
 

 
 
 
 
 
 

Liu, Y., Feng, G., Sun, Y., Qin, S. and Liang, Y.-C. (2020) Device association for RAN 

slicing based on hybrid federated deep reinforcement learning. IEEE Transactions on 

Vehicular Technology, (doi: 10.1109/TVT.2020.3033035). 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 

 

 

http://eprints.gla.ac.uk/225816/            
      

 

 

 

 

 

 

Deposited on: 2 November 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  

  

http://eprints.gla.ac.uk/225816/
http://eprints.gla.ac.uk/


1

Device Association for RAN Slicing based on

Hybrid Federated Deep Reinforcement Learning
Yi-Jing Liu, Gang Feng, Senior Member, IEEE, Yao Sun, Shuang Qin, Member, IEEE,

and Ying-Chang Liang, Fellow, IEEE

Abstract—Network slicing (NS) has been widely identified as
a key architectural technology for 5G-and-beyond systems by
supporting divergent requirements in a sustainable way. In radio
access network (RAN) slicing, due to the device-base station
(BS)-NS three layer association relationship, device association
(including access control and handoff management) becomes
an essential yet challenging issue. With the increasing concerns
on stringent data security and device privacy, exploiting local
resources to solve device association problem while enforcing
data security and device privacy becomes attractive. Fortunately,
recently emerging federated learning (FL), a distributed learning
paradigm with data protection, provides an effective tool to
address this type of issues in mobile networks. In this paper,
we propose an efficient device association scheme for RAN
slicing by exploiting a hybrid FL reinforcement learning (HDRL)
framework, with the aim to improve network throughput while
reducing handoff cost. In our proposed framework, individual
smart devices train a local machine learning model based on
local data and then send the model features to the serving
BS/encrypted party for aggregation, so as to efficiently reduce
bandwidth consumption for learning while enforcing data pri-
vacy. Specifically, we use deep reinforcement learning to train
the local model on smart devices under a hybrid FL framework,
where horizontal FL is employed for parameter aggregation on
BS, while vertical FL is employed for NS/BS pair selection aggre-
gation on the encrypted party. Numerical results show that the
proposed HDRL scheme can achieve significant performance gain
in terms of network throughput and communication efficiency in
comparison with some state-of-the-art solutions.

Index Terms—RAN Slicing, Device Association, Federated
Learning, Deep Reinforcement Learning

I. INTRODUCTION

It is widely acknowledged that network slicing (NS) is one

of the most vital architectural technologies for 5G-and-beyond

systems. In order to support various applications with diverse

quality of service (QoS) requirements in different communi-

cation scenarios, e.g., enhanced mobile broadband (eMBB),

massive machine-type communications (mMTC), and ultra-

reliable and low-latency communications (URLLC), multiple
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isolated network slices (NSs) can be designed, deployed, cus-

tomized, and optimized on a common physical network infras-

tructure [1]–[3]. The NS based networks (virtualized networks)

can provide tailored services efficiently and flexibly to meet

the specific needs of applications and corresponding Service

Level Agreement. However, driven by the rapidly growing

wireless applications with diversified service requirements,

how to identify and classify service flows for accommodation

by appropriate application-specific NS (i.e., device association

including access control and handoff management) is still a

challenging issue, especially in radio access network (RAN)

domain.

In RAN slicing, device association and relevant resource

allocation are fundamentally distinct from that in conventional

mobile networks because of the introduction of NS [4], [5].

On one hand, NSs are logically virtualized and isolated over

shared physical networks [4], [5]. Thus, both physical and vir-

tual resource, e.g. computing, network, storage, radio, access

hardware, and virtual network functions, should be considered

to form a function chain for a specific service [4]. On the

other hand, to meet the service requirements, a device needs

to select an appropriate NS which may cover multiple access

points (APs), i.e., base stations (BSs) [5]. Therefore, in vir-

tualized networks, device association inherently includes NS

selection, BS association, and associated resource allocation

issues, which should be addressed jointly to improve resource

utilization while guaranteeing service quality. Moreover, due

to the dynamic nature of network environments, the computa-

tional complexity incurred by searching the optimal solution

could be too high and the environmental changes may not be

accurately described in some complex and dynamic scenarios.

Fortunately, recently emerging reinforcement learning (RL)

can be exploited to solve such sequential decision problems

under complex network environments. By using RL, devices

can continuously interact with the environments and thus

obtain an optimal solution by using a trial and error learning

process. Although RL works well in decision-making scenar-

ios, the effectiveness of RL diminishes as the size of the state-

action space becomes large [6], [7]. Then, deep reinforcement

learning (DRL) emerges as a good alternative to solve the

decision-making problem in the wireless system with a large

size of data [6].

With the dramatic growth of the heterogeneous data from

geographically distributed devices, traditional centralized DRL

algorithms may not be feasible in practice since they require

the data to be transferred and processed in a central entity,

which definitely causes large latency in uploading a huge
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amount of raw data and consumes certain precious network

bandwidth [8], [9]. As a result, decentralized DRL algorithms

that exploit local data are much more appealing. Furthermore,

in light of the increasingly stringent data security and de-

vice privacy concerns, an emerging decentralized approach,

federated learning (FL) [10], is introduced. FL trains non-

independently identically distribution and unbalanced data

locally at individual devices and exploits the collaboration

of the devices. Specifically, FL is classified into horizontally

FL (hFL), vertically FL (vFL), and federated transfer learning

based on how data is distributed among various devices in

the feature and sample space [10], [11]. Most of the existing

related work focuses on hFL to share the sample space or vFL

to share the feature space, such as [9], [12], [13]. Indeed, in

order to reduce the amount of required training samples and/or

make more precise decisions, combing hFL and vFL, called

hybrid FL, is intuitively advantageous [10].

In this paper, we propose an intelligent device association

scheme for RAN slicing, called hybrid federated deep rein-

forcement learning (HDRL) scheme, with the aim to improve

network throughput while reducing handoff cost. Considering

the large state-action space and the diversity of services,

HDRL is designed to consist of two layer model aggregations:

1) Horizontal aggregation: for the same type of services

(e.g., eMBB services), we aggregate the parameters of local

DRL model on BSs to share the similar samples; 2) Vertical

aggregation: for the services of different types (e.g., eMBB

and URLLC services), we aggregate the access features of

local DRL model on the third encrypted party in vFL [10],

where we use Shapley value [11] to evaluate aggregated

access features. Numerical results show that in the typical

scenarios, our proposed HDRL scheme for device association

significantly outperforms the traditional solutions in terms of

network throughput and communication efficiency.

The main contributions of this work can be summarized as

follows:

(1) We combine DRL and hFL to train distributed data over

smart devices, with the aim to retain the privacy of local

data.

(2) We calculate Shapley values to evaluate the importance

of different global access features [10], [11] and promote

collaboration between devices.

(3) We propose to exploit two levels of aggregation for device

association problem. Specifically, one is for the same type

of services to aggregate the local parameter models to

share the similar samples. Another one is for the different

types of services to aggregate access features to make a

global optimal decision on NS and BS selection.

In the rest of this paper, we begin with an overview

of related work in Section II. Then we present the system

model and problem formulation in Section III and Section

IV respectively. In Section V, HDRL is presented to solve the

device association problem of RAN slicing. Finally, we present

the numerical results in Section VI and conclude the paper in

Section VII.

II. RELATED WORK

In recent years, there has been a large body of research

work on resource management in the virtualized core network

(CN), such as [14]–[18], etc. However, considering that end-

to-end slices span both CN and RAN, in order to improve

the efficiency and resource utilization of the virtualized net-

works, RAN slicing should also be considered to provide

specific services for smart devices through end-to-end NSs.

The authors of [19]–[23] pointed out that device association

is one of the key issues in virtualized networks since that

device association determining whether a device is associated

with a certain NS via a specific BS, plays a crucial role

for load balancing, radio spectrum efficiency, and network

efficiency [20]. Moreover, device association in sliced mobile

networks is fundamentally distinct from that in conventional

mobile networks because of the device-BS-NS three layer

association relationship. Thus existing access/handoff control

schemes for traditional mobile network cannot be applicable

to virtualized mobile networks [20], [21]. Specifically, a joint

optimization of NS and BS selection for a device with specific

QoS requirements should be addressed [19]–[23]. In addition,

the handoff under device-BS-NS three layer relationship is

different from traditional reference signal received power

(RSRP)-based handoff mechanisms. Both the handoff types

(i.e., switching NS only, switching BS only, switching NS

and BS) and the RSRP of BS should be taken into account to

guarantee the service quality [20], [21], [23].

Indeed, there are existing some investigations focusing on

access control or slice association in RAN slicing, such as

[3], [21], [23]–[25]. In [3], the authors proposed a framework

to investigate access control, with the aim of minimizing

wireless bandwidth consumption while guaranteeing QoS of

users. In [21], the authors proposed a unified framework for

RAN slicing (including user admissibility, slice association,

and bandwidth allocation) with the aim of maximizing re-

source utilization. The authors of [23] resorted to a genetic

algorithm to investigate NS selection, with the aim to improve

network resource utilization. In [24], joint access control and

power allocation were addressed in an Open-RAN system,

where the problem of wireless link scheduling was formulated

as maximizing the energy efficiency and minimizing power

consumption and the cost of physical resources. The authors

of [25] proposed an integrated slice allocation and admission

control scheme, with the aim to improve network throughput

of the whole system. However, these existing approaches in

[3], [21], [23]–[25] which tackled similar problems under

the device-BS-NS three layer association relationship did

not consider data security and device privacy. In addition,

the authors of [3], [23], [24] did not consider the handoff

management and the authors of [25] only considered the inter-

slice handoff management. Furthermore, the authors of [3],

[21], [24], [25] applied the static optimization algorithms and

the authors of [23] applied the static heuristic algorithm (i.e.,

genetic algorithm). Both the static optimization algorithms

and heuristic algorithms may be inappropriate for device

association in complex and dynamic network scenarios as

the computational complexity could be prohibitively high to
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retain the optimality by constantly performing the optimization

algorithm in dynamic network scenarios.

Considering the uncertainty of access conditions and user

mobility, some researchers proposed to optimize the long-term

network performance by using conventional RL algorithms,

such as actor-critic (A3C) and DRL. In [26], the authors

designed an on-line scheme based on DRL to accomplish

the optimal resource orchestration in the virtualized network.

The authors of [27] exploited a collaborative A3C learning

framework to manage the resources in RAN slicing. The al-

gorithms in [26] and [27] consume certain network bandwidth

resources to transmit training data. Moreover, both of them

did not consider the data security and device privacy, which is

highly emphasized and concerned in 5G-and-beyond systems

[2], [22], [28].

Recently, in order to enforce data security and device pri-

vacy, a novel and safe distributed machine learning framework,

FL, has been introduced into wireless networks [9], [12], [13].

Specifically, the authors of [9] tried to bridge the trade-off gaps

by formulating FL over wireless network as an optimization

problem. The authors of [12] formulated the joint wireless

resource allocation and user selection as an optimization prob-

lem with the aim to minimize an FL loss function that captures

the optimal transmit power. In [13], the authors employed

FL scheme to transfer the control and responsibility from the

centralized controller to individual user devices. However, the

authors of [9], [12], [13] only focused on hFL to share the

sample space and did not consider the diversity of services.

Moreover, the authors of [11] used Shapley values in vFL

to calculate the importance of features, opening the door for

investigating hybrid FL and crediting allocation in the context

of FL in terms of diversified service types. To the best of our

knowledge, device association over RAN slices based on FL

is still not considered in current researches.

III. SYSTEM MODEL

A. Network Model

We consider a scenario where the virtualized network is

built upon a Software Define Network/Network Function

Virtualization -enabled 5G network infrastructure, which is

composed of CN and RAN. As shown in Fig. 1, the access and

mobility management function (AMF) is responsible for the

connectivity and mobility management for associating devices

with slices [29]. The selection of network slice instances for

a device is triggered by the first contacted AMF. When the

location of a device changes, the initially selected AMF entity

may be changed to receive services, to enable mobility track-

ing and enable reachability. Specifically, if the AMF entity can

serve the single network slice selection assistance information

(S-NSSAI), the AMF entity remains the serving AMF for the

device. Otherwise, the network slice selection function (NSSF)

which is responsible for selecting the set of network slice

instances (NSIs) and AMF set (or candidate AMF) to serve

devices [29], will select the NSIs and determine the target

AMF set to serve the devices. More details about network

functionalities can be found in [26]. In addition, some network

functions can be shared among multiple slices, while others are

slice-specific. For example, in CN domain, AMF and NSSF

can be shared among multiple slices, while UPF, NEF, and

UDM are slice-specific [29], [30]. In cloud-RAN domain, DU

and RU could be shared if the functions (e.g., radio functions,

baseband processing functions) are implemented by physical

devices [31]. In general, CU could be slice-specific because

it realizes the ”packet processing functions” as virtualized

network functions [31].
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Fig. 1. The NS based mobile network model.

B. RAN slicing

We consider a multi-NSs and multi-BSs RAN slicing sce-

nario, as shown as Fig.1, where an operator deploys a slice on

multiple BSs (not all BSs). In other words, a NS may expand

multiple BSs and a BS may be covered by multiple NSs. When

a device accesses the mobile network or experiences a handoff,

both BS and NS may need to be selected/reselected for provi-

sion seamless service while meeting the QoS requirements of

the device. Specifically, for serving mobile devices, the change

of device association is only the change of serving BS. For

the case that a device moves out of the coverage of a specific

slice, two methods can be used to guarantee the connections.

One is to expand the coverage of the current serving slice by

deploying it on more BSs. Another one is to change the device

association to an exiting slice which can provide the similar

service thus to fulfill the QoS requirements. In addition, if the

operator knows that a service provided by some slices, it must

cover a specific region. If the intended NS is not deployed on

a specific BS or the QoS of a device cannot be guaranteed by

a specific BS, the device can access the slice via other BSs

with the slice deployed in this region.

Let B, N , and D denote the set of BSs, NSs, and devices,

respectively. For a specific BS k, we use Nk = {j, ..., g}
to represent the set of NSs which are supported by it. For

a specific NS j, we use a four-tuple
⇣

Rj , Tj ,Ωj , ~Wj

⌘

to

represent the state where Rj and Tj denote the minimal trans-

mission rate and the maximal latency which are provided by

NS j to serve devices. Moreover, Ωj represents the bandwidth

allocated to NS j in CN (including transport network), and ~Wj
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is a vector, which represents the bandwidth allocation of NS j
from all BSs. We assume that the kth element in ~Wj is denoted

by bj,k, which represents the bandwidth resource allocated to

NS j by BS k, where bj,k = 0 means BS k is not covered

by NS j. For convenience, the frequently used notations are

summarized in Table I.

TABLE I
FREQUENTLY USED NOTATIONS

Notation Definition

B the set of BSs

N the set of NSs

D the set of devices

di the ith device

T total number of time slots

Tj the maximal latency provided by NS j
Nk the set of NSs supported by BS k at t
Rj the minimal transmission rate

provided by NS j
Ωj the bandwidth allocated to NS j in CN
~Wj bandwidth allocation of NS j from all BSs

bj,k the bandwidth allocated to NS j by BS k
btj,k the available bandwidth allocated to NS j

by BS k during time slot t
u the total number of smart devices

ux the number of devices with service of type x
r̂ti the minimum transmission rate of di
d̂ti the maximum tolerated latency of di
rj,ki,t the transmission rate of di served by NS

j via BS k

wj,k
i,t the wireless bandwidth that BS k allocates to

di served by NS j during time slot t

T̂ j,k
i,t the transmission delay in RAN of di served

by NS j via BS k during time slot t

T̂ j,k
i,t + Tj end-to-end delay

qi the volume of flow data generated by di
↵HO handoff cost

C. Service Requirements

Since the services required by devices may vary with time,

we assume the time is slotted, where the services remain fixed

for the duration of one time slot and change from one slot to

the next. Slotted time can be regarded as a sampled version

of continuous-time which consists of T time slots (fixed time

intervals) [32], [33]. During time slot t 2 [1, T ], we assume

that a device connects only one BS and remains connected to

the same NS and BS. Let u be the number of devices in the

network. For a specific device di 2 D, its service quality can

be described by two metrics: the minimum transmission rate

r̂ti and the maximum tolerated latency d̂ti. Therefore, NS j can

accommodate di only if Rj � r̂ti and Tj  d̂ti.
Let rj,ki,t be the transmission rate of di which is served by

NS j via BS k during time slot t, and wj,k
i,t be the wireless

bandwidth that BS k allocates to di which is served by NS

j during time slot t (Here wj,k
i,t also called consumed radio

resources of di during time slot t). In this work, the models

may affect the absolute value of communication efficiency,

but do not invalidate the relative performance enhancement of

our proposed policies. Hence, more sophisticated and precise

models can be applied here, and then use the proposed

algorithm to solve the device association problem. As we

focus the device association in the RAN slicing, we assume

the delay in CN (Tj) is a constant. The similar assumption

is widely used in related studies, such as [3], [21], [34].

Therefore, the end-to-end delay can be calculated as T̂ j,k
i,t +Tj ,

where T̂ j,k
i,t = qi/r

j,k
i,t is the delay in RAN of di served

by NS j via BS k and qi is the volume of flow data

generated by di. Moreover, we use Shannon theory to define

the transmission rate (i.e., rj,ki,t = wj,k
i,t log2

�

1 + SINRk
i,t

�

),

where SINRk
i,t is the signal-to-interference-plus-noise-ratio

(SINR) between di and BS k during time slot t. Moreover,

SINRk
i,t =

pk
i,t·G

k
i,t

P
k2B,k0 6=k pk0

i,t
Gk0

i,t
+ζ2

, t 2 T , where pki,t represents

the transmission power allocated to di at BS k, Gk
i,t is the

channel gain between di and BS k, and ⇣2 is the noise power

level.

D. Handoff Cost

When the location of a device changes or the service quality

of a device cannot be satisfied, a handoff may occur to improve

the experience of the user. Once a handoff happens, the

device needs to re-select appropriate BS and NS. It is obvious

that traditional reference signal received power (RSRP)-based

handoff mechanisms [35] are no longer applicable to RAN

slicing. Specifically, a device accesses to a NS via a specific

BS, forming a three-layer associate relationship device-BS-

NS. Therefore, both the service type of NSs and the RSRP

of BSs should be taken into account to guarantee the service

quality when a handoff occurs. Therefore, unlike the handoff

in traditional mobile networks, there are three types of handoff

we need to consider: switching NS only, switching BS only,

and switching both NS and BS [36]. The amount of signaling

data needed for a handoff is different for the three types. For

example, switching NS only needs to exchange signaling in the

same BS, while switching both NS and BS needs to exchange

signaling between different BSs and NSs. Therefore, based on

the idea of [36], we define the amount of signaling data for

three types of handoff as: 1) qNS , the amount of signaling data

needed for switching NS only; 2) qBS , the amount of signaling

data needed for switching BS only; 3) qN�B , the amount

of signaling data needed for switching both NS and BS;

with the relationship qNS < qBS < qN�B [36]. Intuitively,

the amount of signaling data needed incurs corresponding

signaling overhead in terms of bandwidth consumption for

signaling exchange.

Furthermore, due to the bandwidth consumed by service

flows and the bandwidth consumed by handoff may not be in

the same order of magnitude, we define the handoff cost as
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follows [37],

↵HO =

8

>

>

>

<

>

>

>

:

qNS

wNS
, if switching NSs only,

qBS

wBS
, if switching BSs only,

qN�B

wN�B
, if switching both NSs and BSs,

0, otherwise.

(1)

where wNS represents the bandwidth consumed by the first

type of handoff switching NS only, wBS represents the band-

width consumed by switching BS only, and wN�B states the

bandwidth consumed by switching both BS and NS.

IV. PROBLEM FORMULATION

A. Problem Statement

Given a set of devices which may require services of differ-

ent types, we investigate the device association problem under

network resource constraints. We define a binary variable xj,k
i,t

to indicate whether the device di is served by NS j via BS

k during time slot t or not: xj,k
i,t = 1 yes and 0 otherwise.

Therefore, multiplying the two variables xj,k
i,t x

j0,k0

i,t�1
in adjacent

time slots indicates the handoff decision of di from time slot

t � 1 to t, which can be summarized in Table II. Note that

if xj,k
i,t x

j0,k0

i,t�1
= 0, we know that device di is not served by

NS j0 via BS k0 during time slot t � 1 or/and device di is

not served by NS j via BS k during time slot t, and we

cannot judge whether a handoff happens. However, it is much

easier to judge if a handoff happens when xj,k
i,t x

j0,k0

i,t�1
= 1.

As shown in Table II, when xj,k
i,t x

j0,k0

i,t�1
= 1, we can judge

whether a handoff happens and derive the handoff types and

corresponding handoff cost (i.e., ↵HO) from following four

aspects: 1) j 6= j0, k 6= k0, switching both BS and NS; 2)

j = j0, k 6= k0, switching BS only; 3) j 6= j0, k = k0,
switching NS only; 4) j = j0, k = k0, device di is served by

NS j0/j via BS k0/k during both time slot t� 1 and t. Thus

no handoff happens.

TABLE II

THE RELATIONSHIP BETWEEN HANDOFF AND x
j,k
i,t x

j0,k0

i,t−1

xj,k
i,t x

j0,k0

i,t�1
NSs BSs Switching ↵HO

1 j 6= j0 k 6= k0 both BS and NS
qN�B

wN�B

1 j = j0 k 6= k0 BS only qBS

wBS

1 j 6= j0 k = k0 NS only qNS

wNS

1 j = j0 k = k0 no handoff 0

Therefore, in order to improve network throughput while

reducing handoff cost, we define the communication efficiency

of the network during time slot t as follows,

et =
X

i2D

(↵flow
i,t xj,k

i,t � ↵HOxj,k
i,t x

j0,k0

i,t�1
), 8t 2 [0, T ]. (2)

In equation (2), communication efficiency et is a bandwidth

metric value representing the bandwidth efficiency minus

signaling overhead (which is indeed the “handoff cost”).

The bandwidth efficiency ↵flow
i,t xj,k

i,t represents the amount of

service data transmitted in unit bandwidth during a time slot.

The signaling overhead ↵HOxj,k
i,t x

j0,k0

i,t�1
denotes the amount

of signaling data transmitted in unit bandwidth. Moreover,

↵flow
i,t = qi

w
j,k
i,t

[37], where qi represents the service flow data

volume of di, and wj,k
i,t represents the wireless bandwidth that

BS k allocates to di served by NS j.

In our model, xj,k
i,t is a decision variable, which represents

the decision on NS and BS selection of di. As the device

association is indeed a sequential decision problem, we use

the long-term communication efficiency of the network as

the optimization objective in (3), with the aim to improve

network throughput while reducing handoff cost. Therefore,

we formulate the device association problem as follows.

max lim
T→+∞

E[
1

T

TX

t=1

et] (3)

s.t.
X

k∈B

X

i∈D

x
j,k
i,t r

j,k
i,t ≤ Ωj , ∀j ∈ N , t ∈ [0, T ] (3.1)

X

i∈D

x
j,k
i,t w

j,k
i,t ≤ bj,k, ∀j ∈ N , ∀k ∈ B, t ∈ [0, T ] (3.2)

X

j∈N

X

k∈B

x
j,k
i,t r

j,k
i,t ≥ r̂ti , ∀i ∈ D, t ∈ [0, T ] (3.3)

X

j∈N

X

k∈B

x
j,k
i,t Rj ≥ r̂ti , ∀i ∈ D, t ∈ [0, T ] (3.4)

X

j∈N

X

k∈B

x
j,k
i,t (T̂

j,k
i,t + Tj) ≤ d̂ti, ∀i ∈ D, t ∈ [0, T ] (3.5)

X

j∈N

X

k∈B

x
j,k
i,t = 1, ∀i ∈ D, t ∈ [0, T ] (3.6)

x
j,k
i,t ∈ {0, 1}, ∀i ∈ D, ∀j ∈ N , ∀k ∈ B, t ∈ [0, T ] (3.7)

In problem (3), constraint (3.1) represents the limitation of

wired link resource, where the total transmission rate offered

by NS cannot exceed the link resource budget during any time

slot t. Constraint (3.2) states the wireless bandwidth limitation,

which means that the total wireless bandwidth allocated to

devices by NS j via BS k cannot exceed the total bandwidth

of NS j allocated from BS k during any time slot t. Constrains

(3.3) - (3.5) state that the service quality of devices should

be satisfied by its serving BS and NS during any time slot

t even the selected NS/BS pair and network environment

change. Specifically, constraints (3.3) and (3.4) guarantee the

transmission rate, and constraint (3.5) guarantees the end-to-

end delay. Moreover, constraint (3.6) represents the access

limitation, which means that a device can access only one

NS via one BS during time slot t. The binary constraint on

the decision variable is shown in (3.7).

Theorem 1. Problem (3) with constraints (3.1)-(3.7) is NP-

hard.

Proof: A special case with fixed wj,k
i,t and rj,ki,t in problem

(3), can be mapped into a Multiple Choice Multidimensional

Knapsack problem (MMKP) [38] which is NP-hard [39].

When wj,k
i,t and rj,ki,t change with time, problem (3) with

constraints (3.1)-(3.7), is a dynamic MMKP (DMMKP). If

DMMKP has solution in polynomial time, its corresponding

MMKP should also have solution in polynomial time. Thus,

DMMKP can reduce to MMKP. Therefore, problem (3) with

constraints (3.1)-(3.7), is NP-hard.
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B. Markov Decision Process Modeling for Device Association

As Problem (3) is NP-hard, there is no polynomial-time

algorithm for solving it. Meanwhile, in view of the dynamic

nature of access conditions, the change of relevant parame-

ters (including consumed bandwidth, transmission rate, and

service delay) in the device association scheme over time,

we formulate the device association problem as a markov

decision process (MDP) model. An MDP consists of four-

tuple M = (S,A, P,R), where S represents the state space,

A represents the action space, P is the transition probability

between states, and R represents the reward function. As

shown in Fig. 2, for a specific device, the device needs to make

a decision to select an appropriate combination of BS and NS

(action) to access at the beginning of each time slot. This may

change the state of access conditions, causing the network state

to transit to another state. Through this action, the device can

obtain a certain reward. The state, action, transition probability,

and reward are respectively defined as follows.

State

Reward

Agent (Device)

Action 

t
r

i

t
s

BSs

i

t
q( )

r
g t

i

+1ts

BS 1… BS k

AMF

NSSF
SMF

UPF

UDM
PCF

NEFAUSF

AMF

NSSF
SMF

UPF

UDMPCF

NEFAUSF

NS 1 

…

NS j

Environment

+1tr

i

t
a

Fig. 2. The Markov transition diagram.

State: The current access conditions are used to describe

the system state. We assume S is the set of all network states

for all devices, and the number of NSs and BSs are |N | and

|B| respectively. For a specific device di 2 D, the state can

be represented by si
t = {Ii, b

t
1,1, ..., b

t
j,k, ..., b

t
|B|,|N |}, where

si
t 2 S , Ii = (j, k) states the current selected NS/BS pair of di,

and btj,k represents the available wireless bandwidth allocated

to NS j from BS k at time slot t with constraint btj,k  bj,k.

Moreover, we filter out btj,k if NS j or BS k is not engaged

for di.
Action: We remove the infeasible actions which do not

satisfy either the network resource constraints (3.1)-(3.2), the

service quality of devices (3.3)-(3.5), or the access constraints

(3.6)-(3.7). Moreover, we assume A is the set of actions for all

devices. For a specific device di 2 D, let ai
t = (j, k, wj,k

i,t ) be

the action, which means di will consume wj,k
i,t MHz wireless

bandwidth if it accesses to NS j via BS k at time slot t. Here

wj,k
i,t is selected randomly from [r̂ti/log2(1 + SINRk

i,t), b
t
j,k],

where r̂ti is the minimal transmission rate of di at time slot t.
Transition Probability: Let the transition probability of di

be P =
n

p
ai
t

si
ts

i
t+1

|ai
t 2 A, si

t, s
i
t+1 2 S

o

, which represents the

probability that network state of di transits from si
t to si

t+1

through action ai
t.

Reward: In order to maximize the communication effi-

ciency while considering the incurred communication cost in

FL, we define the reward as rt = et � u · xt · ↵
c
i,k, where u

is the number of devices, xt is the number of communication

rounds in FL from the first time slot to the tth time slot, and

↵c
i,k is the communication cost of each round in FL between

di and BS k. More details about communication round and

FL are shown in next section.

In summary, the information used for training local DRL

model includes the consumed radio resources (i.e., wj,k
i,t ), the

current selected NS/BS pair (i.e., Ii = j, k), the communi-

cation efficiency (i.e., et), the handoff cost (i.e., ↵HO), the

bandwidth allocated to NS j from BS k (i.e., bj,k), and the

available bandwidth allocated to NS j from BS k at time slot

t.
In the MDP for device association, a smart device can

obtain an optimal long-term reward by continuously inter-

acting with the network environment. But the effectiveness

fades as the size of the state-action space becomes large (i.e.,

the state space of MDP for device association is a discrete

space with |B| · |N | + 1 dimensions, the action space is a

discrete space with |B| · |N | · bj,k dimensions). To address

the aforementioned difficulty, we employ DRL to solve the

decision-making problem of a large size of state-action space.

Meanwhile, in the paradigm of distributed machine learning,

federated learning can be exploited to efficiently promote the

collaboration between devices and save the network bandwidth

consumption for transmitting training data while retaining the

privacy of local data.

V. HYBRID FEDERATED DEEP REINFORCEMENT

LEARNING FOR DEVICE ASSOCIATION

A. Framework of HDRL

By incorporating the DRL into the FL framework, we

propose a collaborative hybrid federated deep reinforcement

learning scheme, called HDRL. Fig. 3 shows the architecture

of HDRL, which consists of DRL running on individual

devices, and two levels of model aggregation based on DRL:

horizontal weights aggregation (called hDRL) and vertical

access feature aggregation (called vDRL). Specifically, in

hDRL, we exploit hFL for the same type services to aggregate

the parameters (i.e., ✓i
t) to share the similar data samples,

where smart devices and BSs can be enabled to train a

global model (i.e., gr(t)) together without raw data transfer.

As the RAN needs to support multiple service types, the

selected NS/BS pairs derived from hDRL may be not optimal.

Therefore, in vDRL, we exploit vFL to aggregate the access

features to form a larger feature space for different types of

services (e.g., in the scenario of Fig. 3, there are two service

types). In our proposed HDRL framework, devices such as

cell phones are involved in local model training. Although

a certain amount of energy is consumed, HDRL is effective

for the following reasons: 1) The power consumption of the

training process on a smartphone is smaller than that of some

typical smartphone applications (e.g., video play, large-scale

game) [40]; 2) Many cell phone vendors, e.g., Apple, Huawei,

have introduced smartphones with dedicated powerful AI chips
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Fig. 3. The hybrid federated deep reinforcement learning (HDRL) framework
for device association.

that can perform up to 5 trillion operations per second [41] and

thus the battery power consumed by training neural network

on the phone is acceptable [40]; 3) Our proposed collaborative

HDRL enables independent devices to jointly train the global

model together, where the number of training samples and the

number of trainings on each device can be reduced and thus

the energy consumption for local model training is limited. In

the following, we elaborate the detailed mechanisms at smart

devices and two aggregation levels.

DRL on smart devices: As FL can inherently support

privacy protection on private data, the training data should

be kept where it is generated. In other words, devices need to

train their own data independently. Furthermore, on one hand,

modern smart devices (e.g., smartphones) have fast processors

(including GPUs) and AI chips to accelerate training and

reduce energy consumption [42]. On the other hand, the state

space of MDP for device association is a discrete space

with |B| · |N | + 1 dimensions, and the action space is a

discrete space with |B| · |N | · bj,k dimensions. Therefore,

we employ the discrete-action DRL algorithm, double deep

Q-Network (DDQN), to train the local model on individual

smart devices. DDQN can address MDP with large state-

action space by introducing the experience pool, improve

the stability of the training results by introducing the target

network, and decouple the selection from the evaluation to

reduce the correlation between data [43].

Horizontal model aggregation (hDRL) level: Since dif-

ferent smart devices may generate local data with different

patterns based on the usage of the devices, no device has a

representative sample of the popular distribution in general.

However, for the same type of service, the flow data from

different devices is strongly correlated because the data flows

not only have similar features (e.g., the service type mark), but

also compete for the radio and computing resources in similar

slices. Therefore, for the different services of the same type,

we propose horizontal aggregation to integrate the similar data

samples to train a global access model by adopting an iterative

approach that requires a number of model update iterations,

where each model update iteration is called a communication

round [7] [10]. Fig. 4 shows the process of a communication

round, which consists of five steps: initialization of DDQN

parameters, local model training, local model transmission,

global model update, and global model transmission. In each

communication round, we aim to update model through the

cooperation between BSs and smart devices (i.e., aggregating

training samples for updating the global model and using DRL

for updating the local model). As a result, an individual device

can share the updates of parameters with other devices.

Fig. 4. The process of a communication round.

hDRL is performed in two steps: 1) DRL for training and

updating local model; 2) Horizontal weights aggregation for

aggregating training samples with some similar data features.

Specifically, in the first step, based on the received global

model, all devices use their own data to update the local

model at the beginning of each communication round, and

then continue to train local model through using DRL with

the aim to approach optimal parameters that minimize the

loss function. In the second step, individual devices send their

local model to the corresponding BSs at the end of each

communication round. Upon receiving all local models of the

trained devices, BSs will update the global model and then

send back the updated global model to individual devices.

Vertical model aggregation (vDRL) level: As the RAN

needs to support multiple types of services, horizontal ag-

gregation for aggregating the similar data samples may be

not optimal. Therefore, in order to further promote the col-

laboration between devices, we aggregate the local access

features to form a global access feature, where the data

from different flows is strongly correlated because data flows

compete for radio resources with each other. Furthermore, as

shown in the Table. 1 and Table. 2 in [10], it brings much

more communication cost to directly aggregate the data of

services of different types compared with aggregating the data

of the same type services, because the parameters are more

frequently transmitted and updated in each communication

round. Therefore, in order to reduce communication cost in

vDRL, based on the aggregated global access feature, we

introduce Shapley values [11] in (4) which represents the

average marginal contribution of a specific feature across all

possible feature combinations, to compare the importance of

global access feature,

�f =
1

M

M
X

m=1

�

f(xm
+i)� f(xm

�i)
�

, (4)

where M is the number of iterations. f(xm
+i) is the prediction

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TVT.2020.3033035

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

for instance x. xm
�i is identical to xm

+i, except that xm
+i is

different. Thus, we can derive the global optimal decision on

NS and BS selection by selecting the maximal Shapley value.

Here the access feature refers to the selected NS/BS pair and

its corresponding estimated value (i.e., the target value for

local selected NS/BS pair and the Shapley value for global

decision on NS and BS selection).

In vDRL, both the local and global selected NS/BS pairs can

be represented by a 0-1 matrix (i.e., local 0-1 matrix, global

0-1 matrix). Specifically, the global 0-1 matrix is composed

of the row vectors of the local 0-1 matrices, where each

row vector of the global 0-1 matrix represents a selected

NS/BS pair of a specific device. Moreover, a local 0-1 matrix

consists of possible local selected NS/BS pairs, where each

row vector of a local 0-1 matrix represents a specific selected

NS/BS pair of this device. Therefore, we can update the local

and global decisions on NS and BS selection by changing

the row vectors of the global 0-1 matrix. Furthermore, three

steps are executed in vDRL: 1) Aggregate access features.

All devices will send their own local access features (0-1

matrix and the corresponding target values) to the trusted

third encrypted party every several communication rounds

(i.e., v). Thus, different global decisions on NS/BS selection

(i.e., global 0-1 matrix) can be obtained by selecting different

row vectors of the local 0-1 matrices; 2) Calculate and compare

Shapley value. Based on the formed global 0-1 matrices, we

can calculate the Shapley values and obtain a global optimal

0-1 matrix (global optimal decision on NS and BS selection)

with the maximal Shapley value by comparing these Shapley

values; 3) Store and update the global decision on NS and

BS selection. The third encrypted party will store the global

optimal decision on NS and BS selection and Shapley value

until it is replaced by a better one. Here the third encrypted

party is a logical entity used to aggregate the different features

without exposing their respective data. Currently, there are

no standards or researchers explicitly specify which entity

could play the role of the third encrypted party in a mobile

network. In our views, a MEC/cloud encrypted server or a

secure computing node in CN/RAN could serve as the third

encrypted party because the aggregation on this entity needs

certain computing resources. Indeed, the instantiation of the

third encrypted party does not affect the effectiveness of our

proposed algorithm.

B. Algorithm of Horizontal Model Aggregation

DDQN for training local model: At the beginning of each

communication round, smart devices will receive the global

model from BSs to update their local model (i.e., weight ✓)

if communication round r 6= 1. Otherwise the devices will

update their local model directly with initial weights (which

are set as zero). We assume that each communication round

consists of ⌧ time slots. During each time slot, each device

performs local training once. Therefore, after completing the

local model update, the devices continue to train their local

model independently with DDQN during ⌧ time slots. DDQN

evaluates the greedy policy according to the Q-network with

weight ✓ and estimates state-action value Q(·) according to the

target network Q̂ with weight ✓̂ [43]. The update in DDQN is

the same as that in DQN, but the target is replaced by

yi
t = rt+1 + �Q(si

t+1, argmaxai
t
Q(si

t+1, ai
t; ✓

i
t); ✓̂

i
t), (5)

where argmaxai
t
Q(si

t+1, ai
t; ✓

i
t) is an ✏-greedy policy used to

select access or handoff actions, and ✓i
t is the weight vector

of Q-network for device di.

For a specific device di, if di satisfies the access condition

and takes access or handoff action ai
t at the beginning of time

slot t, we will obtain the corresponding state-action value,

which is given by

Q(si
t, a

i
t) = E[

T
X

k=t

�krt|s
i
t, a

i
t], (6)

where � 2 [0, 1] is the discount factor representing the

discounted impact of the future reward. The objective of

DDQN is to minimize the gap between the estimated Q(·)
and the target value. Therefore, DDQN running on di can be

trained by minimizing the loss function, which is given by

L(✓i
t) = E[(yi

t �Q(si
t, ai

t; ✓
i
t))

2]. (7)

Moreover, when DDQN approximates the value function

using the neural network, it indeed updates the parameter value

✓i
t by using the gradient descent method. Therefore, the update

algorithm in DDQN is given by

✓i
t+1 = ✓i

t + ↵
⇥

yi
t� Q

�

si
t, a

i
t; ✓

i
t

�⇤

rQ
�

si
t, a

i
t; ✓

i
t

�

. (8)

After training local data for ⌧ time slots, device di will send

the local model (i.e., ✓i
t) to the BSs to update the global model.

Update models: Once receiving all local models from indi-

vidual devices, BSs will update the global model as follows,

gr(t) =

Pux

i=1
Ki✓

i
t

K
, 81  t  T, (9)

where Ki is the amount of training data of di, K =
Pux

i=1
Ki

is the total amount of training data of the devices with

service of type x, ux is the number of devices which has the

same service type x, and r represents the rth communication

round of hDRL. After updating the global model in the rth

communication round, BSs will transmit the global mode gr(t)
to all devices with the same type services to update the local

DDQN models based on (10).

✓i
t+1 = gr(t)�

�

Ki

u
X

i=1

rL(✓i
t), 8i 2 D, 1  t  T, (10)

where � is the learning rate, and L(✓i
t) is the loss function

of DDQN in (7). After updating the local model, the devices

will continue to train their local model. The horizontal model

aggregation algorithm is presented as Algorithm 1, where the

complexity of horizontally FL framework is O (R(u+ |B|))
because each communication round includes the computation

of BS aggregation and local model updating, where R, u, and

|B| are the number of communication rounds, smart devices,

and BSs.
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Algorithm 1 Algorithm of Horizon Model Aggregation

Input: si, ai, ↵, �, C, R, Ki, ux, x, �, ⌧

output: Selected NS/BS pair ⇡i, target value

yi
t.

1: Initialize experience relay pool Di
x, 8i 2 D;

2: Initialize the global weights g0;

3: for communication round r = 1, 2, ..., R do

4: if r == 1 then

5: Initialize ✓i
0;

6: else

7: . Update local model

8: for i = 1, 2, ..., ux do

9: ✓i
0 = gr�1(t)�

λ
Ki

Pux

i=1
rL(✓i

t).
10: end for

11: end if

12: . Local model training

13: Let ✓̂i
0 = ✓i

0, initialize target action-value function Q̂(·)
according to the parameter ✓̂i

0;

14: for t = 1 to ⌧ do

15: Receive the initial observed state s1
1, s

2
1, ..., s

ux
1 ;

16: if t  |Di
x| then

17: Randomly select a1
t , a

2
t , ...;

18: else

19: Select ai
t = argmaxaQ(·) using ✏-greedy policy;

20: Execute action ai
t, obtain ri

t and si
t+1;

21: Store (si
t, a

i
t, r

i
t, s

i
t+1) into Di

x, 8i 2 D;

22: Randomly select a sample
�

si
j , a

i
j , r

i
j , s

i
j+1

�

from

the experience relay pool Di, 8i 2 D;

23: Calculate yi
t according to equation (4);

24: Perform a gradient descent step on

u
X

i=1

�

yi
j �Q

�

si
j , a

i
j ; ✓

i
t

��2

25: Update the parameter ✓i
t, 8i 2 D;

26: Every C slots reset Q̂ = Q;

27: end if

28: end for

29: . Update global model

30: for i = 1, 2, ..., ux do

31: gr(t) =
Pu

i=1
Kiθ

i
τ

K
.

32: end for

33: end for

34: Obtain selected NS/BS pair ⇡i, target value yi
t.

C. Algorithm of Vertical Model Aggregation

The aforementioned horizontal model aggregation is used

for the same type services with similar data samples. As

multiple types of services are considered in this paper, vertical

model aggregation could be exploited for further improving

the network performance, by aggregating local access features

incurred from different types of services. Due to the data on

each device is private and not visible to other devices, we use

a 0-1 matrix to represent a local global decision on NS and

BS selection, where we can update global access feature by

transforming these 0-1 matrices. In this paper, according to

[11], the estimated global target value of a global decision on

NS and BS selection is given by

'f =
u
X

i=1

yi
t � E

"

u
X

i=1

yi
t

#

, (11)

where f ✓ X is a specific global decision on NS and BS

selection (0-1 matrix), each row vector of f represents a local

selected NS/BS pair. Moreover, yi
t is the target value in (5).

For example, we assume there are two devices (i.e., d1 and

d2) sending two service requests in the overlapping area of

multiple BSs (i.e., BS 1, BS 2). Thus X can be given by

X = {



1 0
0 1

�

,



0 1
1 0

�

,



1 0
1 0

�

,



0 1
0 1

�

},

where X is the set of possible global selections. Each element

of X represents a global decision on NS and BS selection,

composed of row vectors of matrix A and H, where A and

H are given by

A = H =



1 0
0 1

�

.

In this case, A and H represent the possible selected NS/BS

pairs of device 1 and device 2 respectively. For example, in

A, the first row [1 0] represents that device 1 accesses to BS 1

and the second row [0 1] represents that device 1 accesses to

BS 2. Moreover, the sum of each row of A or H is 1, which

means that a device can only access to one BS.

In [11], the authors proposed an Monte-Carlo sampling,

where the Shapley value is given by

�f =
1

M

M
X

m=1

('+f � '�f ) , (12)

where M is the number of access feature updates in vDRL.

Moreover, �f is the Shapley value for a specific global

decision on NS and BS selection f , representing the average

marginal contribution of f across all possible access feature

combinations X . For example, in X above-mentioned, if

f = X{1}, we can get the +f = X{1} and �f is randomly

chosen in {X{2},X{3},X{4}}. Therefore, we can obtain the

Shapley value �f of the corresponding global decision on NS

and BS selection f through (12) and derive the global optimal

0-1 matrix by comparing the Shapley values. Thus, when the

devices send their service requests, the third encrypted party

will send the i-th row vector of f to devices, where the i-th
row vector of f represents the local selected NS/BS pair of

di.

D. HDRL Algorithm for Device Association

Next we elaborate the model training process of HDRL

scheme. Fig. 5 shows an illustrative example of HDRL pro-

cess, where two types of services are considered. In this

process, we assume that each communication round consists

of ⌧ time slots, where only the first and last time slots in a

communication round are involved in the global parameter ag-

gregation. Between BSs and devices, the parameters (including

global model gr(t) and local model ✓i
t ) are transmitted and

updated for a global model for the same type services. In the
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first time slot of each communication round, the global model

will be sent to individual devices if communication round

r 6= 1. Otherwise the devices will update their local model

directly with initial weights zero. During each communication

round, based on the received global model or initial weights,

the devices will update local weights and train their own data

with DDQN. At the last time slot of each communication

round, according to the service type, the devices will send their

local model to BSs to update corresponding global model. It

is worth noting that each device and each BS store all models

of all the service types.

Fig. 5. The process of HDRL.

The global access feature aggregation is performed in the

last time slot every several communication rounds (i.e., v).

Between the third encrypted party and devices, access features

are transmitted and aggregated for making a global decision

on NS and BS selection. At the last time slot of every v
communication rounds, we aggregate the access feature of

individual devices to form a global access feature on the

third encrypted party. Based on the aggregated global decision,

we calculate the Shapley values and derive a global optimal

decision on NS and BS selection with the maximal Shapley

value by comparing these Shapley values. Then the third

encrypted party will store the global decision on NS and BS

selection until it is replaced by a better one. Note that if

devices send their service requests simultaneously, the third

encrypted party will send the corresponding local selected

NS/BS pairs to devices. Otherwise the smart devices can make

decisions on NS and BS selection according to their own local

model. Based on the train Algorithm 1, the HDRL algorithm

is presented as Algorithm 2.

E. Convergence Analysis

HDRL can be regarded as fully distributed DRL if neither

horizontal aggregation nor vertical aggregation is performed

(i.e., r = R = v = 0), and also can be regarded as

centralized DRL if we perform global aggregation after every

local update (i.e., ⌧ = v = 1) and then the data samples

and features are available for the centralized controller, and

the communication cost is ignored [44]. Furthermore, we use

Algorithm 2 HDRL

Input: M , individual selected NS/BS pair ⇡i, and target value

yi
t from Algorithm 1, iterations.

output: Shapley value �f , the optimal global decision on NS

and BS selection f .

1: Initialize the maximum Shapley value �max = 0;

2: Initialize selected NS/BS pairs for all devices f0 = ∅;

3: for m = 1, 2, ...,M do

4: Get ⇡i, ✓i, and yi
t of the devices with different service

categories in the same overlapping converges of multi-

ple BSs;

5: Get X through ⇡i;

6: Remove unfeasible solution in X ;

7: for i = 1, 2, ..., |X | do

8: f = X{i};

9: Initial the sets of �f ;

10: Calculate 'f ;

11: for iterations= 1, 2, ... do

12: Choose �f in {X � X{i}};

13: if �f ✓ F then

14: Continue.

15: else

16: Calculate '�f .

17: end if

18: end for

19: Calculate �f

20: if �max  �f then

21: �max = �f ;

22: f0 = f .

23: end if

24: end for

25: end for

26: Obtain Shapley value �f , the optimal global decision on

NS and BS selection f = f0.

an auxiliary parameter vector vr
t , which follows a centralized

gradient descent according to

v
r
t+1 = v

r
t � ⌘rL(vr

t ), 1  t  ⌧, 8r 2 R. (13)

According to [10], [44], the global parameters gr(t) should

be very close to v
r
t when ⌧ = v = 1. Formally, we have an

upper bound on the difference between L(gr(t)) and L(vr
t )

within [t� (r � 1)⌧, t], which is given by

|L(gr(t))� L(vr
t )|  h(⌧, r). (14)

We have h(⌧, r) = 0 if fully distributed DRL or centralized

DRL is performed. However, the fully distributed DRL, r =
R = v = 0, is always the worst solution compared with cen-

tralized DRL and HDRL, since fully distributed DRL always

only considers independent training and independent decision

on NS and BS selection. Moreover, it is always optimal when

setting ⌧ = 1 and v = 1 if we have unlimited resource budget

and ignore the privacy issue, since centralized DRL jointly

trains a global model for all services. Theoretically, the perfor-

mance of model training in HDRL should be between that of

the fully distributed DDQN and centralized DDQN. From the
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investigations in [44], h(⌧, r) is affected by data distribution,

r, and ⌧ . Therefore, when data distribution, ⌧ and r are

given, we can obtain the upper bound of the divergence (i.e.,

h(⌧, r)) between HDRL derived loss function and the global

loss function. Moreover, since we use a non-linear sigmoid

function in the neural network, the loss function in this paper is

non-convex. Therefore, we can obtain h(⌧, r) through training

and further obtain the convergence bound of HDRL derived

loss function [L(vr
t )�h(⌧, r), L(vr

t )+h(⌧, r)]. Intuitively, the

frequency of performing global weights aggregation (i.e., ⌧ )

should be carefully specified, as the communication cost with

a large number of communication rounds cannot be ignored.

Numerical results in the subsequent section will illustrate this.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed

HDRL scheme through simulation experiments. We employ

four reference device association (DA) schemes as comparison

reference:

(1) Greedy Algorithm for DA (GDA): In this scheme, each

device chooses NS/BS to access which can provide the

maximal communication efficiency based on instanta-

neous network conditions, instead of considering long-

term optimal communication efficiency.

(2) Centralized DDQN for DA (CDA): In this scheme, all

devices transmit data to a controller for centralized train-

ing in DDQN. Then the controller makes global decision

on NS and BS selection for all devices, where no cost

for transferring training data is taken into account.

(3) Distributed DDQN without data aggregation for DA

(DDA): In this scheme, individual devices train their own

data through DDQN and make decision on NS and BS

selection independently, where no data aggregation of FL

is used. Moreover, the reward function in CDA and DDA

remains the same as that in HDRL except that the cost

of communication round is zero.

(4) RSRP-based BS selection for device association (RDA):

In this scheme, devices first select the BS with highest

RSRP, and then select the slice that can provide the

maximum communication efficiency on this BS.

A. Simulation Settings

We consider a network scenario where four BSs are ran-

domly distributed in a square area of 1060 ⇥ 1060 m2

[23]. The parameters of network scenario are listed in Table

III. Specifically, we assume that five end-to-end slices are

deployed in the network. The maximal transmit power and

the noise power of BSs are set to 47dBm and -174dBm/Hz

respectively [23], [38]. The path loss for BSs is modeled as

L(d) = 34 + 40log(d) [23], [38]. Furthermore, the wireless

bandwidth of each BS is set to 20 MHz. For a specific BS k,

the total wireless bandwidth is randomly allocated to all NSs

deployed at BS k. In other words, bj,k is randomly chosen

from [0, 20] MHz with the constraint
P5

j=1
bj,k  20MHz

[23]. Meanwhile, devices are randomly distributed within the

simulation area with different transmission rate and delay

requirements. In this paper, we assume three types of services

(i.e., eMBB, mMTC, and URLLC) are supported. The service

type is characterized by transmission rate and delay, where the

minimal transmission rate r̂ti is randomly generated from [2,

10]Mbps [23], [45] and the delay in CN is randomly generated

from [1, 10]ms [45].

TABLE III
NETWORK PARAMETERS

Parameter Value

The number of BSs 4

The number of NSs 5

Simulation area 1060⇥ 1060 m2

Noise power -174dBm/Hz

Path loss function L(d) = 34 + 40log(d)
BS wireless bandwidth 20MHz

The minimal transmission rate U[2, 10]Mbps

The delay in CN U[1, 10]ms

The maximal transmit power of BSs 47dBm

The wireless bandwidth that BS k U[0,20]MHZ

allocates to NS j, bj,k

TABLE IV
PARAMETERS OF AGGREGATION

Parameter Value

The number of input neurons 12

The number of hidden neurons 25

Target network update interval step 5

The discount factor 0.99

Learning rate for training 0.001

Learning rate for updating local model 0.001

The batch size 64

Replay memory size 1000

Aggregation frequency of access features 2

Table IV lists the parameters used in two levels of aggrega-

tion. For each device, we consider a three-layer fully connected

neural network, including input layer, hidden layer, and output

layer. Specifically, the input layer consists of 12 neurons,

representing the input of access condition and access/handoff

action. The hidden layer consists of 25 neurons, where the

activation function is set to sigmoid function. The output layer

has one neuron, where the activation function is linear. To

avoid correlation between action-values and target values, we

copy the weights of Q-network ✓ to the weights of target

network ✓̂ every 5 training steps [46]. Moreover, the memory

size for each service type is set to 1000, the batch size is set

to 64, the discount factor is set to 0.99 [46], and the access

feature is updated every 2 communication rounds. In addition,

both the learning rate for training and the learning rate for

updating local model are set to 0.001.

B. Numerical Results and Discussions

First, we examine the relationship between the total long-

term reward and the frequency of performing global aggrega-

tion. In this experiment, we assume that the communication

cost for one communication round, ↵c
i,k, is a constant which
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is set to 0.05. Fig. 6 illustrates the total long-term reward as a

function of the number of communication rounds. From Fig.

6, we can observe that, the total long-term reward increases

in the beginning and then decreases with the number of

communication rounds. There is an optimal number of rounds,

say 15, which leads to the maximal total reward when the

number of trainings in a communication round (i.e., ⌧ ) is

set to 2000. Furthermore, we observe that the number of

trainings in a communication round (i.e., ⌧ ) affects the optimal

number of communication rounds. The reasons are as follows.

On one hand, the local model changes with the number of

trainings in a communication round (i.e., ⌧ ). On the other

hand, the communication cost increases with the number of

communication rounds.
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Fig. 6. The relationship between the number of communication rounds and
the total long-term reward.

Then, we verify the convergence property of our proposed

HDRL by depicting its learning curve (the curve of weights vs.

the total number of trainings). We set ⌧ = 2000 and randomly

select three corresponding local models (i.e., ✓1, ✓2, ✓3) on

three different devices. As shown in Fig. 7, HDRL converges

with the total number of trainings increasing. Furthermore,

Fig. 8 shows the partial convergence curve of Fig. 7 within

[5⌧, 20⌧ ]. From Fig. 8, we observe that the three corresponding

weights from different smart devices coincide when they

tend to be stable, which further illustrates the effectiveness

of training a global model with multiple independent smart

devices. In the following experiments, we set ⌧ = 2000 and

R = 15 to evaluate the performance of HDRL.

Next, we explore how the total long-term reward changes

with the number of devices in HDRL. Fig. 9 shows the total

long-term reward as a function of the number of devices.

From Fig. 9, we see that the total long-term reward increases

with the number of devices, and further, the increasing speed

of the total long-term reward is different. The reasons are

as follows. As the number of devices increases, HDRL can

exploit more similar data samples for training. However, when

the number of devices (i.e., u) is more than 15, the number of

duplicate data samples which should be filtered out increases

quickly, so that the increasing speed becomes lower than that

in the beginning. Moreover, when the number of devices is

greater than 35, the devices have sufficient data samples to
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Fig. 7. Convergence of HDRL.
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Fig. 8. Partial convergence curve of Fig. 7 within [5τ, 20τ ].

approximate the value function so that the total long-term

reward increases rapidly. Furthermore, when the number of

devices continues to increase (i.e., more than 40), due to the

constrained network resources, the increasing speed of the total

long-term rewards decreases.
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Fig. 9. The relationship between the number of devices and the total long-
term reward.

Then, we compare the total long-term reward of five

schemes (i.e., HDRL, CDA, DDA, GDA, and RDA) when

the number of devices is 35 (i.e., u = 35). Fig. 10 shows the
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total long-term reward of the five schemes. From Fig. 10, we

can see that HDRL and CDA achieve higher long-term reward

than other three schemes. This is because HDRL and CDA aim

to find the global optimal decision on NS and BS selection,

while DDA, GDA, and RDA focus on the local selected NS/BS

pair. Moreover, compared with CDA, HDRL aggregates the

same type services on BSs, reducing the correlation between

the training data from different devices. Therefore, the total

reward of HDRL is higher than that of CDA.
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Fig. 10. The performance of the total long-term reward.

Next, we examine the performance of the five schemes

in terms of network throughput. Fig. 11 shows the network

throughput as a function of the number of devices. We can

see that HDRL always outperforms CDA, DDA, GDA, and

RDA on network throughput. This is because that HDRL

integrates the similar data samples into a global model before

aggregating the access features. Moreover, the access feature

aggregation in HDRL takes the global optimal decision on NS

and BS selection into account. In comparison, the duplicate

data samples in CDA for centralized training increase the cor-

relation of data, resulting in overfitting easily. Moreover, DDA,

GDA, and RDA focus on individual devices without global

perspective. In addition, GDA and RDA makes decisions

on NS and BS selection based on instantaneous conditions,

instead of considering long-term optimization objectives.
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Fig. 11. Comparison of network throughput as a function of the number of
devices in five schemes.

Next, we compare handoff cost of the five schemes. Fig. 12

shows the comparison of handoff cost of the five schemes.

We can see that HDRL incurs the highest handoff cost.

Moreover, the handoff cost of HDRL and DDA is always

higher than that of CDA, this is because HDRL and DDA

are based on distributed learning, where smart devices train

their own data independently. Although HDRL employs two

levels of aggregation, training on smart devices independently

is not affected. Furthermore, we compare the communication

efficiency by combining network throughput and handoff cost

to further evaluate the performance of the five schemes.
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Fig. 12. Comparison of handoff cost of five schemes.

Finally, we compare the performance of communication

efficiency of the five schemes in Fig. 13. We see that HDRL

always outperforms DDA, CDA, GDA, and RDA in terms

of communication efficiency. This is because HDRL not only

considers the optimal global decision on NS and BS selection,

but also integrates the similar data samples. In particular,

numerical results show that HDRL achieves higher commu-

nication efficiency by about 14.19%, 20.80%, 26.60%, and

36.36% on average compared with CDA, DDA, GDA, and

RDA respectively.
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Fig. 13. Comparison of communication efficiency of five schemes.

VII. CONCLUSION

In this paper, with the aim to improve network throughput

while reducing handoff cost, we have modeled the device
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association problem for RAN slicing as an MDP model and

solved it by developing a novel HDRL scheme that exploits

hybrid FL based on DRL. In HDRL, we employ two levels of

model aggregation based on DRL to promote the collaboration

between smart devices while enforcing the privacy of local

data. Numerical results show that our proposed HDRL scheme

achieves a significant performance improvement in terms

of network throughput and communication efficiency when

compared with the state-of-the-art algorithms. In the future,

hybrid FL based on DRL is still a challenging issue in Cloud-

RAN in terms of privacy, independence, and service diversity,

we will continue to explore HDRL schemes in Cloud-RAN in

5G-and-beyond wireless network.
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