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Deviation from the matching law reflects an
optimal strategy involving learning over multiple
timescales
Kiyohito Iigaya 1,2,3,4,5, Yashar Ahmadian1,6, Leo P. Sugrue 7,8, Greg S. Corrado7,9, Yonatan Loewenstein10,

William T. Newsome7 & Stefano Fusi 1,11,12

Behavior deviating from our normative expectations often appears irrational. For example,

even though behavior following the so-called matching law can maximize reward in a sta-

tionary foraging task, actual behavior commonly deviates from matching. Such behavioral

deviations are interpreted as a failure of the subject; however, here we instead suggest that

they reflect an adaptive strategy, suitable for uncertain, non-stationary environments. To

prove it, we analyzed the behavior of primates that perform a dynamic foraging task. In such

nonstationary environment, learning on both fast and slow timescales is beneficial: fast

learning allows the animal to react to sudden changes, at the price of large fluctuations

(variance) in the estimates of task relevant variables. Slow learning reduces the fluctuations

but costs a bias that causes systematic behavioral deviations. Our behavioral analysis shows

that the animals solved this bias-variance tradeoff by combining learning on both fast and

slow timescales, suggesting that learning on multiple timescales can be a biologically plau-

sible mechanism for optimizing decisions under uncertainty.
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I
n a changing world, animals have to make decisions that are
based on the limited information they can extract from the
environment. Models of reinforcement learning and other

learning theories assume that subjects’ belief about the environ-
ment is gradually updated based on the history of choices and
outcomes1–5. The optimal strategy for updating beliefs is to weigh
past experiences according to the degree of uncertainty, or
volatility, of the environment6–8. If the environment is stable, it is
beneficial to consider a large number of past experiences to
estimate the current state more accurately. In volatile environ-
ments, only a small number of recent experiences should be
considered, as old ones may no longer be informative about the
current situation.

Previous studies into flexible reward learning have largely
focused on how animals can adjust their learning rate according
to the volatility of the environment. Many of these studies have
assumed that a single time constant (learning rate) is con-
tinuously modified over time (see e.g. refs. 2,6,7,9,10). Real world
environments, however, can change on multiple timescales and
learning on multiple timescales can be highly beneficial
computationally8,11–17. Here we analyzed an experiment to
identify integration processes that operate on multiple timescales.
We show that these processes cooperate to maximize the subjects’
reward harvesting performance in a volatile environment. Inter-
estingly, the subjects deviate from the behavior that would be
optimal in a stationary environment. However, rather than a
failure, this deviation reflects an adaptive strategy that is more
efficient in volatile environments.

In the experiment, monkeys were trained to perform a
dynamic foraging task18 in which they track the changing reward
rates of alternative choices through time. The reward rates
changed periodically without any warning. Within each period
during which the reward contingencies were kept constant, the
probabilistic strategy that maximizes subjects’ cumulative reward
is to follow the so-called matching law, under a specific reward
schedule that is often referred to as the concurrent variable-
interval schedule19,20.

According to the matching law, subjects distribute their choices
across available options in the same proportion as the rewards
obtained from those options21,22. This type of behavior has been
observed across a wide range of species including pigeons, rats,
monkeys, and humans18,21–30. Although the matching law pro-
vides a simple and elegant description of behavior, actual choice
often deviates from matching.

For example, one common deviation, which is often referred to
as undermatching, reveals itself as a more random choice allo-
cation, because the subjects systematically choose less-rewarding
options more often than the matching law predicts. Such devia-
tions have been interpreted as a failure on the part of the subjects,
reflecting poor discrimination between options31, or noise in the
neural mechanisms underlying decision making32, or by an
imbalance in the learning mechanisms33. In our data, we also
observe significant undermatching; however, we find that overall
harvesting performance improves as the behavior deviates more
strongly from the matching law.

We hypothesized that this behavioral deviation, and accom-
panying performance improvement, may reflect an adaptation
strategy with reward learning over mulitple timescales, which
optimizes the weighting of both recent and old experiences. Old
experiences, when considered, should introduce a bias away from
the current reward rates (which are unknown to the subject). This
bias will instead reflect information about the long-run average of
reward rates. For example, when different choices are equally
rewarded in the long-run, the bias will be toward balanced
choices, which would make the subjects choose the option with
the lower reward rate more often than predicted by the matching

law if they knew the true rates. In our experiment, this bias
translates into undermatching; therefore, choice behavior appears
more random and exploratory than matching behavior, which
would be optimal for a subject who knew the true reward
contingencies.

However, the bias also has the effect of reducing fluctuations in
the subject’s estimate of current reward probabilities which must
be inferred from finite, stochastic, observations. This reduction in
the volatility of estimates compensates for any losses incurred by
deviations from strict matching behavior, allowing the overall
harvesting performance to increase when older experiences are
taken into account.

To test this hypothesis, we estimated the time over which
monkeys were integrating the rewards received for each choice.
We found that this integration-time was much longer than has
traditionally been described, varying slowly across days of
experiments. As predicted, larger deviations from matching
behavior correlated with longer integration-times, while longer
integration-times corresponded to less volatile estimates of
reward rates. We also found that the relative contributions of long
timescale integrators correlated with the schedule of the experi-
ments (e.g. with the duration of the time intervals between two
consecutive experiments), suggesting dynamic adaptation over a
long time period including times outside experimental sessions.

Results
The dynamic foraging task. On each trial, the monkey is free to
choose between two color targets by making saccadic movements
(see Fig. 1a). Rewards are assigned to the two colors randomly,
according to a concurrent variable-interval (VI) schedule, at rates
that remain constant for a certain number of trials (block size:
typically 100–200 trials). We call these experimentally controlled
rates as the baiting rates. Once the reward is assigned to a target,
the target is said to be baited, and the reward remains available
until the target is chosen. This means that the probability of being
rewarded for choosing a target increases with the time since the
target was last chosen. In a stationary environment under this
reward schedule, matching is known to be the probabilistic
strategy that maximizes the average chance of obtaining rewards.
In that sense matching could be considered optimal (see also
ref. 34). In this task the reward rates were not stationary, but were
instead periodically changed in an unpredictable way. None-
theless, the matching law still adequately captures the behavior of
monkeys performing this task, as previously reported18.

We plotted the fraction of times that monkeys choose one
target versus the fraction of times that monkeys obtained a
reward from the target in Fig. 1b. All datapoints are around the
diagonal (blue). Notice, however, that there are clear deviations
from the matching law, which become even more evident by
comparing a linear fit (red line) of the datapoints to the diagonal.
This is an example of the well-documented phenomenon of
undermatching, whereby the choices of the animals appear to be
closer to indifference (choice fraction close to 0.5) than would be
predicted by the matching law.

We observed that deviation from the matching law varies over
time (see different deviations estimated over two time intervals in
Fig. 1b). One way to express this deviation more quantitatively is
to compute the slope S of the linear fit and compare it to the
unitary slope of the diagonal. Therefore we will express the degree
of undermatching as 1–S. We found in data that this quantity
varies significantly over time, ranging from 0.1 to 0.4.

The second observation is that changes in matching slopes are
accompanied by changes in the overall performance that we can
express as harvesting efficiency (i.e., the number of rewards that
subjects actually obtained divided by the maximum number of
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rewards that they could have collected). Interestingly, as the
subject’s behavior deviates more from the matching law (see
Fig. 1c), harvesting efficiency increases, an observation that might
seem at odds with the optimality of matching behavior. However,
as we will explain in the next section using computational models,
this result makes sense in a non-stationary environment in which
the reward probabilities change over time, and in fact signifies a
learning strategy that involves both fast and slow parallel reward
integration processes.

Note that there is another well-documented deviation from the
matching law31, which we refer to as color choice bias. This is a
bias toward one of the colored targets, and can be quantified as
the deviation of the linear fit to the behavior data from the unity
diagonal predicted by the matching law at a reward fraction of 0.5
(see the inner panel of Fig. 1b and Methods). Undermatching
(slope) and color choice bias (intercept) are independent
behavioral measures. In the following theoretical analysis, we
will primarily focus on undermatching, but we will come back to
color choice bias later.

Reward integration over multiple timescales leads to under-
matching. One common way to capture behavior in a dynamic
foraging task is to build a model that integrates rewards over a
certain number of trials. In a non-stationary situation in which

reward contingencies change from time to time, subjects need to
adapt the timescale of reward integration to the volatility of
reward schedules. When reward contingencies change rarely, it is
better to integrate a large number of trials to improve the estimate
of reward rates (from now on, we also refer to reward rates as
choice values). Conversely, if reward contingencies change often,
subjects should only rely on recent experiences, as more distant
history does not reflect the current reward rates. One way to
address this meta-learning problem for adjusting timescale is to
run multiple, fast and slow, integrators in parallel, each of which
integrates the reward streams from a specific target on a different
timescale. The adaptation would then be to adjust the relative
contributions of such integrators to choice.

The mechanism is described schematically in Fig. 2a. Consider
the case of two exponential integrators characterized by two time
constants τFast, τSlow. There are two integrators (slow and fast) per
choice, represented in the figure as boxes. The two top ones
integrate the reward stream from the green target, whereas the
two bottom ones integrate the reward stream from the other, red
target. The outputs of these integrators approximate reward rates
on a certain number of recent trials, which is determined by time
constants, τFast or τSlow. We define the local income18 of each
target as a weighted average of the outputs of the fast and slow
integrators for that target.
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Fig. 1 Task and behavior. a Behavioral protocol (adapted from18): the animal had to fixate the central cross, and after a short delay (Delay), it could make a

saccadic eye movement toward one of the color targets (Go). If the chosen target was baited, a drop of water was delivered (Return). A delivery of reward

resets the target to be empty, until it is baited again, which was stochastically determined with different baiting rates for different targets. The sum of

baiting rates for two targets was set at ~0.35 rewards per trial. The relative baiting rates changed at the end of blocks (about every 100 trials) with no

signal. The Ratio of baiting rates in each block was chosen unpredictably from the set (8:1, 6:1, 3:1, and 1:1). In this setup if the ratio is fixed, the matching

law is known to approximate the optimal stochastic choice behavior. b Deviation from the matching law: the fraction of choices allocated to one target is

plotted as a function of the fraction of rewards that were obtained from the same target for different experimental days (top left Monkey F days 1–4,

bottom left: days 21–24, top right Monkey G days 1–3, bottom right: days 21–24). Each data point represents an estimate in a given block of trials, the solid

line is a linear fit to the data. The matching law corresponds to a line with a slope equal to 1 (dashed line), while the observed behavior, with a slope <1, is

called undermatching. Undermatching indicates that animals had a tendency to explore choices more (or, put simply, appear to be more random) than

what the matching law would predict. For both monkeys the behavior deviates from the matching law, and the degree of undermatching (measured by the

slope) changes over time. Note that undermatching is different from color choice bias, which is indicated by the filled circle in the inner panel (bottom

right). The color choice bias is defined by the intercept of the fitted matching slope and the reward fraction of 0.5. c Paradoxically, the harvesting efficiency,

which indicates how well the monkeys collected rewards, positively correlates with the degree of undermatching: the more choice behavior deviates from

the matching law, the higher the harvesting efficiency. The harvesting efficiency is defined as the number of rewards that monkeys actually obtained

divided by the maximum number of rewards that could have been collected. Hence it varies between 0 and 1. The monkeys almost always undermatched,

the degree of which shows a wide distribution over sessions
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The model’s decision to choose a target is determined by a
comparison between the local incomes for the two targets (see
Methods for details). Following18, choices are generated by the
probability of choosing the green target given by:

PG ¼
IG

IG þ IR
; ð1Þ

where IG/R is the local income for Green/Red target. Although this
is not the only way of modeling decisions that depend on past
experiences, this has been shown to describe well the
behavior18,25. In the previous analysis of Sugrue et al.18 only a
single relatively short timescale (τFast) has been considered.

The statistics of model’s decisions change according to the
relative contributions of fast and slow integrators. Consider the
case in which τFast is short (shorter than the typical block length

expressed in number of trials), and τSlow is very long (longer than
the typical block length), so that the second integrator with τSlow
integrates reward streams over multiple blocks of trials. If the
weight wFast of the fast integrator is much larger than that of the
slow integrator wSlow (Fig. 2b, c), then the model rapidly tracks
the recent average reward fraction. Fast learning is especially
advantageous when adapting to rapid changes in reward
contingencies (Fig. 2b). However, a disadvantage is that reward
rate estimates fluctuate wildly (Fig. 2b). In Fig. 2c, we plotted the
choice fraction vs the reward fraction, where the average of many
blocks of trials (solid line) is very close to the diagonal, indicating
that the model follows the (block-wise) matching law, but with a
large variance (shaded area).

Conversely, if the weight of the slow integrator is so large that
decisions are mostly driven by estimates on the long timescale
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Fig. 2Model analysis: how slow reward integration leads to undermatching. a Scheme of a model. The model integrates reward history over two timescales

(τFast, τSlow) to estimate the expected income for each choice (red or green). These incomes are then combined to generate stochastic decisions, where PG

(PR = 1 − PG) is the probability of choosing the green (red) target. While previous models18,25 focused on the integration timescales that are shorter than

the block size, here we assume that the long timescale τSlow is much longer than the block size, while the short timescale τFast is still shorter than the block

size. The model integrates the incomes estimated over the two timescales with adjustable relative weights: wFast for the relative weight of the fast

integrator (τFast) and wSlow for the weight of the slow one (wFast + wSlow = 1). b, c Fast integration wFast � wSlowð Þ. If the weight of the fast integrator is

much larger than the slow one, the model relies only on the recent reward history estimated over an interval that is approximately τFast. As a consequence,

the estimated incomes largely and rapidly fluctuate. This noisy estimation leads to large fluctuations in the choice probability PG (red). Despite the

fluctuations, the mean of such choice probability follows the matching law (indicated by the solid red line in c). However, the fluctuations of PG are rather

large, as indicated by the broad shaded area, which denotes the standard deviation of PG. d, e Slow integration wFast � wSlowð Þ. If the weight of the slow

integrator is much larger than the fast one, the model now integrates rewards only on the long timescale τSlow. This eliminates the fluctuations in the choice

probability; however, the choice probability of is constant at 0.5, because the estimated incomes are balanced over multiple blocks of trials. Therefore, the

choice probability becomes independent from the recent reward history, causing a strong (exploratory) deviation from the matching law (e). Note the the

actual choice probability is determined by the overall color reward imbalance in the task (0.5, if no bias). f, g Mixed integration: wFast ’ wSlowð Þ. If the two

integrators are similarly weighted, both deviation from the matching law (undermatching) and the amplitude of the fluctuations are intermediate. This

captures experimental data, and manifests a computational tradeoff between bias (long integrator; undermatching) and variance (short integrator;

fluctuations). Parameters were set to be τFast = 5 trials, τSlow = 10,000 trials, wSlow = 0.3 for f, g. Note that our results do not rely on the precise choice of

τFast and τSlow
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τSlow, the local incomes become constant and approximately equal
(Fig. 2d, e). Indeed incomes from two targets are approximately
balanced on a long-run by experimental design. As a result,
model’s choice shows an extreme undermatching with negligible
variance in choice probability (Fig. 2e).

Intermediate situations can be constructed by changing the
relative weights of the two integrators (Fig. 2f, g). Increasing the
weight of the slow integrator wSlow would increase deviation from
the matching law, but it would also decrease variance in choice
probability. This indicates that the model trades deviation from
the matching law (undermatching) for a reduction in variance of
inference about reward rates, by changing the relative contribu-
tions of fast and slow integrators.

Bias-variance tradeoff in inference and behavior. It is natural to
ask whether there is an optimal value of the weight wSlow. To
address this question, we analyzed our model analytically in a
more general situation in which we vary the degree of volatility
(the block size) as a free parameter (see Supplementary Notes).
For simplicity, we considered a task with one target in which
subjects has to estimate dynamically changing reward rates

(income) over trials, or equivalently, estimate the bias of a coin,
where the bias is fixed over each block of trials but it changes
across blocks of trials. This simple inference task is closely related
to our actual experimental task because in the experiment sub-
jects also need to estimate reward rates from two targets accu-
rately, and choose between targets following the local matching
law Eq. (1). We will then confirm our analytical calculation
results in simulations of the actual experimental schedule
experienced by the monkeys.

In the analytical calculation, we find that the total error of the
model’s inference about reward rates can be generally expressed
as a sum of two terms: one term expressing the difference
between the model’s average estimates and true reward rates, and
the other term expressing the variance of model estimates, which
is rooted in noisy, stochastic deliveries of actual reward. We refer
to the former as to the bias of inference, and the latter as to the
variance of inference.

Figure 3a–c show that there is a wSlow that maximizes the
accuracy of inference about reward rates (i.e. it minimizes
the mean squared error) and the value of wSlow depends on the
volatility of the environment. In Fig. 3a, we contrast the squared
bias of inference and the variance of inference as a function of
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Fig. 3Model analysis: the bias-variance trade-off and the optimal choice behavior under uncertainty. a–c Analytical model results for two different volatility

conditions, with a block size of 100 trials (more volatile) or 10,000 trials (less volatile). All the solid (dashed) lines refer to the results for a less (more)

volatile task with a block size of 100 (10,000 trials). a Bias (blue) and variance (orange) of model’s inference about reward rates show a tradeoff as a

function of the relative weight of the slow integrator (wSlow). The bias is squared. b The squared error of model’s inference about reward rates, which is the

sum of the squared bias (blue in a) and the variance (orange in a), is plotted against wSlow for different volatility conditions. The optimal relative weight

wSlow for the volatile environment (solid vertical line) is smaller than that for the stable environment (dotted vertical line), since more volatile environments

(solid curve) require faster integrators, or a smaller relative weight of the slow integrator. c Deviation from the matching law (shown as the slope of block-

wise choice fraction vs reward fraction) covaries with the relative weight of the slow integrator, and also with the volatility condition. d, eModel simulation

results on the same experimental schedule experienced by monkeys. d Model simulations show a clear tradeoff between undermatching (a form of

behavioral bias) and the variance of choice probability, as a function of the relative weight of slower learning wSlow. The square root of variance is shown for

illustration. e Model simulations also show changes in harvesting efficiency as a function of the relative weight of the slow integrator wSlow. As a result of

the bias-variance trade-off, the curve takes an inverted U-shape, with a maximum at the optimal relative weight, determined by the volatility of the

experiment. For panel d, we computed the variance of Monkey’s choice probability as follows. First, monkey’s choice time series was smoothed via two

half-gaussian kernels with standard deviations of σ = 8 trials and σ = 50 trials, with a span of 200 trials. This gave us two time series: a fast one with σ = 8

trials and a slow one with σ = 50 trials. We defined the variance as the variance of the fast one over the slow one. The squared root of variance is shown in

the panel. For panels d, e models with different wSlow’s were simulated on the experimental schedules experienced by Monkey F. We set τFast = 2, τSlow =

1000 trials. Note that our results do not rely on the precise choice of τFast and τSlow (see also Fig. 1)
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wSlow. The variance of inference decreases but the bias of
inference increases as the weight wSlow increases. The mean
squared errors of model’s inference, in turn, take an inverted U-
shape (Fig. 2b). Not surprisingly, the optimal weight of the long
timescale is larger for a more stable environment (dashed line),
than for a more volatile environment (solid line). Consequently,
the slope of matching behavior generated from the inferred
reward rate changes according to the volatility (Fig. 3c).

We now show how our analytical model’s predictions can be
applied to the actual experimental task. We first note that the
variance of inference is related to the variance of choice in our
experiment. To see it, we simulated our model with a single
learning rate (the same as in Sugrue et al.18). We used the
parameters that were estimated by model fitting (maximum
likelihood) for each session of the experiments for Monkey F.
Supplementary Figure 2 clearly shows a positive correlation
between the variance of inferred reward rate and the variance of
choice behavior.

Therefore the bias-variance tradeoff in the inference, which we
showed using analytical calculations, translates into an analogous
tradeoff that should be observable in subject’s choice behavior in
the experiment. To see it, we simulated our model illustrated in
Fig. 2a for different values of wSlow on the same experimental
conditions experienced by Monkey F. In Fig. 3d we show that
undermatching (a form of behavioral bias) is indeed traded off
against variance in choice. A bias of 0 would indicate that the
behavior follows the block-wise rates predicted by the matching
law. As wSlow increases, undermatching (1− the slope of matching
behavior) becomes more evident. This, however, leads to a
reduction in the variance of choice. Thus as seen in Fig. 3e, the

overall performance, measured by harvesting efficiency, has a
maximum at an intermediate value of wSlow.

Our computational model analysis suggests that the observed
changes in matching behavior can be accounted for by changes in
the relative contribution of a (extremely) slow reward integrator
to decision making, and might reflect a tradeoff between bias and
variance in value estimation. In this tradeoff, the relative weights
of fast and slow integrators, wFast and wSlow, can be tuned
according to the volatility of reward schedules.

The predicted bias-variance tradeoff in the data. We now test
our theoretical predictions in the actual experimental data. The
overall goal is to confirm the link between three features in data:
the bias-variance tradeoff, undermatching behavior, and multi-
timescale learning of reward history.

First, we provide experimental evidence for the bias-variance
tradeoff. In the actual experimental data, we estimated bias (as
undermatching) and the variance of choice, as well as the
harvesting efficiency for each experimental session. As we
estimated these measures without relying on model-fitting, we
call this a model-independent analysis (see Methods for details).
Figure 4a–d show that undermatching, variance, and harvesting
efficiency varied dynamically over sessions. As we predicted from
our model analysis, undermatching is negatively correlated with
the variance (Fig. 4e). Analogously, the harvesting efficiency
(Fig. 4c, d) is correlated both with the variance (negatively) and
undermatching (positively) as shown in Fig. 4f, g respectively,
suggesting that monkeys performed better when variance of
choice were reduced and deviations from the matching law
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became more prominent. This supports our hypothesis that
monkeys used multi-timescale learning, particularly of a very long
time constant, in order to optimize their choice.

Undermatching and reward integration over long timescales. If
the bias-variance tradeoff is mediated by reward integration on
long timescales and reward learning takes place over multiple
time scales in parallel (as described in Fig. 2), then we predict that
deviations from matching behavior should be strongly modulated
by the relative contribution of the slow integrator.

An obvious way to test this prediction is to fit the multi-
timescale learning model illustrated in Fig. 2a to the data,
determine how the relative weights of the integrators change over
time, and show that these changes correlate with changes in
undermatching. We performed this analysis by using the model
of Fig. 2 with three time constants instead of two. We included
two time constants (~2 and 20 trials) that are shorter than the
typical block size (as in Corrado et al.25), in addition to a third
one that is significantly longer than the block size (1000 trials).
The existance of such a long time constant is also supported by
our auto-correlation analysis (Supplementary Figure 13). As we
will explain below, the precise choice of the longest time constant
does not affect our results.

We fit the model independently to the data from each session,
by using maximum likelihood estimation of the relative weights
of the three integrators (wFast−1, wFast−2, and wSlow). We were
surprised to find unusually smooth changes in these weights
across sessions (Fig. 5b), as we did not impose any smoothness
constraints to our fitting process (i.e. we fitted each session
independently; for details see Methods). This suggests that the
optimization of relative weights takes place slowly and con-
tinuously over sessions.

Further, as we predicted, changes in the weight of the slow
integrator are correlated with changes in undermatching (Fig. 5c).
However, due to a potential confound, this correlation is not
sufficient to prove the link between undermatching and slow
reward integration. This is because the slow reward integrators
act as a bias that changes slowly over time, and any slowly
changing bias will lead to correlations with undermatching,
regardless of whether that bias is driven by slow reward

integration or some other process unrelated to reward history.
For example, a bias that is randomly modified from session to
session would also show correlations with undermatching, even
though that bias does not depend on reward history. To better
understand this confound, see Methods for a more detailed
explanation.

As a direct test of this link between slow reward integration
and undermatching, we estimated the effects of very slow reward
learning in the experimental data, by measuring long-term
reward-choice correlations across, rather than within, experi-
mental sessions.

To directly measure the timescale of slow reward integration
from the data (illustrated in Fig. 6a) we decided to exploit the
other type of choice bias in matching behavior, which we refer to
as color choice bias. A color choice bias in matching behavior is
defined as the intercept, at reward fraction=0.5, of a line fit to
block-wise matching behavior plotted in choice fraction vs.
reward fraction (see inner panel in Fig. 1b). If animals indeed
integrated rewards on a very long timescale, this long-term choice
bias should be influenced by imbalance in past reward experience
in which the experienced ratio of rewards received from each
the two colors deviates from 50% (e.g. see ref. 16). We can
measure the slow integration timescale using session-by-session
estimates of color imbalance in rewards and color bias in choice,
by asking over how many sessions color reward imbalance
influences future color choice bias.

To understand how this measure is related to the timescales of
the integrators of Fig. 2, it is useful to run simulations of the
model. We estimated the color reward imbalance and the color
choice bias for each session of the simulated data. The reward
color imbalance is defined as the fraction of reward obtained from
one side minus 0.5, while as we previously defined, the color
choice bias is the intercept of the matching slope at reward
fraction=0.5. We then took the lagged causal correlations
between these two bias vectors (Fig. 6b). Since the model learns
reward history over trials, the color choice bias is supposed to be
influenced by the color reward imbalance, with the correlation
between the two quantities decaying as the lag increases. We then
introduced what we refer to as the longest measurable integration
timescale (LMIT), which is the longest time lag for which the
correlation is significant. We estimate it by fitting a line to the
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wFast−2 + wSlow = 1). b The weights of different timescales change over consecutive experimental sessions. The short timescales are dominant in early

sessions, but the longer timescale becomes progressively more influential. The opposite trend is observed around session 160 of monkey F, probably due to

the shortening of experimental sessions and longer inter-experimental-intervals (see Supplementary Figure 16 for more details). c Deviation from the

matching law is correlated with the weight of the reward integration on a long timescale. Undermatching, computed over the last 50 trials of each block to

ignore transients, is plotted against the fitted value of wSlow, the weight of the longest reward integration timescale. Both monkeys show significant

correlations between undermatching (1 − slope) and wSlow. We found, however, this model-based analysis inconclusive, as the correlation is expected from

the model structure (please see the text)
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lagged correlations and taking the intercept of the linear fit at zero
correlation (see Methods section for a more formal definition).
We then transform this session lag measure to trials by
multiplying it with the mean session size so that the LMIT is
expressed in trials. The LMIT is a lower bound for the longest
timescale of reward integrators.

We performed this analysis for the data generated by the model
with different fixed relative weights of wSlow of the longest
timescale (τSlow = 1000 trials), and the results are plotted as a
function of the time lag (before session-trial transformation) in
Fig. 6b. The estimated LMIT is plotted in Fig. 6c as a function of
the relative weight wSlow. This plot links the model parameter
wSlow to the model-independent measure LMIT. The LMIT is

rather sensitive to changes of wSlow, suggesting that we can use it
as a measure of the impact of slow reward integration on choice.

With this in mind, we then directly measured the LMIT in the
experimental data. As predicted, we find that the LMIT covaries
with the deviation from the matching law. As shown in Fig. 7a, b
for both monkeys, not only does the LMIT change over time
(Fig. 7a), but it also correlates with the degree of undermatching
(Fig. 7b). This confirms our prediction that undermatching (bias
towards a 1:1 ratio of choices) reflects very slow reward
integration over hundreds or thousands of trials.

Note that the estimate of undermatching appears to be less
noisy than that of the LMIT (Fig. 7a). This is due to the difference
in the number of data points that could be used to estimate each
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variable. Undermatching is estimated by regressing the data
points in a window of 25 experimental sessions (>100 data
points), whereas the LMIT is estimated by regressing <10 points
from cross-correlations between color reward imbalance and
color choice bias.

It is important to stress that our predictions did not rely on the
details of our computational model (illustrated in the previous
section), such as the exact time constants for reward integrators.
We conducted a model-independent analysis that is only based
on the correlation between undermatching and the lower bound
of the longest integration time. We note that, in general,
measurements of a slope and an intercept in a linear regression
can be correlated; however, we did not see a significant
correlation in our analysis.

Undermatching and harvesting performance. Our computa-
tional analysis of the multi-timescale learning model (Fig. 2a) also
predicts that deviation from the matching law should be
accompanied by changes in the harvesting efficiency, as a result of
the bias-variance tradeoff (see Fig. 3e). As the weight of the
integrator with the longest timescale increases, the harvesting
efficiency should first increase and reach a maximum and then
decrease. Moreover, if wSlow, or its proxy – the LMIT, changes
over time, it should be accompanied by parallel changes in har-
vesting efficiency. We found that this is indeed the case, as shown
in Fig. 8a, b.

Slow integration time constant depends on experimental
schedule. The main reason to modify the relative weights of the
integrators is to adapt to the volatility of the environment. In
the case of the experiment, there should be no reason to modify
the weights once the optimal value is found. This is because the

volatility, determined by the block size, was kept relatively con-
stant. Nevertheless, we found that the relative weights, and ana-
logously the LMIT, changed over the months of the experiment.
Explaining these dynamics is beyond the scope of our current
study as they are probably due to factors that are not under
control, which might include what happens in the intervals
between consecutive experimental sessions. This explanation is
supported by the evidence that the LMIT changes in a way that
can be related to both the interval between experimental sessions
and the duration of consecutive experimental sessions (see Fig. 9).
Specifically, we found that the LMIT decreased when the mean
interval between experiments (recent break length) was long,
suggesting a process of forgetting of the degree of volatility.
Instead, the LMIT increased when recent experimental sessions
were longer and contained more trials. This is also the case for the
relative weight of slow learning of our model that is fitted to data
(Supplementary Fig. 16).

Discussion
Deviations from the matching law are sometimes interpreted as
failures due to limitations in cognitive or perceptual systems, such
as neural noise. Here we used simple computational models and
the analysis of experimental data to show that these deviations
may actually reflect a sophisticated strategy to deal with the
variability and unpredictability of non-stationary environments.
In our analysis, we linked a bias-variance tradeoff, multiple
timescales of reward integrations, and undermatching behavior.
The bias-variance tradeoff can manifest itself in a large class of
learning models in dynamic inference tasks, including the mon-
key experiment that we analyzed, and the simpler task that we
used to solve our model analytically. Importantly, the bias-
variance tradeoff is not unique to our model with multiple time
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constants. In well-studied models with single learning rates, the
tradeoff manifests itself as a problem in tuning learning rate (e.g.
see refs. 6,7). One can deal with the tradeoff by changing a single
time constant that characterizes the learning rate. Here we used

an alternative approach in which we tuned the relative weights of
multiple integrators, each with a different but fixed time constant
(see also the discussion below).

In fact, the bias-variance tradeoff has been extensively studied
in machine learning35. When fitting a model to data, the ideal
model should both accurately capture the observed data, and also
generalize to unseen data. One way of addressing this problem is
to introduce a prior belief about the data into the model, so that
the model’s estimate does not entirely rely on the current
observation, which are corrupted by noisy processes that do not
generalize to unseen data. Our present findings in monkeys could
reflect a behavioral correlate of this process, as learning over a
long timescale can naturally be interpreted as building a prior
(see Supplementary Notes for a more mathematical discussion).

The idea of learning on multiple timescales has been suggested
by previous observations on the behavior of primates12,25 and
pigeons36, as well as other computational model studies8,11,13.
Our work shares features of previous studies on suboptimal
perceptual decisions, in which prior expectations have been
shown to interfere with current perceptions37–39. Moreover, there
has recently been accumulating evidence that several neural sys-
tems – ranging from individual neurons studied in vitro, to
complex neural circuits studied in vivo – have the ability to
integrate their inputs, including those that represent rewards, on
multiple timescales40–51. Our results can provide new insights
into the computational advantage of ubiquitous biological pro-
cesses that operate over multiple timescales.

We showed that monkeys seem to slowly adapt relative weights
of fast and slow reward integrators. We note that this meta-
learning strategy is qualitatively different from, but not contra-
dictory with, prior work on the adaptation of a single learning
time-constant (e.g6,7,9,24.), though we show in Supplementary
Figure 17 that a model with a single varying timescale would be
incompatible with our experimental data. Previous studies have
shown that humans and animals appear to be capable of dyna-
mically adjusting the timescale of learning. This could be achieved
by changing the time constant itself, but also by adjusting the
relative weights of multiple, perhaps fixed, well separated, time
constants. As we discuss further below, optimizing the relative
weights of multiple time-constants may be more beneficial than
optimizing a single time-constant, especially when the environ-
ment changes over a wide range of timescales8 (see also Supple-
mentary Figure 18 and the discussion below).
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and the mean recent experimental day length (how many trials monkeys
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[permutation test: p < 0.025 for Monkey F and p < 0.004 for Monkey G].
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For illustrative purpose we presented models with two or three
time-constants; however, there may be more than three well-
separated time constants that span subjects’ lifetimes. In fact,
previous computational studies have shown that in order to
optimize memory capacity, it is beneficial to have logarithmically
distributed time constants, which can efficiently span a wide
range of timescales8,14,52. Under this scenario, the resulting
reward integration kernel (the sum of exponents) becomes scale-
free (power-law). In such a system, trying to determine the exact
time constants of the integrators might be misleading because the
scale-free integration kernel can be well-approximated by many
different choices of sums of exponents with different timescales.
So there may be many more timescales than what we char-
acterized, ranging from one trial to thousands of trials, and these
time constants themselves may also be adaptive. We should also
note that our primary interest in this study was the role of very
slow learning, over very long time constants53. Hence we did not
analyze the effect of what is often referred to as change-point
detection, where subjects detect and rapidly speed up their
learning rates in response to sudden changes in reward schedules
(e.g. refs. 6,7,14,54). Although such a trial-by-trial adaptation is
beyond our current scope, this can be naturally incorporated to
our learning mechanism by allowing trial-by-trial adaptation of
relative weights of reward integrations. Nonetheless, our analysis
suggests that change-point-detection would have affected only the
weights of short time-constants, as the long-term bias was present
throughout the experimental sessions, which is consistent with
what we have previously predicted in our neural network model
analysis8.

Integration over multiple timescales can be implemented by
neural circuits in several ways, for example, by synaptic models
endowed with metaplasticity8,17,52, or by partitioned, interactive,
memory systems that are responsible for preserving memories on
different timescales (see e.g. ref. 15). These models have shown to
have significant computational advantages over models with a
single timescale. In fact, a simple neural-network model involving
synaptic metaplasticity, often referred to as the cascade model of
synapses8,52, can capture some of the key aspects of our data55.
The model encodes the reward history over multiple timescales,
as individual synapses continuously change the rate of plasticity
and the effective timescales are distributed logarithmically over a
broad range. As seen in Fig. 10c, the model can reproduce the
changes in matching behavior observed in the experiment. In the
early days of the experiment, the model shows good matching
behavior, as we assume that at the beginning of day 1, the
metaplastic states, which determine the plasticity rate, are dis-
tributed uniformly (e.g. ref. 8,56). As learning progresses, the
distribution of synapses in the cascade model gradually shifts as a
result of memory consolidation, introducing a bias toward the
mean of the distribution of rewards estimated on long timescales.
Since the rewards are balanced on these timescales, the bias leads
to undermatching. During long breaks between experimental
sessions, however, the model forgets what it has learned, driven
by activity that is uncorrelated with the reward structure of the
experiment. Thus, our synaptic plasticity model can capture the
observed changes in behavior through the interplay of memory
consolidation (synapses become less plastic due to learning dur-
ing sessions), and forgetting (synapses become more plastic
during long inter-session-intervals). As shown in Fig. 10d the
model also captures the bias variance tradeoff that we observed in
the data.

We showed that the harvesting performance of the monkey
increases when integration of reward history over much longer
time scales than traditionally thought relevant is taken into
account. This improvement could be significantly larger in other
situations. In a two-choice task the harvesting performance varies

in a rather limited range when the behavior goes from random to
optimal. This is a well-known limitation which makes it difficult
to establish how close the behavior is to optimal. In more com-
plex, but perhaps more realistic, tasks that involve multiple
choices and timescales, the situation could be drastically different.
Imagine, for example, a task in which there are 100 different
choices and only one of them is rewarded with a probability that
is significantly different from zero, using a schedule similar to the
one of the two-choice task that we analyzed. The rewarding
targets may change over; but within a restricted fraction of tar-
gets, say 10 targets, whose locations also change on a much slower
timescale. In this case long timescales contain important infor-
mation about the possible rewarding targets to consider and
ignoring this information would lead to a significant decrease in
the performance (see Supplementary Figure 18).

Our results also provide new insights into well-documented,
suboptimal, exploratory choice behaviors in animals, and what is
often referred to as the exploitation-exploration tradeoff 57,58. It
has been reported that animals often fail to exploit the optimal
choice but instead show more random, matching-like, behavior in
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Fig. 10 The metaplastic model of synapses (the cascade model52) can

capture key aspects of experimental data. a Network model. A decision is

made according to the competition between the two action selection

populations (G: choosing Green target; R: choosing Red target), mediated

by the inhibitory population. The competition is determined by synaptic

strength between the input population and the action selection populations.

These synapses are plastic, and they encode the value of Green target and

Red target8,12,20,56,61. b The cascade model of synapses. Each synapse

makes Markov transitions between states with a different strength

(depressed −, or potentiated +) and plasticity (upper states are more

plastic) with given probabilities, where transition probabilities are designed

to be ordered as α1 � α2 � α3; q1 � q2. Note that transition probabilities

are logarithmically distributed so that deeper states are harder to enter, and

harder to leave. In general, the number of metaplastic states (vertical

states) can be more than three8,52. Here we show three states for an

illustrative purpose. c The model captures changes in matching behavior.

The model was simulated in the same conditions experienced by Monkey F,

according to the learning rules that allow reward-dependent transitions

during experimental sessions, and transitions that incorporate forgetting

during long breaks between experimental sessions8. d The model also

captures the tradeoff between undermatching and the variance of choice
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simple slot machine or N-armed bandit tasks (e.g.59). Compu-
tationally, this has been often accounted for by adding noise to
the value computations or decisions. Our current study, however,
suggests that such apparent sub-optimal exploratory behaviors
can be driven by very slow learning, or reward memory, on a very
long timescale. Thus, our model predicts that it ought to be
possible to manipulate such exploratory behavior by changing the
reward statistics operating on long timescales, or possibly by
directly stimulating the neural circuits responsible for long-
timescale reward learning46,48,60.

Methods
Subjects and the task. As the full details of the experimental protocols are
reported in refs. 18,25, here we only provide a brief description. We used two adult
male rhesus monkeys (Macaca mulatta) weighing 7 and 12 kg. To initiate a series of
trials, the animals had to fixate a black central fixation cross for a period of 300 ms.
This was followed by a presentation screen, consisting of the black central fixation
cross and two choice targets at a pair of mirror symmetric locations in opposite
hemifields – a green circle and a red circle. The animals had to fixate a central point
during this period (1–2 s). The location of the red target and the green target was
counter balanced across trials. At the end of this delay period, the fixation cross
became white (Go cue), signaling that the animal should indicate its choice with an
eye movement to one of the two choice targets within a 1 s grace period. The
animal was required to maintain its gaze on the chosen target for a further variable
hold period of 300–600 ms. If the chosen target was baited at the time of the
animal’s choice, a fixed magnitude fruit juice reward was delivered during this hold
period. At the end of the hold period the presentation screen reappeared, cueing
the animal to return its gaze to the fixation cross within a grace period of 1 s in
order to trigger the onset of the next trial. Trials continued as long as the animal
maintained its gaze within a 2° spatial window centered on the location of the
fixation cross or chosen target. A failure of maintaining a gaze lead to a 2–4 sec of a
timeout period, before the animal was once again given the opportunity to fixate
the central cross.

The sum of the reward-baiting probabilities on the two colored targets was set
constant at ~0.35 rewards per trial. An empty target was baited with the given
baiting probability. When a target was baited, a reward was delivered if the animal
chose the target. This made the target empty, with no reward available for the
target, until the target became baited. The relative reward-baiting probabilities on
the two colors were set constant for a block of trials and changed without a signal
between blocks of trials. The typical block size was about 100 trials. On each block
the relative baiting probabilities on the two colors was chosen unpredictably from a
subset of the ratios (though not all experiments used all ratios). Each session
consisted of multiple blocks of trials, and animals performed typically several
sessions per an experimental day. Experimental days were separated in a non-
systematic way.

Throughout the experiments, a changeover delay (COD) was imposed. This is
a common manipulation necessary to ensure matching behavior by discouraging
simple alternating strategies18. We implemented a COD by delaying delivery of
programmed rewards following switches between colors until the second
consecutive choice of the new color. Monkeys learned the COD: they chose the
new color twice in a row with a probability of over 95%. As second choices after
switches were imposed by the COD, we excluded those choice from our analysis.
We called the remaining choice as free choice. In practice, this was achieved by
treating the first two choices that mark a switch between colors as a single
choice.

Defining and measuring undermatching. There are two different choice biases
that we used in our analysis: undermatching and color choice bias.

Undermatching, or deviation from matching behavior, was defined by 1 minus
the slope of block-wise matching behavior. The slope of block-wise matching
behavior was estimated by regressing a block-by-block fraction of choice allocated
to the green target to the fraction of rewards collected from the target in a
corresponding block. While in this paper we used a classical linear regression to
estimate the slope, it is possible to consider Deming regression to improve the
estimate of the slope.

While undermatching was defined as a bias in slope, color choice bias was
defined by the intercept of matching behavior. Specifically, we defined color choice
bias as the value of the fitted line at a reward fraction of 0.5. We used this bias when
estimating a long timescale of reward integration (see below).

Description of the multi-timescale learning model and its simulations. We
extended a previously introduced model18 in which the income for each target (IG
and IR, for the green and red target respectively) was integrated on a single
timescale. In our model we consider multiple timescales as follows. The probability

of choosing the red target is:

PR ¼
IR

IR þ IG
ð2Þ

In Sugrue et al.18, the local incomes are assumed to be computed on a single
timescale. Here we assume that the incomes are computed on multiple timescales
in parallel:

ItR;i ¼ 1�
1

τi

� �

It�1
R;i þ

1

τi
rt�1; ð3Þ

where ItR;i is the local income from target R on trial t (t = 1,2,3,...) computed over

the timescale of τi, and rt−1 is 1 (0) when the target was rewarded (no-rewarded) at
t − 1. The local income is a weighted sum of different timescales:

ItR ¼
X

m

i¼1

wiI
t
R;i; ð4Þ

where the weights wi’s are normalized so that w1 + w2 + .. = 1. In the model
simulated in Fig. 2, the parameters were m = 2, τ1 = τFast = 5 trials, τ2 = τSlow =
10,000 trials. In Fig. 3d, e, the model with different wSlow was simulated in Monkey
F’s reward schedule. τFast = 2, τSlow = 1000 trials.

Model-fitting. We fit three-time-constant model presented in Fig. 5, using max-
imum likelihood estimates. We fit each session independently, except that we set
the initial income estimates of the slow integrator as the same as the last income
estimates of the slow integrator, since the slow integrator may carry over the
previous estimates of the income. We, however, found that this assumption is not
critical, due to the confound discussed in the manuscript. We set the time constants
as τFast−1 = 2 trials, τFast−2 = 20 trials, and τSlow = 1000 trials, though the exact
choice of these do not affect our results.

Estimating variance of choice in the data. We computed the variance of Mon-
key’s choice in Figs. 3d and 4 and in Supplementary Figure 12 as follows. First,
monkey’s choice time series was smoothed via two half-gaussian kernels with
standard deviations of σ = 8 trials and σ = 50 trials, with a span of 200 trials. This
gave us two time-series, a fast one with σ = 8 and a slow one with σ = 50. The
faster signal represents a local estimate of probability of choice, the slower one
represents the block-scale average of this local estimate. We then estimated the
variance of the local estimate as the average squared distance between the fast time
series and the slow time series. We showed squared root of variance in Fig. 3d for
illustrative purpose.

We estimated the variance of inference in Supplementary Fig. 12 in the same
fashion, using the income from the Green target in the model.

Confounds in fitting models with very slow time constants. We found that any
slowly changing bias leads to correlations between the weights of the slow inte-
grator and undermatching. To understand why this is the case, consider again the
multi-timescale integrator model with two time constants, one fast and one much
slower, as in Fig. 2. The fast integrator will generate estimates of the current values
of the two alternatives, which we call IFastG and IFastR respectively. The slow integrator

will generate two additional estimates: ISlowG and ISlowR , which are almost constant in
a block of trials. Then the weighted-averaged income from Green (Red) target can
be expressed as

IG ¼ wFastI
Fast
G þ wSlowI

Slow
G ;

and

IR ¼ wFastI
Fast
R þ wSlowI

Slow
R ;

respectively. The probability of choosing one of the two alternatives (say G), given
by the decision policy following the matching law (Eq. 1) is then:

PG ¼
wFastI

Fast
G þ wSlowI

Slow
G

wFastI
Fast
G þ wFastI

Fast
R þ wSlowI

Slow
G þ wSlowI

Slow
R

ð5Þ

When the relative weight of the slow integrators is much smaller than that of
the fast integrators, PG can be rewritten as:

PG ’ 1�
wSlow

wFast

�
ISlowG þ ISlowR

IFastG þ IFastR

� �

IFastG

IFastG þ IFastR

þ
wSlow

wFast

ISlowG

IFastG þ IFastR

;

or equivalently

PG �
1

2
’ 1�

wSlow

wFast

�
ISlowtot

IFasttot

� �

IFastG

IFastG þ IFastR

�
1

2

� �

þ
wSlow

2wFast

δISlow

IFasttot

ð6Þ

where we defined the total incomes ISlowtot and IFasttot to be the sum of the two targets’

values estimated on slow and fast timescales, respectively, and defined δISlow ¼

ISlowG � ISlowR to be the difference between the two targets’ values estimated on the
slow timescale.

Equation (6) shows that the tilt of the matching curve relating blockwise choice
to blockwise reward fractions (Fig. 1b) is given by the first factor in parentheses,
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and that the slope is <1. This is because the curve representing matching behavior
(mostly undermatching) is obtained by fitting a line to the scatter plot of PG � 1

2

against
IFastG

IFast
G

þIFast
R

� 1
2
when averaged over a block (which is a relatively fast time

scale). Within an experimental session, we can neglect small changes in ISlowG=R , as

well as changes in block-averaged IFasttot .
In other words, Eq. (6) shows that the degree of undermatching is proportional

to
wSlow

wFast
�
ISlowtot

IFasttot
, which in turn is proportional to the relative weight of the slow

integrator wSlow itself:

1� Slope / wSlow ðI
Slow
G þ ISlowR Þ: ð7Þ

We thus expect a correlation between the weight of slow integration - wSlow -
that we obtain by fitting our model to the data and the average degree of
undermatching observed in an experimental session. However, this is not in itself
conclusive evidence that undermatching reflects reward history integration over
long timescales.

To understand why, consider an alternative model in which reward integration
happens only over the fast timescale, but the estimated values of the two targets are
the sum of estimates on the fast timescale, IFastG=R and random subjective-biases BG
and BR that vary from one experimental session to the next. Note that by random,
we more precisely mean biases to color-targets that are not accounted for by slow
reward integration. Thus Eq. (5) is now replaced with

PG ¼
IFastG þ BG

IFastG þ IFastR þ BG þ BR

; ð8Þ

where the relative weight terms are normalized to the bias terms. Again, as long as
the biases BG and BR are small, similarly to Eq. (6), we obtain

PG �
1

2
’ 1�

BG þ BR

IFasttot

� �

IFastG

IFastG þ IFastR

�
1

2

� �

þ
BG � BR

2IFasttot

ð9Þ

and in particular

1� Slope / BG þ BR : ð10Þ

Fits of this alternative model would also produce correlations between BG + BR
and the average undermatching observed in experimental sessions.

Since the slow estimates ISlowG=R in Eq. (5) are approximately constant over each

experimental session (as τSlow is much longer than the experimental block length),

it is difficult to discriminate the slow estimates ISlowG=R in Eq. (5) from the random

bias BG/R in Eq. (9). This means that we cannot discriminate these two models from
model-fitting to each experimental session. In other words, although our model-
independent analysis confirmed our prediction of bias-variance tradeoff in the data
(Fig. 4), direct model fitting to separate experimental sessions is not sufficient to
prove our other central prediction, that of a link between slow reward integration
and undermatching.

The longest measurable integration timescale. The aim is to determine whether
past biases in rewards could affect the present choice of the animal. We computed
the lagged cross correlation between color reward imbalance and color choice bias.

The reward color imbalance over N trials is defined as
RG�RR

N , where RG (RR) is the

total number of rewards that were collected from Green (Red) and N is the total
number of trials. The color choice bias is the intercept y with x = 0.5 of the linear
fit of matching behavior. Then we took a sliding reference window of 25 sessions.
For each sliding window, we computed the correlation between color choice bias
computed over 25 sessions and the color reward imbalance computed over a
25 sessions lagged in time (lag = 0, −1, −2, −3, −4, and −5 sessions). These
correlations were fitted by weighted least squares S ¼

P

wir
2
i with weights wi = γi,

where i = 0,1,2.. was the lag, as the correlations were more reliable for smaller lags.
We used γ = 0.5 but we found that our results were robust against changes in γ.
We defined the point in which the fitted line crosses the time lag axis (or 0
correlation) as the raw maximum correlation lag. Then the longest measurable
integration timescale (LMIT) was then expressed as this lag multiplied by the mean
session length (in trials) of 25 sessions in the reference window. The significance of
the correlation between under-matching and the LMIT was determined by a
conservative piece-wise permutation test which supposedly destroys the original
correlations. More specifically, we considered blocks of five consecutive sessions
and shuffled the order of blocks without perturbing the order of sessions within
each block. This allowed us to create shuffled data with the original long timescale
correlations. This was because observed LMITs were normally within five sessions.
Figure 7c is smoothed by computing a moving average of 10 windows but Fig. 7d is
raw data. First 25 sessions were excluded in order to discard potential effects due to
training.

Simulations of a neural-network model with metaplastic synapses. We con-
sidered a well-studied neural network model for decision-making (Fig. 10a)8,12,20,56,61.
Essentially, this network produces bi-stable attractor dynamics (winner-take-all pro-
cess), where each stable state corresponds to the choice of Green (when G population
wins) or the choice of Red (when R population wins). Crucially, the competition is

determined by the synaptic weights between the input population and the decision
populations. The weights are trained by a reward based stochastic Hebbian learning
that has been shown to nicely capture reinforcement-learning behavior8,12,20,56,62.

Each of the synaptic weights is assumed to take one of the two strengths (weak
or strong), as this obeys the biophysical constraint of bounded strength. In addition
to the changes in efficacy, here we allowed metaplastic transitions so that synapses
can change the rate of plasticity itself 8,52 (Fig. 10b). This cascade model of
synapses can incorporate a various chemical cascade processes taking place over
multiple timescales. It has been shown that the model improves the memory
performance of bounded synapse models, and also that the model reproduces a
well-observed power-low memory decay in time. Also, the model can capture a
wide range of behavioral properties that has been observed in reward learning
tasks, including adaptive learning rates (e.g. refs. 6,7), and it can perform as good as
a Bayes optimal model if coupled with a surprise detection network (please see8).
We followed the previously introduced implementation of this model in decision-
making tasks8. In particular, we assumed a forgetting between experimental
sessions, implemented by random transitions between weak and strong states
between sessions. We simulated our model under the same conditions as Monkey
F, and we applied the same analysis to the simulated data as we did to the real data.
We note that we do not implement the surprise detection system in our simulation
during sessions that has been previously introduced to capture increases in learning
rates at block changes8, as our focus here was to capture behavioral changes on a
longer timescale.

Data availability
The data and code that support the findings of this study are available from the

corresponding author upon reasonable request.
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