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ABSTRACT 

Blockchain in recent years has exploded in popularity with Ethereum being one of 

the leading blockchain platforms. Solidity is a widely used scripting language for creating 

smart contracts in Ethereum applications. Quality assurance in Solidity contracts is of 

critical importance because bugs or vulnerabilities can lead to a considerable loss of 

financial assets. However, it is unclear what level of quality assurance is provided in 

many of these applications. 

Mutation testing is the process of intentionally injecting faults into a target 

program and then running the provided test suite against the various injected faults. 

Mutation testing is used to evaluate the effectiveness of a test suite, measuring the test 

suite’s capability of covering certain types of faults. This thesis presents Deviant, the first 

implementation of a mutation testing tool for Solidity smart contracts. Deviant 

implements mutation operators that cover the unique features of Solidity according to our 

constructed fault model, in addition to traditional mutation operators that exist for other 

programming languages. 

Deviant has been applied to five open-source Solidity projects: MetaCoin [22], 

MultiSigWallet [23], Alice [21], aragonOS [24], and OpenZeppelin [25]. Experimental 

results show that the provided test suites result in low mutation scores. These results 

indicate that the provided tests cannot ensure high-level assurance of code quality. Such 

evaluation results offer important guidelines for Solidity developers to implement more 

effective tests in order to deliver trustworthy code and reduce the risk of financial loss. 
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CHAPTER ONE: INTRODUCTION 

Blockchain is an increasingly popular technology that led to one of the biggest 

economic anomalies in recent years. As a popular platform for blockchain applications, 

Ethereum provides a Turing-complete instruction set [12], allowing for the development 

of more computationally expressive smart contracts in blockchain applications. Among 

the several high-level programming languages that can compile into Ethereum Virtual 

Machine (EVM) bytecode, this thesis focuses on Solidity. Different from traditional 

programs, a Solidity smart contract cannot be simply patched after it has been compiled 

and added to the blockchain because of the nature of Ethereum and blockchain. Quality 

assurance of smart contracts is therefore extremely important in the development process. 

For example, a vulnerability in the DAO (decentralized autonomous organization) 

resulted in the loss of approximately $50 million worth of ether (Ethereum’s 

cryptocurrency) [36]. 

As for traditional software development, software testing is one of the common 

techniques for quality assurance in any programming language, Solidity included. 

Software testing exercises a Solidity program with test cases, aiming to find faults or 

vulnerabilities. Most of the existing popular open source Solidity projects have included 

built-in tests. Nevertheless, it is unclear what level of code quality can be assured by 

these tests or how effective the tests can be. One way to assess the testing effectiveness is 

to evaluate how many types of faults that can be revealed. In reality, however, real-world 

projects seldom keep track of every fault that has occurred during their development 
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processes. To address this issue, a widely-applied approach is mutation testing, which 

aims to simulate programming faults by creating mutants of a given program [40]. Each 

mutant has one fault injected by a mutation operator. A mutant is said to be killed if it 

fails one or more test. A live mutant not killed by any test can be either faulty or 

equivalent to the original program. Mutation score, i.e., the mutant-killing ratio between 

the number of mutants killed and the total number of non-equivalent mutants, is often 

used to indicate the fault detection capability of given tests. Mutation testing has been 

applied to various programming languages, such as Java, C, and JavaScript. Experiments 

have shown that mutants are indeed similar to real faults for the purpose of evaluating 

testing techniques [41]. 

In this paper, we present Deviant, a mutation testing tool for Solidity smart 

contracts. It aims to automatically generate mutants of a given Solidity project that 

simulate various faults that may occur during the programming process, and 

automatically run the test cases of the given Solidity project against each mutant so as to 

evaluate the effectiveness of the given tests. Thus, Deviant can help Solidity developers 

deliver higher quality code, reduce the risk of financial loss, and increase user 

satisfaction. 

This research is the first attempt to apply mutation testing to Solidity smart 

contracts. The contributions are twofold: 

• In addition to the mutation of traditional programming constructs (e.g., 

expression and inheritance), Deviant covers all the features that are unique 

to Solidity smart contracts. This allows for the evaluation of tests that 

target Solidity-specific features. 
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• Deviant has been applied to five Solidity programs to evaluate the 

effectiveness of their tests. The results indicate that these tests have not 

achieved high mutation scores and thus cannot provide a high-level 

assurance of code quality. 

The rest of this paper is organized as follows. Chapter Two introduces 

background information and related work on blockchain, Ethereum/Solidity, quality 

assurance for smart contracts, and mutation testing. Chapter Three describes the design of 

Deviant, focusing on the fault model and Solidity-specific mutation operators. Chapter 

Four discusses the implementation. Chapter Five presents the experimental results and 

provides analysis. Chapter Five concludes the paper. 
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CHAPTER TWO: BACKGROUND AND RELATED WORK 

Chapter Two presents the background information and related work for 

blockchain, Ethereum/Solidity, quality assurance of smart contracts, and mutation testing. 

Section 2.1 gives the background of blockchain and explains why it is a growing trend 

among software developers. Section 2.2 explains Ethereum and Solidity, highlighting 

uniqueness and differences that exist between Ethereum and the earliest form of 

blockchain. Section 2.3 reviews related work in quality assurance for smart contracts and 

how it relates to our work. Finally, subsection 2.4 concludes with an overview of 

mutation testing and its purpose. 

2.1 Blockchain 

Blockchain is a data structure comprised of records that are linked together using 

cryptography [1]. The blockchain can be described as a decentralized distributed database 

or ledger. A blockchain is considered decentralized due to the fact that there is no central 

authority that controls what happens on the blockchain. The blockchain is controlled by 

the nodes that participate in the blockchain network, where each node that is participating 

has a copy of the blockchain. This means that if a malicious user were to try and fake 

parts of the blockchain, it would be easily considered invalid as everyone else on the 

blockchain has access to all the records that exist. Because every node on the blockchain 

has access to the records that exist, all of the nodes in the network are connected to one 

another, which is why the blockchain is considered distributed. A blockchain can be 

thought of as a database because the blockchain allows for the storage and retrieval of 
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data, while it is also considered a ledger because information is always being appended to 

the blockchain. This means that information is constantly being added to the blockchain, 

never removed or altered. This feature of the blockchain is called immutability and is 

crucial for confirming the history of transactions that actually take place on the 

blockchain. The earliest form of blockchain, Bitcoin, was invented by an anonymous user 

going by the alias Satoshi Nakamoto [2]. 

Figure 2.1 shows blocks in the Bitcoin blockchain model, where the block 

contains the information such as: the time the block was created, the unique nonce 

number, the hash of the previous block, and the list of the transactions that have taken 

place since the previous block was added. 

 
Figure 2.1 Blocks in the Bitcoin blockchain model [12] 

Blockchain technologies use scripting languages for their transactions, including 

Bitcoin. While Bitcoin might be extremely relevant to this day, it still has several major 

weaknesses with its own language, Script. The first noticeable difference between Script 

and other common programming languages is that it is not Turing-complete, meaning 

that it does not support loops or recursion. This feature of Bitcoin was an intentional 

design choice, as Bitcoin wanted to prevent the halting problem that exists in Turing-

complete languages. The halting problem is essentially given a Turing-complete 

language, how can we determine if the program will actually stop execution. If the 
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Bitcoin blockchain supported loops or recursion, then it is highly-likely an attack would 

take place in the form of a Denial of Service (DoS) attack or a programmer error would 

lead to infinite execution. With the removal of loops and recursion, Bitcoin can ensure 

that the script execution will eventually stop. 

Blockchain also uses a specific record keeping model called Unspent Transaction 

Output (UTXO). The UTXO model is named as such because output from previous 

transactions are used as input for new transactions. What this means is that when a 

transaction takes place, the entirety value of the user’s UTXO is used as input for the 

transaction. The designated amount of Bitcoin is sent to the given address, where the 

remaining value from the Bitcoin UTXO is actually sent back to the sender’s address in 

the form of a new UTXO. 

Bitcoin is however not the only blockchain platform that exists. There have been 

many blockchain platforms that have been introduced since Bitcoin’s inception, most of 

which have made an effort to improve on some of the concepts behind Bitcoin. In some 

cases, these new blockchain platforms introduce new ideas entirely or are made 

specifically for certain purposes. 

2.2 Ethereum and Solidity 

Ethereum is one of the most popular blockchain platforms that exist today, mostly 

due to its own innovative design decisions that have differentiated it from Bitcoin. There 

are several languages that can compile to Ethereum Virtual Machine (EVM) bytecode; 

however, the most popular of all the scripting languages for Ethereum is Solidity. This 

section introduces the Ethereum blockchain model and also introduces the scripting 

language Solidity. 
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The philosophy behind Ethereum is to provide a blockchain with an instruction 

set that is simple, universal, modular, agile, and non-discriminatory [12]. Ethereum needs 

to be simple so that an average programmer can implement a specification without 

trouble. In a similar vein, Ethereum must be universal such that if the program can be 

mathematically defined, it should be able to be implemented within Solidity. Ethereum 

must be also modular so that the separate components of Ethereum are self-contained, 

while also being agile so that if any of these modules need to be updated, it can be. 

Finally, Ethereum needs to be non-discriminatory such that Ethereum should not actively 

try to restrict specific categories of usage. There are the primary concepts that were 

considered in the design of the Ethereum blockchain. 

The Ethereum model, unlike Bitcoin, is based on the account model. Ethereum 

accounts contains key data values that make the Ethereum protocol work. Like Bitcoin, 

Ethereum accounts contain a nonce, which is a counter to make sure that transactions can 

only happen once, meaning that the nonce should be unique. Ethereum accounts also 

contain the balance for that specific account, where the currency that Ethereum uses is 

known as Ether. This is different from the Bitcoin model, which does not necessarily 

have a UTXO matching directly to an account. Another important aspect of Ethereum is 

that an account may optionally contain contract code. This means that there are two types 

of accounts for Ethereum, externally owned and contract codes. The externally owned 

accounts are controlled by private keys, whereas the contract codes are controlled by the 

contract code that is stored on the account. 

Transactions are an important part of Ethereum that refer to the signed data 

package that stores a message to be sent from an externally owned account. The 
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transactions contain: the recipient of the message, a signature of the sender, the amount of 

ether to transfer from sender to recipient, an optional data field, a STARTGAS value that 

is representative of the maximum number of computational steps the transaction 

execution is allowed to take, and a GASPRICE value that represents the fee the sender 

pays per computational step. The STARTGAS and GASPRICE values are incredibly 

crucial to prevent DoS attacks. As mentioned previously with Bitcoin, a blockchain is 

susceptible to DoS attacks if code running on the blockchain causes infinite execution. 

Bitcoin prevented this by not implementing a Turing-complete language. However, since 

Ethereum is considered Turing-complete, Ethereum uses gas to prevent this problem. Gas 

is a resource that is used by contracts that are executing code and when the gas runs out, 

then the code will stop executing. An example of an Ethereum state transition is given in 

Figure 2.2. 

  
Figure 2.2 State transition model in the Ethereum blockchain model [12] 

There are currently several scripting languages that exist that can be compiled into 

EVM bytecode that can be deployed to the Ethereum blockchain. In fact, any developer 

can create their own language as long as they write a compiler that can compile the 
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language into valid EVM bytecode. The most popular of these scripting languages is 

Solidity. Solidity is a scripting language that is designed to be simple and rather intuitive 

for most programmers. To achieve these features, Solidity is designed to closely resemble 

JavaScript, sharing many of the same basic programming constructs and syntax. Solidity 

is commonly used to create decentralized applications (dApps), which are applications 

that take advantage of the inherent features that come with the blockchain model. While 

it may commonly be assumed that blockchain can only be used for cryptocurrency, it has 

also been demonstrated to be useful in several areas. In fact, there have been several real-

world and several proof-of-concept projects that have demonstrated the usefulness of 

blockchain in fields such as online voting, healthcare, and governance systems. In many 

cases, Solidity is often used as the language for implementing these projects because of 

its simplicity and similarity to traditional programming languages. 

Ethereum, while being innovative in the field of blockchain, is still susceptible to 

faults and vulnerabilities. This can be especially troublesome considering that the 

Ethereum blockchain is immutable, meaning that once contract code has been deployed 

to the blockchain, it cannot simply be patched. Naturally, Solidity will inherit these faults 

and vulnerabilities considering that the Solidity code is compiled and deployed to the 

Ethereum blockchain. However, Solidity has its own faults and vulnerabilities that are 

unique to itself. This is because the Solidity compiler may potentially create faulty or 

vulnerable EVM bytecode, given that like all code, isn’t guaranteed to be safe if it is 

implemented incorrectly. Of course, there is also a potential for Solidity developers to 

introduce their own faults in their application. Because Ethereum and Solidity are 

relatively new technologies, there are some concepts that are not entirely understood by 
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many in the Ethereum community. In fact, throughout Ethereum and Solidity’s lifespan, 

there have been several instances where a fault or vulnerability has had a tremendous 

effect for users of the Ethereum blockchain. For example, a company known as The DAO 

(decentralized autonomous organization) contained a vulnerability (known as reentrancy) 

that led to an attacker stealing approximately $50 million [36] worth of ether (Ethereum’s 

cryptocurrency). When these situations happen, it typically requires a hard fork of the 

Ethereum blockchain. A hard fork occurs when a non-backwards compatible protocol 

change occurs in the blockchain. This means that nodes (users) that wish to use the latest 

version of the Ethereum blockchain must update their Ethereum version to be current or 

else their future transactions will not be valid on the latest version of the blockchain. 

Because of the consensus requirements of blockchain, these hard forks require a majority 

vote in favor of the hard fork. This means that performing a hard fork can be quite a 

nuisance for the Ethereum community if they constantly have to do so. In a similar 

manner, Solidity can be quite troublesome if there exists faults or vulnerabilities in 

contract code. When the Solidity code is stored on the blockchain, it is immutable, 

meaning that they cannot patch a bug if they find it. Because of this, quality assurance for 

smart contracts is especially important. 

2.3 Quality Assurance for Smart Contracts 

With smart contracts having the capability of managing a considerable amount of 

assets, there has been much research done in the area of quality assurance for Ethereum 

and Solidity smart contracts. In the case of security, there have been many surveys done 

on vulnerabilities that exist in the Ethereum platform. Atzei et al. [3] conducted a survey 

on the security on Ethereum, particularly the vulnerabilities and faults that exist in both 
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Ethereum and Solidity. Atzei provides a fault taxonomy that describes the vulnerabilities 

and faults, breaking them down into three levels: Solidity, EVM, and Blockchain. 

Solidity vulnerabilities are the vulnerabilities that exist because of the improper use of the 

Solidity language by the programmer or by the language itself. EVM vulnerabilities are 

the vulnerabilities that exist in the instruction set or limitations that exist in the actual 

implementation of Ethereum. Finally, blockchain vulnerabilities are those that exist 

because of the limitations of the blockchain model. Atzei also surveyed several attacks 

that exist on Ethereum particularly the famous DAO attack and others such as other 

various vulnerabilities that exist in other applications. This survey concludes that there 

are some key areas that will be researched in the foreseeable future such as verification of 

smart contracts and low-level attacks. In our research, we primarily attempt to replicate 

the faults from the taxonomy that we can directly observe in Solidity. These faults are as 

follows: 

1. Call to the unknown: There are two primary ways that a call to the 

unknown fault can occur. One reason that a call to the unknown fault can 

occur is if the smart contract developer sends the wrong data to the 

receiving contract while using the call function. For example, if a 

developer tries to call a function that doesn’t exist in a contract, then the 

fallback function for that contract will execute, causing unknown behavior 

is the developer doesn’t anticipate this. The second reason is that the 

developer associates a contract with the wrong address or vice versa. The 

reasoning for the call to the unknown fault is similar, when the data being 



12 
 

 
 

sent to the receiving address is received, the receiving contract will not 

know how to interpret the data, causing the fallback function to execute. 

2. Exception disorder: In Solidity and Ethereum, not all exceptions are 

handled the same. Like all programs, when contract code is being 

executed, there is a chance for an exception to occur. In the case of 

Solidity, typically an exception will be thrown. However, it is quite 

common for developers to incorrectly handle exceptions. For instance, 

take the send function call in Solidity, which returns false when it fails 

whereas the function transfer throws an exception on failure. When a 

developer calls a contract with the send function call, there is a likely 

chance that they mishandle the exception-case if they do not realize that 

send is being used. Because send only returns false, a developer might not 

be able to determine where the failure is happening. 

3. Gasless send: There are instances where a developer might run into an out-

of-gas exception when they do not expect it. This unexpected exception 

typically occurs when a developer is using the send function call. This 

exception is thrown because the send function call is compiled down to the 

call function call with an empty signature. Now, the send function call 

always has a gas stipend of 2300, meaning that it only has a limited 

number of instructions that can be ran before all the gas has been spent. 

Now, since the signature field is empty, it will invoke the callee’s fallback 

function, which may potentially have many gas-expensive instructions. 



13 
 

 
 

When executing these instructions, if there are too many, then the out-of-

gas exception will occur. 

4. Type casts: While Solidity does perform type checking, it cannot directly 

handle checking things such as addresses directly. What this means if that 

if an address is cast to a contract, the only thing that Solidity does it check 

the signatures of the functions of the contract that the address is being cast 

to. The problem is that Solidity does not actually check to see if that 

contract resides at that address. For instance, an address may cast to the 

wrong contract, meaning that when the casted contract is called, it will be 

highly likely that its fallback function is invoked, creating non-

deterministic behavior for the developer. 

5. Reentrancy: The most devastating vulnerability to date, the reentrancy 

vulnerability has led to major financial devastation, such as “The DAO” 

attack that caused losses of approximately $50 million [36][4] at the time 

of the attack. The reentrancy attack is based on the fact that it is possible 

to re-enter a non-recursive function before it is terminated. Take the 

example: 

 

contract vulnerable { 
 function badfunct(address addr) { //vulnerable code 
 addr.call.value(200)(); 
 }  
} 
 
contract attacker { 
 function() { //fallback function 
 vulnerable(msg.sender).badfunc(this);  
 } 
} 
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In the above example, the vulnerable contract’s function badfunc, 

sends the given address ether. Now, the attacker contract has its fallback 

function invoked, which simply calls the same badfunc that was 

previously called. This process repeats itself several times before it 

eventually is stopped, but at this point too much of the ether has been 

taken away. The reason that this happens is that the fallback function is 

able to call the badfunc again before the execution is able to stop. 

However, the much bigger problem resides in the call function. The call 

function will fail during this process; however, it will not propagate the 

error and as a result will not reverse the transactions that have taken place, 

except for the very last transaction. Because of this vulnerability, most 

developers now only use the send and transfer function calls, which are 

protected against this type of attack. However, there are still instances 

where a developer has no other choice than to use the call function. 

6. Ether lost in transfer: When transferring ether from one address to another, 

it is incredibly important that everyone knows the correct address or is 

implementing their code in such a way that there is no error in getting the 

correct address for sending ether. This is because ether that is sent to the 

wrong address will likely be sent to an orphan address. An orphan address 

is an address that does not actually exist on the blockchain. In the case of 

sending ether, this means that all the ether that is sent will be lost forever 

and cannot be retrieved. 
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The previous faults can be mostly targeted in Solidity, however, there are faults 

that are primarily concerned with just Ethereum and blockchain. These faults cannot be 

directly targeted in Solidity, but rather are faults that exist because of the design of 

Ethereum and blockchain in general. However, these faults are important to consider 

when designing a smart contract, as the smart contract will naturally have these fault 

properties associated with them. These faults are as follows: 

7. Keeping Secrets: In contracts, fields can be public or private. However, 

even though a field may be private, when a value is set for that field, the 

transaction must be sent to miners who publish it to the public blockchain. 

This allows any observers to obtain information that might lead them to 

being able to figure out the value. Also, while the actual variable 

information is kept private during execution, the actual contract code is 

not private, as it resides on the blockchain. This allows attackers to infer 

information about what may be happening in a contract and allows a white 

hat approach when trying to attack an application. 

8. Immutable Bugs: Once a contract is put onto the blockchain, it can no 

longer be altered. This means that once the contract is on the blockchain, 

if it contains bugs, there is no way to fix it. A common approach to 

working around this problem is deploy the new version of a contract to a 

new address and while this may work if someone is constantly being kept 

up to date on the blockchain, it can leave problems for those that still use 

the old version of the application. This is actually a big enough problem to 

where the creators of Ethereum had to create an entire new fork in the 
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blockchain because of the severity of the reentrancy vulnerability, leading 

to there being two versions of Ethereum now, Ethereum and Ethereum 

Classic. 

9. Unpredictable State: It is impossible to determine the order that the 

transactions will run for a contract. That means that if the callee invokes a 

function from a contract, they cannot determine if the contract will be in 

the same state that it originally was. 

10. Generate Randomness: The execution of EVM bytecode is deterministic. 

As with any deterministic approach to solving a problem, some 

information can be inferred. This is especially relevant considering that 

the blockchain is public. Any outsider can attempt to infer something 

based on what is observed in the blockchain. 

11. Time Constraints: Miners can choose the timestamp on a block with a 

certain degree of arbitrariness. This means that the miner can determine a 

timestamp that is advantageous to them. This is because many applications 

use time constraints in order to determine which actions are suitable. 

12. Stack Size Limit: If an attacker were to generate a nearly full-stack and 

then call a victim function, then if the function does not handle exceptions 

properly, can have adverse effects when the stack has ultimately reached 

its limit. 

A more general research study was done on the bug characteristics that exist in 

blockchain systems. This research, done by Wan et al. [5], performed an empirical study 

on eight blockchain platforms, including Ethereum. Wan discovered that semantic bugs 
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were by far the most prevalent bugs that were found in blockchain, for instance, 

Ethereum had approximately 70% of its bugs related to semantic errors. This can be 

attributed to the fact that programmers were not able to understand the semantics of 

blockchain. However, the bugs that took the longest to fix were related to security 

vulnerabilities. Typically, security vulnerabilities are attributed to problems with the 

blockchain itself. While security vulnerabilities may on average have taken longer, they 

were also not as abundant as bugs such as semantic or environment related. This means 

that the sample sizes were largely different, meaning that more data might reveal a better 

trend for this data. If anything, this study has led the blockchain community to believe 

that programmers might tend to struggle with understanding the semantics of blockchain, 

causing them to introduce errors because of their lack of understanding. 

Because of the error-prone nature of programmers and the risks associated with the 

blockchain there have been numerous research efforts towards formalizing the way that 

smart contracts should be designed. Mavridou et al. [16] proposed a FSM (Finite State 

Machine) approach to generating Ethereum smart contracts. Their framework, named 

FsolidM [35][39], is deigned to bridge the gap between the programmer's understanding 

of the Ethereum semantics versus what the actual semantics are. As stated in the previous 

research, the majority of the programming bugs that exist in blockchain applications are 

related to semantic errors. This research is designed to potentially address these faults. 

They claim that their framework offers clear semantics and an easy to use GUI for 

developers to build a FSM that represents their program. They also provide several 

plugins that allow developers to prevent common vulnerabilities that exist in Solidity 

applications. Another research paper written by Grishchenko et al. [17] presented the first 
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complete small-step semantics of EVM byte-code. In this research, they used the proof 

assistant F* [40] to formalize their small-step semantics. Their research and formalization 

led to the characterization of several security characteristics. They define these 

characteristics as call integrity, atomicity, and independence from miner-controlled 

parameters. The call integrity property is related to bugs such as the reentrancy or call to 

the unknown, while atomicity is related to mishandled exceptions. Independence from 

miner controller parameters can be split into two separate categories: independence of 

mutable account state and independence of transaction environment. Independence of 

mutable account state deals with bugs such as transaction order dependency and 

unpredictable state, whereas independence of transaction environment deals with 

timestamp dependency, time constraints, and generating randomness. These 

classifications are heavily based on the fault taxonomy that was discussed previously and 

provided by Atzei. The key contribution in this research paper was the actual 

formalization of these semantics, which as can be seen from the previous research, is an 

important area of research as the semantics of Ethereum are often not well understood. 

As discussed previously, Solidity often deals with financial assets, meaning that it 

is critical that security vulnerabilities are identified and fixed early. Liu et al. [18] 

proposed a fuzzing approach to automatically detect reentrancy bugs in smart contracts. 

In their research they created a framework ReGuard, to iteratively generate random and 

diverse transactions, which they could then analyze and determine if a reentrancy attack 

was present in a smart contract. ReGuard takes in the source code for a smart contract 

and the output contains a report of the reentrancy bugs that were found during the 

analysis. The actual workflow involves the process of transforming the contract, the 
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fuzzing engine, and the core detector. Essentially, this tool will run using these 

components potentially revealing if there are any reentrancy bugs, which in their 

preliminary evaluation, they were able to identify seven new bugs in existing projects. 

2.4 Mutation Testing 

Mutation testing is a software engineering concept that has existed since the 

1970’s with the concept being initially conceived by Lipton and implemented by DeMillo 

et al. [11]. Mutation testing has had several advancements over the years and has been 

applied to many programming languages. Mutation testing is the process of modifying 

small portions of code and then running the modified code against tests. Typically, this is 

thought of as purposely injecting faults into the source code. By doing this, tests will 

either fail or pass while running the mutant version of the code. If all tests pass the 

mutant version of the code, then the mutant is marked live, else the mutant is marked as 

killed. These markings are used to calculate the mutation score. High mutation scores 

indicate high quality tests because these tests are able to cover the types of faults that are 

generated through mutation. Mutation testing can then be used to develop new tests, 

which can target these faults. Mutation operators explain what changes will happen to the 

source code when a certain attribute in the source code is found. These operators are 

comprised of the relevant syntax and its possible changes that can be generated. For 

instance, take the following code example. The relative operator in this example is the ‘>’ 

operator, which if true causes the program to return A. However, a potential mutant is to 

mutate the ‘>’ operator to a ‘<’, causing the program to return B if the program was 

running under the same conditions when it returned A in the original code. 
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Typically, mutants are similar to real programming mistakes and should highlight 

areas where a test suite is weak. However, there is also the potential for a valid mutant to 

be created, while still being functionally equivalent to the original code. These mutants 

are called equivalent and do not offer any insight into the adequacy of a test suite. These 

are an expensive problem in mutation testing because they will still be tested while not 

offering anything of value. There is also the problem of generating mutants based off of 

the operators which are syntactically incorrect, leading the program to not compile. This 

is an overhead because the incorrect mutants will still have to compile and fail the 

process, however, these mutants should not count when determining the mutation score. 

To address some of these issues, a research paper by Schuler et al. [27], the 

JAVALANCHE framework was introduced, which uses the invariant detection engine 

DAIKON [28] to help in identifying equivalent mutants. JAVALANCHE first learns the 

invariants from the original program and then checks for any existing violations of those 

invariants that exist in the mutants. When it comes to classification of mutants, 

JAVALANCHE treats the classification slightly different. When a mutant fails a test, 

then it is considered “killed”, which is typical in most mutation testing tools. However, 

when a mutant is considered “live”, it is either in one of two categories: non-violating 

mutants or violating mutants. Violating mutants are mutants that have passed all of the 

tests, however, they violate the program invariants that were learned from DAIKON. 

public foo(int A, int B) { 
 if (A > B) { // original 
 return A; 
 } 
 return B; 
} 

public foo(int A, int B) { 
 if (A < B) { // mutant 
 return A; 
 } 
 return B; 
} 
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These violating mutants are more likely to be considered non-equivalent mutants, since 

they violate the invariant. Whereas, non-violating mutants do not violate any variant, 

meaning that they do not appear to impact the program with respect to the invariants. In 

their evaluation of the framework, they discuss three hypotheses. The first hypothesis is 

that mutants that violate invariants are less likely to be equivalent than mutants that do 

not violate invariants. In their research, they conclude that there is enough statistical 

significance to support this hypothesis, however, they only worked with a small sample 

size. The second hypothesis is that mutants that violate invariants are more likely to be 

detected by test suites. In their evaluation, they concluded that this hypothesis was true. 

For instance, in JAXEN, they detected that 98% of invariant-violating mutants are 

detected versus 44% of non-violating mutants. The third hypothesis is that the more 

invariants that a mutant violates, the more likely it is to be detected by tests. Again, their 

evaluation supports the hypothesis, with all seven projects that were evaluated showing 

that mutants with a higher number of violations resulted in better detection. 

Another common problem that exists in mutation testing is the high 

computational cost. Because of the extreme number of mutants that can be created for 

even the simplest of operators, many iterations of running of tests can take place. Even 

one small program file can result in tens to hundreds of valid mutants. Mathur [30] 

originally discussed the idea of constrained mutation as an alternative to the normal way 

that mutation testing had already been done. The basic idea behind constrained mutation 

is to reduce the number of generated mutants, which in turn should decrease the time that 

it takes to test all the mutants. The first evaluation of this approach came from Offutt et 

al. [29], which used the term selective mutation to describe Mathur's approach. Typical 
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mutation testing was approximated to be roughly quadratic, whereas Marthur's approach 

was estimated to be approximately linear. The concept is quite similar, where we simple 

remove mutation operators based on their generated number of mutants. For instance, 

removing two different operators would be called 2-selective mutation. The result was 

quite positive in this research, where removing the most plentiful mutation operators did 

not drastically affect the mutation score, but instead improved the performance. 

In the paper by DeMillo et al. [11], mutation testing was first implemented and 

used to evaluate the testing methodology when considering complex errors. In this 

research, the evaluation took place on providing simple-error data to the tested program. 

By doing this, it was observed that simple-error data was able to kill multiple-error 

mutants, essentially killing off mutants that were considered to be more complex. 

According to their research, they believed that these simple techniques were effective 

because of the coupling effect. Since then, mutation testing has been applied to evaluate 

even more testing methodologies. Another application of mutation testing, called weak 

mutation testing was described be Howden [26]. In weak mutation testing, a simple 

component mutation takes place and subsequently a mutant version of that program is 

created containing just the one mutated component. For example, a simple component 

may include such things as arithmetic or boolean expressions. The advantage of weak 

mutation testing over strong mutation testing is its ability to generalize errors, which is 

due to the fact that weak mutation makes no coupling assumptions. 

2.4.1 muJava 

muJava [6][8] is a mutation testing tool for Java, specifically designed for the 

generation of mutants that target features of object-orientation in Java. muJava generates 



23 
 

 
 

mutants based on selected mutant operators and selected Java class files. Once the 

mutants are generated, they are displayed to the user in such a way that the mutants can 

be compared directly to the original code. While a simple feature, it is important to notify 

the user the differences that exist between a mutant and the original code. Whenever a 

mutant passes the test suite and is considered live, the user must be able to determine if 

they need to design a new test based on the mutant or if the mutant is considered 

equivalent. In muJava, it is reported that around 5-20% of the generated mutants are 

considered equivalent. As mentioned previously, one of the major difficulties in mutation 

testing is determining if the generated mutants are functionally equivalent to the original 

program. Since the possibility of a generated mutant being equivalent is relatively high, it 

is important to let the user easily be able to determine if the mutant is actually live. 

While many of the programming constructs that can be mutated in Java are 

relatively simple, the primary unique contribution of muJava is that it also contains 

mutation operators based on class [9] and inter-class [10] programming constructs. For 

instance, these mutation operators can mutate things such as the inheritance structure of 

Java classes. This means that things such as overridden methods can be modified or 

deleted, potentially leading to serious consequences or undefined behavior. While Java 

and Solidity are quite different, muJava is an important tool in our research, as many of 

the OOP mutation operators can be implemented in Solidity (given that Solidity allows 

for some features of OOP). 

2.4.2 Stryker 

Stryker [7] is a mutation testing tool for JavaScript. We have found this tool to be 

useful for our research as Solidity closely resembles and uses many of the same 
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programming constructs as JavaScript. Stryker supports many traditional mutation 

operators such as literal operators, arithmetic operators, assignment expressions, and 

many other general operations. In addition to basic mutation operators, Stryker also 

supports mutation for several of JavaScript’s popular frameworks. The major importance 

of Stryker to this research project is the design of how they create the mutants. In Stryker, 

the relevant code is parsed and turned into an AST. After the AST has been generated, 

Stryker then traverses the AST, looking for any relevant nodes that pertain to the defined 

mutation operators. When a relevant node is found, Stryker then performs the mutation, 

creating a new mutant. Stryker also breaks it mutation operators into several categories. 

This is done to provide clarity and to help developers differentiate the difference between 

the types of operators. This design is useful for Deviant and provides great insight as to 

how Deviant will approach mutation testing. 
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CHAPTER THREE: THE DESIGN OF DEVIANT 

Chapter three discusses the design of Deviant by giving an overview, explanation 

of our fault model, and a discussion of the Solidity-specific mutation operators that we 

have created. Section 3.1 provides an overview as to how our application will work, 

illustrating the flow of the program. Section 3.2 presents the fault model and explains the 

fault types in relation to the programming constructs in Solidity. Sections 3.3 details the 

mutation operators, which are the Solidity-specific mutations that are designed to 

replicate the Solidity faults that were discussed in the fault model. 

3.1 Overview 

Deviant aims to automatically generate mutants of a given Solidity project and 

run the given tests against each mutant to evaluate the testing effectiveness. Figure 3.1 

illustrates the architecture of Deviant. Given a Solidity project together with test code, 

Deviant selects one program file (contract, library, and/or interface) at a time, parses it 

into an abstract syntax tree (AST), and applies (user-selected) mutation operators to 

respective nodes of the AST to generate mutants. Mutation operators are defined 

according to a comprehensive fault model of the Solidity language. In addition to the 

normal fault types in traditional languages (e.g., expression in JavaScript and inheritance 

in Java), our fault model considers Solidity-specific features as well as the existing 

Solidity fault taxonomy mentioned in the related works. Each mutation operator 

generates one or more mutants by making one change to the given AST. Each mutant is 

saved into its own new file which contains the mutation. 
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Figure 3.1 Architecture of Deviant 

After all the mutants have been generated, a single mutant will be copied into the 

Solidity project directory and compiled into EVM bytecode as if it were part of the 

original project. The tests of the given Solidity project will then be run against the 

mutated EVM bytecode. Tests will either pass or fail depending on how the mutant has 

affected the functionality of the program. This process is repeated for every single mutant 

that was generated by Deviant. Deviant keeps track of the test execution result of each 

mutant (e.g., pass or fail) and produces a summary report on the mutation testing (e.g., 

mutation score, killed mutant count, and live mutant count). This mutation report gives 

insight to the Solidity developer on the quality of their test suite. Primarily, the report can 

highlight weaknesses in the developer’s suite, such as a tendency to miss covering certain 

Solidity programming constructs. 
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3.2 Design Challenges 

3.2.1 Program Validity 

A main technical issue about mutant generation is how to ensure that each mutant 

is a valid program before compilation. A mutant is only considered valid if it is a contract 

that can be compiled. In the case of Solidity, we have to ensure both the syntax and 

semantics will pass the compiler check. The syntax is straightforward as Solidity was 

designed to be similar to JavaScript. However, the implication of a syntactical change on 

the semantic is often not as straightforward. There are many instances where a mutation 

may seem valid at first but ends up failing compilation due to a semantic error. This of 

course can cause a major performance overhead if many generated mutants are not 

considered valid. In our design, we can address this issue through precondition checking 

based on the semantics of Solidity language, particularly the relations between multiple 

attributes and nodes in the AST. For example, Solidity libraries cannot contain payable 

functions. Deviant must first check an AST node further up the tree to determine if the 

function we are working with is contained in a library. A similar constraint on function 

types is the view or pure function type. When applying a mutation to a view or pure 

function, we have to consider what the function is modifying or reading in relation to the 

state of the program. For instance, a pure function can be mutated to a view function, but 

a view function cannot necessarily be mutated to a pure function since pure functions 

have the extra limitation of not being able to read the state of the program. However, we 

are able to determine if a view function can be modified to pure if that function itself 

does not access state variables and only relies on local variables and the parameters that 

are passed to the function. It can also be difficult to determine how to deal with abstract 
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contracts in terms of mutation. Abstract contracts in Solidity are never deployed to the 

blockchain, rather the child contracts that inherit them do. The other problem is that 

abstract contracts are never directly tagged as abstract with keyword in Solidity. To 

perform mutation on abstract contracts, we have to determine that at least one function in 

the contract does not contain an implementation. In Deviant, we can overcome this 

problem by searching the AST for a function where the body attribute is null, meaning 

that there is no implementation in the function itself. Once we have done this, we can 

continue to modify other function bodies through mutation operators. 

3.2.2 Language Evolution 

Another challenge in designing Deviant is the fact that Solidity is a constantly 

evolving language. With Solidity being a relatively new language, there are going to be 

many instances where Solidity features are added, removed, or changed. These changes 

to the language often times affect the semantics or syntax of the language and can 

ultimately change the behavior of how previously written code is executed. For example, 

up until Solidity 0.4.21, constructors could be declared by using the name of the contract 

as a function name. However, in the more recent versions of Solidity, the keyword 

constructor must explicitly be used for the creation of a constructor. An even more 

confusing Solidity change occurred with the introduction of the pure and view keywords 

that could be associated with function signatures in Solidity 0.4.16. The concept of pure 

and view were added to Solidity in order to be more semantically meaningful when 

compared to constant, which is currently just an alias for view. However, the confusing 

part of this change is that when this version came out, pure functions were not actually 

functionally “pure”. This meant that while pure functions were described as being 
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functions that were considered “stateless”, they were not actually enforcing this idea 

completely. Pureness was eventually enforced in Solidity 0.4.17, but still created 

semantic ambiguity during this time period. There are several other examples of updates 

in Solidity that have changed what the code actually means. 

3.2.3 Ethereum Evolution 

A challenge similar to the previous is that the Ethereum blockchain always has 

potential to change. As developers and researchers continue to use the Ethereum 

blockchain, it becomes more likely that they will discover new faults with the current 

design of the Ethereum blockchain. For example, the reentrancy attack was such a crucial 

vulnerability that a hard fork of the blockchain had to occur. The hard fork in a 

blockchain platform has serious effects, as it ends up changing the protocol of the 

blockchain itself. In fact, the nodes that run the old non-forked version of the platform are 

no longer considered valid when they attempt to make transactions. All of the nodes on 

the blockchain must upgrade to the latest version of the platform if they wish to continue 

to operate on the platform. This may seem as if it is a rare occurrence, but it is more 

common than one may believe. In fact, as of now, there have been seven hard forks since 

the inception of Ethereum. With the drastic changes that can occur in the protocol, 

developers have to ensure that their smart contracts that they develop comply with the 

new semantics that exist in the latest version of the EVM. Beyond the hard forks that 

have taken place in Ethereum, there have also been many more soft forks that have 

occurred. The difference between hard and soft forks is that in many cases nodes can 

have backward compatibility when referencing the newer nodes on the blockchain. 

However, in many situations these new updates to the blockchain can be quite beneficial 
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to the node user, which means that they must update their own node if they wish to take 

advantage of these features. 

3.2.4 Reasonable Operators 

Another more conceptual challenge is designing mutation operators that are 

considered useful and reasonably targetable by test suites. There are an incredible amount 

of mutation operators that could be created for any given programming language. 

However, the challenge is designing mutation operators that are considered useful and 

reasonable for the developers that use that language. In the case of Solidity, there are 

several mutants that could easily be generated by Deviant if we chose to do so. However, 

some of these mutants would be quite meaningless and would practically never be tested 

in a real test suite as it serves no real purpose. For example, mutating the Solidity version 

that is defined in the contract will almost never be useful for a developer. In most cases, 

these contracts won’t even be able to compile if the versions are too different, 

considering that there may be compatibility issues between the contract versions and the 

Solidity compiler. This mutation is also likely to never be tested by any smart contract 

developer, as these types of errors will almost always lead to a compile time error and 

will actually not ever reach the point of test execution. To overcome this challenge, we 

only consider the mutation operators that we believe are useful to Solidity developers. 

The mutation operators that we consider useful are those that can replicate common faults 

in Solidity and can create behavior in programs that can be caught by test cases. 

3.2.5 Performance 

A challenge that must be considered in the design of any mutation testing tool is 

the challenge of performance. Mutation testing is an inherently expensive operation and 
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becomes exponentially more expensive as the project’s complexity increases. For 

instance, if a test suite takes approximately one minute to run all tests, then that means 

that each mutant will take one minute to run the entirety of the test suite. Some mutation 

operators can generate hundreds of mutants for a single program file, meaning that a test 

suite must be run hundreds of times for all the mutants to be considered. One way that we 

can alleviate some of this performance problem is to allow the developers to choose the 

mutation operators that they wish to use during the mutation testing process. While we 

consider all of the mutation operators to be useful, a developer may only really care about 

certain types of mutation operators in relation to their test suite. This can be especially 

useful when removing mutation operators that typically generate the most mutants. For 

example, one instance of a relational operator can have several mutants involved with the 

single operator. By ignoring this one mutation operator, we can potentially remove 

hundreds to thousands of potential mutants across a program. Now, just simply removing 

mutation operators from the list of applied operators isn’t always the best solution. We 

can also reduce the number of generated mutants by limiting the number of functionally 

equivalent mutants that are generated. Functionally equivalent mutants are mutants that 

are syntactically valid mutants, but are functionally equivalent to the original program, 

meaning that the mutant will always be considered live because it works the exact same 

as the original program. As discussed in the mutation testing subsection in the 

background chapter, equivalent mutants are a complicated problem that has never been 

completely solved. Currently in Deviant we do not have a great answer to this problem as 

well. We do not consider equivalent mutants to be part of our total number of mutants 

when we consider our experimental results, but most of the methodology that has been 
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considered for identifying equivalent mutants cannot be applied to our case yet. The best 

solution that we have for now is to ensure that we closely follow the semantics that are 

outlined in the Solidity documentation when creating our mutation operators. By doing 

this, we can at least ensure that we are at least understanding the semantics of Solidity 

and can avoid any potential equivalent mutants that may be generated. 

3.3 Fault Model of Solidity Smart Contracts 

In Deviant, each mutation operator is designed to create mutants that simulate a 

certain type of faults in Solidity smart contracts. The collection of fault types implied by 

all mutation operators is referred to as the fault model. The goal of Deviant is to make the 

fault model as comprehensive as possible so that the generated mutants will simulate as 

many types of faults as possible. It is worth pointing out that the current mutation 

operators in Deviant create mutants by making only one change to the original program 

(called first-order mutation operators). While such small changes may only represent 

minor faults directly, the mutation testing research has shown that real bugs are often 

composed of such minor faults [41]. 

In the following, we describe the fault model from the perspective of Solidity 

program structures. Generally, a Solidity program consists of version information and 

three kinds of optional modules (contract, library, and interface), as shown in the given 

code snippet. Contracts and interfaces are similar to classes and interfaces in object-

oriented programming (OOP) languages, respectively. A contract may inherit one or 

more parent contracts or interfaces. It consists of state variable declarations, functions, 

and function modifiers. While state variables and functions are comparable to instance 

variables and methods in OOP, they have Solidity-specific features. In the given code 
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snippet, stateAddress is an internal state variable whose type is address. foo is a payable 

external function with a modifier called funcModifier. A function or function modifier is 

composed of a sequence of statements which may use various expressions as in OOP 

methods. 

Solidity’s programming constructs in a program file are designed into four levels: 

• Inter-module: this level involves signatures of modules and relationships 

among them. For example, inheritance is an inter-module level construct. 

• Intra-module: this level involves the immediate constructs within a 

module. For example, intra-contract level includes state variable 

declarations, signatures of functions, and signatures of function modifiers. 

• Intra-function and function modifier: this level involves individual 

statements within a function (excluding functions in interfaces) 

• Intra-statement: this level involves components (e.g., expression) within a 

statement (e.g., function call of assignments) 
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For each level, we identify feasible faults with respect to the programming 

constructs. For example, an incorrect use of inheritance is an inter-module fault (e.g., “is 

IA” is removed from “contract A is IA”). Missing the reference and definition of a 

function modifier in a contract is an intra-contract fault (e.g., funcModifier is removed 

from the signature of foo and the definition of funcModifier is removed). Missing a 

statement within a function of a contract is an intra-function-level fault (e.g., 

msg.sender.send(10) is removed from the function foo), whereas an incorrect expression 

within a statement is an intra-statement level fault (e.g., 10 is changed to 1 in 

msg.sender.send(10). The above classification ensures that the fault model covers the 

fault types of every programming construct in Solidity. 

pragma solidity 0.4.24 //version of Solidity to use 
 
contract A is IA{ 
 
 address internal stateAddress; //internal state variable of the address type  
 
 function foo() funcModifier payable external {  
 int memory memInt; //int variable with data location of memory 
 stateAddress = 0x12345; //address being assigned  
 msg.sender.send(10); //sends ether to the contract 
 msg.sender.call(0x123); //sends the bytes 0x123 to the contract 
 selfdestruct(stateAddress); //self-destruct and send remaining ether 
 ... 
 } 
 
 modifier funcModifier() { 
 if (msg.sender == stateAddress) { 
 _; //execute the function normally if true 
 } 
 } 
 
} 

library mathLib {...} 
 
interface IA {...} 
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3.4 Mutation Operators 

This section details and highlights the mutation operators that target Solidity-

specific features. The mutation operators are categorized by the operator’s associated 

programming construct level as was defined in our fault model. Deviant also includes 

general mutation operators, meaning that these mutation operators exist in other mutation 

testing tools and the programming constructs are common in other programming 

languages. These general mutation operators are listed and explained in Appendix A. 

3.4.1 Intra-Statement Level 

Intra-statement level mutation operators are those that modify the components 

within a statement. Typically, intra-statement level operators modify different types of 

expressions. In regards to Solidity-specific features, these mutation operators modify 

Solidity constructs such as: gas, address, address function, and data location constructs. 

Gas Operators: The only mutation operators that take place on gas involve the 

modification of the literal value that is associated with the gas stipend. Deviant modifies 

the literal value to either a zero or random non-zero value. If the contract’s gas value is 

modified, then it may cause the execution to stop either prematurely or continue on too 

long. As noted previously, the out-of-gas exception is a problem that occurs in Solidity. 

While this exception does not directly relate to the send function call problems that can 

cause an unexpected out-of-gas exception, an insufficient gas stipend can cause an out of 

gas exception for developers that don’t understand how much gas they should actually 

allocate. The gas mutation operators are Modify Function Gas Value to Non-Zero 

(FGVNZ) and Modify Function Gas Value to Zero (FGVZ). 
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Address Operators: Address operators mutate attributes of an address variable. 

Addresses in Solidity can be represented as any numerical value. However, they are 

typically represented in a hexadecimal format. The modify address operators work 

similarly to other numerical literal operators. They modify the actual value that the 

address is being assigned to. These mutation operators can replicate faults such as type 

cast error, call to the unknown, and ether lost in transfer. The type cast error and call to 

the unknown can occur because the address can potentially become associated wrong 

contract. This will mostly only occur however if the address still points to a valid address 

that contains contract code. The ether lost in transfer is much simpler fault that can occur 

from this mutation operator, considering that either a random or zero address will most 

likely point to an orphaned address. The Switch Call Expression Casting (SCEC) 

mutation operator is only ever applied if there are two or more instances where addresses 

are being cast to different contracts. This mutation operator is more likely to cause type 

cast and call to the unknown faults because the addresses in the mutant contract should 

still be valid. These faults can be replicated because the SCEC operator takes two 

instances of addresses being casted to different contracts and then switches the contracts 

that they are being cast to, most likely causing them to point to incorrect addresses. Table 

3.1 lists the address operators. 

Table 3.1 Address Mutation Operators  

Mutation Operators Abbreviations Fault Types 
Switch Call Expression Casting SCEC Call to the Unknown 

Type Casts 
Ether Lost in Transfer 

Modify Address Literal to Non-
Zero 

MALNZ Call to the Unknown 
Ether Lost in Transfer 

Modify Address Literal to Zero MALZ Call to the Unknown 
Ether Lost in Transfer 
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Address Function Operators: There are several functions that are associated with 

addresses, including: transfer, send, and call. In any of these cases, there is likely to be a 

literal associated with the function call. It is relatively simple to modify these literal 

values to any other value to create a valid mutant. These mutation operators modify the 

literal argument values that are in the function call, which typically represent the amount 

of ether that is sent. A potentially more dangerous fault that could exist in a smart 

contract is using the incorrect address function. For instance, both the transfer and send 

function calls have a gas stipend of 2,300, but differ in how they handle failure. The send 

function call returns a boolean false on failure, while the transfer function call throws an 

exception on failure. Even more problematic is the call function call, which does not have 

the same gas stipend of 2,300. When using call.value() in place of send or transfer to send 

ether, gas will continue to be spent until all of the user’s gas has been depleted. This 

means that it is highly likely that the call function can use more than 2,300 units of gas if 

the code execution continues on that long. Call is potentially the most dangerous out of 

all the function calls because it is not considered safe against reentrancy attacks, such as 

the DAO attack that was explained earlier. By swapping these function calls we can 

introduce faults such as reentrancy, gasless send, or exception disorder. Reentrancy can 

occur if a mutation operator replaces a send or transfer with a call function call. A gasless 

send can occur if a mutation operator can occur any time that any of the address functions 

are replaced by a send function call, but it will most typically happen when a transfer call 

is replaced with send. An exception disorder fault will typically occur when transfer or 

send are swapped. This fault will happen because if the developer was originally using 

transfer, then they will not be checking to if the call is returning false, while the mutant 



38 
 

 
 

version will return false instead of throwing an exception like it normally would have in 

the code. Table 3.2 lists the mutation operators that target address functions. 

Table 3.2 Address Function Mutation Operators  

Mutation Operators Abbreviations Fault Types 
Modify Transfer Value MDTV Incorrect Transaction Value 
Modify Send Value MDSV Incorrect Transaction Value 
Modify Call Value MDVC Incorrect Transaction Value 
Transfer -> [ Send, Call] TRS, TRC Out-of-Gas Exception 

Reentrancy 
Exception Disorder 

Send -> [Transfer, Call] STR, SC Reentrancy 
Exception Disorder 

Call -> [Transfer, Send] CTR, CS Out-of-Gas Exception 
Exception Disorder 

Data Location Operators: The data location mutation operators swap the memory 

location keyword in the source code. The purpose of these mutation operators is to affect 

the behavior of the variables. For instance, storage variables persist beyond the lifespan 

of a function call, whereas the life span of a variable with the memory keyword is 

temporary, only existing in the function that it is declared in. Also, by design storage is 

quite a bit more expensive to use than memory, but this allows for storage variables to be 

more dynamic. This means that data types such as arrays are automatically assigned to 

the storage location to allow for dynamic usage. It is also important to note that memory 

variables cannot exist outside of the lifespan of a function, meaning that global variables 

cannot be declared as memory variables. Now, while these mutation operators cannot 

necessarily be directly associated with the faults that were listed in the fault taxonomy, it 

is quite clear that these mutation operators can severely affect the behavior of the 

variables and cause unexpected behavior. The Data Location Operators are change 

Storage to Memory (STRME) and change Memory to Storage (MESTR). 
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3.4.2 Intra-Function Level 

Function level mutation deals with the mutation of the contents within a function. 

These contents include function calls, statements, or blocks, which may be comprised of 

multiple function calls or statements. 

Event Operators: Events can fire from the smart contracts and anything connected 

to the Ethereum JSON-RPC API can listen to the events and then act. In the context of 

Solidity, events are primarily used for the EVM logging facilities. When an event is 

called, the arguments are stored in the transaction log, which resides in the blockchain. In 

dApps, when events are fired, the JavaScript can be notified and can then act accordingly. 

Of course, by applying these mutation operators, the dApp will potentially act improperly 

because an event was fired when it should not have or may not fire at all. These mutation 

operators will typically introduce an exception disorder fault because of the change of 

behavior that the mutation operators will introduce. If the developer does not properly 

test their event invocations, then it is likely that these mutants may be live when the 

mutation testing takes place. The event operators are Remove Event Invocation (REI) and 

Swap Event Invocations (SEI). 

Selfdestruct Operators: Selfdestruct operators are essential for creating gas 

efficient contracts and for when a contract is at the end of its life. Calls such as 

selfdestruct (suicide is an alias to selfdestruct) send the entirety of a contract’s balance to 

the address that was defined in the argument and are then subsequently destroyed at its 

address. This features primarily exists to allow for the developers to destroy its own 

contract when they are done with it. This is incredibly useful because of the immutability 

attribute that the blockchain has, meaning that if a bug or unwanted behavior exists in the 
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contract, then the developer can destroy that contract and redeploy a different one. It is 

also important in terms of gas because it technically costs negative gas to execute this 

function because it ultimately ends up freeing gas on the blockchain. Of course, calling 

these functions unexpectedly can have major consequences, considering that it deletes the 

contract code that resides at a specific address. For instance, take the example of someone 

trying to send ether to this address. If the selfdestruct call has been executed 

unexpectedly at this address, then the ether will be sent to an orphaned address, causing 

the ether lost in transfer fault. Table 3.3 lists the selfdestruct operators. 

Table 3.3 Selfdestruct Mutation Operators  

Mutation Operators Abbreviations Fault Types 
Remove Selfdestruct Call RSDC Exception Disorder 
Insert Selfdestruct Call ISDC Ether Lost in Transfer 

Exception Disorder 
Remove Suicide Call RSC Exception Disorder 
Insert Suicide Call ISC Ether Lost in Transfer 

Exception Disorder 
Exception-Handling Operators: Exception-handling is a serious problem that 

exists in the EVM. As discussed earlier, exception disorder is a fault for Solidity because 

the EVM does not handle all errors the same. Because of the nature of error-handling in 

Solidity, exception-handling operators provide a lot of insight into a test suite’s ability to 

handle exceptions. A good example of the exception ambiguity exists in the difference 

between the send and transfer calls for sending ether to a contract. As explained earlier, 

send only returns false on the failure, while transfer throws an exception on failure. In 

some instances, a programmer might include a require statement on a send function call, 

this is actually equivalent to the transfer function call. In terms of mutation, if this require 

statement is removed, then an error will not be thrown and cannot be caught by the 

contract that has that code. This is a subtle error, but if the exception-handling is not done 
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properly, then the code may still execute because it does not catch the exception that has 

occurred. Also, the revert statement can cause major problems for developers if it used 

improperly. The importance of revert cannot be understated in contract development. 

When something goes wrong in the execution of the contract code, it may be important to 

revert all state changes that happened during the execution, which is where the revert call 

comes in. The revert call reverses all the state changes, refunding all the remaining gas to 

the caller. Now, if the revert statement is in the wrong place or does not even exist, then 

these changes will probably not be reversed, causing some of the changes to be 

permanent. The exception-handling operators target these problems by intentionally 

removing or inserting these statements into areas of the code where they did not 

previously reside. Table 3.4 lists the exception-handling operators. 

Table 3.4 Exception-Handling Mutation Operators  

Mutation Operators Abbreviations Fault Types 
Remove Require Statement RRQS Exception Disorder 
Insert Require Statement IRQS Exception Disorder 
Remove Assert Statement RAS Exception Disorder 
Insert Assert Statement IAS Exception Disorder 
Remove Revert Statement RRVS Exception Disorder 
Insert Revert Statement IRVS Exception Disorder 

Change Function Modifier Condition (CFMC) Operator: This mutation operator 

specifically targets conditions that exist inside function modifiers. Function modifiers are 

attached to functions, where the function modifier will always execute before the actual 

function that it is attached to does. Typically, they can be used to check preconditions 

before the function execution. Now, this mutation operator modifies the conditions that 

exist inside the modifier body. Specifically, the mutation operator moves the underscore 

character such that it will always execute, regardless of the conditions that exist in the 

modifier. This mutation operator can cause the program to have unexpected behavior 
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because the state of the application will not be properly checked inside the function 

modifier. 

3.4.3 Intra-Module Level 

State Variable Visibility Operators: These mutation operators modify the 

visibility of state variables in Solidity. Unlike functions in Solidity, state variables do not 

allow the external keyword. Public state variables has a generated getter function 

generated when it is called. They can also be called by the internal contract or through 

messages. Internal variables are similar to internal functions in that they can only be 

accessed internally or through child contracts. Private variables are also similar to private 

functions in that they are only visible to the internal contract and cannot be accessed by 

child contracts. Visibility operators exist in many languages, however, with the nature of 

Solidity, it is important to distinguish them from other operators, given the nature of the 

EVM. For example, with the inclusion of the internal keyword, developers may be 

confused between the semantic similarity that exists with the private keyword. 

Intuitively, the two words may seem as if they are just an alias for each other. However, 

the Solidity documentation clearly outlines that there is a semantic difference between the 

two visibilities. If a developer is to confuse the two visibilities, it is likely that the 

variable can be accessed in an unintentional manner. Table 3.5 lists the state variable 

visibility mutation operators. 

Table 3.5 State Variable Mutation Operators  

Mutation Operators Abbreviations Fault Types 
Public → [Private, Internal] PUPI, PUI Loss of Visibility 
Private → [Public, Internal] PRPU, PRI Gain Excess Visibility 
Internal → [Public, Private] IPU, IPR Loss of Visibility 

Gain Excess Visibility 
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Function Type Operators: The three primary function types in Solidity are pure, 

view, and payable. Pure and view functions deal with how the function is allowed to 

affect the state of the program. Pure functions are ultimately a subset of view functions 

considering that they are essentially more restrictive in what they can access in terms of 

the state of the program. Payable functions have no relation to the other two function type 

keywords; however, they do serve an important purpose in Solidity. By swapping or 

removing the pure/view keywords, the developer may be able to realize if they are using 

the keywords incorrectly. They may also notice that a mutation may be live for either of 

these types of mutations, probably indicating that they are only considering the happy-

path scenario for testing this function. The payable function mutation is relatively self-

explanatory, as if a test doesn’t recognize that a payable function has been modified, they 

probably aren’t actually trying to send Ether to the function, which of course it the 

primary purpose of the modifier keyword. Table 3.6 lists the function type mutation 

operators. 

Table 3.6 Function Type Mutation Operators  

Mutation Operators Abbreviations Fault Types 
Pure → View PUV Gain Readability of State 
View → Pure VPU Lose Readability of State 
Delete Pure Keyword DPUK Gain Control of Program State 
Delete View Keyword DVK Gain Control of Program State 
Delete Payable Keyword DPAK Function Cannot Receive Ether 
Insert Payable Keyword IPAK Function Can Receive Ether 

Function Visibility Operators: There are four types of function visibility in 

Solidity: public, private, internal, and external. These mutation operators swap the 

different function visibility keywords around. These mutation operators are useful 

because of the major differences that exist between the different types of visibility. For 

instance, external functions can only be called by other contracts and transactions, while 
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internal functions can be called by the function it is declared in and all contracts that are 

derived from it. Now, while public and private might seem semantically similar to 

external and internal functions, they are not. Public functions allow for anyone to access, 

this is different from external, where only outside transactions and functions can call it. 

On the other hand, private functions can only be called from the contract that it is 

declared in, meaning that no derived contracts can access this function. In many cases, 

the mutation results that come out of these mutation operators are similar to those of the 

state variable visibility operators. What is meant by this is that the mutation operators 

will also give similar insight as to how the functions are being tested when compared to 

the state variables. Table 3.7 lists the Function Visibility operators. 

Table 3.7 Function Visibility Mutation Operators  

Mutation Operators Abbreviations Fault Types 
Public → [Private, Internal, External] VPUPR, VPUI, VPUE Gain Visibility 

Lose Visibility 
Private → [Public, Internal, External] VPRPU, VPRI, VPRE Gain Visibility 

Lose Visibility 
Internal → [Public, Private, External] VIPU, VIPR, VIE Gain Visibility 

Lose Visibility 
External → [Public, Private, Internal] VEPU, VEPR, VEI Gain Visibility 

Lose Visibility 
Modifier Signature Operators: The function modifiers that exist in Solidity are 

used to execute code before a function is called. Primarily, these functions are used to 

check a precondition before the actual function is ran. Now, while these operators are 

associated with function modifiers, they are not the same as the Chance Function 

Modifier Condition operator that was explained earlier. Instead, these mutation operators 

modify the modifiers that are attached to function signatures that exist in a Solidity smart 

contract. This means that certain conditions will be checked that might not necessarily 

have anything to do with the actual function that is being executed. In many cases, this 
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may result in the function not executing or if a function modifier is removed, it could 

potentially always run. Because of the unexpected behavior that this change will 

introduce, there is a high probability for exception disorder to occur because of the 

unchecked conditions that will ultimately take place because of the mutations. 

• Delete Function Modifier (DFM): This mutation operators deletes any modifier 

argument associated with a function. This should cause the precondition check to 

be ignored when the contract is running. 

• Insert Modifier on Function (IMF): In the case that there is no modifier argument 

attached to a function, while a modifier still exists in a contract, a mutation can 

occur where a modifier argument is attached to a function. 

Library Function Visibility Operators: Libraries are an important part of the 

EVM. Libraries serve a different purpose than contracts in that they are deployed once to 

a specific address and then their code is reused by contracts that use the libraries. Again, 

libraries contain functions with visibility modifiers, however, they function slightly 

different than normal contracts. For instance, the internal keyword causes the function to 

be inclined into the calling contract’s bytecode. The reason that this exists is that for 

some smaller libraries, it is more efficient to compile the function inline rather than to 

link the bytecode. These mutation operators are for the most part the same as the function 

visibility mutation operators; however, we only include the visibility keywords that exist 

for Solidity libraries. These mutation operators should ultimately give similar insight 

when compared to the function visibility operators. Table 3.8 lists Library Function 

Visibility operators. 
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Table 3.8 Library Function Visibility Operators  

Mutation Operators Abbreviations Fault Types 
Public → [Private, 
Internal] 

LPUPR, LPUI Gain Visibility 
Lose Visibility 

Private → [Public, 
Internal] 

LPRPU, LPRI Gain Visibility 
Lose Visibility 

Internal → [Public, 
Private] 

LIPU, LIPR Gain Visibility 
Lose Visibility 

 

3.4.4 Inter-Module Level 

Currently, the only mutation operator that targets the inter-module level of a 

Solidity smart contract deals with multiple-inheritance. Unlike Java, Solidity supports 

multiple-inheritance. There are many complicated problems that can potentially exist 

with a contract that inherits multiple parents. One of the most famous problems that exist 

is the diamond problem [19], where classes B and C inherit from A and then D inherits 

from B and C. The reason that this is a problem is because of the same function in A is 

overridden in B and C, then which version of the function will D use? In the case of 

Solidity, this problem is solved by using C3 linearization [20], which is also the method 

that Python uses for solving its diamond inheritance problem. Currently, the only 

operator that covers multiple-inheritance is the Remove One Parent (ROP) operator, 

which removes a parent from its inheritance structure. Now, this operator may cause 

many potential problems. If there exist two parents in the inheritance structure which 

share the same function signature, then the remaining parent after the mutation will haves 

its function used instead of the other parent. This could result in the function remaining 

functionally equivalent, though it is likely that the entire program will still not be 

functionally equivalent. On the other hand, the function could operate quite differently. 
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Determining the behavior is relatively difficult as of now but could be a potential area of 

interest later on. 

3.4.5 Mutation Operator Relationship to Fault Types 

The fault types provided by Atzei et al. [3] and discussed in Chapter Two can be 

replicated by the some of the mutation operators that were designed in Deviant. The fault 

types we consider are those that can observed within Solidity code itself, namely: call to 

the unknown, exception disorder, gasless send, type casts, reentrancy, and ether lost in 

transfer. Table 3.9 lists these fault types along with the associated Solidity-specific 

mutation operator category that can replicate these faults. 

Table 3.9 Fault Types with Associated Mutation Operators  

Fault Type Mutation Operator Category 
Call to the unknown Address 
Exception disorder Address Function 

Selfdestruct 
Exception-Handling 

Gasless send Address Function 
Type casts Addresses 
Reentrancy Address Function 
Ether lost in transfer Address 

Selfdestruct 
 

Call to the unknown: Address mutation operators can potentially create call to the 

unknown faults in Solidity. For example, if the mutated literal value that is assigned to an 

address is then cast and used as a contract, then the address will no longer be correctly 

pointing to the location where the contract is stored on the blockchain. If this is the case, 

then when an attempt to use that contract is made, there will either be no contract at that 

location or the contract that exists at that location will have its fallback function invoked. 

Essentially, the developer will not be able to anticipate what will happen when that 

mutated address is used. 
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Exception disorder: There are three Solidity-specific mutation operator categories 

that can cause an exception disorder to occur: address function, selfdestruct, and 

exception-handling. Address function operators can cause an exception disorder to occur 

typically when modifying between the send and transfer function calls. This is because 

send returns false on failure, whereas transfer throws an exception. This means that if 

there is no exception checking done on a send call, then the exception might not be 

caught and the user of the Solidity application might not be aware that something went 

wrong. The selfdestruct operators can either insert a selfdestruct statement or remove a 

selfdestruct statement. In either case, it will cause the contract to either exist or not exist 

when it shouldn’t. When this happens, a contract may attempt to use the contract that has 

been incorrectly destroyed from the blockchain, causing an exception that might not 

make any sense to the developer (e.g. reverting the transaction suddenly). Exception-

handling operators either insert or remove exception-handling statements in the Solidity 

smart contracts. By doing this, exceptions can either occur or not occur in the 

inappropriate place. When this happens, improper exception-handling can cause the 

program to behave unexpectedly. Also, by introducing exceptions in certain locations, 

then gas may not be refunded. 

Gasless send: Address function operators, specifically modifying transfer to send, 

can cause a gasless send to occur. This is because when the send is compiled to EVM 

bytecode, it is compiled to a call function with a gas stipend of 2,300. Now, since the call 

function will have no signature, it will invoke the fallback function. If the fallback 

function of the contract has too many executable steps, then the gas that was allocated for 

the send will run out, causing an out-of-gas exception. This means that if transfer was 
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able to work around this error, then by using send instead, it will cause an out-of-gas 

exception to occur when it should not have. 

Type casts: Type cast faults occur with the address mutation operators and are 

similar to the call to the unknown faults. When a mutation operator such as the Switch 

Call Expression Casting (SCEC) operator is applied, it takes two instances of addresses 

being cast to a contract and then swaps them. When this occurs, it is highly likely that it 

will cause a type cast error. This is because the Solidity compiler cannot check to see if 

the address contains the actual contract that it is being cast to, rather it can only check the 

interface of the contract itself. By swapping these contract casts, the two contracts now 

point to the incorrect contract, causing the contract to have its fallback function invoked 

when it is called. 

Reentrancy: Reentrancy vulnerabilities can occur with address function operators, 

more specifically, they can occur when either transfer or send is replaced with the call 

function. The call function itself is not safe from reentrancy attacks, especially in 

instances where ether is being sent. This is because unlike transfer or send, call does not 

have an explicit gas stipend, rather a Solidity developer needs to include the gas stipend 

themselves. When call is used instead of send or replace, code will continue executing 

until either the gas runs out for the contract, or there are no more executable steps. In the 

case that there is an attacker, an attacker would just simply recall the function where the 

vulnerability exists. This is because when call is used to send ether to a contract, it will 

invoke the receiver's fallback function, where an attacker may recall the vulnerable 

function where call was used. If this happens, then the ether transaction will be repeated 

until the gas runs out. Now, this will cause an exception. However, because call is being 
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used, it will only revert the last transaction that took place, meaning that all the other 

transactions that took place before it will be considered valid. What this means is that 

when call replaces send or transfer, it can potentially introduce a reentrancy vulnerability 

that allows the vulnerable contract’s non-recursive function to be entered recursively. 

Ether lost in transfer: Ether lost in transfer faults can happen when an address or 

selfdestruct mutation operator is applied. When an address mutation operator modifies 

the literal value that is associated with an address, that address will likely point to an 

address that contains nothing at that location. When a contract attempts to send ether to 

this address, it will cause an ether lost in transfer fault. This is because that ether will be 

sent to an orphaned address (nothing exists at that address) and the ether will not be 

recoverable. When a selfdestruct insert mutation operator is applied, it will cause the 

contract to be destroyed when it is executed. When this happens, any time that a contract 

attempts to send ether to the address where to contract used to be, it will end up being 

lost. This is because that address is no longer valid as the contract can no longer be 

invoked at that address. The ether then becomes lost and is unrecoverable. 
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CHAPTER FOUR: IMPLEMENTATION 

Chapter Four explains our implementation of Deviant. Section 4.1 details our 

implementation of the Deviant application, discussing both the Graphical User Interface 

(GUI) and explaining how we have implemented our architecture in relation to our design 

in Chapter 3. Section 4.2 addresses the implementation issues that were faced in Deviant. 

4.1 Implementation of Deviant 

Deviant provides an easy-to-use Graphical User Interface (GUI) for developers. 

The main purpose of the GUI is to provide organized and meaningful information to the 

user in an intuitive manner. The GUI itself is implemented using Electron, which is a 

NodeJS framework that allows for developers to create GUIs in a similar manner to web 

pages. Much of the styling is done using bootstrap, considering that bootstrap is widely 

used and removes much of the hassle that is required to manually style the HTML pages.
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Figure 4.1 Home Page for Deviant GUI 

As seen in Figure 4.1, the Deviant GUI allows the user to select the relevant 

Solidity project directory for mutation. After selecting the project, the user can then 

choose which Solidity files they wish to use for mutation. On the homepage, we include 

four buttons: Select Mutation Operators, Generate Mutants, Run Tests, and View Report. 

The user first must select the mutation operators as seen in Figure 4.2, which afterwards 

they can then generate the mutants. After the mutants have been generated, the user can 

then proceed to the run the tests. Finally, once the tests have finished executing, the user 

can then view the report. 
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Figure 4.2 Mutation Operators Page for Deviant GUI 

The mutant operators in the GUI are divided into their respective categories: 

statement/expression level, function level, intra-module level, and inter-module level as 

seen in Figure 4.2. We have divided the mutation operators into their respective 

categories to allow the developers to consider which mutation operators they find most 

important during their own evaluation. In most instances, a developer does not need to 

include every mutation operator that is available, rather they only want to include a select 

few that are of interest to them. 
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Figure 4.3 Report Page for Deviant GUI 

The report page, as seen in Figure 4.3, allows the developer to select the original 

file from the project that was selected, along with a mutant file that they wish to compare 

to the original. The report will display the line where the mutation occurred, along with 

the line number in code where the mutation took place. The bottom section of the report 

displays the total number of mutants for the selected file, along with the number of killed 

mutants, live mutants, and mutation score. The report also includes the most common live 

mutant type along with the most common generated mutant type. It should be noted that 

the report page does not automatically determine if a mutant is functionally equivalent to 

the original program. Deviant cannot automatically determine equivalent mutants, instead 

the developer must evaluate the generated mutant and determine if the mutant is 

equivalent to their program. This means that the number of live mutants reported on the 

report page may be incorrect with relation to the equivalent mutants. 
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Deviant is implemented using JavaScript with NodeJS. JavaScript was selected as 

the primary language for two reasons: the available libraries that exist for the 

modification of Solidity source code and the overall support that exists for NodeJS in 

regards to Solidity. In fact, most of the dApps that are written with Solidity also use a 

NodeJS portion for things such as its front-end or event-handling. Using NodeJS is also 

incredibly useful for this project, considering that the Solidity language itself is heavily 

influenced by JavaScript and shared much of the same syntax and other features. 

Beyond the programming language, Deviant primarily uses two libraries to 

modify the Solidity source code, solparse [13] and solmeister [14]. Solparse takes in the 

Solidity code as input, parses the code, and then outputs an AST (Abstract Syntax Tree) 

based on the Solidity contract. This AST is represented in the JSON (JavaScript Object 

Notation) format as seen in the below JSON snippet, which allows for easy traversal and 

is fairly straightforward to modify. Deviant then uses solmeister to traverse the AST, 

looking for tree nodes that are relevant to mutation operators. When a relevant node is 

found, then the mutation operator is applied, and a new mutant AST is created. In this 

case, there exists only one change per mutant. After the mutant AST has been created, 

solmeister has the ability to generate source code based off the mutant AST. The newly 

generated source code is then written to file and stored in a mutant project directory that 

contains all other mutants for the project. Referring again to the JSON snippet below, we 

can see an individual node that is part of a Solidity smart contract. In this example, 

highlighted in red, Deviant would modify the operator value in the node from ‘<’ to 

another relational operator such as ‘>’ ,’ >=’, ‘<=’, ‘==’, or ‘!=’. 
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 "type": "IfStatement", 
 "test": { 
 "type": "BinaryExpression", 
 "operator": "<", 
 "left": { 
 "type": "MemberExpression", 
 "object": { 
 "type": "Identifier", 
 "name": "balances", 
 "start": 601, 
 "end": 609 
 }, 
 "property": { 
 "type": "MemberExpression", 
 "object": { 
 "type": "Identifier", 
 "name": "msg", 
 "start": 610, 
 "end": 613 
 }, 
 "property": { 
 "type": "Identifier", 
 "name": "sender", 
 "start": 614, 
 "end": 620 
 }, 
 "computed": false, 
 "start": 610, 
 "end": 620 
 }, 
 "computed": true, 
 "start": 601, 
 "end": 621 
 }, 
 "right": { 
 "type": "Identifier", 
 "name": "amount", 
 "start": 624, 
 "end": 630 
 }, 
 "start": 601, 
 "end": 630 
 } 
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After all of the mutants have been generated, Deviant then runs the test suites 

against the mutant versions of the Solidity program files. Truffle is a popular 

development environment, testing framework, and asset pipeline for Ethereum [15]. 

Deviant requires that the provided Solidity projects are developed using the Truffle 

environment, which for most Solidity projects, is already the case. The reason that 

Deviant requires Truffle is primarily for automation purposes, without Truffle, the 

process of mutation testing would be quite cumbersome. Truffle provides a systematic 

approach to testing smart contracts, while also being the most popular development 

environment for Solidity. What Deviant actually does with the Truffle project is to 

actually run the test command for Truffle, while making sure that the appropriate mutant 

is being compiled instead of the original source code. 

Truffle’s testing phase always starts out with the contracts being recompiled. In 

our case, we insert the mutant into the project’s contract directory and ensure that the 

mutant is compiled while the original source code is ignored. This process is repeated 

until every mutant has been ran against the entirety of the test suite, meaning that only 

mutant is used at a time. Deviant tracks these mutants and then reports the evaluation 

metrics to the user. 

4.2 Implementation Issues 

There are many implementation challenges that occur during the development 

process of a mutation tool for a relatively new programming language. Many of these 

implementation challenges relate closely to the design challenges that were mentioned in 

the overview subsection of Chapter 3. In relation to the constant changes that take place 

to the Solidity language itself, developers have to be aware of the changes and how they 
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affect the current implementation of their program, ours included. The most noticeable 

changes in our development process was the syntactic and semantic differences that 

existed between the different Solidity versions. As explained in Chapter 3, until Solidity 

4.24, the constructor in the contract was implemented by using the name of the contract 

as the function name, whereas it is now defined by using the constructor keyword. In 

terms of implementation challenges, if a developer were using an earlier version of 

Solidity, then their old contracts will no longer be compiled by the newer version of the 

Solidity compiler. To fix this, developers have to ensure that their implementation 

follows the appropriate syntactic rules in relation to the version of the Solidity compiler 

that they are using. In our case, this means that we only support Solidity versions that are 

great than 0.4.0, which for almost all projects should not be an issue. While this 

individual change may be small, there are numerous changes that occur between the 

different Solidity versions. 

In any mutation testing tool, there may be a possibility to generate an invalid 

mutant. An invalid mutant is a mutant that does not compile. In our implementation, there 

are several instances where an invalid mutant may be generated. This issue is related 

directly to the design challenge mentioned in Chapter Three about the generate of invalid 

mutants. If we do not consider this problem, then the mutation testing performance will 

be severely hindered. This is because for every mutant that is generated and considered 

invalid, will still have to fail its compilation, ultimately costing time. To bypass this 

problem, we implement extensive precondition checking of the AST according to the 

Solidity documentation. This means that every time that we encounter a potential node, 

we have to evaluate several attributes that may exist in the node. If these attributes are not 
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what we expect, then we do not create the mutation at that point. However, there are still 

instances where an invalid mutant could be generated. In our application, we have 

implemented a check that looks for compile-time errors and if one exists, we consider 

that mutant to be invalid and it is no longer considered in our report. 

The constant updates to Solidity not only affect the syntax and semantics of the 

programming language, but they also affect many of the libraries that are useful for our 

mutation tool. For instance, the solmeister library that we use has not been updated since 

2016, having several new versions of Solidity come out since then. To overcome this 

problem, we had to modify the project’s own dependencies to ensure that its own 

libraries are updated to work with the appropriate version of Solidity. It is quite fortunate 

that the fix was this simple, but for most libraries this will not be an appropriate solution. 

In many cases, abandoned libraries might have to be retooled to work for the developer 

that is using them or they may have to give up on the library completely. Thankfully, our 

situation relies on libraries that are not overly-complicated and can be easily fixed in the 

future if we need to. 
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CHAPTER FIVE: EMPIRICAL EVALUATION 

In this chapter we detail our empirical evaluation. Section 5.1 gives an overview 

of our experiment, providing details and metrics about our subject program along with 

providing the results from our experiment. Section 5.2 analyzes the results from our 

experiment. 

5.1 Experiment 

To evaluate the effectiveness of Deviant, we used the following Solidity 

applications that cover the main Solidity features: 

• MetaCoin [22] : MetaCoin is part of a popular collection of Solidity smart 

contracts in the Truffle Box repository. MetaCoin is a boilerplate for the creation 

of a coin in Solidity. 

• MultiSig Wallet [23]: The MultiSig Wallet is a popular implementation of multi-

signature wallets for Ethereum. Multi-signature wallets are primarily used 

because they require multiple parties to sign before transactions are executed. 

• Alice [21]: Alice is a social impact platform build on top of Ethereum. The unique 

aspect of Alice is that these social projects are ran transparently. The goal of this 

project is to allow organizations to identify and scale projects according to their 

performance. 

• AragonOS [24] : aragonOS is a framework that can be used to develop dApps, 

protocols, and decentralized organizations. Specifically, aragonOS adds a layer of 
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abstraction for managing resources when creating decentralized organizations and 

protocols. 

• OpenZeppelin [25]: OpenZeppelin is one of the most popular Solidity libraries on 

GitHub for secure smart contract development. OpenZeppelin provides many 

implementations of common Solidity components and standards that are used by 

the Solidity developer community. 

Table 5.1 details the metrics of the subject program. All of them have much more 

test code than the production code. The tests for MetaCoin have achieved 100% and 50% 

of statement coverage and branch coverage of the production, respectively. For MultiSig 

Wallet, the statement and branch coverage reached 100%. The tests for Alice have not 

reached full statement coverage mostly because of exception handling code, which is not 

exercised unless the exceptions are triggers. The tests of aragonOS have reached almost 

complete statement and branch coverage. The tests of OpenZeppelin have achieved both 

100% coverage for both statement and branch coverage based on coverage of relevant 

lines of code. The tests of MultiSig Wallet have achieved 100% statement and 100% 

branch coverage. We have retrieved the coverage statistics for aragonOS and 

OpenZeppelin from coveralls [42] as part of their continuous integration, while we 

retrieved the coverage results for Alice, MetaCoin, and MultiSig Wallet from solidity-

coverage [43]. 
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Table 5.1 Subject Program Metrics 

Subject 
Program 

Production 
Code 

(LOC) 

# 
Contracts 

Test 
Code 

(LOC) 

# Tests Statement 
Coverage 

Branch 
Coverage 

MetaCoin 29 2 71 4 100 50 
MultiSig 
Wallet 

501 7 673 9 100 100 

Alice 1,040 22 1,852 129 86.25 59.09 
aragonOS 2,492 43 3,840 549 99.79 98.85 

OpenZeppelin 6,085 133 7,861 2188 100 100 
The experiments were performed on several different machines. The first machine 

is a Lenovo T430 laptop, the second a Boise State provided workstation, and the third is a 

PC with 32 GB of RAM and an i7 6700k at 4.6 GHz. For each subject program, we first 

generate the mutants of the program, run the tests against all mutants, remove live 

equivalent mutants, and report mutation scores. In the experiments, both contracts in 

MetaCoin are mutated with all operators. For MultiSig Wallet, we have generated 

mutation operators for all 7 of the contracts, including both Solidity-specific and 

traditional mutation operators. Of the 22 contracts in Alice, 19 are meaningful and 

applicable. They are mutated by all operators. Due to the complexity of aragonOS and 

time-consuming of the mutation testing, currently we have applied mutation testing to 32 

of the 43 (considering only the meaningful and applicable modules) contracts in 

aragonOS, only generating the Solidity-specific mutation operators. For reasons similar 

to aragonOS, we have only generated Solidity-specific mutants for OpenZeppelin, 

targeting 16 of the 133 Solidity files. In OpenZeppelin, we specifically targeted larger 

program files that contained many of the unique Solidity features that we aimed to target 

for our evaluation. Table 5.2 lists the subject programs and the contracts that were 

selected for mutation in our experiment. 
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Table 5.2 Subject Programs and Their Contracts Used for Mutation  

Subject Program Solidity Files 
MetaCoin MetaCoin.sol 

ConverLib.sol 
MultiSig Wallet Factory.sol 

MultiSigWallet.sol 
MultiSigWalletFactory.sol 
MultiSigWalletWithDailyLimit.sol 
MultiSigWalletWithDailyLimitFactory.sol 
TestCalls.sol 
TestToken.sol 

Alice AliceToken.sol 
Coupon.sol 
CuratedTransfers.sol 
CuratedWithWarnings.sol 
DigitalEURToken.sol 
DigitalGBPToken.sol 
DonationWallet.sol 
Escapable.sol 
FlexibleImpactLinker.sol 
MockValidation.sol 
MoratoriumTransfers.sol 
OffChainImpactLinker.sol 
OwnableWithRecovery.sol 
Privileged.sol 
Project.sol 
ProjectWithBonds.sol 

aragonOS ACL.sol 
ACLSyntaxSugar.sol 
APMNamehash.sol 
APMRegistry.sol 
AppProxyBase.sol 
AppProxyPinned.sol 
AppProxyUpgradeable.sol 
AppStorage.sol 
AragonApp.sol 
BaseEVMScriptExecutor.sol CallsScript.sol 
DAOFactory.sol 
ENSConstants.sol 
ENSSubdomainRegistrar.sol 
ERC20.sol 
EtherTokenConstant.sol 
EVMScriptRegistry.sol 
EVMScriptRunner.sol 
Initializable.sol 
Kernel.sol 
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KernelConstants.sol 
Repo.sol 
SafeMath64.sol  
ScriptHelpers.sol 
TimeHelpers.sol 
Uint256Helpers.sol  
UnsafeAragonApp.sol 
VaultRecoverable.sol 
Autopetrified.sol 
DelegateProxy.sol 
Petrifiable.sol 
UnstructuredStorage.sol 

OpenZeppelin ECDSA.sol 
ERC165.sol 
ERC165Checker.sol 
ERC1820Implementer.sol 
ERC721.sol 
ERC777SenderRecipientMock.sol 
ERC20.sol 
Pausable.sol  
ReentrancyAttack.sol  
ReentrancyMock.sol 
PaymentSplitter.sol 
Roles.sol 
SignerRoleMock.sol 
StringsMock.sol 
WhitelistAdminRole.sol 
WhitelistedRole.sol 

 

Table 5.3 shows the experimental results including the potential equivalent 

mutants. We were not able to manually check every mutant that was generated to 

determine if it was functionally equivalent to the original program, as doing so with such 

a large number of mutants would be incredibly time consuming. However, for the 

Solidity applications MetaCoin and MultiSig Wallet, we were able to manually check the 

generated mutants and determine which ones were considered equivalent. The mutation 

scores of Solidity-specific features of all subject programs are very low (36.36%-

69.70%). This indicates that the existing tests are unable to reveal the majority of faults 
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Solidity-specific programming constructs although they have covered almost all 

statements (or even all branches in aragonOS and OpenZeppelin). As such, we believe 

that a test suite adequate for the statement and branch coverage of Solidity programs does 

not necessarily provide a high-level assurance of code quality. 

Table 5.3 Subject Program Experimental Results Including Potential 

Equivalent Mutants 

Subject 
Program 

# 
Contracts 
Mutated 

Mutation 
Method 

Total 
Mutants 

# Killed Mutants Mutation 
Score 

MetaCoin 2 All operators 44 29 65.91% 
Solidity-
specific features 

11 4 36.36% 

MultiSigWalle
t 

7 All operators 639 145 22.59% 
Solidity-
specific features 

220 128 58.18% 

Alice 19 All operators 1,057 570 53.93% 
Solidity-
specific 
features 

431 165 38.28% 

aragonOS 32 Solidity-
specific 
features 

793 355 44.77% 

OpenZeppelin 22 Solidity-
specific 
features 

439 306 69.70% 

 

We found that there were no equivalent mutants generated for the MetaCoin 

project, while the MultiSig Wallet project had 45 generated equivalent mutants. This led 

to MultiSig Wallet killing 145 out of all 594 mutants and killing128 out of 220 Solidity-

specific mutants, receiving a Mutation score of 24.41% and 58.18% respectively. For 

these two subject programs, we noticed that removing the equivalent mutants did not 

affect the mutation score heavily.
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5.2 Analysis 

In our experimental evaluation, our subject programs had relatively low mutation 

scores. These low mutation scores indicate that the provided test suites are not very 

adequate at addressing common faults and vulnerabilities that exist in Solidity. We have 

also noticed that some mutant types are much more likely to be considered live than 

others. In Table 5.4, the subject programs are presented with the number of live mutants 

for each mutant type of Solidity-specific features. The total number of live mutants in 

Table 5.4 is equal to the number of total mutants minus the number of killed mutants 

from Table 5.3. According to our results, there are clearly some mutants that are killed 

less often than others. In this section, we discuss the mutant types in relation to our 

experiment and provide analysis as to why some of these live mutants are so prevalent. 

Table 5.4 Number of Live Mutants for each Mutant Type of Solidity-Specific 

Features  

 MetaCoin MultiSig Wallet Alice aragonOS OpenZeppelin 

Gas 0 0 0 0 0 
Address 0 0 0 0 0 

Address Function 0 0 0 1 2 
Data Location 0 0 0 3 0 

Event 1 0 24 6 3 
Selfdestruct 0 13 26 32 6 

Exception-Handling 0 36 46 94 61 
Modifier 0 13 50 10 10 

Function Type 3 10 4 45 4 
Function Visibility 2 0 67 109 0 
Library Function 

Visibility 
1 0 0 4 0 

State Variable 
Visibility 

0 20 49 134 43 

Total 7 92 276 448 143 
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5.2.1 Gas Mutants 

Considering that the gas operators only involved the mutation of the literal value 

that were passed to the gas call, these mutants were killed quite easily. As seen in our 

results, not a single gas mutant was marked as live in our experiment. Since the Ethereum 

platform introduced gas as a concept to limit the number of executable steps before the 

termination of a program, the mutations would just often times cause the program 

execution to terminate prematurely, causing exceptions to be propagated to other parts of 

the program quite quickly. In any case, the test cases that were provided were able to 

catch the exceptions that were thrown by the out-of-gas exceptions caused by the gas 

mutants. 

5.2.2 Address Mutants 

Address operators deal with the mutation of the address type. This either mutated 

the address literal or mutated the contract that the address was being cast to. In both 

cases, the mutants were always killed throughout our experiment. Modifying the address 

that are associated with a contract would have drastic effects on the program behavior. 

Considering that if a contract is pointing to the wrong address, when it is used, it will 

likely just invoke the fallback function. Now, if this happens, the program execution 

should break and the test suite will most likely catch this, as an unexpected exception 

should typically occur and propagate through the program. This means that each of the 

test suites that were evaluated were able to successfully kill the mutants that were 

generated.
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5.2.3 Address Function Mutants 

The number of generated address function mutants are not high in relation to 

some of the other mutants. This makes sense as send, transfer, or call functions are 

typically not prevalent throughout a Solidity project. Many of the address function 

mutants that were generated were marked as live during our experiment. In almost all 

instances, swapping between send, transfer, and call will not result in any major 

functional differences between the mutant and the original program version. However, 

the key difference as stated in the operator description is how each of these functions 

operate when an error-condition has been met. It is most likely the case that developers 

are not testing malicious or faulty scenarios when using transfer, send, or call. For 

instance, the major difference between send and transfer is that transfer throws an 

exception when failure has occurred while send returns false on failure. If failure never 

happens during the test suite, it makes sense as to why these mutants will not be detected. 

In our case, the reachability of this error-condition can be hard to achieve. In a test suite, 

it may not be feasible to attempt to cause a failure on send or transfer. For example, if 

attempting to get an out-of-gas exception while using send, it would require the developer 

to write extra and unnecessary code in their fallback function. This is not reasonable for 

most developers as extra code being written in the fallback function is considered a waste 

and costs extra gas. It is also important to note that in our experiments there are not many 

instances where Ether is being transferred. Most of our applications that were used are 

not heavy-financial applications, meaning that the instances of Ether transfer are fairly 

limited. Even if the applications were mostly financial, it wouldn’t make sense for there 

to be an abundance of transfer calls. Including too many instances of transfer or send 
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calls would most likely cause the design of the application to be overly complicated or 

redundant. In any case, these mutants were typically almost never killed by the 

applications in our experiment even with the low number of generated mutants. 

5.2.4 Data Location Mutants 

The data location mutants were split based on if the mutant switched storage to 

memory or memory to storage. Storage to memory mutants were mostly considered live 

during our experiment. This is most likely due to the fact that the changes do not 

propagate heavily throughout the program. For instance, the original version of the 

program would have had the storage variable pointing to a state variable. If this is the 

case, when the assignment is made when the mutant is a memory variable, it will cause 

that change to just be localized to within the scope of the function. This would likely not 

cause any drastic changes to the program’s behavior. However, the memory to storage 

mutants were almost always killed. This is most likely because when a variable is 

declared as storage in the scope of a function, it will by default point to the state variables 

defined in the contract. Of course, if this value is overwritten because of this change, it 

will cause changes that propagate throughout the program. This means that there are 

several instances where the change can be caught by the test suite. 

5.2.5 Event Mutants 

Event mutants in most cases were killed, but in some situations were still live. 

Considering that events are typically used for EVM logging facilities and the JavaScript 

portion of the dApp it makes sense that sometimes events may be overlooked in a test 

suite. This is not necessarily just a problem in Solidity. In many cases, some events are 

triggered only in exceptional circumstances, meaning that the conditions for the events to 
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be triggered cannot be easily determined by the developers. In these cases, it makes sense 

as to why these events would not be triggered, considering the difficulty of actually being 

able to target the event invocation. This means that in some cases, the event mutations are 

not reachable by the provided test suite. It can also be the case that the test suite does not 

correctly check the state of the program after the execution of the mutated statement. 

Take the following code snippet: 

function investFromWallet(uint _amount) public { 
 require(getToken().transferFrom(msg.sender, beneficiaryAddress, _amount)); 
  
 uint256 couponCount = _amount.div(couponNominalPrice); 
 coupon.mint(msg.sender, couponCount); 
 liability = liability.add(getPriceWithInterests(_amount)); 
  
 //emit CouponIssuedEvent(msg.sender, couponCount); 
} 

 

By removing the event invocation (commenting it out in the code), any event listeners 

will not catch that the event should have been invoked. When a test suite cannot detect 

this mutant, it suggests that it does not meet the necessity requirements, indicating that it 

does not check the state of the program immediately after the statement has been 

executed. 

5.2.6 Selfdestruct Mutants 

In our experiment, selfdestruct mutants were killed most of the time. However, 

there were more instances of live mutants than we were expecting. Now, we had 

originally assumed that selfdestruct mutants would almost always be killed, but there are 

actually a few reasons why mutants might still be live. For instance, if a selfdestruct 

mutant contains an insertion of a selfdestruct statement, then the contract will be 

destroyed if it is executed. Now, if this happens with a mutant while testing, then if the 
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contract is used again, it is highly likely that the mutant will be killed. However, if the 

contract is never called or used again, then there is a chance that the mutant will not be 

detected and considered live. Developers are typically not going to check for instances 

where a selfdestruct call may be executed, especially if the selfdestruct call was never in 

the function or contract to begin with. This is an interesting mutant because it is hard to 

determine the reasonability of actually testing for this situation. On the other hand, if a 

selfdestruct call is removed from a function, then the contract will still exist. When these 

mutants are considered live, we assume that it is live because the test suite never attempts 

to use the contract again, making an assumption that the contract was destroyed 

successfully. In any live insert selfdestruct statement (e.g. selfdestruct(address(0x123))); 

the program state will change drastically right after the program has finished executing 

and should affect the ending program state as well. This indicates that live mutants that 

cannot detect the selfdestruct mutants do not reach the necessity or sufficiency 

requirements of testing. This is because the test suite does not correctly check the state of 

the program immediately after executing the selfdestruct (or when it is removed) and at 

the end of all execution. 

5.2.7 Exception-Handling Mutants 

Exception-handling mutants were quite prevalent throughout our experiment. 

When inserting an exception statement into the contract code, it likely will cause an error 

to be thrown in an unexpected spot during the program execution. This exception should 

propagate to the test suite most of the time and should be easily detectable by the test 

suite in most instances. However, like the event-handling mutation operators, there are 

many instances where it is unusual for an exception statement to be reached. These 
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instances most often cannot be easily targeted by developers in a test suite and are just 

rather inserted there in case of extreme circumstances. We believe that this is the 

reasoning as to why there are so many live mutants of this type. Take the example 

exception-handling statement: require(msg.sender == validatorAddress);. In Deviant, a 

delete mutation operator would be applied to this statement, causing the condition to 

never be checked. When this mutant is live, it suggests that the test suite only assumes the 

happy-path scenario, meaning that it does not meet the necessity requirements, ignoring 

the state of the program immediately after the mutated statement has executed (or in this 

case not been executed). 

5.2.8 Modifier Mutants 

We also received surprising results with our modifier mutants. Typically, it would 

make sense for preconditions to be checked by tests. As modifiers tend to be focused on 

checking preconditions before the execution of a function, we would have believed the 

number of live mutants for this mutant type to be much smaller. However, we believe 

that developers are either considering only the happy-path scenario or the state that 

causes the modifier to fail is hard to achieve. For example, if a modifier checks to see if 

the address of the function callee is correct (e.g. if(msg.sender == correctAddress)), then 

it may be likely that the test suite never attempts to call the function from an invalid 

address. This could imply that the reachability of the “false” branch is hard to reach in the 

modifier function, indicating that removing the modifier will not drastically affect the 

program while it is running in the test suite. However, if the test suite does attempt to use 

an incorrect address, it would likely cause an exception somewhere in the program, 
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causing a test case to fail. In our case, it does not seem to be highly-likely that this will 

happen. 

5.2.9 Function Type Mutants 

Again, our expectations were different from the actual results that we received 

from these mutant types. In our evaluation, we noticed that the live mutants typically 

existed when the function types that were originally implemented might have either been 

designed improperly or are just hard to test. For instance, pure functions are considered to 

be a subset of view functions. This is because view functions can read the state of the 

program, but not modify it. However, it is not enforced that a view function read the state 

of the program. This means that a pure function, which cannot read or modify state, can 

be modified to a view function without error. This situation is hard to test and does not 

provide much functional difference. However, we consider the state of the program to be 

different with this applied mutation, that is because the function can still read from state 

when the original program did not intend to. Our deleted payable mutants were live 

primarily if a test suite did not attempt to send ether to that function. This is because a 

function cannot receive ether if it does not have the payable keyword attached to it. When 

transfer or send attempts to send ether to a non-payable function it will fail. However, if a 

contract was using send and did not do proper exception-handling, then it possibly may 

lead to the mutant being considered live. 

5.2.10 Function Visibility Mutants 

The results for the function visibility mutants were often mixed. In most cases, if 

the visibility of the original function versus the mutant were semantically different, it 

would in most cases cause an exception that would propagate to the test suite. These 
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mutants were almost always marked as killed during the experiment. However, if the 

visibility was semantically similar (e.g. internal and private), then the mutants would 

often times be considered live. For example, if a function is modified from public to 

external and then is only called externally by the test suite, then this mutant will be 

marked as live. These results primarily indicate one thing about the test suites that were 

provided: that the test suites do not directly test the visibility of functions. Most of the 

time when the mutants were killed, it wasn’t directly because the function visibility was 

being tested, it was rather that the function could no longer be called from the correct 

context. It makes sense as to why this would not often be tested as much as some of the 

other programming constructs, considering that the effort of testing the visibility would 

require extra effort and typically isn’t related to the typical workflow of the application. 

5.2.11 Library Function Visibility Mutants 

The results of the library function visibility mutants were practically identical to 

the function visibility mutants that were discussed above. This makes sense as the 

semantics of the visibilities between libraries and contracts are hardly different, rather 

just libraries are slightly more limited. Of course, are numbers show the number of live 

mutants were much lower, but this is simply because the number of generated mutants for 

libraries were much smaller. This is because the actual number of libraries in an 

application tended to be much smaller when compared to the overall number of Solidity 

smart contracts. 

5.2.12 State Variable Visibility Mutants 

Again, the results of the state variable visibility mutants were practically identical 

to the other visibility mutants. There were a high number of live mutants in this case, but 
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as explained earlier, the semantic difference between the visibilities can be hard to test in 

a test suite. It is uncommon for developers to introduce tests that directly target accessing 

state variables, just as it is uncommon for developers to introduce tests that target the 

visibility of functions. 

5.3 Threats to Validity 

In any software engineering related experiment, there are several threats to 

validity that must be considered and addressed. This subsection gives an overview of 

three threats to validity of our experiment, namely: external, internal, and construct. We 

also explain how we address these threats and explain our decision-making process. 

External: An external threat would be that our experiment did not cover real-

world Solidity applications. For our evaluation, we experimented on five subject 

programs. We determined our subject programs based on complexity (lines of code), 

popularity, and type of application. By considering these attributes, we are able to cover a 

variety of programs that represent the different types of applications that can be built in 

Solidity, along with covering the features that are unique to Solidity and Ethereum. 

Internal: A potential threat to the validity of our experiment is that our own tool 

may have faults. We have addressed this threat by using well-known and commonly 

adopted libraries that are used by the Solidity developer community. We have also taken 

into consideration the mutants that do not successfully compile. These mutants are 

considered invalid and ultimately do not count towards our experimental results. 

Construct: A threat to the construct of our experiment is that our test does not 

accurately measure what we are claiming. To address this threat, we have primarily 

focused on testing the Solidity feature, as that is the primary contribution of our research. 
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On our subject programs that are smaller in scale, we have used all available mutation 

operators and have mutated every Solidity file in the project. For our larger scale 

(aragonOS and OpenZeppelin) projects, we focused only on using the unique Solidity 

mutation operators. We only used these mutation operators because of the performance 

overhead to run these test suites and to ensure that we could get enough experimental 

data for our Solidity mutation operators. For OpenZeppelin, we selected Solidity program 

files based on the unique Solidity program constructs that existed in the project. Again, 

we did this because of the performance overhead of running a large project’s test suite 

repeatedly (in our case 439 times) 
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CHAPTER SIX: CONCLUSION 

We have presented our mutation testing tool, Deviant, for Solidity smart 

contracts. Our mutation testing tool is designed to target the unique features of Solidity, 

taking into consideration the design of the Ethereum blockchain. We have also 

implemented many of the traditional mutation operators that exist in other programming 

language’s mutation testing tools. 

We have applied our mutation testing tool to five different open-source Solidity 

projects with varying complexity. We have determined that in each of these Solidity 

projects, the test suites that were provided are not adequate enough according to the 

mutation scores that they received. We have also done preliminary analysis as to why 

some types of live mutants are more prevalent. In most cases, we believe that these 

common live mutants typically exist because of the difficulty of testing certain 

programming constructs or because the developers make assumptions about the state of 

the contracts that have been used. 

For future work, we want to do an in-depth analysis as to what tests can kill 

certain types of mutants in Solidity. We will be using the generated mutants from this 

experiment to evaluate the mutants themselves to further understand why these mutants 

are being missed by the test cases. We can then manually generate test cases that target 

these live mutants. By doing this, we can determine what test cases can kill certain types 

of mutants. 
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A.1 General Intra-Statement Level Mutation Operators 

Beyond the Solidity-specific mutation operators that were discussed, we have 

implemented several other traditional mutation operators. These mutation operators were 

inspired or based off of mutation operators from Styker[7] and muJava[6]. 

Binary Expression Operators: Binary expressions consist of two operands and 

one operator. For mutation purposes, we only consider the operator itself in binary 

expressions as the operands themselves tend to be literal or variables that will be handled 

by other mutation operators. These mutation operators are quite simple, but do in fact 

represent many common programming mistakes as they often represent minor logical or 

arithmetic errors. Also, these mutation operators tend to generate many mutants when 

compared to some of the other mutation operators. That is because for each instance of a 

binary expression, there are usually several valid mutation operators that can applied to 

an individual. It is also because binary expressions tend to be quite plentiful in 

programming. Table A.1 lists the binary mutation operators that are implemented in 

Deviant. 
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Table A.1 Binary Mutation Operators 

Mutation Operators 
 

Abbreviations 
 

Fault Types 

+ → [-, *, /, %] PTMN, PTMU, PTD, PTMD Arithmetic Error 
- → [+, *, /, %] MNTP, MNTMU, MNTD, 

MNTMO 
Arithmetic Error 

* → [+, -, /, %] MUTP, MUTMN, MUTD, 
MUTMO 

Arithmetic Error 

/ → [+, -, *, %] DTP, DTMN, DTMU, DTMO Arithmetic Error 
% → [+, -, *, /] MOTP, MOTMN, MOTMU, 

MOTD 
Arithmetic Error 

< → [>, <= , >=, ==, !=] LTGT, LTLTE, LTGTE, LTE, 
LTNE 

Conditional Error 

> → [<, <= , >=, ==, !=] GTLT, GTLTE, GTGTE, GTE, 
GTNE 

Conditional Error 

<= → [>, < , >=, ==, !=] LTEGT, LTELT, LTEGTE, 
LTEE, LTENE 

Conditional Error 

>= → [>, <= , <, ==, !=] GTEGT, GTELTE, GTELT, 
GTEE, GTENE 

Conditional Error 

== → [>, <= , >=, <, !=] EGT, ELTE, EGTE, ELT, ENE Conditional Error 
!= →[>, <= , >=, ==, <] NEGT, NELTE, NEGTE, NEE, 

NELT 
Conditional Error 

&& → || AOR Conditional Error 
|| → && ORA Conditional Error 
& → [|, ^] BABOR, BAXOR Binary Arithmetic Error 
| → [&, ^] BORBA, BORXOR Binary Arithmetic Error 
^ → [&, |] XORBA, XORBOR Binary Arithmetic Error 
<< → >> LSRS Binary Arithmetic Error 
>> → << RSLS Binary Arithmetic Error 

Unary Expression Operators: Like binary expressions, unary expressions involve 

operands and operators. However, a unary expression involves only one operator and one 

operand. These operators, like binary expression operators, also tend to generate many 

mutants when compared to other mutation operators. These operators are especially 

important when considering the state of a contract. For example, Solidity has been a 

popular source of implementing decentralized online voting systems. Many of which rely 

on the unary update or decrement operators that exist. Table A.2 lists the unary mutation 

operators. 
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Table A.2 Unary Mutation Operators  

Mutation Operators Abbreviations Fault Types 
- → DELETE DLMN Arithmetic Error 
~ → DELETE DLBN Binary Arithmetic Error 
! → DELETE DLN Conditional Error 
++ → [DELETE, --] DLINC, INCDEC Arithmetic Error 
- - → [DELETE, ++] DLDEC, DECINC Arithmetic Error 

Assignment Expression Operators: Assignment expressions consist of an 

assignment of a variable to some value, either another variable or some literal. Beyond 

the ordinary assignment expression, Solidity as well supports compound assignments. 

Compound assignments are an assignment along with an arithmetic operator. When 

performing a mutation with an assignment expression operator, it is important to consider 

the type of variable that is in the assignment expression. For instance, many of the 

compound string assignments that exist in languages such as Java, are not supported in 

Solidity. Instead, these mutation operators are only relevant for numerical types such as 

integers. However, numerical types tend to be the dominant literal that exists in Solidity, 

meaning that there will be plenty of instances where assignment expression operators will 

generate mutants. Table A.3 lists the assignment mutation operators. 
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Table A.3 Assignment Mutation Operators  

Mutation Operators Abbreviations Fault Types 
*= → [=, /=, +=, -=, %=, |=, &=, ^=] EMUE, MUEDE, 

MUEPE, MUEMNE, 
MUEMOE, MUEOE, 
MUEAE, MUEXOE 

Arithmetic Error 
Ether Lost in Transfer 

/= → [=, *=, +=, -=, %=, |=, &=, ^=] EDE, DEMUE, DEPE, 
DEMNE, DEMOE, 
DEOE, DEAE, 
DEXOE 

Arithmetic Error 
Ether Lost in Transfer 
 

+= → [=, /=, *=, -=, %=, |=, &=, ^=] PEE, PEDE, PEMUE, 
PEMNE, PEMOE, 
PEOE, PEAD, PEXOE 

Arithmetic Error 
Ether Lost in Transfer 

-= → [=, /=, +=, *=, %=, |=, &=, ^=] MNEE, MNEDE, 
MNEPE, MNEMUE, 
MNOE, MNEOE, 
MNEAE, MNEXOE 

Arithmetic Error 
Ether Lost in Transfer 

%= → [=, /=, +=, -=, *=, |=, &=, ^=] MOEE, MOEDE, 
MOEPE, MOEMNE, 
MOEMUE, MOEOE, 
MOEAE, MOEXOE 

Arithmetic Error 
Ether Lost in Transfer 
 

|= → [=, /=, +=, -=, %=, *=, &=, ^=] OEE, OEDE, OEPE, 
OEMNE, OEMOE, 
OEMUE, OEAE, 
OEXOE 

Arithmetic Error 
Ether Lost in Transfer 
 

&= → [=, /=, +=, -=, %=, |=, *=, ^=] AEE, AEDE, AEPE, 
AEMNE, AEMOE, 
AEOE, AEAE, 
AEXOE 

Arithmetic Error 
Ether Lost in Transfer 
 

^= → [=, /=, +=, -=, %=, |=, &=, *=] XOEE, XOEDE, 
XOEPE, XOEMNE, 
XOEMOE, XOEOE, 
XOEAE, XOEMUE 

Arithmetic Error 
Ether Lost in Transfer 
 

= → [*=, /=, +=, -=, %=, |=, &=, ^=] EMUE, EDE, EPE, 
EMNE, EMOE, EOE, 
EAE, EXOE 

Arithmetic Error 
Ether Lost in Transfer 
 

Literal Expression Operators: Literals in code are a fixed value associated with a 

type, such as an integer or string. In terms of mutation, literal operators modify the fixed 

value to some other value. In Deviant, the mutation operators that associate with 

numerical types typically either mutate to a zero or random non-zero value. The idea 

behind mutating to one of these two values is that programs often times have specific 
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behavior defined for zero values and non-zero values. Strings are handled differently, in 

that their content is either deleted or just modified. Arrays are handled by either changing 

the length, making them dynamic, or making them fixed. In some instances, this might 

not have much effect on the behavior of the application, but by changing these attributes 

of the array there is a chance that the behavior is affected in some manner. Boolean 

operators are quite simple as they are simply just change true to false and false to true. 

Table A.4 Literal Mutation Operators  

Mutation Operators Abbreviations Fault Types 
String → [Delete, Add Content] DLST, ADDST Incorrect Literal 
Integer → [Non-Zero, Zero] INTNZ, INTZ Arithmetic Error 

Incorrect Literal 
Hexadecimal → [Zero, Non-Zero] HXZ, HXNZ Arithmetic Error 

Incorrect Literal 
Bytes Array → [Modify Length] BTAML Overflow 

Arithmetic Error 
Fixed Array → Dynamic Array FADA Memory Storage Change 
Dynamic Array → Fixed Array DAFA Overflow 
True → False TF Conditional Error 
False → True FT Conditional Error 

 

A.2 General Intra-Function Level Mutation Operators 

Beyond the several Solidity-specific mutation operators, there are four more 

general mutation operators that are applicable to the intra-function level. These mutation 

operators include: Delete Statement (DS) or Delete Block (DB). In most cases, these 

mutation operators work similarly to the mutation operators that were defined above. 

However, these mutation operators are more general and do not specifically target unique 

features of Solidity. In fact, the Solidity-specific mutation operators are rather a subset of 

these operators.
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A.3 General Intra-Module Level Mutation Operators 

Intra-Module Variable Modification Operators: These operators deal with the 

state variables that exist in a parent-child relationship between contracts. In this category, 

these variables are those that the child inherits from the parent. The specifics of the 

mutation operators are as follows: 

• Hiding Variable Insertion (HVI): This mutation operator applies when a 

parent contract contains a state variable that isn’t declared directly within 

the child contract. This mutation operator inserts a variable of the same 

name into the child contract. By performing this mutation, when that 

variable is ever used in the context of the child contract, the child’s 

version of the variable will be used. This can of course cause a variety of 

potential errors to happen. 

• Hiding Variable Deletion (HVD): This mutation operator is applied when 

a parent and child contract contain a global variable with the same name. 

In this case, the mutation operator deletes this global variable from the 

child contract. When this mutation operator is applied, it can potentially 

cause the child contract to use the parent contract version of the variable. 

Of course, this can cause a variety of potential errors to happen. 

General Intra-Module Level Mutation Operators: Beyond the mutation operators 

listed previously, there are also operators that deal with the relationship between a parent 

contract and child contract beyond the scope of hiding variables. These mutation 

operators are based on the class-level mutation operators provided by muJava, but with 

the primary focus being on the behavior of Solidity instead. These operators are 
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considered intra-module level because they mutate the content within the actual contract 

itself (e.g., functions that are considered overriding). The overriding function operators 

mutate the relationship between a child and parent contract in relation to the functions 

that share the same name. For example, the Overriding Function Deletion (OFD) operator 

deletes the signature and body of an overriding function that exists in a child contract. By 

doing this, the parent contract’s version of the function will instead be used when that 

function is called from the context of the child contract. This will cause unexpected 

behavior as a developer would expect the child’s overriding function to be used instead. 

The super keyword mutation operators are again involved in the relationship that exists 

between a parent and child in relation to the programming constructs that have the same 

shared name between the two contracts. Now, what is different between these super 

keyword operators and the other mutation operators is that they do not delete or remove 

the child or parent’s version of the programming construct. Instead, these mutation 

operators take an individual instance of a programming construct with a shared name and 

either insert or delete the super keyword. What this mutation does is cause the parent or 

child’s version of the programming construct to be used whenever the original intention 

was to use the opposite. The type-based operators are mutation operators that modify 

instances where a parent or child can replace an instance of a contract that is being cast. 

For example, the Cast Type Change (CTC) operator takes an instance of an address or 

contract being cast to another contract and takes a valid (typically a parent or child) 

contract and replaces the cast with the other contract instead. This will cause the cast 

contract to behave as the newly casted type instead. Table A.5 lists the general intra-

module level mutation operators. 
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Table A.5 Intra-Module Level Mutation Operators  

Mutation Operators Abbreviations Fault Types 
Overriding Function Deletion OFD Incorrect Function Behavior 
Overriding Function Calling 
Position Change 

OFCP Incorrect Function Behavior 

Overriding Function Rename OFR Incorrect Function Behavior 
Super Keyword Insertion SKI Incorrect Function Behavior 

Incorrect Variable Behavior 
Super Keyword Deletion SKD Incorrect Function Behavior 

Incorrect Variable Behavior 
Type Cast Operator Insertion TCOI Type Cast Error 

Incorrect Function Behavior 
Incorrect Variable Behavior 

Type Cast Operator Deletion TCOD Type Cast Error 
Incorrect Function Behavior 
Incorrect Variable Behavior 

Cast Type Change CTC Type Cast Error 
Incorrect Function Behavior 
Incorrect Variable Behavior 
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