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Abstract-The concept of device equivalence is introduced. 
In equivalent devices, the light propagation can be described 
by identically evolving modal expansions, resulting in identical 
power transfer ratios. By first applying this concept to a z -  
invariant structure with a low refractive-index contrast it is 
shown how a normalized coordinate space can be defined in 
which equivalent structures have exactly the same geometry. 
Subsequently it is shown how this normalized coordinate space 
can be defined for t-variant integrated optical devices, again 
provided that the lateral refractive-index contrast is small. This 
normalization makes it possible to perform numerical device 
simulations in normalized coordinate space, the results being 
applicable to a large set of equivalent devices. Furthermore, 
starting from a known design, it simplifies redesigning that 
device for use at another wavelength or using other materials 
significantly, the resulting device being equivalent to the original 
one. 

I. INTRODUCTION 

ORMALIZED parameters for three-layer slab-waveguide N structures were first introduced by Kogelnik and Ra- 
maswamy [l]. Li and Lit [2] showed that for a general 
multilayer slab-waveguide structure it is possible to define 
an extended set of normalized parameters. In both cases, the 
normalized parameters were used to normalize the dispersion 
equation. Slab-waveguide structures with equal normalized 
widths (and equal asymmetry parameters) appeared to have 
equal normalized effective indices. Hewak and Lit [3] even 
used these normalized parameters to derive a simple expres- 
sion relating the waveguide dispersion to the dispersion of the 
individual layers. 

Multilayer slab-waveguide structures have a refractive- 
index profile that can be described by a one-dimensional 
(1-D) function n(x). In integrated optics however, structures 
consisting of a number of parallel straight waveguides (which 
are z-invariant) have a 2-D refractive-index profile n(x, y). 
This profile can be transformed into an equivalent 1-D 
refractive-index profile using the Effective Index Method 
(EIM) [4] or a similar one. The previously mentioned 
normalized parameters can then be used to normalize the 
dispersion equation for the resulting 1-D profile. 

This 1-D profile usually consists of layers having only 
one of two possible refractive indices: either the structure 
refractive index n, or the background refractive index nb 
(with nb < ns). The index contrast is usually very small 
[(ns - nb)/(ns + nb) 11. 
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In this paper it is shown that in that case, a normalized co- 
ordinate system can be defined, in which so-called equivalent 
devices have exactly the same geometry. This is very useful 
because it makes it possible to find equivalent devices starting 
from an original design. Furthermore, numerical device simu- 
lations can then be performed in normalized coordinate space, 
the results being applicable to a large set of equivalent devices. 

Our approach is as follows: first we start by defining device 
equivalence for integrated optical devices. Next, this concept 
is applied to a z-invariant structure, i.e., a structure consisting 
of a number of parallel straight waveguides. It is shown how 
the normalized coordinate space is defined in order to ensure 
that equivalent parallel straight-waveguide structures have the 
same geometry. It is also shown how the conventional set 
of normalized waveguide parameters can be extended with a 
parameter that normalizes the length of the structure. 

Most integrated optical devices can be modeled using the 
step approximation of Marcuse [5 ] .  The modeled structure 
then consists of parallel straight-waveguide segments only. Of 
course, each of these segments can be normalized separately. 
Fortunately, however, the scaling factors needed to scale the 
width and length of each segment turn out to be the same for all 
segments. As a result, the device as a whole can be normalized 
using only two very simple scaling factors, without explicitly 
going through the laborious procedure of step approximating 
the device. 

As an example it will be shown how the scaling factors can 
be derived and used to obtain an equivalent device, starting 
from a known design. FD-BPM calculations were performed in 
order to verify the equivalence of the two devices. The results 
of these calculations are presented, confirming the equivalence 
of the two devices. 

11. ASSUMPTIONS AND RESTRICTIONS 

In this paper we shall only pay attention to linear devices 
where the three-dimensional (3-D) refractive-index distribu- 
tion n(x, y, z )  can be transformed into an equivalent 2- 
D refractive-index profile n(x, z )  using the Effective Index 
Method (EIM) [4] or a similar one. This is usually a good 
approximation provided that the guided system modes are not 
near cut-off. For our approach to be valid, the resulting 2-D 
profile may only consist of regions having a refractive index n, 
(refractive index of the structure) or nb (background refractive 
index) where n, > nb. Power loss due to absorption or scat- 
tering must be negligible. Most integrated optical components, 
such as couplers, y-junctions, tapers, etc., can be described 
very well by such a model. 

The refractive-index contrast must be small (n, - nb)/(n, + 
nb) << 1; a requirement that is, in practice, almost automat- 
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ically satisfied when the EIM is applied. The smaller the 
contrast, the better the approximation that the power ratio 
between two guided system modes is equal to the square of 
their electric-field amplitudes. As a bonus, it also makes the 
difference between “E and TM modes negligible. Therefore, 
we will only have to consider TE polarized fields in our 
analysis. 

Finally, we shall assume that at any z-position, the optical 
field can be well approximated by a weigkted sum of the 
field profiles of the guided system modes, where the modal 
expansion is performed in a direction perpendicular to the 
z-axis. Reflections are neglected. For this to be a good 
approximation, the waveguides need to be nearly parallel to 
the z-axis (paraxial approximation: angles of up to only a few 
degrees are allowed). Input fields are applied at z = 0 while 
the field at z = L is considered to be the output field ( L  
denotes the device length). 

111. OPTICAL-DEVICE EQUIVALENCE 

Two optical devices are equivalent if “similar input fields” 
yield “similar intensity distributions” inside the two devices. 
This can be formulated more formally: two optical devices A 
and B are called equivalent devices if there exist linear coor- 
dinate transformations TA and TB from the usual coordinate 
system (z, z) to a normalized coordinate system (2, 2) such 
that: 

the individual layers equals either n, or n b  (see Section 11); 
the width of layer number i is denoted by wi. 

Li and Lit [2] examined the properties of multilayer slab- 
waveguide structures extensively. It is easy to see from their 
formulas that when the normalized width Vi of layer number 
i is defined as 

V,  = k 0 W i J S  (1) 

and the normalized effective index b, of system mode number 
m (which has an effective index denoted by N,) is defined as 

N$ - nf 
ns - nf 

b, = 

then the dispersion equation of any multilayer slab-waveguide 
structure can be written in terms of Vi ,  b,, and the mode 
number m only. This means that the normalized effective 
index of a system mode is determined uniquely by the set 
of V,  parameters. Therefore, all structures with the same set 
of V,  parameters have the same normalized effective index b ,  
for mode number m. 

Furthermore, Li and Lit [2] presented general formulas 
for the electric-field profile E ( z )  inside a multilayer slab- 
waveguide structure. Using the normalized waveguide pa- 
rameters as defined above, their formulas can be somewhat 
rewritten, resulting in the following expression for the electric- 
field profile E,(z) of mode number m 

Any input field  EA(^, 0) that can be applied to device A E m ( z )  = dE35f(m, v,, sxz). (3) 
can be transformed into a normalized field profile k ~ ( 2 ,  
0) using transformation TA. 
The resulting intensity profile IA(x,  z) inside device A 

The scaling factor S, is defined as 

can be transformed into a normalized intensity profile s, = ko JG (4) 
i ~ ( 2 ,  2) using the same transformation TA. 
Any input field E B ( ~ ,  0) that can be applied to device B 
can be transformed into a normalized field profile k ~ ( 2 ,  
0) using transformation TB. 
The resulting intensity profile I B ( x ,  z) inside device B 
can be transformed into a normalized intensity profile 
iB(2, 2 )  using the same transformation T ~ .  
For any input field E A  (2, 0) there is a corresponding field 
E B ( ~ : ,  0) that has the same normalized field profile and 
results in the same normalized intensity distribution, i.e., 

It is the purpose of this paper to show how the transforma- 
tion to the normalized coordinate system can be found for a 
particular device, and how equivalent devices can be found in 
a systematical way. This will be done by first discussing very 
simple devices, namely z-invariant structures. These structures 
consist of a number of parallel straight-channel waveguides. 
Next, it will be shown how z-variant structures can be treated. 

kA(2, 0) = kB(2,o) * i A ( 2 ,  2 )  = I B ( P ,  2). 

Iv. Z-INVARIANT STRUCTURES 

When the effective index method is applied to a structure 
consisting of a number of parallel straight-channel wave- 
guides, the resulting 2-D refractive-index profile n(x ,  z) is 
also independent of z and can therefore be considered a 
multilayer slab-waveguide structure. The refractive index of 

where IC0 = 27r/X is the free-space wave vector. P, equals the 
amount of power that is carried by mode m. f is a complicated 
function of Sxx, the mode number m and the normalized 
widths fi only. 

Note that the expression for the electric-field profile shows 
that waveguide structures with equal normalized waveguide 
parameters V, also have the same electric-field profile for mode 
number m, except for a scaling factor S, in the z-direction 
and an amplitude scaling factor a. 

Also note that the fi are equal to Sxwi, which means that 
the widths are scaled by the same scaling factor as the z- 
coordinate itself. It can be deduced from this that the linear 
transformation for the z-coordinate must be 

P = s,x ( 5 )  

resulting in a the following normalized electric-field profile 

So, multimode slab-waveguide structures with equal sets of 
V, parameters do not only have the same set of normalized 
effective indices, but they also have the same set of normalized 
field profiles. This automatically satisfies the first and third 
requirements for device equivalence. 

Equivalent devices must also have the same normalized 
intensity profiles resulting from the same normalized input 
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Fig. 1 .  Y-junction modeled by a step approximation. 

fields. This must also hold for multilayer slab-waveguides. 
Since any electric field inside this structure can be written as 
a weighted sum of the field profiles of the system modes 

E(., z )  = d Z X f ( m ,  v,, S,Z) 
m 

. exp{-jkoNmz} (7) 

the intensity profile is determined by the relative phases of 
all the system modes. Therefore, the phase difference between 
two system modes at any normalized z-position must be the 
same in both the usual and normalized coordinate spaces. 

In general, the phase difference A$Jml between any two 
guided modes m and I of a structure as a function of z can 
be written as 

A$Jml(z) = k0ANmlz (8) 

where ANml = Nm - Nl with m and 1 the mode numbers of 
the two modes of interest. N, can be expressed as a function 
of the normalized effective index 6, (2) 

Nm = Jnt + b, (ns - nt ) . (9) 

Because we have assumed that the refractive-index contrast is 
small [(n, - nb)/(n, + nb) << 1, see Section 111 this can be 
approximated by 

(10) N m  % nb + bm(ns - nb) 

length of structure A may be LA and that of structure BLB, 
the normalized length L of the two structures must be the 
same. It is easy to see from (12) what the definition of this 
normalized length should be 

(14) 

Summarizing, two z-invariant structures (consisting of a 

they have the same set of 
they have the same normalized lengths L 

provided that they satisfy the assumptions made in Section 
11. In the next section we shall show how z-variant structures 
can be handled. 

L = ko(ns - n b )  L. 

number of parallel straight waveguides) are equivalent if  
parameters 

V. 2-VARIANT STRUCTURES 

Most z-variant integrated optical devices can be modeled 
using a step approximation [5],  provided that the waveguides 
remain almost parallel to the z-axis. The model then consists 
of a number of parallel straight-waveguide segments only. Fig. 
1 shows an example of a y-junction approximated by straight- 
waveguide segments. Each of the waveguide segments can 
be transformed to the normalized coordinate system (2,  2) 
using the transformations described in the previous section. 
This would of course be a very cumbersome procedure, if it 
were not for the fact that the scaling factors in the 2- and 
z-directions are a function of A, n,, and n b  only. This means 
that each segment is scaled by the same factor. Therefore, the 
complete device can easily be transformed as a whole to the 
normalized coordinate system, using only the simple scaling 
factors S, and S,. 

Of course, this transformation to a normalized coordinate 
system is only meaningful if the local mode expansion at each 
of the interfaces is not affected by the transformation. This is 
only true if the values of the overlap integrals between guided 
modes of two adjacent segments are conserved. The overlap 
integral 0;: between two system modes m and n of two 

resulting in a phase difference A+,l of adjacent segments P and Q can be defined as 

J -a3 
where Abml = bm - bl. Since multilayer slab-waveguide 

b, parameters, they also have the same Abml. Therefore, if 
the linear transformation in the z-direction is defined by 

structures with equal sets of V,  parameters all have the same similarly, the Overlap integra1 between the Same two system 
modes 
coordinate space can be defined as 

and TI Of the Same two segments in 

2 = s*z 
with 

then at equal normalized z-positions, the phase differences 
between all guided system modes are the same in both the 
usual and normalized coordinate systems. Therefore, their 
normalized intensity profiles are the same as well. 

In order to ensure that two multilayer slab waveguides 
are equivalent, it is necessary that at any 2-position their 
normalized intensity profiles are the same in the normalized 
coordinate space (2 , i ) .  This must be particularly true at the 
outputs of the two waveguides. Now note that, although the 

J -a3 

Using (3) and (6) it follows that the value of the overlap 
integral is certainly preserved after transformation 

0:: = 1: d Z L f P ( m ,  K P ,  s,x) 

. d x f Q ( n ,  KQ, S,x)dx 

. d P m  Q Q  f (n, y Q ,  2 ) d 2  
= om,. A PQ 
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Fig. 2. Geometry of the y-junction. 

Parameters of the Normallzed Parameters of the 
original devlce parameters equlvaient device 

Fig. 3. Calculation scheme for designing an equivalent device, 

This result is also consistent with the observations of Baets 
and Lagasse [6],  who noted from numerical simulations that 
the overlap integral at waveguide discontinuities only depends 
on the normalized waveguide parameters. 

It is now easy to find equivalent devices from the normalized 
coordinate space. All that has to be done is to choose A, n,, 
and nb for a new device. The scaling factors S, and S, then 
determine the geometry of the equivalent device. 

Although approximating a general device by parallel 
straight-waveguide segments was necessary to prove device 
equivalence, equivalent devices can be obtained without going 
through this procedure. The device must be thought of as 
consisting of parallel straight-waveguide segments, but the 
scaling factors can be derived and equivalent devices can be 
found without doing this explicitly. An example will be given 
in the next section. 

VI. EXAMPLE 

As an example, we shall determine the scaling factors S, 
and S, for the y-junction shown in Fig. 2 and use them to 
design an equivalent device. The parameters of the original 
y-junction are tabulated in the left-hand side of Fig. 3. This 
figure also illustrates the process of designing an equivalent 
device. 

The normalized parameters are calculated in the following 
way. First, using the refractive indices nb and n, of the 
original device and the wavelength A, the scaling factors S, 
and S, are determined using (4) and (13), respectively. Next, 
the geometry of the y-junction is transformed to normalized 
coordinate space by multiplying all widths by S, and all 
lengths by S, in accordance with (5) and (12). Note that this 
simple procedure, in Fig. 3 denoted by TA, is all it takes to 
transform a device to the normalized coordinate space. 

Our next goal is, of course, the design of an equivalent 
device. First of all, we have to choose the wavelength and 
the refractive indices of the equivalent device. Equations (4) 
and (13) can then be used to determine the scaling factors S, 
and S,. The normalized geometry is transformed to the usual 
coordinate system by dividing all normalized widths by S, and 
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Fig. 4. 

all lengths by S,. This procedure is denoted by Ti1 in Fig. 3. 
It is an inverse operation because we perform a transformation 
from normalized coordinates back to the usual ones. The 
resulting geometry of the equivalent device is tabulated in the 
right-hand side of Fig. 3. 

Simulations with the Finite Difference Beam Propagation 
Method (FDBPM) [7] using second-order boundary conditions 
[8] were performed in order to verify the equivalence of the 
two devices. A TEO mode was applied to the input of the 
device at z = 0. The distribution of power over the two system 
modes as a function of z is displayed in Fig. 4 for both the 
original and equivalent devices. The difference between the 
two results at equal normalized z-positions is never more that 
0.5%. 

Power evolution inside the (a) original and (b) equivalent device. 

VII. SUMMARY 
In this paper the concept of device equivalence was in- 

troduced. In equivalent devices, the light propagation can be 
described by identically evolving modal expansions, resulting 
in identical power transfer ratios. 

It was shown how a normalized coordinate space can be 
defined for integrated optical devices, provided that only two 
refractive indices are involved (nb and n,) and provided that 
the refractive-index contrast is small. These requirements are 
not very restrictive, because application of the effective index 
method to a three-dimensional structure usually yields a two- 
dimensional structure that satisfies these conditions. 

The normalized coordinates were defined in such a way 
that equivalent devices have the same geometry in the nor- 
malized coordinate system. The transformations from the 
usual coordinate system to the normalized coordinate system 
appeared to be very simple; only two simple scaling factors 
[S, = ICo d m  and S, = ko(n, - nb)] were required to 
normalize a device in both the 2- and the z-direction. 

One of the great advantages of working with normalized 
coordinates is that the results of numerical device simulations 
performed in this normalized coordinate system are not only 
applicable to the device under investigation but to a large set of 
equivalent devices as well. Furthermore, it is now very easy to 
redesign a device for use at another wavelength or using other 
materials. This was illustrated by the example in Section VI 
where a y-junction was normalized and an equivalent device 
was designed. FDBPM simulations confirmed the equivalence 
of the two devices. 
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