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ABSTRACT Multi-access edge computing (MEC) has recently been proposed to aid mobile end devices
in providing compute- and data-intensive services with low latency. Growing service demands by the end
devices may overwhelm MEC installations, while cost constraints limit the increases of the installed MEC
computing and data storage capacities. At the same time, the ever increasing computation capabilities and
storage capacities of mobile end devices are valuable resources that can be utilized to enhance the MEC.
This article comprehensively surveys the topic area of device-enhanced MEC, i.e., mechanisms that jointly
utilize the resources of the community of end devices and the installed MEC to provide services to end
devices. We classify the device-enhanced MEC mechanisms into mechanisms for computation offloading
and mechanisms for caching. We further subclassify the offloading and caching mechanisms according
to the targeted performance goals, which include throughput maximization, latency minimization, energy
conservation, utility maximization, and enhanced security. We identify the main limitations of the existing
device-enhanced MEC mechanisms and outline future research directions.

INDEX TERMS Caching, computation offloading, device-to-device (D2D) communication, mobile edge
computing (MEC).

I. INTRODUCTION

A. MOTIVATION

The Multi-access Edge Computing (MEC) paradigm, which
is also known as Mobile Edge Computing, has been intro-
duced to bring computing and storage resources in close
physical proximity of the wireless end devices [2], [3]. For
instance, MEC resources can be co-located with the base sta-
tions (BSs) or backhaul entities of cellular wireless communi-
cations [4], as illustrated in the left half of Figure 1. TheMEC
thus helps to provide low-latency services requiring intensive
computations or large data volumes to mobile wireless end
devices [5]–[7]. The number of wireless end devices, such
as user equipment (UE) nodes in cellular wireless networks,
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is expected to further grow and substantially contribute to
the overall Internet traffic growth [8]. Also, the computing
and data demands of the wireless end devices are projected
to grow substantially over the coming years. This growth is
in part due to newly emerging service paradigms, such as
the Tactile Internet [9] requiring millisecond latency respon-
siveness, e.g., for robotic control applications, the Internet of
Things (IoT) [10] connecting enormous numbers of devices,
Machine-Type-Communications (MTC) [11], online gam-
ing, as well as virtual or augmented reality. The increasing
computing and data demands due to these emerging service
paradigms which will likely be utilized by large numbers of
wireless end devices may overwhelm the installedMEC com-
puting and storage infrastructure. Moreover, cost pressures in
the telecommunication industry may limit the installation of
higher and higher MEC compute and storage capacities.
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FIGURE 1. Illustration of device-enhanced MEC: The conventional MEC infrastructure extends to the base stations (BSs, cell
towers), e.g., through compute and storage capacities installed at the BSs and along the network path from the BSs via the
backhaul network towards the core network and Internet. This survey covers device-enhanced MEC where the mobile end
devices with their computing and storage capacities collaborate with the conventional MEC infrastructure to provide services
to other mobile end devices. End devices reach the MEC resources through cellular communication links and the other nearby
end devices through D2D communication links.

A possible solution to this dilemma is to utilize the increas-
ingly powerful processing units, e.g., central processing units
(CPUs) and special-purpose processing units, and increas-
ing storage capacities of modern wireless end devices for
providing services. That is, the community of wireless end
devices, which is also referred to as mobile device cloud,
can contribute its aggregate computing and storage resources
to provide services to individual end devices jointly with
the MEC. Effectively, the end devices share their resources
and collaborate with the MEC to quickly provide compute-
and data-intensive services to their fellow end devices. This
sharing among end devices is facilitated by recent advances
in Device-to-Device (D2D) communication [12]–[15]. D2D
communication enables an end device to exploit the resources
of the end devices in its proximity via direct D2D con-
nections, as illustrated by the red links in the right half of
Figure 1; thus, potentially reducing the traffic load on the
cellular network and MEC infrastructure.

The collaboration of (i) the MEC, which has installed
resources up to the BSs, with (ii) the sharing of resources
among end devices, which is enabled through D2D commu-
nication, gives rise to the paradigm of device-enhancedMEC.
As illustrated in Figure 1, device-enhanced MEC encom-
passes conventional MEC and D2D communication enabled
end device resource sharing and thus extends across the entire
scope of Figure 1.

B. RELATED SURVEYS ON MEC AND

D2D COMMUNICATION

This section gives an overview of the existing surveys on
the related topics of MEC and D2D communication. To the
best of our knowledge, the present survey is the first to

comprehensively cover the topic area of device-enhanced
MEC, which builds on and combines the MEC and D2D
communication concepts.

MEC surveys have covered mechanisms for offloading
compute- and data-intensive service provisioning from the
end devices to the installed MEC server infrastructure; the
offloading to other end devices has not been considered. In
particular, the existing surveys have approached the MEC
topic area from a variety of perspectives, including appli-
cations and use cases [16]–[20], opportunities and chal-
lenges [21], [22], security threats and mechanisms [23]–[25],
computation offloading [26]–[30], caching [31], [32], com-
munication perspective [33], [34], service migration [35],
architecture and orchestration [36]–[40], technological devel-
opments [41], and edge computing for IoT [42]–[45]. Closely
related to the MEC surveys are surveys on fog comput-
ing. Fog computing generally considers a slightly wider set
of devices than MEC for providing computing and stor-
age resources, i.e., fog computing typically encompasses
switches, routers, access points (APs), BSs, as well as ded-
icated compute and storage nodes [46]–[48]; however, the
sharing of end device resources is generally not considered
in fog computing. Architectural and algorithmic perspec-
tives of fog computing have been surveyed in [49], [50],
network applications and the design of fog computing
have been covered in [51], and access control for UEs
in fog computing focusing on security aspects has been
reviewed in [52].

Several surveys have covered the general principles and
mechanisms of D2D communications [53]–[59]. Moreover,
specific aspects of D2D communication have been surveyed,
namely D2D communications architectures [60], device
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discovery for D2D communications [61], relay assisted
D2D [62], and mobility [63]. The interference management
for D2D links has been surveyed in [64], [65], while D2D
channel models were covered in [66]. The offloading of
cellular network traffic to D2D links has been surveyed
in [67]. D2D communication for 5G wireless networks has
been the focus of [14], while security aspects were cov-
ered in [68], [69]. Recently, the relationships between social
networks and D2D communications have been surveyed
in [70], [71], while smart city aspects have been covered
in [72]. Directly building on the D2D communication links,
the so-called mobile ad-hoc cloud paradigm [73]–[76] sup-
ports the service computing and caching for a given end
device through the neighboring end devices (without the
involvement of an installed MEC and possibly also without
the involvement of BSs or APs). The scope of this survey
article is the area of device-enhanced MEC, i.e., we do not
survey mobile ad hoc cloud studies without the involvement
of MEC servers. Instead, we comprehensively survey device-
enhanced MEC studies that collaboratively involve MEC
servers and resources at other end devices (i.e., in a sense
the local D2D communication ad hoc cloud) for providing
services to a given end device.
To the best of our knowledge, only the conference

paper [77] and the computing oriented survey article [78]
have provided an overview of device-enhanced MEC, which
lies at the intersection of MEC and D2D communica-
tions. Specifically, the conference paper [77] gives a general
overview of the concept of device-enhanced MEC, covering
application scenarios, benefits of proximity, user incentives,
as well as the challenges of D2D communications and Qual-
ity of Service (QoS). Specific mechanisms and individual
studies on device-enhanced MEC have not been discussed
in [77]. In contrast to [77], we provide a comprehensive up-
to-date survey of the existing mechanisms and studies on
device-enhanced MEC. The survey article [78] describes in
detail the various forms of cloud computing, including forms
where resources are shared among end devices. However,
the survey only reviews mechanisms where either MEC
resources or resources from other mobile devices are utilized.
In contrast, we focus on mechanisms that jointly utilize MEC
and shared end device resources.

C. CONTRIBUTION AND ORGANIZATION OF THIS SURVEY

ON DEVICE-ENHANCED MEC

This article provides a comprehensive survey of device-
enhanced MEC, i.e., the enhancement of MEC services for
a particular end device (or set of end devices) through the
resources of other end devices. The resources of the other
end devices are reached through direct D2D communication.
We provide background on the enabling technologies for
device-enhanced MEC, namely conventional MEC and D2D
communications in Section II. Our literature search of the
device-enhancedMEC area indicated that the existing studies
on device-enhanced MEC have focused on enhancing two

main MEC services, namely MEC computation offloading
and MEC caching.

MEC computation offloading [79] transfers tasks that
require high computational and storage resources, such as
image or video processing and interactive gaming, from an
end device to an MEC server. Computation offloading speeds
up the computation process while extending the end device
battery life time [80]. The existing mechanisms for device-
enhanced MEC computation offloading are summarized
in Table 1 and comprehensively surveyed in Section III. The
device-enhanced MEC computation offloading studies have
exploited the collaboration of MEC computation resources
and the computation resources at nearby end devices (reached
via D2D communication) to achieve three main objectives:
Minimization of the service latency for applications, mini-
mization of the end device energy consumed for computing
application requests, and enhancement of the security. A few
existing studies have jointly considered the minimization of
latency and consumed energy.

MEC caching supports low-latency data-intensive ser-
vices, such audio and video streaming, to the end devices.
MEC caching stores popular content items in caches that are
located close to the end devices, e.g., at BSs [81]. Cached
content items can be delivered to the end devices without
involving distant origin servers, thus reducing the service
latency and the traffic load on the network path to the origin
servers. The existing mechanisms for device-enhanced MEC
caching are summarized in Table 2 and comprehensively sur-
veyed in Section IV. The existing studies have developed and
evaluatedmethods for placing content items at caches atMEC
servers and end devices; these MEC and end device caches
collaborate in the overall device-enhanced MEC caching sys-
tems. The existing studies have also examined the collabo-
rative delivery of the content items from the MEC and end
device caches to the requesting end device.

Open challenges and limitation of the surveyed research
studies and the resulting future research directions in the
area of device-enhanced MEC are outlined in Section V.
Section VI concludes this survey article.

II. BACKGROUND ON EDGE COMPUTING AND

D2D COMMUNICATION

A. EMERGENCE OF MULTI-ACCESS EDGE

COMPUTING (MEC)

The demands of popular applications running on mobile end
devices have brought several challenges for network oper-
ators. The limited battery lifetimes as well as the limited
computational and storage resources of mobile end devices
have motivated network operators to modify their exist-
ing infrastructures. The Mobile Cloud Computing (MCC)
paradigm was introduced to extend cloud computing fea-
tures to mobile end devices with the aim of centralizing the
management of the computational and storage resources in
the core network [33], [82]–[84]. The MCC benefits mobile
end devices by expanding the available computation and
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storage resources as well as the flexibility to support multiple
platforms. However, the MCC fails to fulfill the low-latency
requirements of emerging mobile applications due to the long
distances to the devices and the backhaul bandwidth limi-
tations [32]. To tackle this problem, computing and storage
resources should be placed as close as possible to the mobile
end devices, e.g., by deploying cloud servers inside cellular
BSs or APs depending on the network architecture. This trend
of deploying cloud servers close to the mobile end devices
was initially called Mobile Edge Computing (MEC) and
standardized by the European Telecommunications Standards
Institute (ETSI) Industry Specification Group (ISG). In order
to extend the MEC usage to heterogeneous networks tech-
nologies, e.g., WiFi and fixed access, ETSI ISG has renamed
Mobile Edge Computing to Multi-access Edge Computing in
September 2016 [85], [86].
Compared to the centralized MCC, the MEC paradigm

with distributed computing and caching resources being
placed in close physical proximity to the mobile end devices,
e.g., by placing compute and caching servers at BSs, brings
several advantages for future low-latency networking, such
as the Tactile Internet and IoT applications with millisecond-
scale latency requirements. Besides reducing communica-
tion delay as the main goal, the MEC paradigm reduces
the backhaul data traffic (compared to sending all UE ser-
vice requests to the core network) [21], [87], extends the
UE battery life times by offloading compute intensive tasks
to edge servers [88], and provides real-time information of
UE locations and behaviors, which are helpful for enabling
context-aware services [5], [6]. Also, the MEC can support
the wireless power transfer to mobile end devices [89]–[91].

B. KEY TECHNOLOGIES FOR IMPLEMENTATION

OF MEC CONCEPT

To implement the MEC paradigm and make it operational,
multiple integrative technologies are involved [92], mainly
Software Defined Networking (SDN), Network Function
Virtualization (NFV), and Information Centric Network-
ing (ICN), as outlined next.

1) SOFTWARE DEFINED NETWORKING (SDN)

The main idea for introducing SDN was to enable the use
of commodity and off-the-shelf hardware to create intelligent
networks that are programmable and application aware [93],
[94]. This is achieved by separating the control plane, which
manages the network, from the data plane, which transfers
actual data streams. Key to assuring interoperability between
various equipment manufacturers and vendors is a well-
defined open interface between the two planes. Logically cen-
tralized SDN controllers help to solve classical networking
problems, such as routing, tunneling, and IP address transla-
tion, as well as new challenges in future 5G applications, such
as UE mobility, adaptation to service degradation, as well as
security and integrated protection for IoT systems [44], [95].
Through SDN, network traffic flows can be flexibly steered
to and from the MEC [96], [97] so as to seamlessly integrate

MEC computations and caching into the provisioning of
network services to mobile applications.

2) NETWORK FUNCTION VIRTUALIZATION (NFV)

NFV leverages virtualization techniques to enable the flexible
design, deployment, and management of network functions,
independent of the underlying physical network equip-
ment [98]–[100]. These network functions may include clas-
sical functions, such as firewalls, deep packet inspection,
the elements of the Evolved Packet Core (EPC), which
is a framework to provide converged voice and data on
LTE networks, but also innovative functions, including net-
work coding, data aggregation, or computation as a ser-
vice. An intuitive extension of the NFV concept combines
single virtual network functions in a sequence to modular-
ize complex functionalities in so-called Service Function
Chains (SFCs) [101]–[104].

3) INFORMATION CENTRIC NETWORKING (ICN)

The Internet, which was originally designed for host-to-host
communications, is mainly used today for content distribu-
tion. The Information Centric Networking (ICN) paradigm
aims to narrow the gap between the Internet’s original design
and the current applications, such as high-definition video
on-demand streams, 3D gaming, as well as augmented and
virtual reality, with ever increasing traffic volumes. In order
to optimize caching and content distribution, ICN proposes
to redesign the Internet architecture as a content-centric net-
work which adopts two design concepts, namely networking
named contents (rather than hosts) and in-network caching,
e.g., at MEC servers, to relieve the pressure on bandwidth as
well as to improve data delivery [105]–[108].

C. DEVICE-TO-DEVICE (D2D) COMMUNICATION

The exponential growth of mobile data traffic and context-
aware applications require innovative approaches to utilize
the bandwidth more efficiently and to increase coverage,
while lowering delay and energy consumption. The star topol-
ogy of cellular networks with a centralized control point,
e.g., a BS or AP, suffers inefficiencies as all communication
has to be relayed by the centralized control point. In con-
trast, D2D communication is a radio technology that enables
direct data exchanges between two adjacent UEs without the
involvement of the central control point or core network of
the cellular network, i.e., without traversing the BS or AP
[12]–[15]. This direct D2D communication brings several
benefits, such as improved spectral efficiency, increased data
rates between devices, reduced power consumption, and
reduced end-to-end delay. D2D communication has been
employed in several studies for computation offloading to
other nearby UEs (while not utilizing any MEC resources),
e.g., [109]–[115]. Also, accessing caches at nearby UEs
(while not utilizing MEC caches) has been considered in
prior studies, e.g., [116]–[123], whereby specifically video
file caching at other UEs has been considered in [124], [125].
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However, D2D communication also poses some imple-
mentation challenges. One challenge is the need to collect
precise channel information, e.g., for estimating the channel
and controlling the communication, which adds overhead.
Security is another important challenge in D2D communi-
cation. Since a UE’s data passes through other UEs, D2D
communication is inherently susceptible to security attacks.
Selfish exploitative UE behavior is another obstacle for col-
laborative multi-device D2D communication, as some UEs
may use the communication resources of other UEs, e.g., for
multi-hop D2D communication via intermediate relay UEs,
without contributing their own resources to aid others. Inter-
ference and mobility management are also key challenges.
Therefore, these D2D communication challenges need to be
carefully considered when designing device-enhanced MEC
systems that involve D2D communication.
Despite these challenges, D2D communication holds sig-

nificant promise for a wide range of practical use case scenar-
ios in future communication systems. We proceed to briefly
outline a few example use-case scenarios.

• National security and public safety:
The reliance of cellular wireless communication on the
availability of the cellular network infrastructure gives
rise to severe problems in emergency and disaster sce-
narios, such as earthquakes and floods. Such disasters
often damage the cellular network infrastructure, dis-
rupting cellular wireless communication. In contrast,
D2D communication does not require a fixed installed
infrastructure and thus can continue to operate when the
cellular network infrastructure is damaged. This advan-
tage has made direct D2D communication a key com-
ponent in projects proposed for next-generation national
security and public safety networks by the U.S. National
Public Safety Telecommunications Council as well as
the European Conference of Postal and Telecommuni-
cations Administrations [126].

• Proximity and local-based services:
The growing interest in multiplayer gaming, advertising,
and social network services (e.g., Facebook and Insta-
gram) has increased the need for efficient short-range
communications to support interactions between near-
by people with low latency and battery consumption
while supporting high levels of user privacy [127]. D2D
communication can facilitate such connections between
different machines in close proximity, such as a mobile
phone connecting to a PC or othermobile phones to store
and share video files and images [128].

• Vehicle-to-Vehicle (V2V) communication:
Vehicular or V2X communications is another impor-
tant use case of D2D communication which is divided
into three categories such as vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I), and vehicle-to-network
(V2N) communication [129]–[132]. Recent signifi-
cant enhancements in computing and communication
platforms as well as sensing capabilities of vehicles
have shifted attention towards V2X communication to

improve public safety and intelligent transportation sys-
tem [133], collision avoidance systems [134], as well as
the charging of electric vehicles [135].

We note that these outlined use cases and a wide range of
other D2D communication use cases have the potential to sig-
nificantly benefit from jointly exploiting installedMEC com-
puting and caching resources as well as the resources of other
nearby mobile end devices, i.e., from device-enhanced MEC.
In order to facilitate the further advancement of exploit-
ing device-enhanced MEC through D2D communication,
we comprehensively survey in the following two sections the
existing research literature on device-enhanced MEC.

III. ENHANCING MEC COMPUTATION

OFFLOADING WITH END DEVICES

A. OVERVIEW

With device-enhanced MEC, end devices, such as UEs, can
offload tasks that require heavy computations to powerful
MEC servers or to nearby UEs in order to fulfill the low-
latency demands of applications and extend their battery life
time [158]. The offloading to nearby UEs is conducted over
D2D communication links, which reduces the load on the
cellular network infrastructure and frees up some cellular
bandwidth for other usages.

FIGURE 2. Illustration of device-enhanced MEC computation offloading
via D2D communication: Partial offloading from UE4 to MEC server and
UE5; Binary (full) offloading from UE1 via relay UE2 to helper UE3.

Given the widespread consideration of UEs as end devices
in the existing device-enhanced MEC studies, we consider
the terms ‘‘end device’’ and ‘‘UE’’ as interchangeable in
this article. There are two categories for offloading, depend-
ing on whether the tasks can be partitioned or not, namely
binary offloading and partial offloading. Binary offloading is
employed for tasks that cannot be partitioned. Binary offload-
ing either executes the entire task locally or offloads the entire
task to anMEC server or another nearby UE, as illustrated for
the offloading fromUE1 via UE2 to UE3 in the bottom part of
Figure 2. Partial offloading is employed for tasks that can be
partitioned into independent parts (sub-tasks) and executed in
parallel, either locally or atMEC servers or other nearby UEs,
as illustrated in the top part of Figure 2, where UE4 offloads
its sub-tasks to an MEC server and UE5. The offloading to
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TABLE 1. Summary of device-enhanced MEC computation offloading studies: We categorize the studies according to their main objective, each objective
is treated in a subsection of Section III.

other UEs exploits the idle resources of nearby UEs via D2D
communication, which can significantly improve the service
to UEs [115], [139]. End devices can generally play three
distinct roles in device-enhanced MEC:

• Helper node: A helper node computes offloaded tasks on
behalf of UEs that require computation services.

• Relay node: A relay node helps other UEs through com-
munication in order to offload their computation tasks to
nearby devices or an MEC server for remote execution.

• Helper and relay node: A device can act as both helper
and relay in order to execute and communicate offloaded
tasks.

The main objectives of the existing device-enhanced MEC
computation offloading studies have been the minimiza-
tion of the latency and the energy consumption through the
optimization of communication and computation resources.
We organize our survey according to the main objective of
the existing device-enhanced MEC computation offloading
studies, as summarized in Table 1. As Table 1 indicates, sev-
eral studies have considered the joint minimization of latency
and consumed energy, while some studies have focused on
enhancing the security aspects of device-enhanced MEC

computation offloading. The D2D access technology column
in Table 1 gives the type of frequency resources considered
for the D2D communication links in the studies, as well as the
channel access method if a specific channel access method
is considered in a study. The dash sign ‘–’ indicates that no
specific D2D access technology is considered in the study.

B. LATENCY MINIMIZATION

MEC system failures diminish the quality of the service pro-
vided to the UEs.MEC server downtimes can incur enormous
costs for businesses that rely on MEC server computations.
The study [136] proposed two recovery schemes for an MEC
server that is overloaded from serving too many computation
tasks or for an MEC server that failed. The first scheme
offloads the tasks of the overloaded or failed MEC server
to available MEC servers within a transfer range. However
for situations when there is no available neighboring MEC
server, the proposed second scheme uses the UEs that are
adjacent to an MEC server as ad-hoc relay nodes in order to
provide a connection between the failed MEC server and a
new MEC server. The study [136] assumes that an ad-hoc
relay node can relay up to three LTE Frequency Division
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Duplex (FDD) resource blocks (RBs) at a time. It is shown
that the proposed method works well in dense areas. How-
ever, the study [136] has only considered the data downlink
from the recovery MEC server, while the data uplink to the
recovery MEC server has been neglected. The availability of
neighboring resources is also not guaranteed by the protection
strategies.
Importantly, the study [136] has only considered the UEs

as relay nodes towards the new MEC server and ignored the
usage of their computation resources. However, it is ben-
eficial in terms of delay to use the available resources in
the vicinity. Considering this fact, a joint task assignment
and resource allocation for device-enhancedMEC computing
has been proposed in [137]. In this study, a UE can offload
its computational-heavy tasks to several nearby end devices,
such as smart wearable devices, cell phones, tablets, laptops,
as well as infrastructure nodes, such as WiFi APs and cellular
BSs, as helper nodes. The task assignment is optimized to
minimize the latency, subject to UE and helper energy con-
straints. Each UE can compute a task locally, or offload the
task to a helper node for remote execution. The tasks are
considered non-partitionable, however parallel execution of
independent UE tasks is possible. A time-slotted communi-
cation protocol with three phases is developed. Within the
three phases of a time slot, the task is offloaded to one of
the helper nodes and the computation results are sent back to
the UE. The resulting mixed-integer non-linear minimization
problem is solved by relaxing the integer task assignment
variables, which results in an efficient, albeit suboptimal
solution.
The follow-up study [114] reduced the overall latency

by considering controllable computation frequencies instead
of fixed processing capacities. Nevertheless, there are still
some limitations. The UEs and channel condition are consid-
ered static; however, in reality UEs are mobile and channels
are dynamic. Therefore, UE mobility and dynamic channels
should be addressed through adaptive mechanisms in future
research. In addition, only TDMA is used due to its ease
of implementation; other orthogonal multiple access meth-
ods for D2D communications should be examined in future
research to improve the system performance.
The design of an incentive mechanism to motivate UEs

to share their computation resources is a key factor in
device-enhanced MEC computation offloading and has been
neglected in the studies surveyed so far. The study [138] pre-
sented bandwidth incentives for UEs. The considered system
contains one BS and numerous UEs. The UEs are either com-
puting UEs (CUEs), which have computationally intensive
tasks, or helper UEs (HUEs), which help by taking over some
of the computation sub-tasks. CUEs motivate HUEs to take
over some computation sub-tasks as follows. CUEs give some
of their available communication bandwidth to the HUEs
in exchange for the help with computations. Thus, HUEs
essentially trade in some of their computation resources in
order to increase their overall communication bandwidths.
A CUE can either offload a task to an MEC server using its

full available bandwidth or offload a part of the task to the
MEC server and the rest to an HUE; thereby lending some
of its bandwidth to that HUE. An optimization problem has
been formulated to model the decisions for pairing a CUE
to a suitable HUE, the task offloading, and the partitioning
of the MEC server resources among UEs. The study [138]
assumed that each HUE can only assist a single CUE. Also,
the specifics of the bandwidth lending process were neglected
and UE mobility was not considered.

C. ENERGY CONSUMPTION MINIMIZATION

In order to improve the MEC performance, a joint computa-
tion and communication cooperation method has been pre-
sented in [139]. The study [139] considers a basic three-node
MEC systemwith two UEs, whereby one UE needs computa-
tion resources and the other UE is the helper/relay. Moreover,
one AP node is attached to an MEC server. A four-slot pro-
tocol is proposed to enable energy-efficient device-enhanced
MEC that minimizes the total energy consumption at both
UEs, but also considers the UE’s latency-constrained com-
putation requirements. UE computation tasks are assumed to
be partitionable; thus, a computations task can be partitioned
and the different partitions can be executed locally, offloaded
to a helper, or offloaded to the MEC server. However, the
examined approach does not fully exploit the capacity of
the multiple access channel from the multiple UEs to the
MEC server. This limits the performance of multi-user MEC
systems [159]. Another drawback of this study is the simple
evaluation topology, which included only two UEs.

A cellular D2D frameworkwith amassive crowd of devices
at the network edge for joint computation and communication
resource sharing has been proposed in [140]. The UE energy
consumption is minimized by optimizing the task assign-
ment with a graph matching policy, which can achieve good
D2D task assignments. However, the energy-efficiency of the
D2D clusters is not considered in the study [140], since it
mainly deals with the D2D crowd task assignment problem
[160]. In addition, in order to make the proposed framework
practical, scenarios with changing D2D connections need
to be considered in future research. Moreover, to prevent
UEs from over-exploiting other UEs and from free-riding
behaviors, an incentive mechanism should be added in future
research.

The minimization of the energy consumption of compu-
tation task offloading in device-enhanced MEC with a large
number of UEs poses significant modeling and computational
challenges. The two studies [141] and [142] have investigated
game-theoretic models for device-enhanced MEC offloading
with large UE numbers. More specifically, the study [141]
has formulated the offloading decision problem as a sequen-
tial game and examined the stable Nash equilibrium for
the system. The study [142] has formulated the problem
as a non-cooperative strategic potential game [161]. Both
studies found that the game-theory based device-enhanced
MEC computation offloading reduces the consumed energy
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compared to computation on only the MEC servers or com-
putation on only the local UEs.
To take the long-termUE incentive constraints into account

and avoid free riding behaviors of UEs which may deter
other UEs from collaborating, a D2D framework is presented
in [143] to minimize the time-average energy consumption
with a Lyapunov optimization based online task offloading.
UEs can dynamically share their resources, whereby the
sharing is controlled by the BS. The BS establishes in-band
LTE-direct Orthogonal Frequency-Division Multiple Access
(OFDMA) D2D links between UEs (out-of-band links, e.g.,
Bluetooth, cannot be controlled by the BS). The working
day movement model has been used to characterize the UE
mobility patterns. This model is based on people’s daily life
activities, including commuting from home towork, spending
time at the work place, and commuting back from work to
home. The working day movement model has shown close
similarity to real-world mobility measurements [162]. Three
types of tasks have been considered, namely pure computa-
tions tasks, such as image processing, pure communications
tasks, such as file downloading, and hybrid tasks requir-
ing both computation and communication resources, such
as video streaming. The evaluation model generates the UE
application layer tasks according to a Poisson process to
represent the stochastic nature of real-life task generation.
Tasks are admitted based on a best-effort first-come-first-
serve admission policy. The task admission policy is inde-
pendent from the scheduling of the task offloading and only
operates at the start of a time frame. Interactions between task
admission and task offloading should be examined in future
research.
The rapid growth of the IoT and fog computing have

brought computing devices, which are referred to as fog
computing devices, with idle resources close to the UEs.
Accessing both the MEC and the fog computing devices
can improve energy savings. Towards this goal, an energy-
efficient joint computation offloading via cellular networks
to the MEC server and via D2D communications to fog
computing devices in a 5G network has been presented
in [144]. Some UEs are deployed around one MEC server
in the considered system. The access technology between
UEs and the MEC server is an LTE radio access network.
Fog computing devices with idle computing resources near
the UEs functions as helpers. In particular, each UE has a
fixed fog computing helper device and communicates with its
helper through D2D links. Since the helpers have also limited
computing resources, three computation task execution mod-
els are considered depending on the UE demands for com-
putation resources: local, fog computing device, and MEC
server execution. The computation offloading framework has
two parts, namely a control plane and a data plane. The
control plane includes the controller, which is responsible for
offloading decisions according to the network status. The data
plane includes the task queue buffer and the task data trans-
mission parts in the UEs. Simulation results have demon-
strated that the proposedmethod is effective; however, several

issues, such as communication overhead, synchronization,
data recovery overhead, security, and incentive mechanisms,
are neglected in the framework.

Advanced energy harvesting techniques to power mobile
devices with renewable energy, such as solar andwind energy,
can extend the battery life time of devices. A new device-
enhanced MEC computing and networking framework called
D2D Edge Computing and Networking (D2D-ECN) has been
proposed in [145] toward designing a green computation
MEC system that exploits advanced energy harvesting tech-
niques. The examined D2D-ECN system includes a BS and
some UEs, whereby one UE is called the master and the rest
are secondary devices. The master device is the UE with a
computation-intensive task. The master device is equipped
with energy harvesting elements. The offloading process is
divided into successive time slots of the same length. The
task assignment decision, CPU frequency adjustment, and
power control are accomplished at the beginning of each time
slot. The task transmission and computation at the master and
secondary UEs fill the total task execution time in each time
slot. The communication setting between UEs is based on the
LTE-D2D standard with the FDMA protocol for dedicated
D2D transmissions. The energy cost model for each time
slot includes the energy consumed for task transmission and
processing at the master and secondary devices. A system
operation cost is defined to give a reward or penalty to the
D2D-ECN system. The reward or penalty is a function of the
energy consumption and cost for a unit of energy. The joint
optimization of the computation offloading and the resource
management to reach a good tradeoff between low system
operation cost and short task execution time is formulated as a
constrainedMarkovDecision Process (MDP). In order to exe-
cute this joint optimization problem, a Q-learning algorithm
is employed, which helps to address the stochastic features
of harvesting energy and network information. In addition,
a low-complexity online Lyapunov optimization based algo-
rithm is developed to tackle the challenges of high dimen-
sionality of the D2D-ECN offloading framework. However,
in the D2D-ECN study, the system status is considered static
in each time interval, which may not be a realistic assumption
for scenarios with high UE mobility. The simple system
model with only one BS and one master UE device is another
drawback of this study.

Based on recent advances in antenna design, the
study [146] has proposed an energy efficient offloading
scheme using full duplex (FD) relays. The network consists
of one BS and several UEs forming multiple clusters. One
UE with FD antennas is selected as the cluster head, referred
to as FD-DCH, in each cluster. This FD-DCH acts as a relay
between normal UEs in the cluster (DUEs) and the BS.When
DUEs send a proportion of their tasks to their associated
FD-DCHs, the tasks will be relayed simultaneously to the
BS on the same frequency band used for D2D communi-
cation. To avoid interference, it is assumed that DUEs and
FD-DCHs work on orthogonal spectrums in both uplink and
downlink. The cluster head selection algorithm is based on
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the Chinese Restaurant Process (CRP) [163] and theweighted
sum method considers several metrics, such as UEs’ social
behaviors, energy and storage resources, and the transfer rate
from the BS to the UEs. The mobility of UEs, which can
change the social attributes and consequently the cluster head
selection procedure is neglected in this study.

D. JOINT MINIMIZATION OF LATENCY

AND ENERGY CONSUMPTION

A simple scenario to minimize the task execution cost which
can jointly consider latency and energy consumption min-
imization for a system with one BS has been proposed
in [147]. The problem is transformed into a computation
offloading subproblem and a resource allocation subproblem
which are solved by the Kuhn-Munkres algorithm [164] and
the Lagrangian dual method, respectively. In [147], UE tasks
are considered partitionable and parallel execution at the
requesting UE and at anMEC server or helper UE is possible.
The total task execution cost problem is further investi-

gated in [148] with the consideration of users movements
using a hybrid offloading framework called HyFog. The
cost problem has been defined as the weighted sum of the
UE computational time and the UE energy consumption.
HyFog chooses between UE task offloading to the MEC or to
nearby end devices using D2D communication (cellular
D2D or WiFi-direct). The working day movement model
has been used as UE mobility pattern. A novel three-layer
graph matching algorithm has been developed to represent
the choice space consisting of local (UE) task execution, D2D
task offloading to nearby UEs, and task offloading to the
MEC. The total task execution cost is minimized through
problem mapping to a minimum weight matching problem
in the three-layer graph and the Edmonds’ Blossom algo-
rithm [165]. The study [148] has only focused on spectrum
allocation problems. However, the development of mecha-
nisms that overcome the instinctive selfishness of the UEs
remains a key challenge. Instinctively, each IoT user typically
optimizes its own quality of experience (QoE) individually
without following the strategies for optimizing the overall
system performance [166].
Some IoT applications require ultra-low latency computa-

tion services. However, poor channel conditions between end
devices and the MEC server may impede latency-constrained
IoT applications. To address this problem, the study [149]
proposed a forwarding scheme to improve resource sharing
for mission-critical IoT devices which fall under the coverage
of neighboring end devices. A greedy example heuristic has
been proposed to solve the optimization problem for task
allocations [149]. In particular, the tasks are allocated accord-
ing to two main criteria: the proximity of the devices and
the number of tasks that have already been allocated to a
given device. The evaluations in [149] demonstrated through
simulations that by using D2D communication in this way,
lower latency, energy consumption, and traffic load through
the network can be achieved and improvements in the coop-
eration of IoT devices at the edge of the network are possible.

LTE-Direct with OFDMA and Single-Carrier FDMA have
been employed for the downlink and uplink D2D commu-
nications, respectively. A round robin scheduler divided the
RBs equally between the candidate D2D transmissions (with
6 RBs for D2D). This RB division avoided interference. The
random direction movement model, which is a variant of the
widely used random waypoint model [167], is considered
as the mobility model. An interference coordination scheme
that reuses parts of the available frequencies could achieve
additional performance gains.

The study [150] has proposed an offloading method with
frequency reuse for IoT applications. In the studied archi-
tecture, UEs send their computation requests to the MEC
server. TheMEC server determines the offloading destination
according to a two-step algorithm. The first step processes
delay-sensitive tasks, while the second step processes tasks
of UEs with energy restrictions. The offloading problem for
delay-sensitive tasks is modeled as a delay-aware adjacency
graph, which is solved for a maximum matching with mini-
mum cost with Edmonds’ Blossom method [165]. The result
specifies whether the computation requests are offloaded
through D2D communication to nearby UEs or to the MEC
server. The MEC server then conducts an analogous graph-
based solution procedure for the remaining requests from
UEs with energy limitations and allocates the computation
resources of the remaining idle nearby UEs and its own
resources. If the MEC server becomes overloaded, it offloads
the computation tasks of energy-limited UEs to the central
cloud.

Common drawbacks of the preceding studies on the joint
minimization of latency and energy is their use of conven-
tional cellular and WiFi technologies for D2D communi-
cation as well as their simulation based evaluation. It is
important to examine novel D2D communication technolo-
gies as well as to examine the effectiveness of an offloading
algorithm through real implementations. The study [151]
addressed these drawbacks by proposing the first task
offloading framework with near field communication (NFC)
based D2D communication and a real implementation eval-
uation. NFC has several advantages over the longer-range
Bluetooth and WiFi technologies due to its short commu-
nication range, including lower interference, lower energy
consumption, and intrinsic security. The proposed framework
circumvents some of the limitations of default Android NFC
protocols: The NFC-based task offloading enables bidirec-
tional communications between two UEs and makes the task
offloading smoother. The performance evaluation in [151]
demonstrated that the NFC interface reduces the UE energy
consumption and reduces the execution time of the offloaded
task, especially for powerful helper devices. Nevertheless,
the NFC-based task offloading in [151] has several limita-
tions. First, the data transfer rate of NFC based communica-
tions is only 53 kB/s, because the used hardware can transfer
only one message per connection; therefore, the framework is
not suitable for data-demanding application scenarios. More-
over, the device heterogeneity and the potential of parallel
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connections using Bluetooth and/or WiFi-direct as well as
user mobility should be examined in future research.
Although the study [151] is based on a practical imple-

mentation, the study [151] as well as all prior studies on
joint latency and energy minimization lack an incentive
mechanism. An incentive mechanism is generally required to
make the offloading attractive for users in real D2D systems.
A generalized offloading scheme with an incentive approach
based on credit and reputation to increase the cooperation
among UEs via D2D communication has been proposed
in [152]. The proposed task offloading system enhances the
accessibility of UEs to offloading support and improves their
Quality of Service (QoS). The social-characteristics of the
UEs [168], [169] are exploited to form offloading commu-
nities. An offloading community is formed by a group of
UEs that trust each other with offloading tasks. A UE gains
points when it shares computation resources with other UEs,
stays in a certain location for a longer time, or pre-caches
some tasks. A UE loses points when utilizing the community
resource pool. In [152], the community assignment is based
on the frequencies and durations with which the UEs are
detected. This assignment approach requires the activation of
the UE discovery interfaces. A learningmethod for predicting
communities can improve the discovery process and save
energy [170]. Also, new task process acceleration techniques
that exploit multiple devices are an important direction for
future research.

E. CAPACITY ENHANCEMENT

The study [153] has examined the maximization of the
total computing capacity of a device-enhanced MEC system.
In particular, the maximization of the supported number of
UEs subject to communication and computation resource
constraints is formulated as a mixed integer non-linear pro-
gram. The program is decoupled into a sub-problem that
minimizes the required MEC resources and a sub-problem
that maximizes the UE D2D pairings. The simulation results
indicate that the developed optimization approach signifi-
cantly increases the number of supported UEs compared to
a pure MEC system when the MEC resources are limited and
when the number of UEs is high. The main limitations of the
computing capacity maximization study [153] are the lack of
consideration of UE energy consumption, UE incentives, and
latencies.

F. SECURITY ENHANCEMENT

The HoneyBot security scheme for collaborative offloading
using D2D communication in MEC platforms has been pre-
sented in [154]. HoneyBot is a novel defense technique for
malicious D2D communication. HoneyBot consists of some
nodes for detecting and tracking malicious activities in a D2D
network. When HoneyBot nodes identify an insider attacker,
they isolate the attacker from the network to protect the
network. The evaluations in [154] are based on real mobility
trace data collected at the Infocom 2006 and Sigcomm 2009
conferences from people who carried experimental devices

with Bluetooth contact discovery logs and data communi-
cations. The detection, tracking, and isolation phases were
evaluated. In the detection phase, the time required for iden-
tifying a malicious D2D communication was evaluated as a
function of the number and placement of HoneyBot nodes
in the network. The results indicated how the number and
placement of HoneyBot nodes impact the detection speed.
Once a malicious D2D communication has been detected,
the tracking phase commences. The tracking overhead, and
accuracy were evaluated and found to depend on the position
and number of the HoneyBots as well as the number of
attacker nodes. The isolation phase was evaluated through the
localization accuracy of the malicious node(s).

Security and cooperation incentives are often discussed as
separate topics. However, security and cooperation incentives
are tightly interwoven in device-enhanced MEC computation
offloading. On the one hand, strong cooperation incentives
may lead to more cooperation, which may facilitate the prop-
agation of malicious attacks. On the other hand, increased
risks of malicious attacks may deter users from cooperating.
In order to address this issue, the study [155] has presented
a novel mathematical framework which jointly investigates
the user incentives and interdependent security risks in D2D
offloading, since an attack can be the result of the users’
collective decisions on the cooperation for offloading. In this
framework, UEs set their participation levels according to
a Stackelberg game [171] to maximize their utility. The
game model determines the operator’s optimum incentive
mechanism based on the users’ incentives under infection
risks. In the system, D2D offloading is employed either when
the MEC server computation load is very high or when
the network is congested and WiFi-Direct or LTE-Direct
can be used for D2D communications. In addition, the
well-known Susceptible-Infected-Susceptible (SIS) epidemic
model [172]–[175] is used to model the attacks. The network
security state, i.e. the fraction of normal UEs, has an effect
on the operator’s objective function and the UE participa-
tion incentives. Therefore, the fraction of compromised UEs,
the UE participation levels, and the operator’s optimal utility
have been investigated through simulations.

To comprehensively enhance security in D2D task
offloading frameworks, social networking characteristics and
UEs heterogeneity should also be considered. A socially-
motivated cooperative approach has been presented in [156]
to improve the security level of task offloading by lever-
aging the social tie structure among UEs. The cooperative
approach incorporates the social tie structure with the UE
computation and network resource sharing processes. Tomin-
imize the overall system task execution overhead, a socially-
aware bipartite matching based algorithm is then proposed.
The matching based algorithm exploits the similarity of the
structure of the worker assignment in the matching algorithm
and the examined problem. Since the social community can
provide a structure of UEs with stable relationships, it can
be further exploited in future research to offload large-size
tasks.
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The main drawback of the approach in [156] is that the
UE mobility has not been considered. However, UE mobility
has a very strong impact on the social graph of the UEs,
i.e., the UEs’ social ties and relationships. To tackle this
issue, the study [157] has proposed a dynamic social-aware
computation offloading method that jointly minimizes the
task computation latency and the UE energy consumption.
A dynamic offloading mode selection, which includes local
computation, offloading to the MEC, and D2D offloading,
has been formulated into an infinite-horizon time-average
renewal-reward problem. A Lyapunov optimization based
method and a drift-plus-penalty algorithm are used to solve
this problem. The evaluations in [157] considered the delay
and energy consumption, but did not specifically evaluate
security metrics.

G. SUMMARY OF DEVICE-ENHANCED MEC

COMPUTATION OFFLOADING

The main objectives of the existing device-enhanced MEC
computation offloading studies have been the minimization
of the latency and energy consumption of the UEs as well as
the enhancement of security.
Most existing studies have considered partitionable and

non-partitionable computation tasks, depending on the
application scenario. Individual sub-tasks of partitionable
tasks or complete non-partitionable tasks can be executed
locally (if the UE has sufficient computation resources and
the latency of local UE execution can be tolerated), offloaded
to adjacent UEs directly via D2D communication or via
relays, or offloaded to an MEC server.
The wireless channel characteristics and the UE resource

availabilities are generally stochastic and change with time
due to UE mobility. Therefore, offloading decisions should
be based on the latest status of the system and be com-
puted online. Overall, Lyapunov optimization based algo-
rithms have so far been the predominant optimization tools
for tackling the challenges of the high dimensionality of the
offloading frameworks. Lyapunov optimization based algo-
rithms can solve the offloading optimization problems with
low-complexity online computations based on the current
state of the system, as well as the drift-plus-penalty function
for stabilizing the queues.
The examined computation offloading decisions, i.e., the

task assignments to other UEs or an MEC server, have typi-
cally been based on various aspects of theUE andMEC server
resources as well as the UE computation demands. Despite
the considerable amount of research devoted to task assign-
ment, the proposed approaches are generally oversimplified.
In particular, they did typically not consider the dynamics
of wireless communication links. Also, the heterogeneous
computational capabilities and time-varying availabilities of
the computational resources of the end devices and MEC
servers have typically only been partially considered. Future
research needs to develop practical approaches that optimize

the computation offloading (task assignment) while compre-
hensively considering the wireless network dynamics as well
as heterogeneity and dynamic availabilities of the end devices
and MEC servers.

The task assignment, i.e., the decision on where to exe-
cute a computation task or sub-task, can generally either be
made in a distributed manner or a centralized manner (at the
BSs). While the centralized control approach is appropriate
for small network sizes, a purely centralized approach may
become infeasible or inefficient for large-scale networks.
This is because the adaptation to the network dynamics
requires frequent data collection from the entire network
domain and subsequent centralized processing. This central-
ized processing translates into long signalling delays, large
control signaling overhead, and high computational complex-
ity in large-scale networks [176]. The existing research stud-
ies that considered distributed task assignments, neglected
the network dynamics; thus they cannot be readily applied
to device-enhanced MEC systems [137]. Future research
needs to explore hybrid decision approaches that delegate
some scope of the decision making to local nodes, while
slow-timescale global decisions can still be made at a cen-
tral controller. While such hybrid approaches have begun to
be explored for general wireless resource allocation prob-
lems [177]–[182], they remain an open research area for
device-enhanced MEC computation task offloading.

In order to reach themain goal of efficient device-enhanced
MEC computation offloading for real world applications
and scenarios, future research needs to further examine the
interactions between task admission policies and the schedul-
ing of task offloading as well as effective ways to continu-
ously maintain the offloading service when UEs are mobile.
In addition, relying only on orthogonal multiple access tech-
nologies, such as TDMA and FDMA, may limit the perfor-
mance of multiuser MEC systems [159]; hence, there should
be more focus on using new channel access technologies
that exploit the particular network architecture. Generally,
WiFi appears to be the most practical medium access tech-
nology for D2D communication between UEs. Nevertheless,
emerging physical layer technologies should be evaluated for
providing D2D UE communications. Despite a wide range
of studies on the design of incentive mechanisms, there is
still a pronounced lack of systematic research on partici-
pation incentives that consider the interdependent security
risks.

The evaluation methodology in most of the existing com-
putation offloading studies is simulation and only few studies
have considered practical scenarios. Future research needs
to broaden the evaluation to consider mathematical analysis
when appropriate to obtain relevant insights through tractable
analysis. Also, prototypes of the proposed device-enhanced
MEC computation offloading systems should be developed
and evaluated through measurements for representative work
loads and mobility patterns.
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FIGURE 3. Illustration of device-enhanced MEC content caching via D2D
communication: The content request at UE2 on the right is served through
a combination of locally cached content (dotted green arrow), content
cached at the nearby UE1 via D2D communication (dashed blue arrow),
and content from the MEC cache server (red arrow).

IV. ENHANCING MEC CONTENT CACHING

WITH END DEVICES

A. OVERVIEW
Mobile video streaming and related social networking already
account for a large traffic proportion in wireless networks.
The forecast continuous growth of this data-intensive traffic
will likely overwhelm installed MEC caching resources or
require substantial additional investments by wireless oper-
ators (or lead to service degradations). Device-enhanced
MEC caching exploits the extensive storage capacities in
modern wireless end devices to supplement the MEC
cache infrastructure. UE requests for data-intensive video
streams, web pages, and related social networking applica-
tions can be collaboratively served by MEC cache servers,
the local UE cache, and the caches of other nearby UEs
(see Figure 3), which are reached via D2D communication
[206], [207]. The caching contributions from the UE caches
reduce duplicate content transmissions by the BS, which
would result when popular content items are requested by the
UEs in the range of a BS at different times. In particular, for
social networking applications, exploiting the social relation-
ships amongUEs and their common interests using local D2D
communication can be a key enabler for pre-caching popular
content items in the caches of UEs with rich social ties [203].
This section comprehensively surveys the existing research

studies on device-enhanced MEC caching. We have orga-
nized the survey according to the main study objectives and
then the examined caching aspects, as summarized in Table 2.
Generally, there are twomain aspects of caching, namely con-
tent placement and content delivery. Caching placement stud-
ies strive to design methods for optimally storing (placing)
the content item files in caches at BSs and UEs. In contrast,
content delivery studies focus on the transmission of the
requested files to the end devices. There are also a few studies
that have jointly examined content placement and content
delivery, as indicated in the caching aspect column in Table 2.

B. THROUGHPUT MAXIMIZATION

1) CONTENT PLACEMENT

In order to increase the throughput of video files, two possible
strategies for caching popular files in UEs with no additional

infrastructure cost have been proposed in [183]. In the first
method, the file placement is optimally controlled by the BS
as the central controller, which knows the locations of each
UE. In the second method, the caching is random without
a centralized controller. When a UE demands a video file,
the UE first sends the request to the UEs in close proximity,
which are defined as a UE cluster. If the content is locally
available in the cluster, then a D2D communication link will
be established between the two UEs. The cluster size is a key
system parameter and is controlled by the UE transmit power.
The numerical simulation evaluations in [183] assumed a
limited set of statistical models, e.g., for the user distribution
and the storage capacities. The performance of the proposed
schemes should be evaluated for a wider set of real-world
scenarios in future research.

A similar content placement method with mobility-
awareness has been studied in [184]. The study [184] has
modeled the UE mobility through a contact rate random
variable, which characterizes the probability that two UEs
are in D2D communication contact. The simulation eval-
uations in [184] found that the proposed mobility aware
caching placement achieves significantly higher throughput
of content items served from caches than random caching and
content-popularity based caching across a wide range of UE
mobility levels. The general concept of a virtual money incen-
tive for providing cached content to other UEs is mentioned,
but not examined in detail.

The caching throughput specifically for video files has
been further enhanced by a cooperative caching placement
based on stochastic geometry in [185]. A main motivation
for the study [185] is that in video streaming, a few highly
popular video files typically dominate the overall video traf-
fic load. The cooperative caching placement optimization is
transformed to an equivalent biconvex optimization prob-
lem, which is solved with a block coordinate descent based
algorithm [208]. In this system, users requesting content
items, BSs, and D2D transmitters are placed according to
Homogeneous Poisson Point Processes (HPPPs). The D2D
and cellular links use the same spectrum resources. UEs can
request a file either from the BS or a D2D transmitter. In the
D2D case, files are obtained through one-hop D2D commu-
nication. The proposed approach is evaluated for range of
Zipf parameters [209], [210] representing different levels of
skewness of the video popularity distribution towards a few
highly popular video files.

We note that a social trust scheme for video content dis-
tribution in a device-enhanced MEC caching system has
been examined in [168]. The social trust scheme [168] val-
idates the legitimacy and authenticity of users participating
in the cache based video content delivery in systems such as
[183], [185]. The trust evaluation is carried out in the MEC
server and does not involve UE computations. The proposed
social trust evaluation combines direct observations of the
interactions with a particular UE that is being examined as
well as indirect observations (i.e., observations of UEs that
directly interact with the particular examined UE).
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TABLE 2. Summary of device-enhanced MEC caching studies: The studies are categorized according to their main objective and each objective category is
covered in a subsection of Section IV.

A cooperative caching method is presented in [186] by
considering caching placement at both user nodes and relay
nodes. The considered HetNet system contains macro BSs,
low-power relays, and UEs. The BSs and the UEs commu-
nicate in half-duplex (HD) mode; however, the low-power

relays operate in full-duplex (FD) mode. If the requested
content cannot be found either at nearby UEs connected
via D2D links or at nearby relays, then the requesting UE
connects to the BS through a relay. Exploiting the FD com-
munication, the relay receives the requested content from
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the BS and at the same time transmits the content to the
requesting UE, which helps to reduce the latency as well as
the UE power consumption. The joint caching and resource
allocation optimization problem is formulated with the aim to
maximize the throughput. This complex non-convex stochas-
tic optimization problem is solved through decomposition
into three suboptimal problems that separately address the
placement optimization at the user and relay levels as well
as the power control. However, considering the lower energy
efficiency of FD relay communication compared to HD relay
communication, it may be worthwhile to select the relay
communication mode based on the task requirements and the
communication gains [211].
The approach from [186] has been improved in [187]

by considering the UE mobility which has been addressed
by a mobility-aware coded caching method. The mobility-
aware coded caching method [187] considers a random jump
model, a discrete form of the random walk model, which
is a variant of the random waypoint model, to characterize
the UE mobility pattern. Furthermore, in this coded caching
scheme, it is advantageous to retrieve a requested content file
by receiving any subset of the content file segments which
are cached in the local UE or at the BS. The BS will send
the missing segments to the UE when a UE has not received
enough encoded segments within a tolerable downloading
time period. To maximize the throughput, two content assign-
ment algorithms, namely non-overlapping and overlapping
content assignment, are developed.

2) CONTENT DELIVERY

An edge caching technology for addressing the issue of asyn-
chronism in multi-view video (MVV) in fog computing has
been proposed in [188]. The proposed caching technology
considers the social characteristics of the UEs, such as their
similar interest in MVV streams. Streams are synchronized
with the assistance of edge caching between UEs. First, the
storage capacity of each UE is calculated based on a proposed
spatial distribution model and then a greedy algorithm is
proposed which chooses caching nodes for multicast groups
with the aim to increase the total system throughput. The
BS controls both the multicast group and the caching UEs.
Interference between cellular and D2D links is avoided by
using orthogonal frequencies.
Information-centric wireless networking (ICWN) is a

wireless variant of the ICN paradigm which aims to dis-
tribute information by specifying a name for each data item
[105]–[107], see Section II-B3. The study [189] proposed
a novel resource allocation and power control method for
improving the throughput of the content delivery in ICWNs
by integrating MEC systems and D2D communication in
order to maximize the spectrum efficiency and overall system
capacity as well as reducing the traffic congestion. The sys-
tem consists of several small cells connected to the Internet
through the core network and MEC servers with content
caching capability which are placed at the BSs. A spatial
Poisson process is used to model the deployment of UEs in

each cell. The UE broadcasts its request to determine whether
the content is available in the caches of nearby UEs. Then,
depending on the location of the cached content, the content
is delivered in one of two communication modes, namely cel-
lular communication or D2D communication. In the cellular
communication mode, the UE communicates with another
UE via the BS. In the D2D communication mode, the com-
munication is through direct traffic [212]. In the D2D mode,
the cellular users use the downlink resources of the small cell
and D2D users reuse the resources non-orthogonally and the
same resource block is shared between a cellular user and
D2D UE pairs. It is assumed that the BS can allocate D2D
users to different channels by using a resource scheduler;
and to mitigate interference, the UE can adjusts its power
level. The optimization problem of resource allocation deci-
sions considering the quality of the channel between UEs
and BSs as well as the interference between D2D users is
modeled as an MDP to maximize the overall system capacity.
A policy-gradient algorithm is proposed to solve this MDP.
This policy-gradient algorithm is then divided into two sub-
algorithms. First, the communication mode selection mech-
anism is designed based on the cache matrix. Second, using
deep reinforcement learning, D2D pairs are designed to be
able to adaptively perform the channel and power selection
strategies. The stochastic actions for power selection are cre-
ated based on a Gaussian distribution. However, this study
assumes that there is no interference between neighboring
small cells, i.e., the cells are assumed to use channel resources
of different bandwidths.

C. ENERGY CONSUMPTION MINIMIZATION

The studies on energy consumption minimization strive to
minimize the UE transmission power and therefore, are
mainly focused on content delivery strategies. Social net-
works are a key predictor for content caching, since they are
highly representative of human activities [213]. Exploring
social relationships, the spatial network structure, and D2D
communication, the study [190] proposed a caching method
to reduce the energy consumption of the end devices. Nodes
are selected for caching the contents according to the social
centrality of the users, which is based on their contacts and
location information. The BS detects user locations and chan-
nel state information and keeps this information for a period
of time. The BS then caches content files in end devices
during off-peak periods according to a genetic algorithm
which minimizes the energy consumption of the end devices.
An end device first sends a content request to its adjacent UEs
by D2D links. If the content cannot be found at the adjacent
UEs, then the request will be sent to the BS. A frequency
band has been dedicated to the downlink channel and cellular
spectrum resources can be used by D2D users. This gives rise
to interference problems when the cellular and D2D users
share the same downlink spectrum resources. In this study,
only one BS is considered and the inter-cell interference as
well as device mobility are neglected.
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The study [191] investigated the energy cost of a helper
node and the continuity of its battery lifetime to maintain
the D2D connection in the context of a static (non-mobile)
network with different D2D communication modes. The
proposed proactive user-centric caching and transmission
method introduces a collaboration distance, whereby only
UEs within the collaboration distance can act as helper nodes.
This proactive caching policy is optimized so that the max-
imum amount of traffic can be offloaded through the D2D
links. Furthermore, to increase the possibility of finding a
requested file in adjacent UEs and its complete transmission
with a data rate higher than a threshold, the transmit power at
each helper node is optimized. The BSs and UEs are modeled
as two separate HPPPs, whereby the BS knows the placement
of content items at each UE and coordinates the D2D com-
munications. There are two modes for D2D communications,
namely underlay and overlay modes based on whether the
D2D and cellular links reuse the same frequency band or not.
In the underlay mode, the cellular frequency can be reused
by D2D communication; however only the downlink reuse
is considered in [191]. In the overlay mode, the cellular
and D2D communications operate in orthogonal frequency
bands. The preceding two energy consumption minimization
studies neglected user mobility. However, user mobility is a
critical aspect of real-life usage scenarios and will bring more
challenges, as the social relationships among mobile devices
and their physical distances need to be constantly updated.
Taking the user mobility and the asynchronous demands of

the UEs into account, a distributed content delivery method
has been proposed in [192] to minimize the average energy
consumption for each delivery process. The proposed system
model contains a wireless cell with one BS and UEs which
can act as both requester and relay. The content requester
makes the requests based on its preference indicators of
content items, which are estimated using some learningmeth-
ods or recommendation techniques. The content delivery
optimization problem is formulated as a fractional program
which is NP-hard. In order to facilitate the best content helper
selection for the requester, a distributed energy-balancing
algorithm based on a belief propagation framework [214] is
then proposed. It is assumed that the UEs exchange informa-
tion by actively sending and receiving D2D broadcast signals.
The sizes of the content items as well as the content helpers’
caching capacities are assumed equal in this study, which is
not realistic for practical scenarios.
The study [146] has proposed a caching scheme that takes

advantage of D2D multicast. The system model consists of
one BS and several UEs forming multiple clusters accord-
ing to their geographical locations. One UE is selected as
the head in each cluster; this head UE is called DCH and
acts as a relay. The DCHs have the ability to cache some
contents proactively as well as to distribute content through
multicast. Also, all regular UEs have the caching ability. The
cluster head selection algorithm is based on the CRP [163]
and the weighted sum methods in the clustering considers
several factors such as UEs’ social behaviors, energy and

storage resources, and the transfer rate from the BS to the
UEs. When UEs have requests, they first send the requests
to the associated DCH. If the contents cannot be found in
the associated DCH, then the associated DCH tries to obtain
the content from the closest DCH (with the content) using
D2D communication and then the contents are sent to the
requesting UEs via D2Dmulticasting. If the contents have not
been cached in any of the DCHs, then the BS multicasts the
contents to the UEs. The energy consumption optimization
of the multicast content delivery method is formulated and
solved using a cooperation-based greedy caching algorithm.
The study [146] has examined both a computation offloading
scheme, which we covered in Section III-C, and the caching
scheme covered here. However, these two schemes are inde-
pendent and do not synergistically interact with each other.
Collaborative computation offloading and caching in device-
enhanced MEC is an important direction for future research
as elaborated in Section V-B1.

D. JOINT OPTIMIZATION OF THROUGHPUT

AND ENERGY CONSUMPTION

Based on the optimization of cooperation distance, an optimal
caching policy is proposed in [193]. The proposed caching
policy enhances both the throughput and the energy effi-
ciency by comprehensively accounting for the caching in
the local end device (that requires a content item), in other
end devices reached via D2D communication, and in the
BS. A cluster based D2D network architecture [183], [215]
with a specific power control policy and a frequency reuse
scheme has been adopted. D2D links only exist between users
within a given cluster. Two types of UEs are defined, namely
active UEs and inactive UEs. An active UE participates in
sending requests and D2D communications, while an inactive
UE does not place requests but still participates in the D2D
collaborations. Both active and inactive UEs are indepen-
dently distributed according to HPPPs. Two different network
structures, namely random-push and prioritized-push are con-
sidered for analyzing network throughput. Pareto-optimality
in multi-objective optimization [216] is exploited to solve the
tradeoff design problem.

E. LATENCY MINIMIZATION

The study [194] has shown that the expansion of the coop-
eration possibilities among caching nodes can significantly
improve the content delivery delay and cache hit rate. Three
types of cooperation have been considered, namely inter-BS,
inter-device, and cross-tier. The systemmodel consists of BSs
with limited cache capacities under the centralized control of
a service gateway and UEs within the cell of each BS. The
D2D communication is assumed to be interference-free and
to be well integrated with the cellular network and the file
popularity follows a static Zipf-like distribution.
However, human factors can result in dynamic file popular-

ity variations. A learning based cooperative caching method
that accounts for such file popularity variations has been
presented in [195]. The system includes a server, which is
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normally placed far from the UEs and contains all contents,
a service gateway to control the caching distribution deci-
sions, and cache nodes (BSs and UEs). A requesting UE can
obtain the content either from an adjacent UE through D2D
communication, a nearby BS, or from the content server. The
total content delivery delay problem is formulated consider-
ing the content sharing cost between UEs, the cooperative
caching cost among BSs, the limited storage resources of UEs
and BSs, as well as content popularity variations. This study
assumes that content is cached by a UE if there is enough
storage available; otherwise, the least popular content will be
replaced by the most popular content. Then, a two-step multi-
armed bandit game learning based algorithm is proposed
to first estimate the content popularity and then solve the
caching strategy based on a relaxation based approach [217].
UE mobility and UE incentives are neglected in this
study.

F. UTILITY MAXIMIZATION

1) CONTENT PLACEMENT

To remove the need for advance knowledge of the accu-
rate channel state information in designing the incentive
mechanism, a method based on the statistical channel state
information is proposed in [196]. The proposed method
encourages UEs with available (yet limited) cache storage
to participate in D2D communication. The problem of dif-
ferent interests between the operator, which is in general
responsible for designing the incentive mechanism, and the
D2D transmitters, is modelled as a Stackelberg game. The
operator designs an incentive price such that the maximum
profit can be achieved by considering the D2D transmitters
willing to maximize their utility. The profit maximization
builds on a mathematical analysis of the achievable cellular
andD2D link throughputs. TheD2D communication operates
in the underlay mode. The interference resulting from the
underlay D2D communication is considered in the analysis
of the profits of the D2D transmitters and the operator.
Leveraging game theory as a powerful modeling tool

for the cooperation among several players [218], a hybrid
caching strategy has been proposed in [197] based on content
awareness in the D2D network. There are two types of nodes
in the proposed caching strategy, namely active nodes and
silent nodes. Active nodes download the file from the BS
and share the file with adjacent UEs. Silent nodes cache
the file directly from nearby active nodes. The cache cost
problem includes data cost and sharing cost, whereby the
data cost includes the cost for downloading a file from the
BS and the basic cost to connect with the BS. The cooper-
ative caching problem is formulated as a local cooperative
game and then a log-linear learning algorithm is modified
to speed up convergence and to improve the performance in
large strategy spaces.While the hybrid caching strategy [197]
generally considered the cooperation among UEs, it ignored
the dynamics of the communication links between UEs as
well as UE mobility.

Unlike the preceding two utility maximization studies, the
study [198] focused on a mobility-aware caching scheme.
The presented mobility-aware caching scheme considers a
portion of each content item for caching and the selfish
behavior of devices, to maximize user utility (energy con-
sumption and delay) and to minimize BS cost. There are
three ways for requesting the content items, namely local,
D2D, and BS caching. In this method, users are rewarded by
the BS for sharing their contents. Rewards can be a virtual
currency or credit. The user mobility pattern is represented by
a probabilistic version of the random walk [219]. A gradient
projection algorithm is deployed to solve the optimization
problem. A simplistic scenario considering only one BS is
a shortcoming of this study.

2) CONTENT DELIVERY

Taking UE heterogeneity into account, a joint design of a
D2D caching strategy and incentive scheme in MEC net-
works is presented in [199] to maximize the BS utility and
to improve the social welfare of the cellular network. The
optimization problem includes two subproblems: caching
and contract design. The UE caching strategy and incentive
method are designed based on UE context information which
includes three parameters, namely UE desire for each content
item, the degree of UE interest to share its contents, and
the transmission delays among UEs. The content request
pattern of each UE is heterogeneous and modelled with a
Zipf distribution [209], [210], [220]. A coded cachingmethod
is used to cache the contents [221]. A content request is
considered satisfied only if the requesting UE receives the
complete requested content. Different types are considered
for UEs based on their willingness to participate in D2D com-
munications and share contents which are the result of each
UE’s privacy issues, remaining battery charge, and the desire
to share contents. The BS rewards each UE according to its
contributions and designs a contract based on the total content
shared by a UE with the aim to maximize the utility. The UEs
can either accept or reject any of these contracts. The dif-
ference between the amount of content transmissions saved
for the BS and the reward which should be paid to the UE
is defined as the BS utility function. To achieve the optimal
caching strategy, a heuristic algorithm based on the gradient
projection method is proposed. The type of UEs is considered
to follow a uniform distribution in [199]; however, the UE
type distributionmay change based on network or device con-
ditions in a real network environment. The simple scenario
considering only one BS is also a shortcoming of this study.

3) JOINT OPTIMIZING CONTENT PLACEMENT AND DELIVERY

The study [200] investigated the caching cooperation
between UEs and BSs by taking the UEs’ social behaviors,
preferences, and heterogeneous cache sizes, as well as the
network infrastructure into account. The proposed hierarchi-
cal edge caching architecture includes amobile network oper-
ator core connected to the Internet through backhaul links
as well as BSs and UEs inside the RAN area. BSs are fully
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connected to each other via high-speed links, such as optical
fibers, and UEs can communicate with each other through
WiFi-Direct or Bluetooth D2D links. UEs are divided into
four types according to their social relationships, namely self,
close friends, normal friends, and strangers. A relationship
factor is defined to simplify the effects that each type has
on the social relationship among UEs. It is assumed that the
user is only served by its local BS during the content delivery
period and the local BS can satisfy the requestingUE by using
its own storage, obtaining the requested content from other
BSs, or downloading the content directly from the Internet
through backhaul links. The caching method contains two
phases, namely the content placement phase and the content
delivery phase. In the content placement phase, in order to
increase the content diversity and to enhance the cooperation
amongBSs for content delivery, maximum distance separable
coding is used to code the content cached in BSs, while
uncoded caching is employed in UEs to preserve the integrity
of each content item. In the content delivery phase, the con-
tent is requested based on theUE’s own preference; a user will
be served by its local BS if the requested content cannot be
found in its local cache or the caches of its adjacent UEs. Aim-
ing to maximize the capacity of the network infrastructure for
traffic offloading and to reduce system costs while satisfying
UE requests, a hierarchical edge caching problem is formu-
lated. This hierarchical edge caching problem is NP-hard.
Towards developing a low-complexity and efficient caching
scheme, the problem is decomposed into two subproblems.
The two subproblems are the device caching problem and the
BS caching problem with focus on different cooperation lev-
els. This hierarchical edge caching scheme has been evaluated
with the Xender application [228]. The D2D communication
links in this application can be based onWiFi tethering,WiFi-
Direct, or Bluethooth. However, the physical-layer transmis-
sions have been neglected in [200] and this shortcoming is
further addressed in [222].

The preceding video caching studies reviewed in
Section IV-B have considered the caching of complete video
files. However, complete video files are typically very large,
while cache space at UEs is limited, allowing only very few
complete videos to be cached on UEs. The study [201] has
addressed this problem by proposing to cache only popu-
lar chunks, e.g., temporal segments, of video files. When
a UE requests a video, the chunks forming the complete
video can be obtained from nearby UEs that have some
needed chunks cached, the MEC servers that have chunks
cached, or the remote server. The decision problem for
placing the chunks into the caches and for delivering the
chunks from the caches or remote server is formulated as a
utility maximization problem considering the costs for serv-
ing requests, the UE incentives paid, and the penalty costs for
service dissatisfaction. The simulation evaluations compared
the proposed chunk caching in the device-enhanced MEC
with the caching of full video files. The results indicate that
chunk caching achieves substantially higher cache hit ratios
while significantly lowering the network cost and decreasing

the average video access delay compared to the caching of
full video files.

4) TASK CACHING

While device-enhanced MEC caching studies have generally
examined the cache placement and delivery of abstract data
files or video files, the study [202] has ventured into the
new domain of task caching. Task caching was originally
introduced in the pure MEC context in [223] and is con-
ceptually similar to the MEC studies that jointly consider
computation offloading and caching [32], [224]–[226]. In
particular, task caching refers to the caching of the (poten-
tially large) data set resulting from a complex computing task,
e.g., a computation relating to augmented or virtual reality
rendering. The study [202] has examined this task caching
in the context of a device-enhanced MEC system with UEs,
MEC computing nodes (referred to as fog nodes), and a
remote cloud. Computed task data sets are cached on the UEs
according to a proposed near-optimal task caching algorithm
in an offlinemanner, e.g., over night. AUE task request can be
served from the local UE task cache, the task caches of nearby
UEs, or the task cache of the fog nodes. If a task cannot be
served form a cache, then the task is computed locally, at a
fog node, or at the remote cloud; task computation offloading
to other UEs is not considered. The task caching problem is
formulated as an optimization problem to maximize a utility
defined based on delay and energy consumption. The utility
maximization is solved through a genetic algorithm. The
simulation evaluations in [202] indicate that the proposed
task caching algorithm achieves higher utilities than various
benchmark approaches, particularly for high task computing
demands and dense nearby UE populations. A shortcoming
of the task caching in [202] is that the caching is conducted
in an offline manner, e.g., over night. A typical motivating
example for task caching is the computation of augmented
and virtual reality computations for visitors to a specific
location, e.g., a museum, lecture hall, or laboratory for hands-
on experiments. In such a use-case, the UEs of the visitors are
only in the specific location during the active visiting hours
(and not during the off-hours, when such facilities are closed).
Accordingly, it will be important to develop real-time task
caching approaches in future work that can share the task
computation data sets among the UEs that are currently in
the specific location. Also, the collaborative optimization of
both the task computation offloading and the task caching
while utilizing both the computation and caching resources
of the nearby UEs and the fog (MEC) nodes is an important
direction for future research, as elaborated in Section V-B1.

G. OTHER PERFORMANCE METRICS

1) CONTENT PLACEMENT

The benefits of proactive caching have been examined
in [203] through two case studies by considering the spa-
tial and social network structures. In the first case study,
the proposed distributed caching method stores files in the

VOLUME 7, 2019 166095



M. Mehrabi et al.: Device-Enhanced MEC: MEC Aided by End Device Computation and Caching

BS during off-peak periods by exploiting file popularity
as well as correlations among UEs and file patterns, using
supervised machine learning and collaborative filtering tools.
This proactive caching procedure continues until reaching the
maximum storage capacity. The social network structure and
D2D communications are leveraged in the second case study.
First, a set of influential UEs is determined by obtaining
the social ties among UEs using a centrality metric [227]. The
higher the node centrality of a UE, the more influential the
UE is in its community. When a UE requests a file, the BS
first searches for influential UEs with a cached copy of the
requested file and in the case of availability, the BS directs
the nodes to establish a D2D communication between the
influential UE and the requester. If the BS cannot find any
influential UE with a cached copy of the requested file, then
the BS sends the file directly from the core network to the
requester. However, the study [203] considers a static system;
UE mobility can bring challenges, especially for determining
influential UEs when social ties change dynamically.
A more general scenario considering UE mobility, UE

social behaviors, and geographical distances has been pre-
sented in [118]. The system model includes a hierarchical
architecture with cellular links between UEs and BSs, as well
as backhaul links between BSs and the core network. The
UEs first request content items from their adjacent devices;
if the requested content cannot be found in the UE’s own
storage or the storage of the UE’s neighbors, then the cel-
lular links mode is activated. The requested content can
be obtained from the neighbor BSs as well as through the
links between BSs or the Internet via backhaul links. UEs’
sharing activities have been measured using Xender, which
is an application to trace D2D content sharing at a large-
scale [228]. The social relationships are based on the user
preferences (whereby user preference is characterized by the
probability distribution of a user request for each content
item) and content transmission rate condition. The cache
replacement process is modeled as an MDP and the Double
Deep Q-Learning method [229] is used to optimize the cache
replacement. In this study, the content transmission process
is assumed to be finished before the UE moves out of the
coverage of its small cell, which is not a realistic assumption
considering the complicated UEmobility patterns in practice.
In addition, considering the limited UE computing resources,
using learning algorithms, which require heavy computa-
tional resources, may be inefficient and increase delay.

2) CONTENT DELIVERY

The study [204] has focused on mobility-aware transmission
scheduling for caching at end devices that are located near
hotspots. Hotspots are places that are frequently visited by
the UEs, such as cinemas, restaurants, and stadiums. Popular
content items are cached at the end devices near hotspots
through multi-hop D2D relaying from the BS and via high
datarate millimeter wave (mmWave) communication [230].
UEs can download contents from the end devices near the
hotspots instead of the BS while passing by the end devices

near the hotspots. The scheduling problem is formulated as
a stochastic nonlinear mixed integer program to maximize
the expected amount of cached data. Then, a Multi-Hop
D2D Relaying based Caching (MHRC) scheme is proposed.
The MHRC scheme first establishes the multi-hop relay
paths and then schedules the transmissions for caching at the
end devices near hotspots by considering the statistical user
mobility properties. The study considers only oneBSwhich is
responsible for scheduling the caching transmissions and for
synchronizing the clocks of relay nodes. Also, the blockage
problem for mmWave communications [231] is neglected.

3) JOINT OPTIMIZATION OF CONTENT

PLACEMENT AND DELIVERY

The associations between content item popularity levels and
user preferences have been mostly overlooked in the caching
designs studies. Focusing on this issue, the study [205] pro-
posed a model for synthesizing user preference from content
popularity with the aim to maximize the offloading proba-
bility. The user preference can be learned using probabilistic
latent semantic analysis [232] and a UE request behavior
model. The caching policy can then be optimized for a given
UE request behavior model. The overall system consists of a
central processor (CP) in the core part, several BSs connected
to the Internet through backhaul links and with knowledge
of the cached files and the UE locations, and uniformly
distributed UEs. The caching policy operates as follows in the
placement phase. First, the user preferences are learned and
then the CP informs the BSs about the cached files of the UEs.
Subsequently, during off-peak time, the fetching process of
the files from the server is performed, i.e., the files are unicast
or multicast by the BS to be cached at the UEs. In the delivery
phase, a UE sends its request to the BS if the content cannot be
found in its local cache. Then, the BS informs the CP and the
CP sends the file index to the BS and records the UE request.
In the next step, the BS looks for the file in the local caches
of the UEs that are adjacent to the requesting UE. If the BS
can find the file, then the closest helper will be assigned to
send the file to the requesting UE. The BS is also responsible
for establishing D2D links between the UEs. Both overlay
and underlay modes are considered in the analysis in [205]
and bandwidth can be shared either with full reuse or FDMA.
A low computational complexity algorithm is applied to solve
this offloading gain problem. The impact of UE mobility on
the offloading probability is analyzed based on a randomwalk
mobility model. However, file sizes are assumed to be equal,
which is not realistic. Also, the study [205] did not include a
method for encouraging the helper nodes.

H. SUMMARY OF DEVICE-ENHANCED MEC CACHING

The main overall strategy of the existing device-enhanced
MEC caching approaches has been to prioritize content place-
ment at and delivery from other end devices via D2D com-
munication links, followed by placement at and delivery
from the MEC server, followed by delivery from the central
cloud. The main objectives of the existing device-enhanced
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MEC caching studies have been the minimization of the UE
energy consumption, the maximization of the throughput,
as well as cost reduction. Considering any of these objectives
in isolation typically does not enhance the overall caching
system performance, since finding an optimal solution for
one metric can negatively affect other metrics. Therefore,
designing a caching system with good overall performance
requires the investigation of the tradeoffs between different
objectives [193].
In order to achieve desired caching performance goals, the

optimization problems have usually been solved with some
mathematical tools, such as game theory, stochastic geome-
try, heuristic optimization, and machine learning. Game the-
ory has generally been used when the players, i.e., BSs and
UEs, compete with each other in order to maximize their ben-
efits [233], [234]. Optimization algorithms have usually been
employed to maximize a performance metric under some
existing constraints, such as limited cache size, cache state,
and remaining battery life times of UEs. Stochastic geome-
try approaches have been formulated for designing caching
techniques in networks with random topologies [235].
An interesting future research directionwill be to combine the
various solution approaches and tools into hybrid approaches
that comprehensively solve and trade off the various problem
aspects. Also, the computational effort and signalling over-
heads required for the various approaches or their combina-
tions need to be examined.
Most existing studies have considered the Homogeneous

Poisson Point Process (HPPP) model for the distribution of
the BSs and UEs. Future research should validate the spatial
distribution models for a wide range of networking scenar-
ios and environments, and then re-examine the performance
of device-enhanced MEC caching mechanisms for a range
of validated spatial distribution models and possibly spatial
distribution traces of real wireless networks.
Device-enhanced MEC caching generally includes the

placement phase and the delivery phase. The vast major-
ity of existing studies have designed, optimized, and exam-
ined these two phases separately. Only relatively few studies
have attempted to jointly improve these two phases. Future
research should expand on the studies that have jointly pur-
sued the placement and delivery and strive to extract gains
from synergistically completing both phases.
Device-enhanced MEC caching strategies can generally

be controlled in a distributed manner or in a centralized
manner. The centralized control is typically implemented at
the BS. Most existing studies have considered the centralized
control since the BS typically tracks the required informa-
tion, e.g., UE locations, preferences, and requests, as well as
content popularities and channel states. Thus, the BS has the
required information to provide an optimal solution for the
entire network encompassing the UEs within the range of the
BS [31].
However, there are still several open challenges in

order to fully exploit the advantages of device-enhanced
MEC caching. The channel interferences among UEs, the

heterogeneous caching UE capacities, the social connections
amongUEs [169], and the effects of UEmobility on the social
ties of the UEs are some important factors that need to be rig-
orously investigated in future research. Furthermore, future
research needs to explore the tradeoffs between designing an
effective incentive mechanism and protecting the privacy of
users and content items.

Another drawback of most existing device-enhanced MEC
caching studies is the consideration of very simple scenarios,
typically consisting of only one BS. Cooperation opportuni-
ties among different BSs, which appear especially interesting
for small cells, have only rarely been discussed. Cooper-
ation among BSs can, for instance, be useful in dynamic
scenarios where UEs move between different small cells.
Also, all existing studies have based the evaluation on simu-
lations, whereby only a few studies have considered practical
parameter settings in the simulations. Future research should
address the limitations of the existing studies by thoroughly
investigating device-enhancedMEC caching mechanisms for
large networks with multiple BSs. The multiple BSs should
coordinate their caching placement and delivery. The per-
formance evaluations should include simulations, but also
mathematical analysis and testbed measurements.

V. OPEN PROBLEMS AND FUTURE

RESEARCH DIRECTIONS

Device-enhanced MEC computation offloading and caching
is still a nascent research area. There are still numerous
open problems and challenges that need to be resolved in
this area. This section outlines the main open problems and
outlines future research directions to make device-enhanced
MEC computation offloading and caching highly effec-
tive and efficient. We group the open problems and future
research directions into fourmain clusters, namely the control
and management of the device-enhanced MEC mechanisms,
the improvement of the performance and scalability of the
device-enhanced MEC mechanisms, security and privacy,
as well as performance evaluation and testbeds.

A. CONTROL AND MANAGEMENT

1) DEVICE-ENHANCED MEC MANAGEMENT FRAMEWORK

Presently, no framework exists to exchange information about
computational or caching capabilities of end devices in a real-
time or near-real-time manner so as to inform offloading and
caching decisions. Stand-alone solutions, such as connection
sharing in smartphones, need to be set up per device and are
not designed to operate automatically or at scale. Accord-
ingly, there is an urgent need to develop and evaluate control
and management frameworks for device-enhanced MEC.

One possible avenue for developing device-enhanced
MEC control and management frameworks is to build on
the recent success of Software Defined Networking (SDN)
control [93], [94] for a wide range of general networking
aspects, such as scalable control plane operation [236], [237],
flow control [238], traffic engineering [239], [240],
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routing [241]–[243], and Internet of Things manage-
ment [244], [245]. Moreover, SDN principles have been
employed to control and manage general wireless networks,
see e.g., [95], [246]–[250]. Building on these successful
applications of the SDN control and management principles,
future research could adapt autonomic SDN control and
management mechanisms [251]–[253] to develop control
and management frameworks for device-enhanced MEC.
Importantly, these frameworks could build on the principles
of hybrid SDN [254], [255] that allow for the control and
management of hybrid systems that combine conventional
devices that are not SDN-enabled as well as SDN-enabled
devices.
Another important aspect for the framework development

is the consideration of the timescales of the control and
management. While real-time computational and caching
capabilities can be signalled quickly over a localized net-
work area [256], [257], large network areas may intro-
duce substantial signalling delays. Thus, future control and
management frameworks for device-enhanced MEC should
incorporate some aspects of fast localized decision mak-
ing with global coordination on a slower timescale, sim-
ilar to recent multi-timescale wireless resource allocation
studies [177]–[182].
Moreover, future control and management frameworks for

device-enhanced MEC should accommodate heterogeneity
across the gamut of system characteristics, such as hetero-
geneity of the wireless access technologies, end devices, and
applications. For instance, the use of the various heteroge-
neous wireless medium access and transmission technologies
needs to consider their implications for UE battery life time,
link speed, and link reliability. Depending on the applica-
tion needs and the communications scenario, the tradeoffs
between UE battery lifetime, link speed, and link reliability
may suggest to utilize a particular medium access technol-
ogy, or a combination of medium access technologies, which
in turn may imply heterogeneous achievable communica-
tions ranges and UE discoverability. Future device-enhanced
MEC control and management frameworks should be able to
account for these tradeoffs across the layers of the wireless
networking protocol stack, from the physical layer, up to and
including the application layer.

2) INTERFERENCE MANAGEMENT

If several UEs offload their tasks to MEC servers or adja-
cent end devices use the same resources (e.g., time slots
and frequency channels), then interference among multiple
ongoing D2D communication links and between D2D com-
munication and cellular communication arises. This interfer-
ence becomes worse with increasing numbers of UEs within
a given cell coverage area [258]. Dedicating the resources
exclusively to only D2D communications enables solutions
to the interference problem [259], at the expense of reduced
reuse efficiency. Therefore, multiple interference manage-
ment techniques, such as power control, mode selection,
and radio resource allocation, are generally used jointly to

improve the network capacity as well as spectrum reuse
efficiency.

The interference management issues are particularly chal-
lenging in heterogeneous IoT networks which can greatly
benefit from device-enhanced MEC due to the limited nodal
resources of typical IoT nodes. The interference management
issues are more challenging in IoT networks compared to
conventional cellular networks due to the massive numbers
of connected IoT devices. In addition, the heterogeneous
transmit power levels of IoT devices result in heterogeneous
interference levels. Thus, there are several open challenges
to efficiently manage the interference arising from device-
enhanced MEC in IoT networks. One possible approach to
address this challenge is to link the decision algorithm for
the transmission mode selection with the device-enhanced
MEC computation offloading or caching mechanisms so
as to make dynamic offloading and caching decisions in
accordance with the interference in the network environ-
ments. The general concept of adaptive mode selection was
introduced in [260]; future research needs to effectively
couple the mode decision making with the offloading and
caching decision making so as to arrive at overall optimized
offloading and caching decisions that adapt according to
the interference levels and are thus applicable in practical
IoT networks.

3) MOBILITY MANAGEMENT

In the context of computation task offloading, UE
movements, including movements of either requester,
relay, or helper UEs, can break the D2D links. For instance,
if the relay moves during the transmission of tasks, the link
breakage between requester and helper will likely increase
latencies and waste battery energy. Mobility can also influ-
ence the information derived from social graphs by changing
social ties among UEs. Therefore, updating and predicting
the availability and reliability of computation resources is a
key prerequisite for enabling satisfactory user experiences
and energy savings. Future research needs to develop and
validate effective and efficient network management methods
for assessing and predicting the availability of computation
resources for a wide range of network scenarios and mobility
levels.

In the caching context in dynamic scenarios, copies of
content items should be cached in multiple BSs or UEs in
order to maintain acceptable caching performance; however,
the storage capacity limitations may make it hard to achieve
this goal [31]. Another important aspect of proactive caching
is the popularity profile of content items which is usually
based on the Zipf model [209], [210], [220] or variants
thereof. However, in real mobile scenarios, it may not be
possible to effectively and reliably define popularity profiles
in advance due to the UE movements [261]. Future research
should develop and validate management mechanisms for
determining the optimal number of content item copies as a
function of the mobility level. Also, content item popularity
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profile models should be formulated and validated for a wide
range of mobility levels.
Another future research direction is to adapt the respon-

siveness of device-enhanced MEC mechanisms to mobility
according to the needs and characteristics of a given particular
application. For instance, even delay-tolerant applications,
such as downloading video files, may be very sensitive to
UE movements if the entire file is to be downloaded over
one D2D link [262]. Adapting the download strategies, e.g.,
partitioning large files into small file segments that are down-
loaded over multiple D2D links, can make applications more
robust to UE mobility.

B. PERFORMANCE IMPROVEMENTS AND SCALABILITY

1) COLLABORATIVE COMPUTATION OFFLOADING

AND CACHING

Our comprehensive survey of the device-enhanced MEC lit-
erature has indicated that the existing studies have either
focused on computation offloading or on caching. To the
best of our knowledge, there are no existing device-enhanced
MEC studies that have examined collaborative computation
offloading and caching. However, some applications, such
as augmented or visual reality or some video applications
may involve large data files that benefit from caching, while
also requiring extensive computation resources. Indeed, col-
laborative computation offloading and caching methods have
begun to be investigated in the MEC context (without
enhancements through end device resources), see, e.g.,
[32], [223]–[226]. Thus, a future research direction is to
develop and evaluate device-enhanced MEC methods that
collaboratively address caching and computation offloading,
while striving to extract efficiency gains from the joint con-
sideration of the these two functionalities.

2) SOCIAL-AWARE D2D COOPERATIVE COMMUNICATION

Exploiting the social characteristics of UEs generally facil-
itates efficient data exchanges in D2D networks. In par-
ticular, the location of UEs in mobile D2D networks can
indicate social communities [263]; therefore, changes in the
locations of UEs can lead to social disconnections between
UEs. Thus, future research needs to design mechanisms that
can dynamically adjust the network according to the mobil-
ity changes and establish corresponding D2D links between
nearby socially related devices.
Furthermore, social network discovery mechanisms must

safeguard against dishonest artificially generated informa-
tion about social relationships, which UEs may maliciously
generate to improve their networking performance [264].
Another important issue is that maintaining the social aware-
ness in D2D cooperative communications costs the UEs
some energy; this energy expenditure needs to be small in
order to keep with a main premise for D2D communication,
namely low-energy short-distance communications. Hence,
future research needs to investigate energy-efficient social
awareness in D2D cooperative communication [265].

3) LEARNING ALGORITHMS

Machine Learning (ML) is widely considered as a promising
solution to autonomously and optimally configure future
wireless networks based on the information learned from
network system behaviors [94], [266]–[270]. In fact, it has
been speculated that most problems considered ‘‘hard’’ can
be formulated as ML problems and solved by iteration and
policy search [271]. For instance, the channel selection prob-
lem in D2D communication can be modeled as a multi-armed
bandit game which falls into the category of reinforcement
learning algorithms [272]. Similarly, wireless power con-
trol techniques based on distributed Q-learning have been
developed in [273]. However, due to the required multiple
iterations, ML approaches are often highly time-consuming.
Future research should focus on time-efficient ML
algorithms [274].

In the caching context, the Zipf distribution is widely used
to model the UE request pattern [209], [210], [220]. With
the emergence of the ‘‘Big Data’’ concept, the actual content
popularity matrix for a particular network could be obtained
from wireless big data analyses at the MEC using ML algo-
rithms [199]. Thus, the obtained actual content popularity
matrix could potentially improve the caching performance of
device-enhanced MEC.

4) CODING

Device-enhanced MEC involves wireless communication
both with MEC servers as well as other end devices. Wireless
communication is generally error prone and requires safe-
guards at the physical, e.g., forward error correction coding,
and link layers, e.g., automatic repeat request retransmis-
sions, to ensure reliability. An emerging coding technique
that appears well suited to be explored for the highly het-
erogeneous device-enhanced MEC in future research is net-
work coding [275]–[280]. Network coding eliminates the
coordination that is required between sender and receiver
in many conventional coding techniques. Instead, network
coding only requires the collection of a sufficiently large
random set of coded packets for successful decoding and
protection against wireless link errors. Network coding thus
embraces the randomness that naturally occurs when com-
municating with and involving other end devices in provid-
ing services. Future research should explore network coding
based transmission techniques for device-enhanced MEC so
as to improve the communications with both MEC servers
as well as other end devices. A related future direction is to
combine innovative network coding based transmission with
specialized transmission scheduling for the various types of
application traffic. For instance, video streaming scheduling
requires consideration of the video frame timing constraints,
wireless link characteristics, and the related implications for
video quality of experience [281]–[285]. Future research
should explore such application-specialized scheduling in
the context of device-enhanced MEC supporting the various
application traffic types.
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Computation offloading in the device-enhancedMEC con-
text involves end devices that may generally be unreli-
able, e.g., may move or require their resources for their
own computations. Recently, the paradigms of replicated
computation [286] and coded distributed computing [283],
[287]–[290] has emerged to support efficient distributed com-
puting, especially if some of the distributed computing nodes
are unreliable or are late in completing their assigned com-
puting tasks (i.e., are so-called stragglers). Future research
should explore the adaptation of replicated computation and
coded distributed computing to computation offloading in
device-enhanced MEC. Device-enhanced MEC poses partic-
ular challenges due to the asymmetric nature of typically
offloading few large computing tasks to MEC servers and
numerous small computing tasks to other end devices.
Similarly, distributed caching of content items can be

improved through coding [291]–[293]. Coding can be partic-
ularly helpful for network systems with unreliable caching
nodes. Future research should investigate how the coded
caching concepts can be efficiently adapted to device-
enhanced MEC caching, which involves large relatively reli-
able MEC cache servers and numerous small potentially
unreliable end device caches.

C. SECURITY AND PRIVACY

Security in the context of offloading computation tasks to
adjacent devices is a considerable problem. Side channel
attacks [294] could allow the exploitation of UEs’ personal
information, thus violating their data security and privacy.
Such data security breaches would likely deter users from
adopting task offloading schemes. Moreover, such security
breaches could counteract the positive effects of offload-
ing incentive mechanisms. Consequently, users may lose
interest in participating in cooperations. Another impor-
tant problem is the user mobility which requires adap-
tive security mechanisms that account for the varying user
locations.
Future research needs to comprehensively address the

security and privacy aspects of device-enhanced MEC. One
avenue could build on the social user communities. For
instance, UEs could be divided into different groups based on
their social relationships, interests, and locations. Depending
on the security level of a UE group, a given user may or may
not participate in task offloading. An immediate drawback of
such grouping of UEs is the potential loss of collaboration
opportunities, due to hesitation to engage in collaborations
with a nearby stranger [295]. Throughout, the overheads of
security methods for the network communication need to be
carefully traded off against their benefits [264].
Security in the context of content caching is highly

challenging, since caching or statistically processing
encrypted content items needs to circumvent the encryption
[296], [297]. Future research needs to carefully examine
the tradeoffs between justifiable needs for content caching
security versus the additional overheads.

D. PERFORMANCE EVALUATION AND TESTBEDS

1) EVALUATION FRAMEWORK AND

BENCHMARK WORKLOADS

For the further advancement of the device-enhanced MEC
area it will be critical to quantitatively compare vari-
ous approaches and identify weaknesses that can then be
addressed in future research. In order to facilitate quantitative
performance comparisons, future research should develop
comprehensive evaluation frameworks that specify the set of
performance metrics as well as the performance evaluation
methodologies that ensure rigorous replicable evaluations.
The evaluation frameworks should include workload specifi-
cations, as well as wireless channel and mobility models, that
the research community agrees on as being representative for
common device-enhanced MEC scenarios.

2) TESTBEDS

While evaluations of novel research approaches typically
employ a combination of mathematical analysis and discrete
event simulations, comprehensive validation in real-life net-
working scenarios should include measurement evaluations
in real physical testbeds. Real physical testbeds account for
the various real-world issues that are often neglected in math-
ematical analyses and simulations. Future research should
develop specifications for representative testbeds for device-
enhanced MEC. Ideally, such testbeds should be built as a
research community infrastructure that will be made accessi-
ble to the research community

VI. CONCLUSION

We have comprehensively surveyed the area of device-
enhanced Multi-access Edge Computing (MEC). Device-
enhanced MEC augments the MEC computing and storage
(caching) resources with the computing and storage resources
of the wireless end devices, e.g., User Equipment (UE)
nodes. Device-enhanced MEC thus enlarges the resource
pool that is available for providing services to end devices.
This enlargement of the available resource pool is achieved
without additional MEC infrastructure investments; albeit,
device-enhanced MEC typically requires some incentives
(e.g., payments) to the owners of the participating end
devices. Nevertheless, with the ever-increasing comput-
ing and storage resources available in mobile end-devices,
device-enhanced MEC is an attractive paradigm for improv-
ing the service quality without requiring large upfront capital
investments in more MEC resources. Also, device-enhanced
MEC works particularly well in dense networks, where each
end-device has a large number of neighboring end devices
within a short device-to-device (D2D) communication dis-
tance, e.g., in crowded stadiums. Such dense network scenar-
ios pose scalability problems for conventional MEC with a
fixed amount of installed resources. Generally, the possibil-
ities for ‘‘recruiting’’ neighboring end devices to contribute
computation and storage resources grow in dense networks,
as there are more end devices near any given end device in
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dense networks. Thus, device-enhanced MEC holds a partic-
ular promise to mitigate MEC resource shortages in dense
networking scenarios.
We have organized this survey into the two main cate-

gories of studies focusing on computation offloading to the
device-enhancedMEC and studies focusing on caching in the
device-enhanced MEC. Within each of these two main cat-
egories, we sub-categorized studies according to their main
objective. The existing studies have strived to increase the
throughput, to reduce the latency, and to reduce the energy
consumption. Also, some studies have focused on enhancing
security aspects, while others have focused on maximizing
some utility measure. Overall, the device-enhanced MEC
studies that have been conducted to date have made signif-
icant progress in advancing the protocol development and
optimization for offloading computations and caching jointly
to MEC resources and other end devices.
Nevertheless, device-enhanced MEC is a nascent research

area; most studies have appeared within the past three years.
Thus, the existing state-of-the-art research in the device-
enhanced MEC area has severe limitations and requires
extensive future research to address the numerous open chal-
lenges. Overall, only roughly half of the existing studies
have accounted for end device mobility. Also, less than
roughly a quarter of the existing studies has incorporated
an incentive mechanism. Moreover, there is an overarching
need to develop effective and efficient control and manage-
ment frameworks for device-enhanced MEC that can cope
with end device mobility and end device heterogeneity while
scaling to large network sizes and device densities. Future
research should also further improve device-enhanced MEC,
e.g., by exploiting emerging machine learning techniques and
improved models of the social relationships of end device
users. Also, comprehensive performance evaluation frame-
works and methodologies should be developed and agreed
upon by researches to facilitate the comparison of different
approaches to device-enhanced MEC.
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