrons in the sources with fixed flux  

F decreases simultaneously by C3 times Also, the change in intensity of V 

nonstationary sources with time varies, differently for different frequencies  

New possibilities also appear with respect to the polarization of the radiation  

of the sources Briefly speaking, analysis of relativistic sources opens a  

completely new chapter in astronomy (of course this problem was p-rt-ially  

analyzed long ago for the case of remote sources participating in the expansion  

of the universe) It has been our purpose simply to emphasize that for  

relativistic sources the ordinary (see 1) estimates of energy of radiating  

particles, field intensity, influence of reabsorption and other factors are  

generally not correct A more detailed analysis of the problem of relativistic  

sources might be the theme of a special article, and at the same time would be  

possible at the present time only to a very limited extent It might be  

thought that in the near future, a great deal of new progress might be  

expected in this area both as concerns the theory and as concerns observations  

4.2 Synchrotron Radiation of Protons  

Usually, when we speak of synchrotron radiation, we have in mind the  

radiation of electrons (and positrons) The existence of this radiation for  

protons and othgr charged particles is, of course, beyond doubt. However, the  

very simplest estimates indicate that in the overwhelming majority of realistic  
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cases, synchrotron radiation of protons is not of interest  

The synchrotron losses of energy for ult-a-ElaiVIsrIc paCi6dl-es with  

total energy E, mass M and charge eZ are equal to  

4 Z 41  

i.e , they differ by a factor of m-q from the losses for electrons (mass m,  

charge e) For protons, consequently, the losses are CM/m)4 - 1013 times less  

than for electrons The radiation of protons will be maximal at the following  

frequency (see (1, 2 23))  

e & 7ff\ -/ (  C  (4.6) 

Mle /C/z 

and the spectral power of the radiation at the maximum will be M/m =  1836 times 

less than for electrons (see (1, 2 24)) 

For the envelopes of supernova stars and irt radiogalaxies, H. < 10- 3, 

consequently, for protons with E < 1012 ev, frequency v(P)-- 106 and 

X (P) = c 
m (p)Z300 m, i e , the radiation lies beyond the bounds of the radio  

astronomymrange The power of the radiation, as is clear from the above, is  

also relatively low All of this can be confirmed with respect to the sun  

True, the field on the sun can be great, but usually protons are not acceler­

ated with E > 109-1010 ev With H1 - 102 and E :S1010 ev, frequency v
(p ) < 107  
m  

and > 30 m These estimates, performed 15-20 years ago, led to a  
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cessation of the discussion of the synchrotron radiation of protons (see  

[36a]) However, in recent times, in connection with the problem of the study  

of quasars, this question has once more attracted attention [36] The reason  

is that for quasars in the area of their "nuclei," responsible for the short  

wave radiation (infrared invisible portion of the spectrum), the magnetic  

field may be quite strong (this fact was noted some time ago, for example, see  

[37]) With H 2-104 oe and E - 2-1011 ev, as is assumed in [36], vM 1012  

- and X'm = c/vMm 3.10 2 cm Permissible values are produced for the total 

energy of relativistic protons at the source in this case and, in general, the 

corresponding model is noncontradictory Incidentally, if the radiation 

actually does come from an area with a strong field, the usage of the ordinary 

"electron" synchrotron mechanism involves difficulties resulting from the  

necessity of extremely rapid replacement of energy lost by the electrons. From  

this point of view it is only natural that protons should be considered  

resposible for the radiation, since the losses for protons are considerably  

less, relativistic electrons "do not survive" in the strong field More  

precisely, they could survive only under conditions of very effective acceler­

ation or rapid diffusion from an area with a weak field This need not be  

understood as a conclusion in favor of the proton synchrotron mechanism of  

radiation of quasars Quasar models are not being discussed here, and in most  

of them the particles responsible for the radiation are electrons, and various  

difficulties can be avoided to some extent by the selection of the required  

configurations and intensities of the magnetic field, as well as by considering  

the relativistic velocity of the envelopes (see section 4 1) The purpose of  

this section is only to recall the possibility, in the case of strong fields,  

,of looking upon proton synchrotron radiation as a realistic mechanism for  
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radiation at high frequencies All of the general formulas produced in 1 and­

above can be converted to this case if the mass of the particte m is taken as 

the proton mass M (a degree of caution is required in consideration of the 

influence of the "cold" plasma, the Langmuir frequency of the plasma 

W0 =  /4-reLNe/m contains the mass of the electron m, naturally, regardless of 

the rest mass of the radiating or absorbing relativistic particle) 

4.3 The Change in Magnetic Field Related to Deceleration (Energy Losses)  

of Particles Moving in a Field  

In analyzing the radiation of a charged particle moving in a magnetic  

field, and also in considering losses or gains in energy by this particle due  

to any other mechanisms, the magnetic field itself is usually considered given  

It is quite obvious that this statement of the problem has a limited area of  

applicability Actually, a particle moving in the magnetic field creates its  

own magnetic field HI, which weakens the external field H0 (diamagnetic  

effect) Field H1I depends on the energy of the particle E and, concretely, is  

decreased as this energy is decreased E = mc2/!V---71 . Therefore, in  

considering energy losses field HI is decreased, which can lead to a change not  

only of the total field H = H0 + Hl , but also of field H0 (consideration of  

mutual induction, see below) As a result of the change in the magnetic field,  
4  

the induction electric field e arises, which may in turn change the energy of  

the particle In this connection, the question has been raised as to whether  

the particle can "scoop" energy from the field and thereby lose not only its  

kinetic energy Ek = E - Mc2 , but also high energy [38], As will be shown  

below, this conclusion would be incorrect, but still the energetic relationships  

involved in the movement of a particle in a magnetic field considering losses  
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(or gains) of energy are doubtless interesting, and so we will now discuss  

zhem  

When a particle moves in a homogeneous magnetic field with intensity1 HO,  

the particle with charge e and mass m has magnetic moment  

1e1 121  tel,  -t­/ 

pz (4~7)(rL 

Actually, the rotational frequency of the particle in the magnetic field 

0 0- - 2 and the radius of the 

pTojection of the orbit on the plane perpendicular to 
+ 

H0, rH = v  = 

mvL/jeH v Finally, magnetic moment p  =  .-[rvj, from which we 

arrive at (4 7), where v1 is the projection of the velocity v In the plane  

perpendicular to the field H The sign in (4 7) can be selected from general  

considerations, since we know that the gas of charged particles is diamagnetic  

(without considering the spin). If there are many particles and they move  

independently, their moments are simply added In this case the natural field  
4  

of all particles is small in comparison with the external field H0 (this field  

is created by sources located outside the area in consideration) under the  

condition that 4-Np'< HO, where v = pijand N is the concentration of particles  

(moments) More precisely, if we are concerned with particles with various  

values of p, the role of Np is played by the total moment of a unit volume,  

e , magnetization M The inequality 47M < H., in terms of the theory of 

magnets, obviously means that B = H0 +-'4M- H0 (from which the appearance in 

in the fol­

lowing, however, fields H and B will not be distinguished, although this may be  

useful in the macroscopic approach to the problem being discussed (see the end  

of article [2])  

We are essentially concerned with magnetic induction 0 I  
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this inequality of the factor 4v is also clear),  

Considering (4 7), consequently, we come to the condition of weakness of  

the diamagnetic effect in the form  

<<< (4.8) 

where the overline indicates averaging with respect to the energy spectrum  

With isotropic distribution of ultrarelativistic particles (for definition we  

will keep in mind cosmic rays) as to the directions of their velocities v2  
c= 2/3, and condition (4 8) can be written in the form 

W ~% WLVVVA/ 

where the value of particle mass m is insignificant  

Thus, in order for the influence of the relativistic particles themselves  

on the magnetic field to be weak, their energy density must be small in  

comparison to the magnetic energy density However, under space conditions in  

many cases  

Wa.  (4 10) 

Under these conditions, the relativistic particles obviously influence the  

field, but generally speaking, the field may still be rather strong (in the  

sense that the--field in the medium is on the order of the external field H0 )  
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If as sometimes occurs  

wMt >> =w, OI2r  

the dynamic effect could lead to total screening of the field, instabilities,  

etc. The development of these considerations allows us, as might be expected,  

to produce additional information concerning the relationship between wr and wm  

under various conditions.  

Without discussing this interesting problem in greater detail (see [39] 

for some notes on the subject), let us analyze the case of a single particle, 

the properties and states of which are described by values of e, m, 

E = m2//---27T7, and v1 , for definition, we will consider the external field 

H0 to be homogeneous, created in a long solenoid (Figure 6) The current 

flowing through the "winding" of the solenoid per unit length of the solenoid 

ffjdr =­Ho,  where j is the density of the current in the "winding" 

(without considering screening a = jd, where d is the thickness of the 

"winding")  Let us consider that the trajectory of the particle is located 

completely in the solenoid, but rather far from its walls The volume of the 

solenoid 

The equation of the movement of the particle has the form  
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where f is the "force of friction" leading to the energy loss. From'this, 

after multiplying by velocity v, we produce 

(4 12)  

Of course, if acceleration occurs rather than losses, then P < 0, the force of  

radiation friction obviously is included in the expression for f  
4  

Let us represent the density of the currents creating the field as j, the 

current related to the particle being analyzed wall not be included here, its 

density is evS(r - r (t)) Then, the pointing theorem, which follows from the 

field equations, sho ld be written in the form 

_.ed ~)~~~-e, '- -? ~  - 13) 

or, after integration with respect to a certain volume V and consideration of .  

equation (4 12), in the form  

01Y-4 2Jg>­­/S  Jd  P)  (4.14) 
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where the pointing vector S = L-[cH] is integrated on the surface limiting  

volume V (obviously, n -is the external normal in this surface)  

Expressions (4.1l)-(4 14) are, of course, general in nature, but we will 

apply them to the case of the field in the solenoid (with no particle, field 

H = H0 = const) Within the solenoid, the total field H = H0 + Hl, where HI is 

the field created by the particle itself For simplicity, we will consider it 

to move in a circle At a sufficiently great distance r > rH from the particle 

trajectory, its field averaged over the period is equivalent to the field of 

the magnetic moment (4.7) with v, =  v Consequently, far from the particle 

~  C (4.15) 

where the value of ji(t') should be taken at moment t' =  t - r/c (see [4], 

paragraph 72) 

Figure 6 

Let us now consider that the winding of the solenoid is located at distance 

rfrom the particle, much less than the wavelength X = c/-, where T is the 

characteristic time of 'change of the moment due to losses (di/dt pI I /-) 

in this case, i e , ignoring delay, 
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­and/4 

(4.16) 

v= 

Let us now apply relationship (4.14), selecting the internal surface of a 

cylindrical "winding" as the integration surface Fields H  and  E1 are small 

quantities in comparison with H0 and therefore it can be shown that (for more 

detail see [2]) 

d2V +. -'-' "j , d j, 4--' k'­

i Jt(4 17) 

Let us assume now that field H0 is maintained constant in spite of the  

change in the moment of the particle U resulting from losses This can be  

done, of course, only by the work of external sources of emf ("batteries"),  

included into the circuit of the winding Under these conditions, considering  

(4 17) and the assumption that H= 9onst, equation (4 14) takes on the form 

z 

OIL' 

(4 18)  
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I e., the commonly used equation for particle energy in the presence of losses  

is produced Of course, this result is immediately clear from (4.12), since  

where H0 = const to the electrical field E = 0 However, this analysis allows  

us to see what occurs with the magnetic field and magnetic energy The total  

energy of the field in volume V (in the solenoid), according to (4 7) and  

(4.17), is equal to  

V-1­

(4.19)  

where we assume v =  v (movement in a circle) As the particle loses energy, 

moment jp iis decreased and the total magnetic energy increases, since 
++  

pH0 < 0. This increase occurs as a result of the energy flux flowing inside 

the solenoid At the end of the process (the particle has lost energy and its 
4.  

moment V = 0) field H0, according to the assumption, remains unchanged, and the  

"batteries" have expended energy  

­y4(O  H0 ~ 2(4.20) 

+ 

where argument t = 0 indicates the initial values of V, v and E, A somewhat  

more interesting statement of the problem is that in which field H0 is not  

considered fixed, but the "winding" of the solenoid is closed and formed by a  

flux of electrons experiencing no impedance (i e , the electrons describe  
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circles with radius r0 , filling a thin layer with thickness d, see Figure 6)  

Since the conductivity of the medium in a cosmic plasma is very great, this  

case has certain features near those encountered in reality. The degree of  

this similarity should not be overestimated, however, since under space  

conditions the entire medium within the solenoid would also have to be  

considered conducting Furthermore, for simplicity we will consider that the  

"winding" does not distort the field of the particle, i e., the field of moment 

ji This means that the "winding" must be rather thin (d< 6, where 

6 =  /mcL/4rezN0 is the depth of penetration of the field into the "winding" l ) 

under these conditions, we place the surface limiting the volume analyzed in 

(4 14) outside the winding Here H0 = 0, on+assumption (4 17) the energy flux 4 4+- 

S 0 and if screening is ignored as before H_0fHldv =  MH (see (4 17)) As a 
4ir 1 H0 (se(1)) Aa 

result, equation (4 14) takes on the form 

Pdjk  dV, (4 21) 

where fjEdv Is taken with respect to the volume of the "winding "  Obviously 

' For a free electron gas E = I ­ 4nezNe/mw2 and where e < 0, lei > 1, the 

field attenuates according to the law 

. ,=e  

e 
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integral jcdv = -, where _VI is the 

kinetic energy of ordered movement of electrons in the "winding," responsible 

for creation of field H0 (27ir 0dL is the volume of the "winding," Ne is the 

concentration of electrons considered nonrelativistic) As was already stated, 

the current density i/d = cH0/41d and, on the other hand, j  = eNeu It is easy 

to show that under condition 262/r0d < 1, consideration of the term fjedv in  

(4 21) would only mean the introduction of a small correction to the term  

dL8 V) In addition to Equation (4 21), solution of the problem requires that  

we use equation (4 12), expressing e through dH0 /dt As a result (see [2])  

____ ____ ________ ____ ___(4.22) 

where in the second expression we assume v = VI (Lircular movement) 

Using equation (4 21) without the last term and equation (4.22), we can 

establish the relationship between the field H0 (0) at moment t = 0 (here 

E =  E(0), v  =  v(0) and p =  p(0)) and the field H0(-) at time t  + -, when the 

particle has lost all of its energy (p(()  = 0,  v(-) = 0). This relationship is 

as follows [38, 2] 

0 Y 0 (4.23)
Vrj ...Y Po (0? 

- v2 (O)E(o) _ 

The sense of relationship (4.23), in which the equality v2c  

­1C)H 0 (0 ) follows  from  (4.7),  where  v±. v,  it  is  quite  clear  if  we  
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recall the discussion related to formulas (4 19) and (4 20) Namely, the total  

energy of the magnetic field in the solenoid (see (4 19)) is  

Further, on the assumption p(&)H  0  (=)  = 0, relationship (4 23) is a simple 

condition for retention of the full magnetic energy. In this case, however, 

the field H = H0 + H1 changes and is redistributed as the absolute value of 

moment p is decreased, field HI also decreases, therefore, in order to retain 

the total magnetic energy we must also decrease the homogeneous field H0 , since 
+! +  

field HI is directed opposite to field H0 (diamagnetic effect)  

Thus, the situation finally turned out to be rather trivial everything is  

reduced to consideration of the diamagnetic effect which occurs as charged  

particles move through a magnetic field, as well as the usage of the law of  

conservation of energy (pointing theorem). In both of the problems here  

analyzed (constant field H0, and solenoid with "short circuited winding") the  

particle loses only its energy and cannot "scoop" energy from the magnetic  

field. 

In order to make the picture complete and, more importantly, having in  

mind the possibility of generalization to a more complex case of a set of  

radiating particles, the problem discussed in this section is analyzed in [2]  

by a macroscopic method as well.  

The results, of course, agree completely with those outlined above.  
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4.4 Synchrotron and Other Mechanisms of Cosmic Radiation  

One of the clearly expressed tendencies appearing in modern astronomy is  

an ever broader consideration of relativistic phenomena and effects In  

particular, it has been determined that relativistic particles (cosmic rays)  

have a primary dynamic and energetic role to play ±n the ahivorse7--39, Ever  

greater attention is being turned to macroscopic relativistic objects (clouds,  

surges, see section 4 1) The synchrotron mechanism of radiation is essen­

tially relativistic and its utilization for explanation of an ever broader  

range of observational data is quite natural, due to the "relativization" of  

astrophysics just mentioned.- The most important thing, of course, is that the  

synchrotron mechanism is effective in a vacuum and, consequently, in the most  

rarefied areas of outer space At the same time, the magnetic field intensity  

H may also be comparatively low.  

Let us explain this statement by comparing synchrotron radiation with 

Bremsstrablung and the "plasma" mechanisms of radiation 

The intensity of Bremsstrahlung (for example, in a hydrogen plasma) is 

proportional to N2T, where N is the electron concentration and T is the 
e e  

temperature (assuming that hv < kT) Obviously, this braking mechanism is  

effective only in a rather dense plasma and, furthermore, the effective  

temperature of radiation will not exceed the plasma temperature T. Here, it is  

true, we have in mind an equilibrium plasma But absorption in general changes  

tittle for a nonequilibrium plasma containing an increased number of higher  

speed particles.  

The "plasma" mechanisms of radiation involve the excitation of various  

"normal" electromagnetic waves"rn the plasma considering subsequent transform­

ation of these waves into the radiation observed Waves mayle excited by  

- 76 ­



beams, shock waves and in general as a result of most perturbations of the  

equilibrium state of tne plasma However the influence of the plasma on the  

propagation of high frequency waves is determined primarily by the ratio of the  

carrier frequency w = 2Tiv to the plasma and gyrofrequencies respectively  

True, the characteristic frequency wc defining the influence of the plasma may  

be more complex, but for a plasma at rest usually we W, WC WC or  

) / + [ (O)]2 For a moving plasma to depends also on 2ru/X, where u is  

the velocity of the plasma and X = X0/ft is the wavelength in the medium (in a  

vacuum, of course, X = X= 2wc/w) For nonrelativistic objects in most cases  

27iv/X - ou/c < w and consideration of plasma movement introduces nothing new in  

principle. It can be affirmed in this case that the influence of the plasma is  

generally slight under the condition  

Z_ _ __ _ (4 2S) 

In interstellar space, in the envelopes of supernova stars, in the galaxies and 

radiogalaxies (with the exception of their nuclei) according to well known 

estimates Ne < 104 cm-3, H < 10-2 oe and, consequently, w0 < Sl06, 

w <105 and  w% 5.106' Xc  = 
27hz 

> &OV -d (for the area of the 

galactic disk, Ne < 1, H < 10 and Ac > 30 km) These estimates demonstrate 

that for the galaxies and many galactic nebulae, the "plasma" mechanism of 

radio radiation is ineffective or, more precisely, has no rofe to play in the 
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typical radio astronomical wavelength range At the same time, well known  

estimates of frequencies and intensities of synchrotron radiation indicate the  

- effectiveness of this mechanism in weak fields (H 10 2 and even H < 10-4)  

with permissible concentrations of radiating relativistic electrons  

All of the above is elementary and well known, but we have recalled the  

situation in order to emphasize with the greatest possible clarity the  

nonuniversalaty of the synchrotron mechanism Whereas in the beginning of the  

1950's, the usage of the synchrotron mechanism in astronomy encountered  

difficulties (in the most part apparently of a psychological nature), after the  

successes achieved by applying the synchrotron mechanism, an attraction of the  

opposite sort was observed Specifically, some of the limitations which arise  

when the synchrotron mechanism is applied to quasars came to be looked upon as  

indications of the possible closeness of the quasars, etc Actually, whereas  

the more or less ordinary synchrotron model of the source encounters diffi­

culties (suffice it to say that with fixed dimensions and consideration of  

reabsorption, the luminosity of the synchrotron source is limited), a number of  

other possibilities arise without even changing the assumed distance to the  

source Thus, all estimates can be essentially varied for synchrotron, but  

relativistic sources (see [32, 33] and section 4 1 above) Furthermore, for  

sufficiently dense sources the synchrotron mechanism loses its exclusive  

position, since inequality C4 25) may not be observed In the case of the  

radio radiation of the sun, the possibility and necessity of analyzing non­

synchrotron mechanisms has long been well known (for example, see [17, 18])  

The same thing is true of quasars and the compact source of long wave radio  

radiation in the Crab nebula in the sense that the '"plasma"mechanisms can be  

rather effective for these objects in principle [40] In  all  probability,  the 
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mechanism of radLatior of the pulsing radio sources (pulsars) is also a  

"plasma" mechanism [43]  

It should be added to the above that synchrotron radiation, wnich is  

analyzed in astronomy under conditions in which reabsorption is nonessential,  

is coherent -- the intensity of the radiation of the sources proportional  

to the number of radiating particles or in homogeneous conditions to their  

concentration N Reabsorption (both positive and negative) makes up a definite  

class of coherent phenomena Suffice it to say that the reabsorption coeffi­

cient V depends on N and, consequently, the intensity of the source including­

consideration of reabsorption is a nonlinear function of N (in the simplest  

case I - Ne " (N)L) In a sufficiently dense source, particularly in the  

presence of various movements, the formation of instabilities and turbulence, a  

coherent radiation of a slightly different type appears -- the grouping of  

radiating particles in areas comparable to a wavelength The intensity of the  

radiation of a cloud of particles with characteristic dimensions Z < A is  

proportional to N2 (for a quasi-spherical cloud, I N213) Obviously, the  

nonlinear dependence of I on N is retained in a much more generalcase as well.  

The generation, propagation and mutual transformation of various waves in a  

medium (isotropic or magnetoactave plasma) are also coherent (collective)  

processes, involving many particles in the medium (concretely, a "cold"  

plasma) In dense sources, when relativistic electrons and a "cold" plasma are  

present, it is generally impossible to distinguish various coherent processes,  

and the boundaries between the synchrotron and "plasma" mechanisms disappear  

Of course, this is also true of relativistic sources (for relativistic "plasma"  

27 
sources parameter 7 = 

cflu 
is comparable with w and the possibilities for 

disruption of condition u > 
2ir 

w CW(%0, -H,-u) are even more 'widely expanded) 
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It is therefore clear that the theory of dense sources can be based on concep­

tions concerning the noncoherent synchrotron mechanism of radiation, supple­

mented by a considerataLn of reabsorption, only in certain particular cases  

One of the most important problems for further investigation is a more detailed  

and comprehensive analysis of coherent processes and effects in dens. cosmic  

radiation sources (in this connection, see [7, 17, 18, 27, 40, 42, 43]).  
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