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Abstract

Purpose: Deviations from proportional hazards (DPHs),

which may be more prevalent in the era of precision medicine

and immunotherapy, can lead to underpowered trials or mis-

leading conclusions. We used a meta-analytic approach to

estimate DPHs across cancer trials, investigate associated fac-

tors, and evaluate data-analysis approaches for future trials.

Experimental Design: We searched PubMed for phase III

trials in breast, lung, prostate, and colorectal cancer pub-

lished in a preselected list of journals between 2014 and

2016 and extracted individual patient-level data (IPLD)

from Kaplan–Meier curves. We re-analyzed IPLD to identify

DPHs. Potential efficiency gains, when DPHs were pre-

sent, of alternative statistical methods relative to standard

log-rank based analysis were expressed as sample-size

requirements for a fixed power level.

Results: From 152 trials, we obtained IPLD on 129,401

patients. Among 304 Kaplan–Meier figures, 75 (24.7%)

exhibited evidence of DPHs, including eight of 14 (57%)

KM pairs from immunotherapy trials. Trial type

[immunotherapy, odds ratio (OR), 4.29; 95% confidence

interval (CI), 1.11–16.6], metastatic patient population

(OR, 3.18; 95% CI, 1.26–8.05), and non-OS endpoints

(OR, 3.23; 95% CI, 1.79–5.88) were associated with

DPHs. In immunotherapy trials, alternative statistical

approaches allowed for more efficient clinical trials with

fewer patients (up to 74% reduction) relative to log-rank

testing.

Conclusions: DPHs were found in a notable proportion

of time-to-event outcomes in published clinical trials in

oncology and was more common for immunotherapy trials

and non-OS endpoints. Alternative statistical methods,

without proportional hazards assumptions, should be con-

sidered in the design and analysis of clinical trials when the

likelihood of DPHs is high.

Introduction

Results from randomized controlled trials (RCTs) play an

essential role in therapeutic development and clinical decision

making. Standard clinical trial designs, summary statistics, and

analytic procedures based on proportional hazards (PHs)

assumptions work well when the treatment effects are constant

over time. Deviations from proportional hazards (DPHs) occur

when treatments exhibit variation of treatment effects (hazard

ratio) over time. Time-varying treatment effects are increasingly

recognized inmodern trials (1). Understanding the characteristics

and degree of time-varying treatment effects in oncology clinical

trials has implications for design, analysis, and interpretability of

trials, and may ultimately lead to improvements in the testing of

therapies. In this context, the use of statistical models that poorly

represent the true underlying time-varying treatment effect can

constitute a substantial obstacle to therapeutic development.

Time-varying treatment effects are one example of treatment

effect heterogeneity that may be induced by several factors.

Immuno-oncology (IO) trials have shown evidence of possible

delayed treatment effects (1, 2). Subgroups of patients with

different responses to a given therapy can also manifest as a

treatment effect that is not constant over time (3). Time-

varying treatment effects, which define DPHs, indicate that the

hazard ratio (HR) varies over time after randomization. With

DPHs, estimates of treatment effects fromPHsmodelsmaynot be

interpretable (4).

Thewidely used log-rank test and theCox proportional hazards

model are not optimal in terms of power when DPHs are present

and render sample size calculations, subsequent results, and their

interpretation questionable (5, 6). A better understanding of
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the prevalence of DPHs, along with factors that increase the

likelihood of DPHs, could substantially improve the therapeutic

development process by anticipatingDPHs and suggesting appro-

priate alternative trial designs.

We evaluate whether the PHs model—assumed in the vast

majority of oncology trials (7)—is representative of modern

RCT data. We use reconstructed individual patient-level data

(IPLD; ref. 8) from published clinical trials to investigate DPHs

in recent phase III oncology clinical trials. We illustrate the

magnitude of DPHs and types of time-varying treatment effects

observed across different clinical settings (IO, hormonal ther-

apies, chemotherapies, etc.), and identify associated factors.

This information can be used to evaluate if alternative statistical

methodologies, instead of a standard PHs analysis, should be

considered in a given context for the design of future studies.

We then evaluate alternative procedures for testing treatment

effects and demonstrate how data from completed clinical trials

can be used to evaluate operating characteristics of these

alternative methods for IO trials.

Materials and Methods

Study inclusion criteria, search strategy, and data extraction

We performed a PubMed search on December 4, 2017 (Sup-

plementary Methods), with the key words of "breast cancer,"

"lung cancer," "prostate cancer," or "colorectal cancer" and lim-

ited results to phase III clinical trials published between January 1,

2014 and December 31, 2016, published in the English language

in one of the following journals:New England Journal of Medicine,

Journal of the American Medical Association, Lancet, Lancet Oncology,

Journal of Clinical Oncology, Journal of the National Cancer Institute,

JAMA Oncology, and Annals of Oncology. Included publications

reported on a tumor directed intervention with at least one time-

to-event outcomeand aKaplan–Meier (KM) curve. Ifmultiple KM

curves were reported in a single publication, overall survival (OS)

and one non-OS time-to-event endpoint were selected for every

two-arm comparison. For non-OSoutcomes, prioritywas given to

progression-free survival (PFS), disease free survival and relapse-

free survival. For ease of analysis, multi-arm trials were treated as

multiple two-arm comparisons.

For each publication, trial characteristics including cancer

type, publication date, trial registration, type of intervention,

type of experimental therapy, trial population (metastatic or

nonmetastatic), trial design (superiority or noninferiority), ran-

domization ratio, sample size, primary endpoint(s), reported

HR and statistical significance level (P value) used for the trial

primary hypothesis were extracted. References for every included

publication are available in Supplementary Table S1.

IPLD reconstruction

For each KM curve (censored), survival times and the corre-

sponding survival probabilities were extracted using DigitizeIt

frompublications. The number of patients at risk and the number

of events were also extracted. The algorithm of Guyot and col-

leagues (8)was thenused to estimate IPLD from the survival times

and probabilities. Reconstructed datasets with discrepancy from

publications in estimated HR above 0.15 were re-evaluated by

comparison of published and reconstructed KM curves based on a

previously described procedure (1).

Evaluating and characterizing deviation from PHs

With IPLD,weuseda log-rank test to evaluate treatment efficacy

and a Cox regression model to estimate HRs. As done in a prior

meta-analysis (8), we used a Grambsch–Therneau test with a

P value cutoff of 0.1 to test the PHs assumption. In a sensitivity

analysis, we also considered a P value cutoff of 0.05 (Supplemen-

tary Table S2). The Grambsch–Therneau test uses residuals in a

univariate Coxmodel with treatment included as predictor, and it

evaluates potential trends of these residuals (9). We also used a

Cox model, including a time–treatment interaction (10) to esti-

mate time-varying treatment effects. In this model, the logarithm

of the hazard ratio between experimental and control arms at time

t is log(HRt) ¼ b0 þ b1 * t. Small values of HRt (below one)

indicate a large treatment effect at time t; if the time–treatment

interaction coefficient b1 is negative, then the benefit of the treat-

ment increases over time. In a sensitivity analysis (Supplementary

Material), we also used themodel log(HRt)¼ b0þ b1 * log(t) with

an interaction between log(t) and treatment.

Descriptive statistics were used to explore differences between

studieswithandwithout evidenceofDPHs. Logistic regressionwas

used to identify associations of trial characteristics with DPHs.

To simplify analysis, pairs of KM curves from the same trial were

treated as independent observations inour analysis. To account for

the fact that the presence or absence of DPHs for multiple out-

comes (for instance OS and PFS) or treatments (multi- experi-

mental arm trials) within a single study are not independent, we

also fitted a multivariable logistic regression model with random

effects (Supplementary Table S3). We also report the results of an

alternative model to describe the relationship between trial char-

acteristics and evidence of DPHs (Supplementary Table S4).

Alternative analyses

We used IPLD to re-analyze trials using several alternative

approaches that are easy to implement:

(i) Fleming–Harrington (FH) weighted the log-rank test (11).

This test requires two parameters r-g that are used to weigh

the importance of events during the follow-up time. We

used FH log-rank tests with higher weights on early (r¼ 1,

Translational Relevance

Deviation fromproportional hazards (DPHs), which occurs

when a treatment exhibits variation of treatment effect over

time, may be more prevalent in modern trials and can lead to

underpowered clinical trials or misleading conclusions. We

used reconstructed individual patient-level data from pub-

lished clinical trials in recent phase III oncology clinical trials

in breast, lung, colorectal and prostate cancer to investigate the

prevalence of DPHs, its associated factors across different

clinical settings and its implications. A notable proportion of

published clinical trials in oncology exhibited evidence of

DPHs, particularly in trials testing immunotherapy agents and

analyses of nonsurvival endpoints. In re-analyzing immuno-

therapy trials, the use of alternative statistical approaches

allowed for more efficient clinical trials requiring fewer

patients relative to conventional trial design. Alternative sta-

tistical methods, without the proportional hazards assump-

tions, should be considered in the design and analysis of

clinical trials in settings where DPHs occur more frequently.
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g ¼ 0), middle (r ¼ 1, g ¼ 1) or late events (r ¼ 0, g ¼ 1;

ref. 11).

(ii) Restricted mean survival time (RMST) analysis, using the

ratio of RMSTs (rRMST) to compare experimental and

control arms (5, 6). The restriction time t� in RMST was

fixed at the 80th percentile of the (uncensored) event times,

based upon evidence supporting a restriction time t� close

to the tail of survival curves (12).

(iii) Milestone analysis for the difference of the survival curves at

afixed time-point t�� (13).We used the t�� ¼ 80thpercentile

of the (uncensored) event times. In practice, t�� should be

chosen from considerations of clinical relevance (13).

(iv) Cox model with early (excluding first 20% of events) and

late (excluding the last 20% of events) truncation. This

approach was included for illustrative purposes, and as a

direct evaluation of the influence of early overlapping

survival curves followed by separation (as in IO trials) in

diluting the evidence of treatment effects expressed by

standard PHs analyses.

All analyses were performedwith R using the survival, survRM2

and FHtest packages.

Results

We identified 836 results from our initial PubMed search and

excluded528publications because theywere not published inour

prespecified list of journals. After excluding another 153 entries

for not meeting our inclusion criteria, a total of 152 trials pub-

lished in the period 2014 to 2016 were selected (Supplementary

Fig. S1). From these trials, IPLD from 129,401 patients were

incorporated into the analysis (median 577 patients per trial,

range 71–8,381). Trial characteristics are summarized in Table 1.

IPLD reconstruction was derived from trial publication. After

separating multi-arm studies into pairs with an experimental arm

and a control, 263 published figures yielded a total of 304

reconstructed pairs of KM curves (141 OS and 163 non-OS

comparisons). KM curves of the primary endpoint, or at least

one of multiple co-primary endpoints, were reconstructed for

86% (131 of 152) of the trials, while the remaining trials did not

have a time-to-event primary endpoint. HR estimated with our

reconstructed IPLD, as expected, correlated strongly with pub-

lished HRs (Supplementary Fig. S2) with 98.7% (300 of 304)

digitized curves yielding an estimated HR within 0.15 of the

published value. All KM pairs with discrepancy between pub-

lished and IPLD-based HR estimates above 0.15 were manually

re-digitized to check for potential errors. No issues were detected

(Supplementary Table S5).

In our analysis, 75 (24.7%) pairs of KM curves exhibited

evidence of DPHs with significant change in treatment effect

(hazard ratio) over time. Each case is listed in Supplementary

Table S6. Immunotherapy (57%, 8/14), hormonal/endocrine

(32%, 7/22), targeted therapy (26%, 34/133), radiotherapy

(29%, 8/28), and chemotherapy (16%, 15/92) trials had varying

prevalence of evidence of DPHs. Characteristics associated with

DPHs on analyses included endpoint [non-OS vs. OS endpoint,

odds ratio (OR), 2.85; 95% CI, 1.61–4.00; P < 0.001] and trial

population (metastatic vs. nonmetastatic, OR, 2.52; 95% CI,

1.22–5.22; P ¼ 0.008). In our study, 15% OS curves and 33%

of non-OS curves exhibited evidence of DPHs.Moreover, IO trials

(reference: chemotherapy; OR, 6.58; 95% CI, 2.01–22.23), and

trials in prostate cancer (reference: breast cancer; OR, 2.44; 95%

CI, 1.10–5.42) were positively associated with DPHs (Table 2).

We computed the power to detect covariate associations given

that 75 pairs of KM curves out of 304 showed evidence of DPHs.

At the 10% (5%) significance level, a univariable logit analyses

would have an 80% (70%) power to detect a covariate association

with an odds ratio of 2 for a factor with 25% prevalence.

On multivariable analysis, endpoint (adjusted OR, 3.23; 95%

CI, 1.79–5.88; P < 0.001), trial population (adjusted OR, 3.18;

95% CI, 1.26–8.05; P ¼ 0.021), IO trials (reference:

Table 1. Characteristics of the trials included in the analyses

Feature No. (%)

Journal (alphabetical order)

Lancet oncology 55 (37.4)

Journal of clinical oncology 35 (23.8)

Annals of oncology 31 (21.0)

New England journal of medicine 15 (10.2)

Lancet 11 (7.5)

Cancer type

Breast 54 (35.5)

Lung 48 (31.6)

Colorectal 29 (19.1)

Prostate 20 (13.2)

Lung/gastrointestinal neuroendocrine 1 (0.7)

Trial population

Metastatic or recurrent allowed 103 (67.8)

Nonmetastatic 49 (32.2)

Randomization

Randomization of therapy agent/modality 135 (88.8)

Randomization of therapy dose, timing/sequencing, or duration

of therapy

14 (9.2)

Mixed 3 (2.0)

Type of experimental therapy

Targeted therapy 66 (43.4)

Chemotherapy 39 (25.7)

Radiation 16 (10.5)

Hormonal/endocrine 14 (9.2)

Surgery 2 (1.3)

Other 4 (2.6)

Combination of multiple therapy types 4 (2.6)

Arms

Two 136 (89.5)

Three 7 (4.6)

Four 9 (5.9)

Randomization ratio (experimental arm: control arm)

1:1a 130 (85.5)

2:1 22 (14.5)

Trial design

Superiority 134 (88.2)

Noninferiority 16 (10.5)

Bothb 2 (1.3)

Primary outcome

Progression-free survival 47 (30.9)

Overall survival 38 (25.0)

Disease-free survival 22 (14.4)

Non-time-to-event outcome 16 (10.5)

Multiple primary outcomes 15 (9.9)

Other time-to-event outcome 14 (9.2)

Primary outcome result

Positive 69 (45.4)

Negative 78 (51.3)

Mixed 5 (3.3)
aFor multi-arm trials, this refers to ratio of patients randomized to each

experimental arm versus the control arm of the study (e.g., a three-arm trial

with 1:1:1 randomization is categorized as 1:1).
bPossible with two co-primary endpoints or a study designed to be a non-

inferiority study that can become a superiority study.

Deviations from Proportional Hazards in Phase 3 Trials
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chemotherapy; adjusted OR, 4.29; 95% CI, 1.11–16.6) and sam-

ple size (adjusted OR, 1.04; 95% CI, 1.01–1.06) were associated

with DPHs. Results were confirmed by analysis based on a

random-effects model that introduced dependence among KM

pairs (classified as DPHs or non-DPHs) within the same trial

(Supplementary Table S3). A complementary logit analysis, using

a Grambsch–Therneau test P value cutoff of 0.05 to declare DPHs

and define the dependent variable in the logit-model, provided

similar results (Supplementary Table S2).

Among 75 cases of DPHs, 32 (43%) had a negative treatment-

time interaction coefficient (treatment effect increases during

time), including seven of eight (88%) KM pairs from IO trials

with evidence of DPHs. The remaining 43 (57%) cases of DPHs

had a positive arm–time interaction coefficient. The mean HR

over time from all positive trials was plotted in Fig. 1 and

Supplementary Fig. S4 shows individual HR(t) for immunother-

apy trials.

For each trial, IPLD was re-analyzed with log-rank, weighted

log-rank, RMST, event truncation, and milestone analysis. The

null and alternative hypotheses for each test are summarized

in Table 3. Using a two-sided P value threshold of 0.05 for all

studies, after exclusion of noninferiority trials, discordance

between log-rank and alternative tests ranged between 4% (ear-

ly-truncated Cox) and 19% (FH late-weighted log-rank test) with

alternative procedures. Among studies with DPHs, discordance

between log-rank and alternative tests ranged between 3% (late-

truncated Cox) and 45% (FH late-weighted log-rank test). The use

of RMST analysis produced discordance in 17% of comparisons

among all studies and 22% of comparisons among those with

evidence of DPHs.

To assess potential trial efficiency gains with alternative

analysis plans in the setting of DPHs, we re-analyzed data for a

subset of four immunotherapy trials where DPHs were observed:

CheckMate017 (14), CheckMate057 (15), KEYNOTE024 (16), and

CA184–043 (17). These studies present evidence of increasing

treatment effect over time (decreasing HRs, see Supplementary

Fig. S4). Assuming enrollment rates and follow-up times as reported

in each of these studies, we identified the overall sample size

required for 80% power using a standard log-rank test (assuming

Table 2. Univariable and multivariable logistic analysis for variables associated with deviation from proportional hazards

Multivariable logistic regression

Variable

KM curve pairs with

evidence of DPHs (%)

Sample odds

ratio (95% CI)

Adjusted odds

ratio (95% CI)

P value (Likelihood

ratio test)

Cancer type

Breast 24/110 (22) 1 1 0.607

Lung 23/87 (26) 1.32 (0.77–2.54) 1.26 (0.57–2.80)

Colorectal 12/68 (18) 0.77 (0.36–1.66) 0.90 (0.38–2.15)

Prostate 15/37 (41) 2.44 (1.10–5.42) 1.86 (0.66–5.23)

Trial population

Nonmetastatic 20/102 (20) 1 1 0.010

Metastatic or recurrent patients allowed 55/202 (27) 1.53 (0.86–2.74) 3.18 (1.26–8.05)

Type of experimental therapy

Chemotherapy 15/92 (16) 1 1 0.221

Molecular/targeted therapy 34/133 (26) 1.70 (0.87–3.29) 1.24 (0.60–2.56)

Immunotherapy 8/14 (57) 6.58 (2.0–21.58) 4.29 (1.11, 16.6)

Hormonal/endocrine 7/22 (32) 2.30 (0.81–6.56) 1.40 (0.40–4.87)

Radiotherapy 8/28 (29) 1.97 (0.74–5.26) 2.55 (0.73–8.91)

Trial design

Noninferiority 8/35 (23) 1 1 0.608

Superiority 65/263 (25) 1.12 (0.49–2.58) 1.28 (0.49–3.35)

Outcome of KM

Non-OS endpoint 54/463 (33) 1 1 <0.001

Overall survival (OS) 21/141 (15) 0.35 (0.20–0.62) 0.31 (0.17–0.56)

Primary trial outcome result

Negative trial 33/161 (20) 1 1 0.168

Positive trial 42/143 (29) 1.61 (0.95–2.73) 1.51 (0.84–2.72)

Sample size of the studya 1.04 (1.01–1.06) 0.004

NOTE: Categorical variables comprising <5% of trial population were excluded for this analysis [cancer type: mixed; type of experimental therapy: surgery, other;

randomization type: mixed; primary outcome: mixed result].
aRelative increase in odds of the probability of DPHs when the sample size of the study is increased by 100 patients.

Figure 1.

Average hazard ratio as a function of time for positive trials. The hazard ratio

over time for each pair of KM curves of positive trials (i.e., trials that met their

primary endpoint) was averaged together for a composite visual

representation, stratified by experimental treatment type. Noninferiority

trials were excluded.

Rahman et al.
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the observednon-PHs treatment effect) and (one-sided) 2.5% type I

error rate. We then considered alternative data analyses plans using

either the FH weighted log-rank tests, RMST, the Cox model with

early truncation of time-to-event (excludingfirst 20%of events) or a

test of the difference in survival at t�� ¼ 80% of times since

randomization in both arms. For each of these alternative analyses,

assuming the same enrollment rates and follow-up times as for the

LRT, we determined the minimum sample size that to ensure 80%

power under the observed primary outcome distribution (observed

KMcurves; ref. Table 4).Notably, the Fleming–Harrington-type late-

weighted test reduced the overall sample size of the study by up to

74% compared with a log-rank test.

Discussion

Summary statistics such as HR are meaningful when treatment

effects are constant. Here, we sought to investigate two important

but separate aspects of clinical trials: testing procedures to detect

potential treatment effects of experimental treatments and infer-

ence in variations of these treatment effects (for instance hazard

ratios) over time. Although the majority of phase III RCTs in

oncology use a testing procedure that is optimal under the PHs

assumption (log-rank test) or use the Cox PHs model to analyze

time-to-event endpoints, only a minority of publications (7%–

9%) explicitly report testing of the PHs assumption (7). We used

IPLD from published clinical trials to identify the presence of

DPHs and associated factors in phase III oncology clinical trials.

To describe DPHs in oncology clinical trials, we examined breast,

lung, colorectal, and prostate trials published in prespecified

oncology journals. This was necessary to evaluate if a single

analytic approach can work well across different settings, or if

the choice of a non-PHs analysis (e.g., RMST, weighted log-rank

test, etc.) should depend on the context. Published trials can be

used to identify areas of clinical research where DPHs are more

likely to occur, such as in IO. For specific types of trials, the

analysis of previously published trials can support the identifi-

cation of robust non-PHs methods and guide context-specific

evaluations of pivotal operating characteristics of non-PHs

methods.

We found that a notable proportion of time-to-event outcomes

reported in oncology clinical trials show evidence of DPHs

(�25%), concordant with prior estimates. On the basis of the

Table 3. Discordances in result with nonproportional hazard analyses

All pairs of KM curves, N ¼ 267 KM pairs with evidence of DPHs, N ¼ 67

Testing procedure

Test

result

Significant time-

treatment interaction

(TTA)

Positive

TTA

Negative

TTA

Test

result

Significant time-

treatment interaction

(TTA)

Positive

TTA

Negative

TTA

LRT: Testþ 107 40 (37%) 27 13 43 34 (78%) 22 12

Test� 160 26 (43%) 10 16 24 20 (83%) 9 11

Alternative testing

procedure Testþ

Totala number of

discordances (LRT

result „ Alt result) LRTþ Alt�b LRT� Altþc Testþ

Totala number of

discordances (LRT

result „ Alt result) LRTþ Alt�b LRT� Altþc

RMST (ratio) 105 46 (17%) 24 22 46 15 (22%) 6 9

Early-truncated Cox 112 12 (5%) 3 8 46 3 (4%) 0 3

Late-truncated Cox 112 13 (5%) 4 9 43 2 (3%) 1 1

Early-weighted LRT 115 26 (10%) 9 17 45 8 (12%) 3 5

Mid-weighted LRT 91 34 (13%) 25 9 33 16 (24%) 13 3

Late-weighted LRT 78 51 (19%) 40 11 27 30 (45%) 23 7

Milestone (80% of

follow-up)

77 42 (16%) 36 6 50 22 (33%) 19 3

NOTES: Noninferiority trials are excluded from this table.

The LRT, early, late, and mid-weighted Fleming-Harrington (FH) tests, test the null hypothesis H0: the survival functions in the control and experimental arm are

identical against HA: the experimental arms survival is superior to the control at some time during follow-up.

In the truncated Cox-model, we test H0: the hazard ratio (HR) between the experimental and control arm equals one against HA: HR<1 in the truncated subset.

The RMST tests the hypothesisH0: the ratio of restrictedmean survival time between the experimental and control arm is one againstHA: the ratio is smaller than one.

Abbreviations: Alt, alternative test; LRT, log-rank test.
aNumber of trials where an alternative test gave a different result compared with the log-rank test when using P < 0.05 as a value of statistical significance.
bNumber of trials where there was a significant treatment effect (P < 0.05) by LRT, but alternative analysis did not yield a significant treatment effect (P > 0.05).
cNumber of trials where there was not a significant treatment effect (P > 0.05) by LRT, but alternative analysis yielded a significant treatment effect (P > 0.05).

Table 4. Overall sample size to ensure 80% power to declare a positive result using different statistical analyses methods

Sample size (Sample size relative to log-rank test) for 80% power

Analysis/study

CheckMate017

(NCT01642004)

CheckMate057

(NCT01673867)

KEYNOTE-024

(NCT02142738)

CA184-043

(NCT00861614)

Primary endpoint OS OS PFS OS

LRT 151 540 117 2,000þ

RMST 158 (1.04) 724 (1.34) 126 (1.07) 1,687 (0.84)

Early-truncated Cox 213 (1.41) 275 (0.54) 109 (0.93) 772 (0.39)

Late-weighted LRT 163 (1.08) 236 (0.43) 53 (0.45) 522 (0.26)

Mid-weighted LRT 157 (1.04) 288 (0.53) 81 (0.69) 582 (0.29)

Early-weighted LRT 198 (1.31) 1,627 (3.01) 189 (1.61) 2,000þ (NA)

Milestone (80% of follow-up time) 2,000þ (NA) 200þ (NA) 648 (5.53) 2,000þ (NA)

NOTE: We assume enrollments rates and follow-up times as reported in the original manuscripts. Control of the type I error at 2.5%. Results are based on 10,000

simulated trials over a grid of sample sizes, with patient outcomes generated from the extracted KM curves.

Abbreviations: LRT, log-rank test; RMST, restricted mean survival time.
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frequency of DPHs, reporting of summaries from the Grambsch–

Therneau test or other tests to quantify the evidence of DPHs and

visualizations of HR variations over time (e.g., Schoenfeld resid-

ual plots) should be routinely recommended when presenting

trial results. If HR variations over time indicate nonmonotonic

time-dependent treatment effects (HRs over time), then the

evaluation and estimation of treatment effects requires complex

statistical procedures. For instance, the nonparametric tech-

niques proposed by Gray (18, 19) enable flexible estimation and

testing of time-varying treatment effects.

There are several trial factors associated with DPHs. IO trials

were more likely to exhibit DPHs with five of seven trials with

at least one endpoint (PFS and/or OS) with evidence of

DPH, consistent with other reports (1, 2, 20). IO trials show

a characteristic increase in treatment effect over time (Fig. 1) in

contrast with other therapies. In these trials, a delayed treat-

ment effect, where there may not be sufficient time for an

effective immune response in patients with aggressive and

rapidly progressive disease, has been postulated as biological

basis for DPHs (1).

Interestingly, nonsurvival clinical endpoints were associated

with a higher prevalence of DPHs relative to OS endpoints

(Table 2). It is possible that a higher prevalence of DPHs is seen

with nonsurvival clinical endpoints because of its more proximal

relationship to the trial's intervention. With 33% of examined

nonsurvival KM figures exhibiting DPHs, our results suggest

additional caution is warranted in designing clinical trials with

a non-OS time to event endpoints as the primary outcome.

Our results support the potential in using prior trials to

guide the choice of analysis. IO trials illustrate this with the

presence of characteristic time-varying changes in HRs (Fig. 1;

Supplementary Fig. S4). The aim of our analyses (Table 4) was

to demonstrate that prior clinical trials from a specific setting

where DPHs are likely to occur can be used to evaluate testing

procedure with comparisons to the standard log-rank test.

These analyses indicated potential efficiency gains of alterna-

tive testing procedures for specific scenarios (late-treatment

effects). In our analysis, the use of late-weighted log rank tests

can reduce the overall sample size requirement (up to 74%) in

IO trials compared with the log-rank test (17). Given that

approximately 800 IO trials were ongoing as of 2017 (21), our

findings show the potential for designs that incorporate the

expectation of increasing effects compared with PHs-based

analyses.

When considering alternative parametric or semi-parametric

non-PHs methodologies to test treatment effects, it is important

to be aware of assumptions underlying thesemethodologies [e.g.,

accelerated failure time (ref. 22), proportional odds models

(ref. 23), etc.], and evaluate the assumed relations between the

survival functions of the experimental and control arms.

RMSThasbeen introducedas a robust alternative to PHanalyses.

Several authors (5, 24–26) have investigated operating character-

istics of RMST under PHs and DPHs (24, 25). Horiguchi and

colleagues (27) developed an extension of RMST that adaptively

selects the truncation time t�. Other procedures to deal with DPHs

include weighted log-rank tests using adaptive weights (28, 29).

With respect to other approaches, Gray (18) has previously dis-

cussed tests to evaluate treatment effects under DPH using splines-

based methods, and Schemper and colleagues (30) has described

methods for estimating the average hazard ratio for time-varying

treatment effects. More recently, Royston and Parmer described a

two-stage algorithm to test violations of PHs and evaluate treat-

ment efficacy (31). Thesemethodologies allowfor the evaluationof

time-varying treatment effects, but theyhave yet tobe implemented

routinely in clinical practice.

An important limitation of our study is that there is no

widely accepted metric to measure the magnitude of DPHs. We

used the Grambsch–Therneau test, the most commonly used

lack-of-fit test for proportionality of hazards. This may not

capture DPHs in studies with a small number of events, while it

may detect negligible departures from PHs in studies with a

large sample size (32, 33). A limitation of the Grambsch–

Therneau test for evaluating DPH is that the test may have

low power to detect nonmonotone time–treatment interac-

tions (34). Nonmonotone interactions can be detected by

visualizing Schoenfeld residuals. Alternative procedure for test-

ing generic time–treatment interactions have been reviewed by

Therneau and Grambsch (10).

For our non-PHs analyses, we used prespecified parametriza-

tions, for en masse application (e.g., restriction timepoint for

RMST analysis, percentage follow-up for milestone analysis, etc.)

and for ease of analysis, but alteration of such parameters could

affect our analyses. The generalizability of our findings is limited

due to our search criteria, which included only publications

from a prespecified list of journals. Moreover, a limitation of our

analyses of concordance/discordance between PHs-based

log-rank testing and alternative non-PHs testing procedures is

that we do not known whether the unknown survival functions

for each of the 304 KM pairs satisfy the PHs assumption or not,

neither do we know which experimental treatments has a true

positive treatment effect. Someof the KM curveswithout evidence

of DPHs might have been classified incorrectly as non-PHs

violations and vice versa.

Conclusions

In conclusion, a substantial proportion of survival curves

from phase III oncology clinical trials exhibited evidence of

DPH, and this was more likely with non-OS endpoints and IO

trials. Alternative approaches to design and analysis of clinical

trials, which have been rigorously studied in the biostatistical

literature, should be considered at time of study design. Data

from previous trials on the experimental treatment can facil-

itate the choice of survival analysis methodology in phase III

protocols. The use of alternative statistical procedures, includ-

ing late-weighted log-rank tests for IO trials, has the potential

to substantially increase trial efficiency with randomization of

fewer patients and reduction of trial resources.
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