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Deviation from weak Banach–Saks property
for countable direct sums

Abstract. We introduce a seminorm for bounded linear operators between
Banach spaces that shows the deviation from the weak Banach–Saks property.
We prove that if (Xν) is a sequence of Banach spaces and a Banach sequence
lattice E has the Banach–Saks property, then the deviation from the weak
Banach–Saks property of an operator of a certain class between direct sums
E(Xν) is equal to the supremum of such deviations attained on the coordinates
Xν . This is a quantitative version for operators of the result for the Köthe–
Bochner sequence spaces E(X) that if E has the Banach–Saks property, then
E(X) has the weak Banach–Saks property if and only if so has X.

1. Introduction. A Banach spaceX is said to have the Banach–Saks (BS)
property if every bounded sequence in X contains a subsequence (xn) whose
Cesàro means

∑n
i=1 xi/n converge in norm. Such a property was proved by

Banach and Saks [1] for Lp[0, 1] spaces with 1 < p < ∞. The case p = 1 was
examined by Szlenk [14] who proved that every weakly convergent sequence
in L1[0, 1] contains a subsequence with strongly convergent Cesàro means.
This variant of the BS property is considered also for operators (see [2]).
A bounded linear operator T between Banach spaces X and Y is said to
have the weak Banach–Saks (WBS) property if every weakly null sequence
(xn) in X contains a subsequence (x′n) such that (Tx′n) is Cesàro convergent
in Y .
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In this note, we focus on weakly null sequences which have no Cesàro
convergent subsequences. Some quantitative information on the deviation
from summability of such sequences is provided by Rosenthal’s dichotomy
[13]. Recall that every weakly null sequence in a Banach space X contains
a subsequence (xn) such that either all subsequences of (xn) are Cesàro
convergent in norm to zero or no subsequence of (xn) is Cesàro convergent
and then there is a number δ > 0 such that

∥∥∑
n∈A cnxn

∥∥ ≥ δ
∑

n∈A |cn| for
all scalars (cn) and all subsets A ⊂ N with |A| ≤ 2k, k ≤ minA and k ∈ N,
where |A| is the number of elements of A.
Using Rosenthal’s result, Partington [12] proved that a Banach space X
has the WBS property if and only if for all ε > 0 and weakly null sequences
(xn) in X there exists a finite subset A ⊂ N such that

∥∥∑
n∈A xn

∥∥ < ε |A|.
This served to prove that the direct sums of Banach spaces, built on a
Banach space with a hyperorthogonal basis and the BS property, preserve
the WBS property.
Our generalization of Partington’s result for direct sums goes in two direc-
tions: it has a quantitative character and concerns operators. We introduce
a seminorm for operators which measures the deviation from the WBS prop-
erty. We consider a certain class of operators acting between direct sums
E(Xν). In the main result, we show that the deviation from the WBS prop-
erty of an operator is equal to the supremum of such deviations attained
on the coordinates Xν , providing that a Banach sequence lattice E has the
Banach–Saks property. Our main tool in the proofs is a repeated averaging
technique elaborated in [7, 8], and based on the spreading models of Brunel
and Sucheston [3].

2. Preliminaries. A Banach space E of real-valued functions on N =
{1, 2, 3, . . .} with the natural partial order is called a Banach sequence lat-
tice if, for every finite subset A ⊂ N, the characteristic function χA of A
belongs to E, and if x = (x(ν)) ∈ E and |y(ν)| ≤ |x(ν)| for every ν ∈ N,
then y = (y(ν)) ∈ E and ‖y‖E ≤ ‖x‖E . The lattice E is said to be regular
(or σ-order continuous) if, for every sequence (xn) in E with xn ↓ 0, it holds
limn→∞ ‖xn‖E = 0.
A Banach sequence lattice is a particular case of a Köthe function space
with the counting measure space on N (see [9], [10]). Thus the Köthe dual
space E′ of E is the space of all real-valued sequences (y(ν)) such that
(x(ν)y(ν)) ∈ l1 for every (x(ν)) ∈ E. The norm in E′ is given for every
y = (y(ν)) by

‖y‖E′ = sup

{ ∞∑
ν=1

|x(ν)y(ν)| : ‖x‖E ≤ 1, x = (x(ν))

}
.

If E is regular, then the Köthe dual space E′ is isometrically isomorphic to
the dual space E∗ (see [10, p. 29]).
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Let E be a Banach sequence lattice and (Xν) a sequence of Banach spaces.
By E(Xν) we mean the Banach space of all sequences x = (x(ν)) such that
x(ν) ∈ Xν for every ν ∈ N and (‖x(ν)‖Xν

) ∈ E. The norm in E(Xν) is
given by

‖x‖E(Xν)
=

∥∥(‖x(ν)‖Xν
)
∥∥
E
.

If Xν = X for all ν, then E(X) is called a Köthe–Bochner sequence space.
If E is regular, then the dual space (E(Xν))

∗ is isometrically isomorphic
to E∗(X∗

ν ) (see [11, Proposition 3.1]). Using this fact, we can prove a
counterpart of Lemma 1 of [5] without the separability assumption.

Lemma 1. Let E be a regular Banach sequence lattice. If xn = (xn(ν)) ∈
E(Xν) for all n ∈ N and xn

w→ 0 in E(Xν), then xn(ν)
w→ 0 in Xν for every

ν ∈ N.

Proof. Fix k ∈ N and let x∗ ∈ X∗
k . Put (f(ν)) = (0, . . . , 0, x∗, 0, . . .)

with x∗ on kth place. Clearly, (f(ν)) ∈ E∗(X∗
ν ). Let τ be the isometric

isomorphism between (E(Xν))
∗ and E∗(X∗

ν ) given by Proposition 3.1 of
[11] (see also [6]). There exists f = τ−1[(f(ν))] in (E(Xν))

∗ such that
f(x) =

∑∞
ν=1 〈x(ν), f(ν)〉 for every x = (x(ν)) ∈ E(Xν). Then

f(xn) =

∞∑
ν=1

〈xn(ν), f(ν)〉 = 〈xn(k), f(k)〉 = x∗(xn(k))

Since limn→∞ f(xn) = 0 and x∗ ∈ X∗
k was arbitrary, xn(k)

w→ 0 in Xk. �

3. Results. The space of all bounded linear operators between Banach
spaces X and Y we denote by L(X,Y ). For a sequence (xn) in a Banach
space, we put

ψ(xn) = inf

{∥∥∥∥∥|A|−1
∑
n∈A

xn

∥∥∥∥∥ : |A| < ∞
}
.

In our quantitative considerations, we will need a certain stability of ψ
with respect to repeated averaging of (xn). This can be achieved through the
process of arithmetic averaging of (xn) on equipollent successive blocks. We
say that (yn) is a sequence of successive arithmetic means (sam) for (xn) if
there exist m ∈ N and a sequence of subsets In ⊂ N with max In < min In+1

and |In| = m such that yn =
∑

i∈In xi/m for all n. Clearly, ψ(xn) ≤ ψ(yn).
The next result is a part of Proposition 2.3 of [7], where the proof based
on spreading models was given for a similar characteristics of a sequence
related to the alternate signs Banach–Saks property. The proof for ψ runs
in much the same way. We include it for completeness.

Proposition 2. Let (xn) be a bounded sequence in a Banach space X. Then
for every ε > 0 there exists a sequence (yn) of sam for (xn) such that for
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all finite subsets A ⊂ N,∥∥∥∥∥|A|−1
∑
n∈A

yn

∥∥∥∥∥ ≤ ψ(yn) + ε.

Proof. If (xn) contains a Cauchy subsequence (x′n), it is enough to ignore a
finite number of terms of (x′n) and put yn = x′n. Assume now that (xn) has
no Cauchy subsequence. We follow in part the line of the proof of Theorem
II.2 of [2]. We extract a subsequence (x′n) of (xn) that is the fundamental
sequence of the spreading model F built on (xn). Put

K = inf

{∥∥∥∥∥|A|−1
∑
n∈A

x′n

∥∥∥∥∥
F

: |A| < ∞
}
.

There exist a finite subset I ⊂ N and z =
∑

i∈I x
′
i/ |I| such that K ≤

‖z‖F ≤ K + ε/4. Let (In) be a sequence of subsets In ⊂ N with max In <
min In+1 and |In| = |I| for all n. Put zn =

∑
i∈In x

′
i/ |In|. Since the norm

of F is invariant under spreading, ‖zn‖F = ‖z‖F for all n. Consequently,
K ≤ ∥∥∑

n∈A zn/ |A|
∥∥
F
≤ K + ε/4 for all finite subsets A ⊂ N.

By [2, Proposition I.1], for every k ∈ N, we can choose nk so that for all
A ⊂ N with |A| ≤ 2k and nk ≤ minA,∣∣∣∣∣

∥∥∥∥∥|A|−1
∑
n∈A

zn

∥∥∥∥∥−
∥∥∥∥∥|A|−1

∑
n∈A

zn

∥∥∥∥∥
F

∣∣∣∣∣ < ε/4.

We may assume that nk < nk+1. Let z′k = znk
. Then for all A ⊂ N with

|A| ≤ 2k and k ≤ minA,

K − ε/4 ≤
∥∥∥∥∥|A|−1

∑
n∈A

z′n

∥∥∥∥∥ ≤ K + ε/2.

Passing to a sequence of the arithmetic means of (z′n) built on long enough
successive blocks, we show now similar estimates for all finite A ⊂ N. Let
|A| < ∞ and A0 = {n ∈ A : n < log2 |A|}. Then∥∥∥∥∥∥

∑
n∈A0

z′n

∥∥∥∥∥∥ ≤ |A0| (K + ε/2),

∥∥∥∥∥∥
∑

n∈A\A0

z′n

∥∥∥∥∥∥ ≥ (|A| − |A0|) (K − ε/4).

It follows that∥∥∥∥∥|A|−1
∑
n∈A

z′n

∥∥∥∥∥ ≥ |A|−1

⎛
⎝
∥∥∥∥∥∥

∑
n∈A\A0

z′n

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
n∈A0

z′n

∥∥∥∥∥∥
⎞
⎠

≥ K − ε/4− |A0| |A|−1 (2K + ε/4).
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There exists m ∈ N such that if |A| ≥ m, then |A0| |A|−1 (2K + ε/4) ≤ ε/4
and, consequently,

K − ε/2 ≤
∥∥∥∥∥|A|−1

∑
n∈A

z′n

∥∥∥∥∥ < K + ε/2.

Put yn =
∑

i∈Jn z
′
i/ |Jn|, where (Jn) is a sequence of subsets Jn ⊂ N with

max Jn < min Jn+1 and |Jn| = m for all n. Then∥∥∥∥∥|A|−1
∑
n∈A

yn

∥∥∥∥∥ ≤ ψ(yn) + ε

for every finite A ⊂ N. Clearly, (yn) is a sequence of sam for (xn). �
Definition 3. Let X,Y be Banach spaces and T ∈ L(X,Y ). Define

Ψ(T ) = sup
{
ψ(Txn) : xn

w→ 0, ‖xn‖ ≤ 1
}
.

Clearly, if T ∈ L(X,Y ) and xn
w→ 0 in X, then Txn

w→ 0 in Y . Thus, by
[12, Theorem 2], Ψ(T ) = 0 if and only if T has the WBS property. Applying
Proposition 2, we can show, as in the proof of Proposition 2.5 of [7], that Ψ
is a seminorm in L(X,Y ). The procedure of stabilization of ψ plays a key
role also in the next result. The arguments of the proof are similar to those
used in the proofs of Theorem 3 of [12] and Theorem 3.2 of [7].

Theorem 4. Let (Xν) and (Yν) be sequences of Banach spaces and let (Tν)
be a sequence of operators such that Tν ∈ L(Xν , Yν) for every ν ∈ N and
supν∈N ‖Tν‖ < ∞. If a Banach sequence lattice E has the BS property and
T ∈ L(E(Xν), E(Yν)) is given by Tx = (Tνx(ν)) for every x = (x(ν)) ∈
E(Xν), then Ψ(T ) = supν∈NΨ(Tν).

Proof. It is enough to prove that Ψ(T ) ≤ supν∈NΨ(Tν), since E(Xν) and
E(Yν) contain isometric copies respectively of Xν and Yν . Let us fix ε > 0
and choose a weakly null sequence (xn) in the unit ball of E(Xν) so that
Ψ(T )− ε ≤ ψ(Txn).
First, we show that we can focus on a finite number of coordinates of the
direct sums. Let tn = (‖Tνxn(ν)‖Yν

) for every xn = (xn(ν)). Since E has
the BS property, passing to a subsequence, we may assume that the Cesàro
means of all subsequences of (tn) ⊂ E converge to the same limit t ∈ E (see
[4]). Then ψ(t0n − t) = 0 for every sequence (t0n) of sam for (tn) and, by
Proposition 2, (t0n) can be taken so that for every finite A ⊂ N,∥∥∥∥∥|A|−1

∑
n∈A

t0n − t

∥∥∥∥∥
E

<
ε

2
.

Let (In) be a sequence of finite subsets of N with |In| = m and max In <
min In+1 for all n such that t0n = m−1

∑
i∈In ti. Put x

0
n = m−1

∑
i∈In xi.
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For every r ∈ N and z = (z(ν)), we will write Prz = (z(1), . . . , z(r), 0, 0, . . .)
and Qrz = z−Prz. Since the reflexive lattice E is σ-order continuous, there
is r ∈ N such that ‖Qrt‖E < ε/2. It follows that∥∥∥∥∥Qr

(
|A|−1

∑
n∈A

t0n

)∥∥∥∥∥
E

<
ε

2
+ ‖Qrt‖E < ε.

Thus, for every finite A ⊂ N,

ε >

∥∥∥∥∥Qr

(
|A|−1

∑
n∈A

t0n

)∥∥∥∥∥
E

=

∥∥∥∥∥Qr

(
|A|−1

∑
n∈A

1

m

∑
i∈In

‖Tνxi(ν)‖Yν

)∥∥∥∥∥
E

≥
∥∥∥∥∥Qr

(
|A|−1

∑
n∈A

∥∥Tνx
0
n(ν)

∥∥
Yν

)∥∥∥∥∥
E

≥
∥∥∥∥∥∥Qr

⎛
⎝
∥∥∥∥∥|A|−1

∑
n∈A

Tνx
0
n(ν)

∥∥∥∥∥
Yν

⎞
⎠
∥∥∥∥∥∥
E

=

∥∥∥∥∥|A|−1
∑
n∈A

QrTx
0
n

∥∥∥∥∥
E(Yν)

.

Passing to a subsequence of (x0n), we may assume that for each coordinate
1 ≤ ν ≤ r the limit λν = limn

∥∥x0n(ν)∥∥ exists and ∥∥x0n(ν)∥∥ < λν + ε/ ‖Pre‖E
for every n, where e = (1, 1, . . .). Put αν = λν + ε/ ‖Pre‖E . By the equipol-
lence of blocks, all sequences of sam for (xn) are weakly null and, by Lemma
1, so are all sequences restricted to coordinates. Now we stabilize ψ consec-
utively on coordinates k = 1, 2, . . . , r. Write y0n(ν) = Tνx

0
n(ν)/αν .

In the first step, we apply Proposition 2 to (y0n(1)). There is a sequence
(x1n) of sam for (x

0
n) such that for the sequence (y

1
n(1)) of sam for (y

0
n(1)),

where y1n(1) = T1x
1
n(1)/α1, we have∥∥∥∥∥|A|−1

∑
n∈A

y1n(1)

∥∥∥∥∥
Y1

≤ ψ
(
y1n(1)

)
+ ε

for all finite A ⊂ N. We put y1n(ν) = Tνx
1
n(ν)/αν for ν �= 1.

Let k > 1. By Proposition 2 applied to (yk−1
n (k)), we obtain a se-

quence (xkn) of sam for (x
k−1
n ) such that for the sequence (ykn(k)) of sam

for (yk−1
n (k)), where ykn(k) = Tkx

k
n(k)/αk, we have∥∥∥∥∥|A|−1

∑
n∈A

ykn(k)

∥∥∥∥∥
Yk

≤ ψ
(
ykn(k)

)
+ ε

for all finite A ⊂ N. Again we put ykn(ν) = Tνx
k
n(ν)/αν for ν �= k. Since the

relation sam is transitive, all sequences (yrn(ν)), 1 ≤ ν ≤ r, are built on the
common sequence (xrn) of sam for (x

ν
n). Consequently,∥∥∥∥∥|A|−1

∑
n∈A

yrn(ν)

∥∥∥∥∥
Yν

≤ ψ (yνn(ν))+ ε ≤ ψ
(
yν+1
n (ν)

)
+ ε ≤ · · · ≤ ψ (yrn(ν))+ ε
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for all finite A ⊂ N and every 1 ≤ ν ≤ r. Clearly, ‖xrn(ν)/αν‖Xν
≤ 1 for all

n. It follows that∥∥∥∥∥|A|−1
∑
n∈A

PrTx
r
n

∥∥∥∥∥
E(Yν)

=

∥∥∥∥∥∥Pr

⎛
⎝αν

∥∥∥∥∥|A|−1
∑
n∈A

yrn(ν)

∥∥∥∥∥
Yν

⎞
⎠
∥∥∥∥∥∥
E

≤ ‖Pr (λν + ε/ ‖Pre‖E)‖E max
1≤ν≤r

∥∥∥∥∥|A|−1
∑
n∈A

yrn(ν)

∥∥∥∥∥
Yν

≤ (1 + ε)

(
max
1≤ν≤r

ψ (yrn(ν)) + ε

)
.

Assume thatmax1≤ν≤r ψ (yrn(ν)) is attained for j, 1 ≤ j ≤ r. By transitivity
of the relation sam, (xrn) is a sequence of sam for (xn). It follows that

Ψ(T )− ε ≤ ψ(Txn) ≤ ψ(Txrn) ≤
∥∥∥∥∥|A|−1

∑
n∈A

Txrn

∥∥∥∥∥
E(Yν)

≤
∥∥∥∥∥|A|−1

∑
n∈A

PrTx
r
n

∥∥∥∥∥
E(Yν)

+

∥∥∥∥∥|A|−1
∑
n∈A

QrTx
r
n

∥∥∥∥∥
E(Yν)

≤ (1 + ε) (ψ (yrn(j)) + ε) + ε ≤ (1 + ε) (Ψ(Tj) + ε) + ε.

Since ε > 0 was chosen arbitrary, Ψ(T ) ≤ supν∈NΨ(Tν). �

Considering the identity operator on E(Xν), we obtain the following
corollary which includes Partington’s [12] qualitative result. By an example
of [12], the BS property of E cannot be replaced here by the WBS property.

Corollary 5. Let E have the BS property. Then E(Xν) has the WBS
property if and only if every Xν has the WBS property.
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