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Abstract

Background: Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition. The degree to

which the brain development in ASD deviates from typical brain development, and how this deviation relates to

observed behavioral outcomes at the individual level are not well-studied. We hypothesize that the degree of

deviation from typical brain development of an individual with ASD would relate to observed symptom severity.

Methods: The developmental changes in anatomical (cortical thickness, surface area, and volume) and diffusion

metrics (fractional anisotropy and apparent diffusion coefficient) were compared between a sample of ASD (n =

247) and typically developing children (TDC) (n = 220) aged 6–25. Machine learning was used to predict age (brain

age) from these metrics in the TDC sample, to define a normative model of brain development. This model was

then used to compute brain age in the ASD sample. The difference between chronological age and brain age was

considered a developmental deviation index (DDI), which was then correlated with ASD symptom severity.

Results: Machine learning model trained on all five metrics accurately predicted age in the TDC (r = 0.88) and the

ASD (r = 0.85) samples, with dominant contributions to the model from the diffusion metrics. Within the ASD group,

the DDI derived from fractional anisotropy was correlated with ASD symptom severity (r = − 0.2), such that

individuals with the most advanced brain age showing the lowest severity, and individuals with the most delayed

brain age showing the highest severity.

Limitations: This work investigated only linear relationships between five specific brain metrics and only one

measure of ASD symptom severity in a limited age range. Reported effect sizes are moderate. Further work is

needed to investigate developmental differences in other age ranges, other aspects of behavior, other

neurobiological measures, and in an independent sample before results can be clinically applicable.

Conclusions: Findings demonstrate that the degree of deviation from typical brain development relates to ASD

symptom severity, partially accounting for the observed heterogeneity in ASD. Our approach enables

characterization of each individual with reference to normative brain development and identification of distinct

developmental subtypes, facilitating a better understanding of developmental heterogeneity in ASD.
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Background
Autism spectrum disorder (ASD) is a heterogeneous

neurodevelopmental condition associated with atypical

trajectories of brain anatomy, function, and connectivity,

distinguishing it from typical development [1–8]. Al-

though the exact details of developmental changes in

ASD vary across individual studies, one fact is well

established in the literature: ASD has a complex and dy-

namic neurobiological mechanism(s), with the disorder-

related changes in the brain showing variations across

ages [9, 10]. For example, head circumference and brain

imaging data suggest that individuals later diagnosed

with ASD have typical brain volume from birth through

6 months of age [11, 12]. This is followed by a period of

accelerated growth, resulting in larger brains by age two

[13, 14]. Evidence regarding brain volume differences in

older children and adolescents with ASD is mixed, al-

though differences in brain volume may be smaller than

in toddlerhood [15–17]. Thus, consideration of the de-

velopment is crucial to understanding the neurobiology

of ASD.

The differential development of ASD pathology sug-

gests that the expected neuroanatomical features of indi-

viduals with ASD should be adjusted based on their

ages; that is, the exact nature of atypicality in ASD and

the direction of deviation from typicality (e.g., bigger

brains or smaller brains) may change with age. Further-

more, individuals with ASD also show variations within

their age groups and follow different developmental tra-

jectories [18, 19], and even make shifts between various

possible trajectories at different ages [20]. Therefore, a

comprehensive understating of heterogeneous behavioral

impairments in ASD requires studies that can elucidate

developmental blueprints of the brain and identify dis-

tinct developmental subtypes of ASD associated with di-

vergent behavioral profiles.

The ASD-related developmental changes on the anatom-

ical features of the brain such as volume, cortical surface

area, and cortical thickness have been extensively studied

[10, 13, 21–23]. For example, the presence of atypical brain

enlargement in infancy and early childhood is well docu-

mented [14, 23–25]. One aspect of brain development that

needs to be further investigated is the interaction between

brain anatomy and other neurobiological features related to

brain connectivity (e.g., white matter tissue characteristics).

In the last decade, brain connectivity alterations (e.g., dis-

ruption in diffusion metrics) have emerged as candidate

biomarkers in [26–34], owing to recent advances in diffu-

sion MRI (dMRI) [35, 36]. While there exist many neuro-

biological findings on diffusion-related alterations in ASD,

their developmental characteristics remain unclear. Even

less is known about how ASD-related developmental differ-

ences, both anatomical and diffusion-related, are linked to

heterogeneous behavioral profiles.

A comprehensive understanding of developmental het-

erogeneity in ASD necessitates insights into typical brain

development and investigations on individual-level devi-

ations from typical development. Recent normative

modeling techniques [37] can facilitate such investiga-

tions by modeling brain maturation using a healthy sam-

ple, and then quantifying individual differences from this

normative model. Within this framework, disorders are

conceptualized as extreme values of quantitative bio-

logical measures (e.g., neuroimaging metrics) or devia-

tions from normative functioning, enabling a

dimensional analysis to study heterogeneous presenta-

tions [37, 38].

Normative modeling techniques use prediction algo-

rithms (e.g., machine learning) to model relationship be-

tween biological measures and other clinically relevant

variables. Once the prediction algorithm is trained using

a healthy sample to define a normative model, it is then

applied to a patient sample to quantify deviations of in-

dividuals from this normative model. These techniques

usually use two alternative approaches regarding the dir-

ectionality of the relationship between biological mea-

sures and other clinically relevant variables. One

approach is to predict a given single biological measure

(e.g., cortical thickness of a specific brain region) from

clinical or demographic variables (e.g., age, sex) [38],

whereas in the second approach, the mapping is inverted

and a clinical or demographic variable is predicted from

multiple biological measures (e.g., cortical thickness

across all brain regions) [39]. Both approaches can be

utilized in neuroimaging studies and have their own ad-

vantages and drawbacks.

The first approach allows identification of regional de-

viations that may change across individuals [40], provid-

ing a clear picture on how a single behavioral outcome

can be a result of distinct alteration patterns in the brain

[41]. The second approach, mostly known as a brain age

approach, fuses information from multiple regions to

predict the chronological age of individuals, implicitly

defining normative maturation patterns. Brain age

models, while limiting region-specific interpretations,

use multivariate machine learning techniques to better

capture complex interactions between brain regions dur-

ing development [42, 43], as well as the interplay be-

tween different modalities such as anatomical and

diffusion metrics. This approach yields a summary score

of multimodal brain development (brain age) and en-

ables defining an index of deviation for each individual

(i.e., difference between brain age and chronological age)

[39]. Moreover, one may easily model the relationship

between this individual-level index and the behavioral

differences related to the disorder.

In this study, within a large dataset of children and

young adults (N = 467, age = 6–25 years, 247 with ASD),
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we used brain age approach explained above and devel-

oped an individual-level measure of multimodal brain

development, called developmental deviation index

(DDI), to parse behavioral heterogeneity in ASD. In

order to define a normative model of brain development,

we investigated developmental changes in anatomical

(cortical volume, cortical surface area, and cortical thick-

ness) and diffusion metrics (fractional anisotropy [FA]

and apparent diffusion coefficient [ADC]) of the brain.

The normative model, trained using typically developing

children (TDC), was then used to study the relationship

between individual-level deviation from the normative

model and disorder symptom severity in ASD. We hy-

pothesized that the affected participants with a positive

DDI (i.e., brain age > chronological age) would manifest

less symptom severity compared with the affected partic-

ipants with a negative DDI (i.e., brain age < chronological

age). Our approach enables characterization of each in-

dividual with reference to normative brain development

and identification of distinct developmental subtypes, fa-

cilitating a better understanding of developmental het-

erogeneity in ASD. This in turn may lead to improved

assessment of developmental or treatment-related

change, to targeted and individualized treatment plan-

ning, and eventually to a true precision medicine ap-

proach in ASD.

Methods
Participants

Data collection was performed at the Center for Autism

Research (CAR) at Children’s Hospital of Philadelphia

(CHOP), from February 2009 to February 2013. Data

collection and use was approved by the institutional re-

view board (IRB) at CHOP and the University of Penn-

sylvania. Individuals with a community diagnosis of an

ASD were recruited in part through autismMatch

(https://autismmatch.org). Diagnoses were confirmed by

the clinical core at CAR, using DSM-IV-TR criteria [44],

informed by Autism Diagnostic Observation Schedule

(ADOS) [45] and Autism Diagnostic Interview-Revised

[46], and expert consensus clinical judgment by two in-

dependent psychologists following Collaborative Pro-

grams of Excellence in Autism diagnostic guidelines.

Children with known genetic conditions associated with

ASD were excluded from the study. The symptom sever-

ity of participants was assessed using ADOS calibrated

severity score (CSS) [47], and the cognitive ability (IQ)

was assessed with the Differential Abilities Scale, Second

Edition [48]. The details on the dataset (N = 467, Age =

6–25 years) are given in Table 1.

Image acquisition and processing

T1-weighted anatomical images were acquired on a Sie-

mens 3 T wide-bore Magnetom Verio Tim scanner with

a 12-channel head coil and a Siemens MPRAGE se-

quence (0.8 × 0.8 × 0.9 mm, TR = 1900, TE = 2.54, flip

angle = 9). Images were N3 bias corrected with ANTS

[49] and brain extracted with LABEL [50]. Measures of

cortical volume, cortical surface area, and cortical thick-

ness were derived using the Freesurfer image analysis

suite version 5.3.0 [51], for each region in the Desikan-

Killiany cortical atlas [52] (34 cortical regions of interest

per hemisphere).

Diffusion characteristics of the brain tissue were

assessed by diffusion weighted imaging (DWI). The

DWI dataset was acquired in three epochs on the same

scanner (Siemens Verio 3 T). In the first epoch, DWI

was acquired using a monopolar sequence, with repeti-

tion time(TR)/echo time (TE) = 14,000/70 ms. In the sec-

ond epoch, DTI was acquired at TR/TE = 11,000/75 ms

using a monopolar+ sequence. In the third, DTI was ac-

quired at TR/TE = 11,000/76 ms using a monopolar se-

quence. All data was acquired with an image resolution

of 2 × 2 × 2mm, collecting 30 directions with b-value =

1000 s/mm2 and one b = 0 image. We verified that there

were no significant difference between scanning epochs

in terms of DTI metrics of fractional anisotropy (FA)

and apparent diffusion coefficient (ADC), as well as par-

ticipant age, IQ, and ADOS severity. The diffusion met-

rics did not show any significant difference across the

acquisition protocols, neither in different tissue types,

nor in the whole brain.

In order to quantify the MRI motion, we used the

technique proposed in [53]. We used “eddy” from FSL

5.0 to estimate volume-to-volume rotations and transla-

tions. These measures were then transformed from ra-

dian angles to displacement in millimeters, from which

the root mean square displacement was computed.

Table 1 Demographics and clinical profile of participants. With ADOS, social affect (SA) and restricted and repetitive behaviors (RRB)

scores are listed

Diagnosis Age Min-Max, Mean (Std) Sex IQ Mean ADOS Mean

TDC (n = 220) 6.26–25.63
13.06 (4.12)

Male, 161
Female, 59

Verbal, 114.48
Nonverbal, 108.09
Total, 112.81

SA, 2.05
RRB, 2.50
Total, 1.70

ASD (n = 247) 6.36–25.87
12.85 (3.52)

Male, 203
Female, 44

Verbal, 100.63
Nonverbal, 100.24
Total, 100.23

SA, 6.76
RRB, 7.09
Total, 6.85
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In the final dataset, 467 participants had at least one

imaging modality (anatomical and diffusion) that passed

our QA pipelines (see Additional file 1: Section S1 for

details). Three hundred forty-nine participants had reli-

able diffusion metrics, and 415 participants had reliable

anatomical metrics. Two hundred sixty-one participants

had both diffusion and anatomical metrics acquired dur-

ing the same session. When training a machine learning

model using a single modality, we used all available data

for that modality (i.e., 349 for diffusion and 415 for ana-

tomical). For the combined model, we used only 261

participants who had both modalities.

Multivariate-multimodal analysis using machine learning

We used support vector regression (SVR) [54] for pre-

dicting chronological age of participants from diffusion

and anatomical metrics. SVR is commonly used in brain

imaging studies [39, 55] due to its superiority in inter-

pretation of outcomes, as compared with more complex

methods (e.g., deep learning models) that obscure

neurobiological interpretations on inner workings of the

model. In order to facilitate insights regarding how re-

gional metrics contribute into age prediction, we used a

linear kernel with SVR, which assigns weights to features

(i.e., regional values) reflecting their contributions. We

used the SVR package with default settings implemented

in Scikit-learn library [56] for Python [57].

We trained six SVR models to predict the age of par-

ticipants, five with individual metrics (volume, surface

area, thickness, FA, ADC) and one with combined met-

rics. An individual model using only a diffusion metric

had 176 features corresponding to regional mean FA or

ADC values. For individual models using only anatom-

ical metrics, there were 68 features corresponding to re-

gional mean volume, thickness, or surface area. Thus,

the combined model using all modalities had 556 fea-

tures. We did not use an external feature selection pro-

cedure, and the importance of features was determined

using the feature weights as calculated by the SVR

algorithm.

Each SVR model was trained using only the TDC sam-

ple to define a normative model of development. Predic-

tion accuracy of the normative models was assessed

using 10-fold cross-validation, repeated 1000 times in

randomized order. In each fold, 10% of the data was kept

for testing and the rest was used for training the SVR

model. The ages of the participants in the test sample

were then predicted using the trained model. This was

repeated (10-fold) to use all participants once in the test

sample, and the accuracy was calculated as Pearson cor-

relation between predicted and actual age. Finally, the

entire procedure was repeated 1000 times (i.e., 1000

times 10-folds), after randomly changing the order of

participants, yielding 1000 Pearson r values. We reported

the mean accuracy and 95% confidence interval using

this distribution of r values.

We also demonstrated that the reported results are

not model-dependent by repeating all analyses using two

more regression models, namely Lasso and Bayesian re-

gression. The use of Bayesian regression, by providing

metrics on prediction uncertainty, also allowed us to in-

corporate into the model uncertainty induced by the

availability of data across ages and variation across

people in the training sample, to better capture individ-

ual differences [37, 38]. Results as reported in Additional

file 1: Section S3 were highly similar to the original re-

sults reported below, demonstrating that our results are

not model-dependent, nor driven by unaccounted

uncertainty.

Developmental deviation index

The normative age prediction model (SVR), trained

using the TDC sample, was used to predict ages of par-

ticipants with ASD, yielding their brain age. We calcu-

lated the difference between predicted age (brain age)

and the chronological age for each participant with ASD,

as an index of deviation from normative development,

called developmental deviation index (DDI). When using

a linear regression model, the regression towards the

mean effect [58] results in younger ages being systemat-

ically overestimated and older ages being systematically

underestimated. Therefore, the difference between brain

age and chronological age is expected to be correlated

with chronological age, obscuring real developmental de-

viation [59]. Thus, we adjusted the DDI for the regres-

sion towards the mean effect, by regressing out the

chronological age from the DDI values [39]. For ease of

interpretation, DDI was normalized to have a mean of 0

and standard deviation of 1.

Statistical metrics

The correlation between age and neurobiological metrics

(FA, ADC, surface area, volume, thickness) was calcu-

lated using Pearson correlation coefficient r. The statis-

tical significance of the difference between the TDC and

ASD groups, in terms of correlation between age and

the neurobiological metrics, was assessed using Fisher r

to z transformation. We only tested for regions whose

age correlation was significant (p < 0.05) in both groups.

The correlation between the DDI and the ADOS se-

verity was calculated using Spearman’s rank correlation

coefficient due to the ordinal nature of ADOS severity

scores. The effect size of difference in ADOS severity

scores, for the same reason, was reported using

common-language effect size [60]. The common-

language effect size is the probability of having higher/

lower severity in one of the groups, and is easy to inter-

pret since it reports a probability value [61]. The
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Cohen’s d values were also reported for the sake of com-

pleteness, but they should be interpreted carefully, as

ADOS severity scores are not distributed normally.

The false discovery rate (FDR) technique [62] was used

for multiple comparisons correction. When studying

correlations between age and individual metrics, FDR

was used for each metric individually, correcting for

multiple comparisons due to multiple brain regions.

The 95% confidence intervals (CI) for Pearson r values

were calculated using Fisher r to z transformation. With

the SVR model of the normative age prediction (using

the TDC sample), we had 1000 r values (1000 times 10-

fold cross validation); thus, we are able to estimate the

standard error of the z distribution from those 1000

values. In other cases (e.g., testing accuracy with the

ASD sample), the standard error was estimated based on

sample size (1=
ffiffiffiffiffiffiffiffiffiffi

N−3
p

).

In order to test the robustness of our findings against

MRI motion and IQ differences, we fitted an ordinal re-

gression model to predict ADOS severity scores using

the DDI, MRI motion, and total IQ (Severity ~ DDI +

Motion + IQ). We used the ordinal package [63] in R

[64].

Results
We first investigated developmental changes in anatom-

ical and diffusion metrics of the brain, both in typical

development and in ASD, in order to elucidate diverse

effects of age on those metrics across different brain tis-

sues and regions. We studied developmental alteration/

similarity in ASD as compared with TDC. We then de-

fined a normative model of multimodal brain develop-

ment by fusing diverse age affects across brain regions,

using a multivariate machine learning model. Finally, we

studied how individual-level deviation from this norma-

tive model related to behavioral variation in ASD. Spe-

cifically, we defined distinct subgroups of ASD, each

having different deviation from the normative model

and compared them in terms of symptom severity

values. We also demonstrated a dimensional relationship

between individual-level deviation and disorder symp-

tom severity.

Patterns of regional brain maturation

We studied how anatomical and diffusion metrics of the

brain change with age within the TDC sample, to eluci-

date normative patterns of brain maturation. We ob-

served divergent effects of age on diffusion metrics

across tissue types, as seen in Fig. 1, with increase in cer-

tain tissue types and decrease or no change in others.

The effects of age were more homogenous on anatom-

ical metrics. The cortical volume and cortical thickness,

on average, decreased in both hemispheres. The cortical

surface area, on average, did not change with age in ei-

ther of hemispheres. Details are given in Additional file

1: Section S2. The effects of maturation were heteroge-

neous across brain regions as illustrated in Fig. 2a, with

correlation between age and all metrics showing varia-

tions across regions.

Overall patterns of maturation in the ASD sample

were very similar to that of the TDC sample for all ana-

tomical and diffusion metrics as shown in Fig. 2b and

Additional file 2: Figure S1. In ASD, the absolute correl-

ation values were slightly decreased with FA, ADC, and

cortical thickness (see Additional file 3: Table S1 for de-

tails). Nevertheless, after multiple comparison correc-

tion, results remained significant only with ADC metric

and only in the seven regions listed in Additional file 3:

Table S1, suggesting an agreement between maturation

patterns in TDC and in ASD.

Multivariate-multimodal brain development

The SVR model using all metrics in combination

achieved a high 10-fold cross-validation accuracy in pre-

dicting age (brain age) within the TDC sample (Pearson

correlation between chronological and brain age, r =

0.88, CI = [0.87–0.89]). The feature weights that reflect

contribution of regional metrics towards age prediction

in the TDC sample are given in Fig. 3 for the top 30 fea-

tures. As can be seen in the Fig. 3a, diffusion metrics

(FA and ADC) were dominant in predicting age, repre-

senting 23 of the top 30 features. Similarly, diffusion

metrics, in general, compared with anatomical metrics,

achieved higher cross-validated prediction accuracy

when normative models were trained using individual

metrics (ADC: r = 0.87, CI = [0.85–0.88]; FA: r = 0.80,

CI = [0.78–0.81]; thickness: r = 0.79, CI = [0.78–0.80];

volume: r = 0.66, CI = [0.64–0.68]; area: r = 0.22, CI =

[0.16–0.27]).

The normative models achieved very high testing ac-

curacy when tested with the ASD sample, both using all

metrics in combination (Pearson r = 0.85, CI = [0.80–

0.89]) and using individual metrics (ADC: r = 0.78, CI =

[0.72–0.83]; FA: r = 0.76, CI = [0.69–0.82]; thickness: r =

0.79, CI = [0.74–0.84]; volume: r = 0.59, CI = [0.50–0.67];

area: r = 0.26, CI = [0.13–0.38]).

Deviation from normative development and ASD severity

Among six SVR models (five individual models and one

combined model), only one model, using the FA metric

only, revealed significant correlation between the DDI

and the symptom severity. This remained significant

after multiple comparison correction for the six models.

Below we report results using the FA model; others can

be seen in Additional file 4: Table S2.

A total of 176 participants with ASD had both diffu-

sion imaging and ADOS calibrated severity score. In
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order to investigate the developmental heterogeneity in

ASD, we defined three subgroups, as listed in Table 2,

namely (1) Advanced group (n = 19) including partici-

pants with DDI > = 1, (2) Delayed group (n = 27) includ-

ing participants with DDI < = − 1, and (3) Balanced

group (n = 26) including participants with − 0.2 < DDI <

0.2. Note that DDI values were normalized to have a

standard deviation of 1. The threshold for the Balanced

group was chosen to have a sample size (~ 25) that is

comparable to the other two groups. A notable hierarchy

was observed among the three subgroups (Fig. 4) in

terms of their symptom severity (Delayed > Balanced >

Advanced; Kruskal-Wallis H-test statistic = 7.84, p =

0.0198) with a substantial effect size between the De-

layed and Advanced subgroups (Cohen’s d = 1.01,

common-language effect size = 0.74; Mann-Whitney test

statistic = 380.5, p = 0.0051). The difference between the

Delayed and Advanced subgroups was robust to the

choice of the DDI thresholds as illustrated in Fig. 4c.

There was no significant group difference between the

two groups in terms of age (Cohen’s d = − 0.09,

common-language effect size = 0.45; Mann-Whitney test

statistic = 241.0, p = 0.5397) or IQ (Cohen’s d = − 0.24,

common-language effect size = 0.44; Mann-Whitney test

statistic = 225.0, p = 0.4887).

Figure 5 illustrates neuroimaging (FA) differences be-

tween the TDC sample and the three subgroups of ASD.

The regions with significant differences (after multiple

comparison correction) are listed in Additional file 5: Table

S3. With the Balanced group, no regional difference sur-

vived the multiple comparison correction. The sign of effect

size (whether ASD is higher or lower in FA) in Fig. 5 agrees

with the sign of DDI values of the subgroups (Advanced >

Balanced > Delayed) in most regions; that is, the Advanced

group had higher FA values compared with the TDC sam-

ple, whereas the Delayed group had lower values. The Bal-

anced subgroup had lower effect sizes compared with other

two subgroups. Please note that these results can be partly

explained by the fact that the DDI values are indirectly

computed from deviation of FA values with respect to the

TDC sample; thus, higher FA values are expected for a sub-

group with positive DDI values.

Fig. 1 Global patterns of normative brain maturation for diffusion (FA, ADC) and anatomical (surface area, volume, thickness) metrics. Note that

the brain parcellation used for anatomical metrics included only cortical GM. Heterogeneous effects of age on diffusion metrics are observed

across tissue types. All anatomical metrics decline with age, with a similar trend in both hemispheres
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Beyond the categorical group differences, a dimen-

sional relationship between brain maturation and behav-

ior was also observed within the whole ASD sample.

The DDI was significantly correlated with the disorder

symptom severity (Spearman r = − 0.20, CI = [− 0.34 to −

0.05], p = 0.0076). In order to test the robustness of cor-

relation between the DDI and symptom severity to

motion during MRI acquisition and IQ, we fit an ordinal

regression model to predict ADOS severity scores using

the DDI, motion, and total IQ. The DDI had the most

dominant contribution in the model (coefficient = − 0.32,

p = 0.0166) followed by IQ (coefficient = − 0.01, p =

0.0264), and motion was not a significant predictor of

severity (coefficient = 0.13, p = 0.6253). In other words,

Fig. 3 The weights of the brain regions in age prediction within the TDC sample, using a all five metrics (volume, surface area, thickness, FA, and

ADC) and b only FA. The second model is included here as it is the only model with a significant correlation between the DDI and ASD

symptom severity. Only top 30 features are visualized. Most features were related to FA and ADC metrics in the combined model. Higher

absolute values indicate bigger contribution in the prediction. Note that the weights should not be compared between the two models, as the

difference in magnitudes can be mostly explained by the number of features used in models. The abbreviations used: L, left; R, right; Sub,

subcortical; GM, gray matter; WM, white matter; Snigra, substantia nigra; ICing, isthmus of cingulate; CP, cerebral peduncle; RedNc, red nucleus;

ENT, entorhinal; LOF, lateral orbitofrontal; MOF, medial orbitofrontal; ML, medial lemniscus; MF, middle frontal; SM, supramarginal; GCC, genu of

corpus callosum; CGC, cingulum (cingulate gyrus); PrCe, precentral; PrCu, precuneus; MCP, middle cerebellar peduncle; UNC, uncinate; ST, superior

temporal; LFO, lateral fronto-orbital; LFOG, lateral fronto-orbital gyrus; PHG, parahippocampal gyrus; MO, middle occipital; ACR, anterior corona

radiata; GP, globus pallidus; STG, superior temporal gyrus; SS, sagittal stratum; MFOG, middle fronto-orbital gyrus; SCR, superior corona radiata;

PrCG, precentral gyrus

Fig. 2 Regional patterns of brain maturation for diffusion (FA, ADC) and anatomical (surface area, volume, thickness) metrics, within a TDC and b

ASD samples. Colors correspond to Pearson correlation (r) between age and anatomical/diffusion metrics. All regions are color-coded regardless

of their p values to better visualize the overall age effects. Note that the brain parcellation used for anatomical metrics included only cortical GM
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the correlation between the DDI and symptom severity

remained significant when we consider MRI motion and

IQ of participants.

Sex differences

In our dataset, the TDC and ASD samples were not

matched in sex ratio (see Table 1; χ2 = 5.49, dof = 1, p =

0.0191). Thus, in order to examine possible contribution

of sex differences to the reported results, we compared

the DDI values between males and females with ASD.

This yielded no notable difference between sexes

(Cohen’s d = 0.04, common-language effect size = 0.49;

Mann-Whitney test statistic = 2322.0, p = 0.8619). We

also reran all analyses including only males in both the

TDC and ASD samples. The correlation between the

DDI and symptom severity was almost identical to the

original result above (Spearman r = − 0.20, CI = [− 0.35

to − 0.04], p = 0.0125).

Discussion
In this work, we systematically studied developmental

changes on anatomical (surface area, thickness, and vol-

ume) and diffusion (FA, ADC) metrics of the brain in

normative development and in ASD. We demonstrated

diverse age effects in different brain tissue types and

regions, depicting a heterogeneous maturation pattern

across the whole brain. By fusing these diverse age ef-

fects within a multivariate and multimodal machine

learning model, we showed that anatomical and diffu-

sion metrics were able to capture brain development

with high accuracy. On average, brain maturation pat-

terns, as captured by imaging metrics, were similar be-

tween TDC and ASD samples, suggesting preserved core

developmental patterns in ASD. On the other hand, at

the individual level, deviation from normative develop-

ment, as computed by the DDI, was significantly corre-

lated with the symptom severity in ASD, highlighting

importance of individual-level analysis in disorder sam-

ples with heterogeneous presentations.

Regional brain maturation

We reported regional patterns of brain maturation as

quantified by correlations between age and several ana-

tomical and diffusion metrics. Our results, showing in-

creased FA and decreased ADC in WM and subcortical

regions, agree with previous reports in normative sam-

ples [65, 66]. While it is difficult to pinpoint exact mech-

anisms (e.g., increasing myelination, increasing axonal

density, or axonal pruning) yielding these results without

detailed microstructural analyses [67], results are

Fig. 4 a Individuals with ASD were grouped into three subgroups based on the DDI values. Advanced group had higher brain age compared

with chronological age (DDI > = 1). Delayed group had lower brain age compared with chronological age (DDI < = − 1). Balanced group had

similar brain age and chronological age (− 0.2 < DDI < 0.2). b ASD severity values for the three subgroups. c The effect size of group difference

between Advanced and Delayed groups. The effect size is reported as common-language effect size (i.e., probability of having higher severity in

the Delayed group), which is an appropriate choice for ordinal severity values. The effect size was calculated for varying number of people in

each group (adjusting DDI threshold accordingly) to demonstrate the robustness of group difference to the DDI threshold. Regardless of the

sample sizes, the inter-group difference was always significant (p < 0.05)

Table 2 Characteristics of ASD subgroups defined by DDI values

ASD subgroups Age Mean (Std) Total IQ Mean (Std) ADOS CSS Mean (Std)

Delayed 11.53 (3.38) 95.52 (16.41) 8.00 (1.19)

Balanced 12.97 (2.68) 91.27 (24.62) 7.04 (2.08)

Advanced 11.80 (2.13) 99.32 (14.32) 6.47 (1.87)
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consistent with the expected brain connectivity matur-

ation within the age range of our sample [68, 69]. Not-

ably, both cortical volume and thickness decreased with

age. In contrast, cortical surface area did not show a not-

able change with age; however, this may be due to our

use of a linear correlation coefficient, since a few previ-

ous studies demonstrated that maturation in anatomical

measures follow a cubic or quadratic trend in some

areas across this age range [70–72].

We observed age-related differences between the TDC

and ASD samples in FA, ADC, and cortical thickness,

with small to moderate effect sizes (difference in r in the

range of 0.13–0.39), although results did not survive

multiple comparison correction in our sample, except

for ADC in a few regions. Our results, in average, agree

with previously reported age-related differences in diffu-

sion [73–77] and anatomical [78–80] metrics in ASD. In

our sample, the absolute values of correlation coeffi-

cients were decreased in ASD, supporting previous find-

ings of flattened curves of maturation in ASD [73, 76,

79]. The lack of substantial (i.e., not significant after

multiple comparison correction) group differences may

suggest preserved developmental mechanisms in ASD at

the group level; however, this needs further investiga-

tions, possibly including nonlinear metrics of correlation.

Similar findings, with ASD-related alterations being ob-

scured at the group level while present at the individual

level, were reported previously, using a normative mod-

eling approach [81].

Multivariate brain maturation

We observed a diverse effect of maturation in the brain,

with effect of age varying across brain tissues and

regions, highlighting the need for using advanced multi-

variate techniques to better capture inter-regional inter-

actions. Our results with multivariate prediction models

(SVR and two other regression models) clearly demon-

strated that imaging-based anatomical and diffusion

metrics of the brain can effectively capture developmen-

tal changes, as suggested by high age prediction

accuracy. The tissue microstructure and possibly

connectivity-related diffusion measures (ADC and FA)

had the highest prediction accuracy, followed by cortical

thickness, volume, and surface area. Higher predictive

power of diffusion metrics may be due to the age range

of our sample, reflecting a specific phase of development

when WM matures most. A multimodal prediction

model, combining all modalities had the highest predic-

tion accuracy. This was despite the substantial decrease

in the number of participants having all metrics and in-

crease in dimensionality, which is known to hurt the

prediction performance [82]. These results highlight the

complementary nature of anatomical and diffusion met-

rics, with a relatively higher contribution of diffusion

metrics.

In the present study, among the six multivariate

models, only one model trained with a single diffusion

metric (FA) had a notable correlation between the DDI

and symptom severity. On the contrary, the normative

model combining all modalities and metrics performed

best in age prediction. These two findings, taken to-

gether, may suggest that the neuroimaging metrics cap-

ture complementary aspects of brain maturation, and

ASD-related alterations are mostly linked to a specific

aspect that is captured by the FA metric, possibly associ-

ated with tissue microstructure and brain connectivity.

Fig. 5 Neuroimaging (FA) differences between the TDC sample and the three subgroups of ASD, namely Advanced, Balanced, and Delayed.

Colors correspond to effect size of group comparison (Cohen’s d), with positive values indicate higher FA values in ASD. All regions, regardless of

p values, are visualized. The Advanced group, in average, had higher FA values compared with the TDC sample. The effect sizes become smaller

across regions in the Balanced group. In the Delayed group, we see dominantly negative effect sizes. The hierarchy between the subgroups in

terms of symptom severity (Delayed > Balanced > Advanced) is preserved (in the reversed direction) with FA values as well
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Such a hypothesis requires further evaluations with rep-

lication studies; nevertheless, it supports the previous re-

ports suggesting links between behavioral profiles in

ASD and altered brain diffusion characteristics and con-

nectivity [28, 83, 84]. Indeed, many studies have reported

connectivity-related alterations in ASD, suggesting that

ASD is a disorder of brain connectivity [85, 86]. Our re-

sults expand this conceptualization by suggesting that

ASD severity might be related to atypical development

in white matter tissue characteristics.

The lack of correlation between symptom severity and

the DDI defined by anatomical metrics in our sample

should not be taken as a disagreement with previous

studies suggesting links between anatomical metrics and

behavior [13, 87–89]. It is essential to note that we did

not test whether symptom severity correlated with the

diffusion and anatomical metrics themselves, or whether

the brain measures accurately classified diagnosis. Ra-

ther, we tested whether their deviation from the typical

development correlated with symptom severity. Given

the smaller relationship between age and anatomical

measures, particularly surface area, compared with diffu-

sion metrics, it is perhaps unsurprising that the deviation

from normative development in these measures does not

contain sufficient variation to predict severity. A signifi-

cant correlation between severity of repetitive behaviors

and deviation from normative brain anatomy was re-

ported recently, using another normative modeling ap-

proach [81], where each voxel of the brain was analyzed

independently. It is possible that aggregating deviations

from all voxels and regions into a single score, as done

in our approach, may have caused a loss of variation ne-

cessary to detect anatomy-behavior relationship. This

hypothesis can be tested in future studies by directly

comparing different normative modeling approaches

within the same sample.

Developmental heterogeneity in ASD

Although regional and global developmental patterns of

anatomical and diffusion metrics, on average, were similar

between the TDC and ASD samples, our individual-level

analysis within the ASD sample revealed significant links be-

tween deviation from normative development and disorder

symptom severity. We investigated developmental hetero-

geneity in ASD, by using the DDI to stratify the ASD sample

into three developmental subgroups, namely Advanced, Bal-

anced, and Delayed subgroups. We demonstrated a signifi-

cant hierarchy among the subgroups in terms of mean

symptom severity (Advanced < Balanced < Delayed). Going

beyond these categorical differences, we also observed a sig-

nificant correlation between symptom severity and the DDI

in the whole ASD sample as well. Our methods and similar

stratification techniques can be easily extended to other psy-

chiatric conditions [90] and to other data modalities.

Our results portray a heterogonous picture of ASD, as

also suggested by previous studies [91, 92]. Two sub-

groups of ASD, the Advanced and Delayed subgroups,

had neuroimaging differences from the TDC sample in

the reversed directions. Within the Advanced group,

ASD was associated with higher regional FA values com-

pared with typically development, whereas, lower FA

values were present in the Delayed group. Both groups

had FA differences in the brain regions previously re-

ported in ASD, such as internal capsule [93–96], exter-

nal capsule [97, 98], and inferior temporal gyrus [99] in

the Advanced group, corpus callosum [95, 97, 100–103],

cerebellar peduncle [95, 97, 104], and inferior fronto-

occipital fasciculus [98, 100] in the Delayed group, and

cingulum [100, 105–107] in both groups. Notably, the

regions that showed significant differences were not

same for the subgroups. Such a picture supports the idea

of equifinality in psychiatric disorders [41] that suggests

a single behavioral outcome may be linked to distinct

underlying mechanisms in different subgroups or even

in each individual.

The Advanced group, in average, had less symptom se-

verity not only compared with the Delayed group, but

also compared with the Balanced group, which had typ-

ical brain age (i.e., close to chronological age). In other

words, having advanced brain maturation, which may be

considered to be a type of “deviation,” is associated with

positive outcomes. Previous studies have reported in-

creased cognitive performance for individuals with high

brain age, in normative samples [39, 108]. Here we

found higher brain age is related to reduced ASD sever-

ity. It seems that advanced brain maturation begets posi-

tive attributes both in normative and disorder samples.

Notably, the Advanced and Delayed subgroups did not

differ significantly in terms of IQ scores, and the nega-

tive correlation between symptom severity and the DDI

remained significant after correcting for IQ differences.

Thus, if we wish to speculate a parallel between reduced

symptom severity and increased cognitive performance,

we should consider cognitive domains that are associ-

ated with ASD symptomatology, such as social

cognition, executive functioning, and theory of mind

[109–114], rather than cognitive domains assessed by

standardized IQ measures (i.e., verbal and nonverbal

reasoning).

Limitations
Interpretation of the reported results should be made in

the light of several limitations of the work. First of all,

brain maturation is a dynamic process with different tra-

jectories in different age ranges [20]. Our results only re-

flect the links between age and certain anatomical and

diffusion metrics as observed within the age range of the

study sample (6–25 years, mean = 13.0, Std = 3.8). A
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comprehensive portrait of the brain development in

ASD requires datasets that include a wide range of ages,

from infancy to late adulthood. Moreover, our work

characterizes brain development only through MRI-

based metrics, and their overlap with the underlying bio-

logical processes is not well described [115].

We used linear models in order to facilitate better in-

terpretations. More sophisticated yet complicated

models could also have been used to possibly have better

predictive power, for example, to have higher prediction

accuracy in age prediction [116]. Nevertheless, using a

simple linear predictor, we were able to achieve a sub-

stantial cross-validated accuracy, which effectively dem-

onstrates the capability of our model in capturing the

brain maturation patterns.

We performed a cross-sectional analysis to study de-

velopmental effects in ASD. More reliable inferences

about brain development require longitudinal studies

[117] that have the statistical capabilities to better

characterize developmental trajectories and to better

capture within- and between-person variations [118].

The brain age approach used in this study defines a

normative model to predict age from neuroimaging met-

rics, which is the opposite of other normative modeling

approaches that predict neuroimaging metrics from age

[38]. The direction of prediction used in brain age ap-

proach explicitly defines a normative age model but not

a normative model of neuroimaging metrics, which is

available only implicitly (e.g., weights of SVR). Although

it is always possible to invert the linear mapping be-

tween variables to facilitate interpretations on regional

neuroimaging metrics, one may also use other normative

modeling approaches to achieve this directly [37, 38].

Our results suggested that the DDI derived from only

one neuroimaging metric (FA) showed a correlation with

symptom severity. Such specific findings necessitate rep-

lication studies using other large datasets to demonstrate

how these results generalize. Without such replication

studies, it is not possible to exclusively attribute ASD-

related neuroanatomical alterations to variations in a

single diffusion metric.

Based on the reported moderate effect sizes, replica-

tion studies using possibly bigger samples are needed for

this work to be reliably translated into any clinical deci-

sion making or treatment strategies.

Future directions
ASD is a complex psychiatric condition characterized by di-

verse impairments in multiple domains of functioning [1]

and presence of numerous comorbidities including deficits

in cognitive function and language ability [119, 120], as well

as co-occurring psychiatric and neurological conditions

[121]. This complex clinical presentation of the disorder

makes it a challenge to quantify the symptom severity using

a single measure. Although we used one of the gold-

standard measures of symptom severity (ADOS calibrated

severity score), a detailed characterization of developmental

heterogeneity necessitates studying links between brain de-

velopment and symptom severity along multiple dimen-

sions. In future work, we will study these multiple

dimensions of developmental heterogeneity using our prob-

abilistic data fusion techniques [122].

Our results indicated a notable contribution of diffusion

metrics in explaining observed behavioral heterogeneity

across development. It seems intuitive to conclude from

these results that brain connectivity is a key factor in un-

derstanding neurobiological substrates of ASD, which is

also supported by previous studies [85, 86]. Nevertheless,

diffusion metrics used in this study only characterize the

tissue microstructure, but not directly the connectivity be-

tween regions. Thus, future studies using direct measures

of brain connectivity derived from connectomes [123]

(e.g., connectivity strength between regions) are necessary

to better understand neurobiological underpinnings of the

disorder. Our methods introduced in this study can be

easily used in such future studies of brain connectivity.

In future studies, our findings can be extended through

use of longitudinal datasets in order to identify diverse tra-

jectories of the DDI across ages. Maturation is a dynamic

process; it is expected that an individual with ASD would

have differential deviation from the normative brain mat-

uration at different stages of development [20]. Investiga-

tions on the DDI dynamics across ages may provide

further insights into to our understanding of the individu-

alized pathways of the disorder, especially in relation to

different treatment and intervention strategies.
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