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Abstract

Human activity recognition (HAR) is a broad research area. While there exist solutions based on sensors and vision-based 
technologies, these solutions suffer from considerable limitations. Thus in order to mitigate or avoid these limitations, 
device free solutions based on radio signals like (home) WiFi, in particular 802.11 are considered. Recently, channel state 
information (CSI), available in WiFi 802.11n networks have been proposed for fine-grained analysis. We are able to detect 
human activities like Walk, Sit, Stand, Run (in the sequel, any human activity used for classification is capitalised, i.e. is 
denoted by its corresponding label. For example, “standing“ is denoted as Stand, the activity “sitting“ is denoted by Sit and 
so on), etc. in a line-of-sight (LOS) scenario and a non-line-of-sight (N-LOS) scenario within an indoor environment. We 
propose two algorithms—one using a support vector machine (SVM) for classification and another one using a long short-
term memory (LSTM) recurrent neural network. While the former uses sophisticated pre-processing and feature extraction 
techniques based on wavelet analysis, the latter processes the raw data directly (after denoising). We show that it is possible 
to characterize activities and/or human body presence with high accuracy and we compare both approaches with regard to 
accuracy and performance. Furthermore, we extend the experimental setup to detect human falls, too which is a relevant 
use-case in the context of ambient assisted living (AAL) and show that with the developed algorithms it is possible to detect 
falls with high accuracy. In addition, we also show that the algorithms can be used to count the number of people in a room 
based on the CSI-data, which is a first step towards detecting more complex social behavior and activities. Our paper is an 
extended version of the paper (Damodaran and Schäfer, Device free human activity recognition using wifi channel state 
information, in: 16th IEEE International Conference on Ubiquitous Intelligence and Computing (UIC 2019), 5th IEEE Smart 
World Congress, Leicester, vol 16, IEEE, 2019).
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1 Introduction

While human activity recognition (HAR) is an interesting 
fundamental research problem on its own, it is also becom-
ing increasingly important in areas such as health care of 

As mentioned in the abstract, this article is an extended version 
of Damodaran and Schäfer (2019). Henceforth, the material 
presented in Sects. 1–5 is an (almost) nearly verbatim adaptation, 
but more detailed version of this publication. The material in 
Sects. 6–8 contains new and original results.
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elderly and sick or otherwise impaired people. Due to demo-
graphic trends, there is a tremendous increase in the elderly 
population and while some elderly suffer from the loss of 
cognitive or physical autonomy, they choose to live indepen-
dently at their residence instead of living under the care of a 
hospital. This raises safety and security concerns. Monitor-
ing of human activity and fall detection systems might miti-
gate some of the risks. Also monitoring day to day activity 
would give health personal a better insight into the lifestyle 
of their patients and it would allow them to assist them in a 
more informed manner to maintain good health and ensure 
quick recovery (Tan et al. 2018). Human activity recogni-
tion is also a key component in context aware computing, 
for energy efficient smart homes, fitness tracking and many 
internet of things (IoT) based solutions (Yousefi et al. 2017; 
Wang et al. 2015a), and in the context of disaster recovery 
cases (Scheurer et al. 2017). For the relevance of fall as a 
specific activity and the importance of fall detection, we 
refer to Sect. 6.

A lot of research has gone into the sensor-based and 
visual-based solutions for this purpose, but their obtrusive 
nature has made their use limited and cumbersome in a resi-
dential environment. Wearable sensor based solutions may 
not monitor the activity accurately or correctly because old 
people might forget to wear the device(s) or simply find it 
too cumbersome or inconvenient to wear it all the time. This 
would lead to inaccurate data. Visual based solution will 
only function in scenarios where the subject is in the line-of-
sight (LOS). They also require good lighting and are intru-
sive as they impact the privacy of the individual. To over-
come these limitations, the research community has started 
to investigate device-free sensing technologies. In these type 
of sensing technologies, radio signals such as WiFi signals 
are utilized to track human motion and activities.

Radio frequency (RF) based device free sensing has the 
advantage of being non-intrusive. RF-based approaches 
include ultra-wide band, continuous-wave radar, Zigbee, 
WiFi and other technologies. Out of all the approaches 
WiFi based solutions are gaining more attention from the 
research community (Ma et al. 2016). Basically, these solu-
tions require a WiFi access point and WiFi enabled devices 
(laptops, tablets, mobile phones etc.) at various locations 
in the indoor environment. WiFi setup is available easily in 
mostly all the indoor or residential environments today and 
therefore no additional setup cost is incurred. WiFi signals 
can travel through the wall so it is not necessary for the per-
son to be in the line-of-sight (LOS). The technologies based 
on WiFi are based on the fact that radio signals are affected 
by human movement. The estimated wireless channel will 
have a different amplitude and phase because the movement 
of human and objects changes the multipath characteristics 
of the channel.

Recently channel state information from the WiFi network 
interface cards (NIC) (Al-Qaness et al. 2017) has gained a 
lot of attention. Unlike received signal strength indication 
(RSSI), CSI is measured from radio links per orthogonal 
frequency division multiplexing (OFDM) subcarriers for 
each received packet (Al-Qaness et al. 2016, 2017; Cheng 
and Chang 2017). RSSI provides coarse grained MAC layer 
information whereas CSI provides a fine grained, PHY layer 
information such as subcarriers and amplitude/phase infor-
mation for each subcarrier (Al-Qaness et al. 2016, 2017; 
Cheng and Chang 2017). Therefore, CSI seems to be an 
attractive candidate delivering sensor information to be used 
as an input for HAR.

2  Related works

2.1  Prior work

One of the first prominent research results on WiFi based 
sensing for user location and tracking was achieved by Bahl 
and Padmanabhan (2000). In this research WiFi RSSI was 
used for (indoor) localization. Since then WiFi RSSI infor-
mation has been used in localization (Ma et al. 2016; Schäfer 
2014; Aversente et al. 2016) for human activity recognition 
(Wang et al. 2015a, b; Al-Qaness et al. 2016), and for gesture 
recognition (Pu et al. 2013). RSSI is a very simple metric 
and does not require any special hardware changes neither 
at the access point end nor at the mobile end. Using RSSI 
for human activity recognition is very easy but RSSI suffers 
from multipath fading, severe distortions and instability in a 
complex environment (Al-Qaness et al. 2016, 2017; Cheng 
and Chang 2017). RSSI is a coarse-grained information and 
it does not leverage the subcarriers of an OFDM channel 
(Wang et al. 2016b).

Pu et al. (2013) proposed a novel gesture recognition 
system called WiSee which leverages WiFi. This method 
requires modified WiFi hardware which incorporates WiFi 
USRP-N210 software defined radio (SDR) system. There 
are other systems like Wi-Vi (Adib and Katabi 2013) and 
WiTrack (Adib et al. 2014) which are built on a similar plat-
form. WiTrack is used for 3D tracking of a user. All these 
systems are based on the measurement of doppler shift in 
OFDM signals, caused by movements of the human body.

In 2011 Halperin et al. (2011) released a tool that meas-
ures WiFi channel information especially CSI according to 
802.11n standard. This tool enables the usage of CSI data 
for a specific Intel chip set. For an open source alternative 
based on Atheros chip sets, we refer to Xie et al. (2015) and 
Tsakalaki and Schäfer (2018). Recently, other chip sets have 
been reverse engineered (Schulz 2018) to support—among 
other things—research on CSI.
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A lot of research has happened since then in the area 
of localization (Kotaru et al. 2015; Tsakalaki and Schäfer 
2018), and HAR using CSI based on commercial Wi-Fi 
devices. In recent years, many articles have emerged that 
have used CSI for detecting human activity, for a compre-
hensive survey, see (Wang et al. 2017c). In particular, we 
refer to Wi-Hear (Wang et al. 2016a), Wi-Eyes (Wang et al. 
2014), CARM (Wang et al. 2015a), for gesture recognition 
to (Pu et al. 2013; Al-Qaness et al. 2017), and for fall to RT-
Fall (Wang et al. 2017a) and WiFall (Han et al. 2014). In Xin 
et al. (2018)) the phase differences between waveforms of 
multiple antennas are used to detect human activities quite 
generically. WiFall e.g. is a fall detection system focusing on 
a one-class classification (Fall) using an anomaly detection 
(least outlier factor) based approach to retrieve the activ-
ity’s pattern segment, whereas in our work we address mul-
ticlass problems. Furthermore, in our work we use a single 
MIMO system rather than multiple ones (three in case of 
WiFall). RT-Fall is another fall detection system focusing 
on a one-class classification exclusively and exploiting the 
sharp power profile decline associated with fall and fall-like 
activities as opposed to non-fall like activities. Our approach 
differs from these two as we employ different classification 
algorithms and compare the classification using wavelets 
plus support vector machine (SVM) vs. long short-term 
memory (LSTM).

Please note, that alternative device free approaches using 
other information but RF such as sound e.g. (Xu et al. 2019) 
are not considered in this paper. Also, with the exception of 
fall detection we are considering only basic, atomic activi-
ties, and in this paper we deliberately ignore the context of 
the activities i.e. we ignore contextual information such as 
spatial information, time or any personal patterns in detect-
ing the data and reserve this to future work. For a recent 
example of using contextual information for activity detec-
tion, see e.g. (Chen et al. 2019).

2.2  Our contribution

Our contribution is twofold. First, we combine discrete 
wavelet transform (DWT), principal component analysis 
(PCA), power spectral density (PSD) and frequency of center 
of energy and Haart wavelet analysis to extract the lower fre-
quency bins (Sect. 4) into a unique algorithm (Algorithm 1) 
using a support vector machine as a classifier and show that 
through these pre-processing techniques, we yield strong 
classification results. In fact, the accuracy achieved is better 
than in previous reported work (Wang et al. 2017a; Han et al. 
2014), despite the fact that we classify multiple activities, 
see Tables 1, 2, 3 and 4 for quantitative results. In addition, 
we define a second algorithm (Algorithm 2) using LSTM 
that operates directly on the raw data and uses only denois-
ing via DWT as the underlying preprocessing technique. We 

compare both results, see Tables 1, 2, 3 and 4. We show that 
LSTM together with this light preprocessing is almost on a 
par with the more sophisticated former algorithm consider-
ing classification performance.

3  Experimental setup

3.1  Hardware

In our experiments, we use Intel WiFi Link (IWL) 5300 
Network Interface Card (NIC). IWL 5300 supports 802.11n 
standard and hence makes it possible to record channel state 
information. There are 64 subcarriers in 20 MHz channel 
and 128 subcarriers in 40 MHz channel. Irrespective of 
the width of the channel, the subcarriers are grouped in 30 
subcarrier groups. The number of indexed subcarriers that 
would be represented by a group is based on the width of the 
channel. For 20 MHz channel a subcarrier group represents 
2 physical subcarriers and for 40 MHz channel a subcarrier 
group represents 4 physical subcarriers. Channel state infor-
mation is reported in the form of 30 matrices, where each 
matrix represents a subcarrier group.

For our experiments, we have used two Lenovo laptops, 
that are equipped with IWL 5300 NIC. The operating sys-
tem installed on each of the laptop is 64 Bit Ubuntu version 
14.04 LTS. The kernel version is 4.2.0-42. In order to obtain 
channel state information from the NIC, the existing kernel 
has to point to a modified wireless driver and the existing 
IWL 5300 firmware has to be replaced with a modified firm-
ware as IWL 5300 firmware does not allow direct access to 
the NIC’s memory to read CSI. By using the modified wire-
less driver and modified firmware, the debug mode of IWL 
5300 can be enabled. These modifications cause the NIC to 
report the CSI to main memory. Halperin et al. (2011) pro-
posed the “Linux 802.11n CSI Tool” and all the instruction 
to modify the firmware is provided as part of the installation 
instruction.

3.2  Apartment

Data collection was conducted in the living room and hall-
way of an apartment depicted in Fig. 1a, b. In each figure, 
the position of the transmitter and receiver is indicated. 
All activities took place in the living room. Samples had 
to be collected for line-of-sight (LOS) and non-line-of-
sight (N-LOS). Note that for the N-LOS the transmitter was 
moved into the hallway. For the LOS scenario, the transmit-
ter and the receiver were both placed in the living room. 
For the N-LOS scenario, the transmitter was placed in the 
hallway and the receiver was left in the living room.
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3.3  Human activities

Samples were collected for five activities namely Sit, Stand, 
Run, Walk, and Empty. The “Linux 802.11n CSI Tool” pro-
posed by Halperin et al. (2011) was configured in injection 
and monitor mode to collect the activity samples. For send-
ing packets we configured one laptop in the injection mode 
and in order to receive packets we configured the other lap-
top in the monitor mode. We initiated the transmission of 
2500 packets with an interval of 15 ms between each packet 
transmitted and one of the activities was performed dur-
ing this transmission. The packets were captured and their 

corresponding CSI data was logged in a file in the laptop 
running in monitor mode.

4  Algorithms

We implemented two different algorithms for activity clas-
sification—the first one (Algorithm 1) is using an SVM for 
classification and the second one (Algorithm 2) is using a 
long short-term memory (LSTM) recurrent neural network 
for this task. The overall data or process flow is depicted in 
Fig. 2.

Table 1  Comparison of normalized confusion matrices for five activities Walk, Run, Sit, Stand, and Empty for (a) SVM LOS, (b) SVM N-LOS, 
(c) LSTM LOS, and (d) LSTM N-LOS

Actual Predicted

Walk Run Sit Stand Empty

(a) SVM confusion matrix—LOS

 Walk 0.80 0.15 0.00 0.05 0.00

 Run 0.05 0.95 0.00 0.00 0.00

 Sit 0.00 0.10 0.45 0.45 0.00

 Stand 0.00 0.00 0.60 0.40 0.00

 Empty 0.00 0.00 0.00 0.00 1.00

Actual Predicted

Walk Run Sit Stand Empty

(b) SVM confusion matrix—N-LOS

 Walk 1.00 0.00 0.00 0.00 0.00

 Run 0.00 0.80 0.00 0.05 0.15

 Sit 0.10 0.00 0.60 0.30 0.00

 Stand 0.00 0.00 0.35 0.65 0.00

 Empty 0.05 0.00 0.00 0.00 0.95

Actual Predicted

Walk Run Sit Stand Empty

(c) LSTM confusion matrix—LOS

 Walk 0.80 0.00 0.10 0.10 0.00

 Run 0.00 0.95 0.00 0.05 0.00

 Sit 0.00 0.20 0.80 0.00 0.00

 Stand 0.00 0.00 0.00 1.00 0.00

 Empty 0.00 0.00 0.00 0.00 1.00

Actual Predicted

Walk Run Sit Stand Empty

(d) LSTM confusion matrix—N-LOS

 Walk 0.85 0.10 0.00 0.00 0.05

 Run 0.00 0.60 0.40 0.00 0.00

 Sit 0.05 0.00 0.70 0.20 0.05

 Stand 0.05 0.00 0.00 0.90 0.05

 Empty 0.00 0.00 0.00 0.00 1.00
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After the seminal work presented in WiFall (Han et al. 
2014) many researchers used SVMs for classification 
of HAR. Therefore we decided to use SVM as well as a 
benchmark. SVMs require a careful designing of the proper 
features “by hand”, which we will describe in detail in the 
sequel. This is true in particular as classifying activities 
involves classification of temporal data, i.e. data that has a 
time dimension and a sequential character. Therefore, the 
time correlations of the signals play a paramount role in the 
definition and classification of activities and have to ade-
quately be modelled in the feature space—we used discrete 
wavelet transform (DWT) for this task. In addition, SVMs do 
not scale well to very high dimensional feature spaces, thus 
we employed feature reduction techniques as well.

On the other hand in recent works, see e.g. DeepFalls 
(Chowdhury 2018), deep neural networks have been used 
for classification, in particular convolutional neural networks 
(CNN). Henceforth, we wanted to use neural networks as 
well for comparison. However, CNN are not well suited for 
the classification of temporal data. To this end, recurrent 
neural network (RNN) (Rumelhart et al. 1986) have been 

proposed long time ago. They possess internal memory 
and a feedback mechanism to allow for information to be 
“remembered” and thus are able to correlate temporal data. 
They do not, however, achieve good performance for long 
sequential data, due to the gradient vanishing problem. 
LSTMs (Hochreiter and Schmidhuber 1997) were proposed 
as an alternative to solve this problem. As for HAR classi-
fication long-term correlations are important, the choice of 
LSTM was natural. Similar to other deep networks, LSTM 
can “automatically” select the features from the data and 
therefore a manually designed feature extraction is no longer 
required.

Both algorithms require a careful data cleansing approach 
after raw data extraction involving CSI-denoising using 
wavelets and are described in detail in the sequel.

4.1  Activity‑SVM‑classification

The activity-SVM-Classification algorithm Algorithm 1 is 
comprised of the following steps which are serially executed. 
Its steps are described in detail in the sequel. The first four 

Table 2  Comparison of normalized confusion matrices for three activities mov (Walk and Run), n-mov (Sit and Stand) and Empty for (a) 
SVM LOS, (b) SVM N-LOS, (c) LSTM LOS, and (d) LSTM N-LOS

Actual Predicted

MOV n-mov Empty

(a) SVM LOS

  mov 0.975 0.025 0.00

 n-mov 0.05 0.95 0.00

 Empty 0.00 0.00 1.00

Actual Predicted

mov n-mov Empty

(b) SVM N-LOS

 mov 0.90 0.025 0.075

 n-mov 0.05 0.95 0.00

 Empty 0.053 0.00 0.947

Actual Predicted

mov n-mov Empty

(c) LSTM LOS

 mov 0.875 0.125 0.00

 n-mov 0.10 0.90 0.00

 Empty 0.00 0.00 1.00

Actual Predicted

mov n-mov Empty

(d) LSTM N-LOS

 mov 0.775 0.225 0.00

 n-mov 0.05 0.90 0.05

 Empty 0.00 0.00 1.00
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steps extract and prepare the data, and the final classification 
is achieved by a standard SVM. 

1. CSI value extraction
2. Denoising
3. Principal component analysis (PCA)
4. Feature extraction
5. SVM classification

4.1.1  CSI value extraction

Each sample file consists of CSI values for approx. 2500 
packets which are logged using one transmitter and three 
receivers. There exist 30 subcarrier groups between each 
transmitter and receiver pair. For each packet recep-
tion, CSI values are extracted into a matrix of dimension 
N

T
× N

R
× 30 , where N

T
 and N

R
 represent the number of 

transmitters and receivers respectively. The CSI matrix is 
then flattened to yield a vector of 90 columns, which is then 
added to a matrix of dimension 2500 × 90 . Each column 
forms the time series of CSI values for each of the 90 subcar-
rier group. Note that a CSI value is a complex number and 
for activity recognition, only the amplitude of the CSI value 
is considered (i.e. the phase is ignored).

An example for the CSI raw data for the Run, Sit, Walk, 
and Stand activity is shown in Fig. 3.

Table 3  Precision, recall and 
F-score for LOS

Precision Recall F-score

SVM LSTM SVM LSTM SVM LSTM

mov 0.95 0.90 0.98 0.88 0.96 0.89

n-mov 0.97 0.88 0.95 0.90 0.96 0.89

Empty 1.00 1.00 1.00 1.00 1.00 1.00

Table 4  Precision, recall and 
F-score for N-LOS

Precision Recall F-score

SVM LSTM SVM LSTM SVM LSTM

mov 0.92 0.94 0.90 0.78 0.91 0.85

n-mov 0.97 0.80 0.95 0.90 0.96 0.85

Empty 0.86 0.90 0.95 1.00 0.90 0.95

Fig. 1  Experimental setup
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4.1.2  Denoising

The main goal is to remove the noise, but preserve the sharp 
spikes caused by human activity. Discrete wavelet transform 
(DWT) is a common procedure to achieve that. In DWT, a 
multilevel decomposition of signal is performed by passing 
it through a set of high pass and low pass filters at each level. 
The output from the high pass and low pass filters provides 
the detailed and approximation coefficients respectively. The 
first level detailed coefficient contains the information about 
the noise and the sharp changes caused by human activ-
ity and therefore the first level detailed co-efficient is used 
to calculate a threshold. This threshold is then applied to 
all the detailed coefficients obtained in the different levels 
and the signal is then reconstructed using the new detailed 
coefficients. For the denoise algorithm DENOISE , we use 

Dimensional
Reduction
and
Feature Extraction

Raw Data 
Extraction
and
Preparation Denoising

CSI Value Extraction

PCA

Feature 
Extraction

SVM

LSTM

Fig. 2  Data architecture

Fig. 3  CSI data for different activities
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the MATLAB (The MathWorks 2019) function wden based 
on wavelet decomposition. We use “heursure”, the heuristic 
variant of Stein’s unbiased risk, soft thresholding and the 
sym6 wavelet as parameters for our algorithm. wden per-
forms the wavelet decomposition, applies the threshold to 
all the detailed coefficients and reconstructs the signal (time 
series of each subcarrier obtained in Sect. 4.1.1).

4.1.3  Principal component analysis (PCA)

As a standard feature reduction technique we apply principal 
component analysis (Karl 1901) on the denoised subcar-
rier time series data x

�
 . The first three components explain 

70–80% of the variance for all the activities. As the first 
component contains information due to reflection from sta-
tionary objects like furniture, walls etc., only the second and 
the third principal component are used for the prediction of 
human activity in the sequel.

4.1.4  Feature extraction

The feature extraction algorithm FEATURE_EXTRACTION 
(Algorithm 1.1) makes use of spectral analysis techniques 
as described in the sequel.

Algorithm 1.1 FEATURE EXTRACTION

Input: The preprocessed time series xτ

Output: The extracted feature vector f

1: PSD,ν ← Compute Power Spectral Density PSD

(and Frequency ν for Center of Energy) from xτ

2: mPSD,mν ← HAART WAVELET TRANSFORMATION(PSD,ν )

3: f ← STATISTICAL DATA EXTRACTION(mPSD,mν )

Different human activities lead to variations in the energy 
and power of a signal. Power spectral density analysis (PSD) 
(Stoica and Moses 2005) is a common technique to analyze 
these effects. Thus, we compute the spectral density PSD 
including the frequency � for the center of energy of our 
time series x(�) as follows. Let the autocorrelation function 
R(�) be defined as

then the PSD is simply the expected value of the Fourier 
transform of the autocorrelation function

As the energy corresponding to human activity lies in the 
lower frequency bins we perform a discrete Haar 1-D wave-
let transformation in HaaRt WavElEt tRanSfoRmation to 
obtain these coefficients by using the MATLAB function 
haart(x, level). We set the (maximum) level for 

R(�) ∶= x(�) × x(−�),

PSD ∶= �[R̂] = �

[

∫
∞

−∞

ej��R(�) d�

]
= �[|̂x|2].

the Haar transform, i.e. the variable level to 5. Finally, 
the statistical data extraction algorithm StatiStical data 

ExtRaction computes the following data:

– For each of the selected subcarrier’s time series we cal-
culate mean, median, standard deviation, interquartile 

range, second central moment, third central moment, 
skewness, and  kurtosis.

– For each of row of the selected subcarrier’s PSD matrix 
we calculate mean, max, standard deviation, interquar-

tile range, skewness, and  kurtosis.
– For each of row of the selected subcarrier’s frequency 

of center of energy we calculate mean, max, standard 

deviation, and  interquartile range.

4.1.5  SVM classification

For the final multi-label classification a one-against-all 
(Bishop 2006) linear support vector machine (Cortes and 
Vapnik 1995) with a penalty parameter C set to 0.01 has 
been used.

4.2  Activity‑LSTM‑classification

As an alternative approach we have used long short-
term memory (LSTM) networks, see Algorithm  2. 
LSTM (Hochreiter and Schmidhuber 1997) are artificial 
recurrent neural networks which are suitable for process-
ing times-series of data and relevant in our context. For the 
LSTM algorithm we only perform CSI VALUE EXTRACTION 
and DENOISE because a manual feature design or selection 
is not necessary as explained above.

We used TensorFlow (Abadi et al. 2015) and a basic 
LSTM (BasicLSTMCell) as our implementation technology 
with the following configuration:

– Sequence Layer: It takes as input prepossessed CSI data, 
i.e. the feature vector is a 90 dimensional vector which 
contains the raw CSI amplitude of each of the 90 subcar-
riers.

– LSTM layer: TensorFlow BasicLSTMCell with 128 hid-
den units

– Softmax layer: It normalizes and prepares data for clas-
sification known also as multi-class generalization.

– Classification layer: It applies cross entropy to clas-
sify and give the final output. For minimizing the cross 
entropy loss, Adam Optimizer is used with a batch size 
of 128 and a learning rate set to 10

−3.

The drawback of this approach compared to using an SVM is 
that it takes a lot of time to train the model (for 1.900–2.400 
time steps), if the computer is not using a GPU. For exam-
ple, on a MAC with a 3.3 GHz Intel core i5 processor it 
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takes more than an hour to train the model, whereas by using 
NVIDIA GeForce GTX 1080 Ti, the model could be trained 
in 9 min approx. (The computation of algorithm Algorithm 1 
on the other hand is almost instantaneous.)

5  Evaluation

For each activity we collected 200 samples and analyzed 
them using algorithm Algorithm 1 (SVM-classification) and 
algorithm Algorithm 2 (LSTM-classification).

5.1  Results

Table 1a, b depict the confusion matrix obtained for the test-
ing of activity recognition using a SVM for LOS and N-LOS 
resp. and Table 1c, d depict the confusion matrix obtained 
for the testing of activity recognition using a LSTM for LOS 
and N-LOS resp.

In addition, in order to compare our algorithm better to 
classifiers detecting moving from non-moving activities, we 
computed a confusion matrix by aggregating Walk and Run 
into MOV and Stand and Sit into n-mov, see Table 2.

5.2  Interpretation

As one can infer from Table 1 both algorithms are able to 
detect presence (non-Empty) and non-presence (Empty) very 
well. From Table 2 we infer that in particular the classification 
between moving and non-moving activities is almost perfect.

Both algorithms have difficulties differentiating between 
similar activities, i.e. between Sit and Stand or Walk and 
Run. In general, the SVM algorithm out-performs the LSTM 
algorithm as can be inferred from Tables 3 and 4 comparing 
precision, recall and F-scores.

However, given the fact, that the LSTM algorithm does 
not use any sophisticated pre-processing it is an interest-
ing result, that the LSTM algorithm performs so well in 
comparison.

6  Extension 1: fall detection

Fall is a prominent health problem in particular with older 
people due to its severe consequences both physically and 
mentally. According to the World Health Organization 

(WHO) (2019), fatal falls occur 646,000 times each year 
worldwide. In most of the cases, these incidences occur 
with people over the age of 60. Among non-fatal falls 37.3 
million of them are serious enough to require medical help 
(WHO 2019). Falls can cause very serious consequences—
as expressed in Allcock and O’Shea (2000) “of those admit-
ted to hospitals after a fall, only about half are alive 1 year 
later”. Therefore, fall detection and prevention is an active 
and critical area of research because it can help elderly peo-
ple to depend less on caregivers and allow them to live and 
move more independently. Another high-risk group to fall 
is children. Falls may occur while they are developing and 
exploring the environment (WHO 2019). In everyday life, 
we are surrounded by risks of fall. An example could be 
an employee in a factory who suffers a fall and no one is 
around to provide fast assistance. Another example could be 
a person at home falling after trying to change a light bulb.

6.1  Prior work

Most approaches require patients to wear sensor belts or 
equivalent devices, see (Özdemir 2014; Gutiérrez-Madroñal 
et al. 2019; La Blunda and Wagner 2016a, b). All of the 
above fall detection technologies are based on sensor fusion 
of specific sensors e.g. including ECG data (La Blunda and 
Wagner 2016a). Another solution called WiFall based on 
CSI data is proposed by Wang et al. (2017b) (as an improve-
ment of Han et al. (2014)). In WiFall local outlier factor 
(Breunig et al. 2000) was used for anomaly detection. From 
anomaly pattern the following features were extracted: nor-

malized standard deviation, offset of signal strength, period 

of the motion, median absolute deviation, interquartile 

range, signal entropy and velocity of signal change. As a 
classifier one-class SVM was used. Activities were per-
formed in a chamber, laboratory, and dormitory. On aver-
age WiFall detected falls with 87% precision and with 18% 
of false fall detection in a dormitory (i.e. non-laboratory) 
environment. Another solution called RT-Fall is proposed by 
Wang et al. (2017a). This solution used 1-D linear interpola-
tion and band-pass filter or signal preprocessing. In RT-Fall 
the same features as in WiFall were extracted and addition-
ally time lag and power decline ratio (PDR) were extracted. 
As a classifier a one-class SVM with Gaussian radial basis 
kernel function was used. Results of RT-Fall were 91% for 
sensitivity and 92% for specificity.

6.2  Our contribution

In order to support a device-free use case, we try to transfer 
the activity classification described in Sect. 4 to include fall 
activity as well. Therefore, we aim to detect falls without any 
additional hardware to be worn or carried by the patient. To 
(partially) achieve that goal, we had to perform a two step 
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classification combining two SVMs to eliminate false alarms 
as much as possible, see below.

6.3  Setup

The collection of data is performed for the following human 
activities: Walking, Standing up, Sitting doWn, fall and 
Empty where no activities were performed. For each activity, 
we collected 140 samples. As a fall activity, it was decided 
to perform two types of falls. The first type is walking and 
falling shown in Fig. 4a and the second type is sitting on 
the chair, standing up and then falling as shown in Fig. 4b.

In both cases there are two possibilities of what can hap-
pen after the fall namely post fall, either person stands up or 
keeps lying. If a person stands up after falling it is labeled as 
falSE alaRm in the sequel. Out of the 140 fall activities we 
chose to have 60 followed by a person standing up, hence-
forth the fall activities were split into 80 falls and 60 falSE 

alaRms resulting in 700 activities in total.
Data collection is performed at the Frankfurt University 

of Applied Sciences in building 1, room 235 shown in Fig. 5.
Transmitter and receiver are placed as far from each other 

as it is possible. All the activities are performed in different 
parts of the room to have more realistic data that does not 
depend on the location of the human in the room. For each 
sample of activity 500 packets are sent with an interval of 10 
ms between packets which sum up to 5 s for an activity. The 
exception is the fall activity since 5 s are not enough to per-
form the fall and post-fall event. Thus fall is divided into 
two parts namely “Falling” and “Post Fall”. The first part, 
“Falling” is performed for 5 s and contains 500 packets, the 
second part, “Post Fall”, is performed for 15 s which is 1500 
packets with 10 ms interval. “Post Fall” is observed for 15 s 
because this time will be enough for the human to stand up if 
it was not a real fall. In case of a real fall 15 s of lying down 
after the fall event proves that the person suffered a real fall. 
The second part of fall activity was done to avoid situations 

where a person does not need help after a fall and the fall 
will be considered as a false alarm and labeled as such, i.e. 
as falSE alaRm. Captured packets are logged into the file 
that is later used to extract CSI values. The interval between 
logged in packets between samples is 5 s. To separate one 
sample from the next one the timestamp of packets is used.

6.4  Evaluation metrics

For performance evaluation, we will use sensitivity, pre-
cision and specificity. Sensitivity shows the percentage of 
correctly detected falls and specificity is the percentage of 
correctly detected non-fall activities. Precision shows the 
percentage of correctly detected falls from all predicted falls 
(including false positives). They are defined as follows:

where TP, FP, TN and FN denote the true and false positives 
and negatives, resp.

sensitivity ∶=
TP

TP + FN
, specificity ∶=

TN

TN + FP
,

and precision ∶=
TP

TP + FP
,

Fig. 4  Fall scenarios

Fig. 5  Experimental setup
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6.5  Algorithms

6.5.1  Data denoising and feature extraction

The algorithm Algorithm 1 was used for classification. How-
ever, the number of extracted principal components was 
increased due to the lack of information to classify prop-
erly. Dropping the first principal component led to the loss 
of important activity information. Thus, it was decided to 
include the first principal component into the analysis as 
well. In an effort to keep the algorithm as simple as pos-
sible and using as little statistical information as possible 
we modified the feature extraction algorithm Algorithm 1.1 
by dropping the computation of the power spectral density 
(PSD) and frequency � for the center of energy altogether. 
For the statistical feature extraction, the following param-
eters were used: mean value, standard deviation, median, 
second, and third central moments, skewness and  kurtosis.

6.5.2  Combining two SVMs

Since the fall activity consists of two parts, we had to mod-
ify the classification approach. We used two different SVMs 
optimized for detecting the two independent activities. For 
the first SVM, we classified the five activities namely Walk-

ing, Standing up, Sitting doWn, fall and Empty. If the 
output of SVMs gives the fall result then the second check 
will be performed. For the second check, a new SVM is cre-
ated to analyze only “Post Fall” information. It has only two 
classes namely fall and falSE alaRm. fall means that the 
person fell and kept lying—however, falSE alaRm means 
that person stood up after the fall. If the second check SVM 
votes for fall then the activity will be labeled correspond-
ingly if it was not fall followed by lying then it is labeled as 
falSE alaRm. The second check is done to avoid cases when 
a person falls but does not need any medical help.

6.6  Result

In Table 5a the confusion matrix for four activities excluding 
fall is depicted and in Table 5b the confusion matrix for six 
activities including fall scenarios is depicted.

It can be seen that a perfect classification of Walking, 
Standing up and Empty can be achieved. The only exception 
is Sitting doWn. After adding (additional) fall events to the 
classifier it can be observed in Table 5b that the results for 
some classes naturally became worse.

For Sitting doWn the true labeling number has decreased. 
The reason for that can be inferred from observing that sig-
nals for these two activities are very similar as shown in 
Fig. 6a, b. During the Sitting doWn activity the person sits 
down and keeps sitting which makes it similar to fall and 
keep lying. However Walking, Standing up, Empty, fall 

and falSE alaRm activities are classified with high accu-
racy. It is a common, known (and intuitive to understand) 
phenomenon that falling is difficult to distinguish from sit-
ting down, see (Gutiérrez-Madroñal et al. 2019) or (Li et al. 
2009).

Using Table 5b we calculate the performance measures 
sensitivity and specificity and precision for all fall activities, 
i.e. fall and falSE alaRm activities together as well as for 
just fall. The results are depicted in Table 6. Compared to 
the results in WiFall and RT-Fall, the sensitivity and speci-
ficity of our model are higher. Both of the above-mentioned 
approaches used one SVM classifier to recognize activities. 
Whereas our solution had one SVM for detecting all activities 
and the second for detecting only fall activities. Combining 
two SVMs increased the rate of both sensitivity and specific-
ity. On the other hand, our precision of 62% considering only 
fall labeled activities and 74% considering all fall activities, 
i.e. fall and falSE alaRm activities together, is less than the 
one reported in WiFall. Recent results of our research group 
indicate that using LSTM for fall detection can improve the 
specificity to 98.7% at the expense of sensitivity which drops 
to of 81.3%, see (Yaşar 2019). For a practical deployment 
however, it is necessary to capture almost every fall and still 
having almost no falSE alaRms. Therefore, in future research 
we will investigate, how to combine these approaches to 
achieve maximum sensitivity and specificity.

6.7  Conclusion

As the results can be observed in Table 5a, b, most of the 
activities can be classified with 95% and higher accuracy. 
There are some difficulties classifying similar activities like 
Sitting doWn and fall since there is no activity after Sit-

ting doWn which makes the signal for the Sitting doWn 
activity look very similar to fall. However, real fall activi-
ties are not confused with other activities and in 100% of 
test data “Fall” is detected correctly. To improve correct 
labeling for Sitting doWn activity the statistical information 
provided might not be enough. Extraction of speed informa-
tion or according to the solution proposed by Damodaran 
and Schäfer (2019) energy and power of a signal might be 
helpful to increase values for Sitting doWn activity. These 
are left for future research, in particular we will investigate 
whether including additional statistical information derived 
from energy and power of the signals will improve the 
results any further.

7  Extension 2: counting people

While it is yet difficult and almost impossible to predict and 
understand crowd behavior, it is not infeasible to count the 
number of people in a certain environment—called crowd 
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counting. Crowd counting is not only an interesting and 
challenging task, it can be used in different applications such 
as crowd control, marketing research, and guided tours. For 
us, the crowd-counting use-case is not only of theoretical 
interest but bears also some practical consequences in a cam-
pus setup, see e.g. (Aversente et al. 2016).

7.1  Prior work

Crowd counting approaches are mainly classified into two 
categories: video based recognition and non-image based 
localization (Xi et al. 2014). Most of the existing crowd-
counting models are based on computer vision techniques 
(Li et al. 2008), however these approaches suffer from blind 
spots for the cameras and the absence of light. They are 
also more sensitive towards privacy issues. There are also 
special hardware systems such as WiTrack (Adib et al. 2014) 
that provide a well-constructed signal utilizing time-of-flight 
(TOF) by frequency modulated continuous wave (FMCW). 
In addition, the setup for such devices is a lot more expen-
sive than for ubiquitous WiFi devices.

7.2  Our contribution

We analyzed how our algorithms could be used to support 
crowd counting. We chose algorithm Algorithm 2 for its ver-
satility as a test candidate for our experiments. It should be 
understood, however, that the work presented in this section 
represents work in progress and we provide only prelimi-
nary, actual interims results here and leave a full analysis to 
a forthcoming publication (including a thorough comparison 

to other approaches including e.g. the much more sophisti-
cated analysis presented in Xi et al. (2014).

7.3  Setup

The experiments were performed in building 1, room 235, 
Frankfurt University of Applied Sciences. The transmitter 
was placed at the entrance of the room and the receiver at the 
window on the opposite corner of the laboratory as shown 
in Fig. 5.

For experiments we used as subjects three students, one 
female and two males, and we placed the laptops into differ-
ent corners of the room. Then we performed the following 
activities: 

1. for a single subject: sitting somewhere in the room, 
sitting down, standing up, standing somewhere in the 
room, walking around the room,

2. for two subjects: walking around the room, standing 
somewhere in the room and sitting in different places in 
the room, and

3. for three subjects: sitting in the room in different places.

Henceforth, we created the data-set as depicted in Fig. 7. 
This time we used 3 Rx and 3 Tx antennas from which we 
obtain a CSI matrix with dimensions 500 × 270 . Each col-
umn forms a time series of CSI values for each of the 270 
Rx-Tx pairs of subcarriers.

This way we recorded 1500 samples altogether; each sam-
ple was recorded in a time of 5 s transmitting 100 packet 
per second. Thus, from our experiments we got 10 classes 

Table 5  Confusion matrices

Actual Predicted

Walking Standing up Sitting doWn Empty

(a) Four activities excluding fall

 Walking 1 0 0 0

 Standing up 0 1 0 0

 Sitting doWn 0.25 0.05 0.7 0

 Empty 0 0 0 1

Actual Predicted

Walking Standing up Sitting doWn Empty fall falSE alaRm

(b) Six activities including fall

 Walking 0.95 0 0 0 0.05 0

 Standing up 0 1 0 0 0 0

 Sitting doWn 0.1 0.05 0.55 0 0.3 0

 Empty 0 0 0 1 0 0

 fall 0 0 0 0 1 0

 falSE alaRm 0 0 0 0 0 1
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altogether. These classes are used as the following labels: 
Empty, Sit doWn, Sitting 1 SubjEct, Sitting 2 SubjEctS, 
Sitting 3 SubjEctS, Stand up, Walking 1 SubjEct, Standing 

2 SubjEctS, Walking 1 SubjEct, Walking 2 SubjEctS.

7.4  Algorithms

We implemented algorithm Algorithm  2 described in 
Sect. 4.2 with the following properties. Firstly we denoised 
the signal using symlets and a level of decomposition 6. The 
level of decomposition is related to the length of the time-
series which is 500, and symlets because they are designed 
to have the least asymmetry and the maximum number of 
vanishing moments for a given compact (Meenakshi Chaud-
hary 2013). Then we implemented an LSTM in MATLAB 
(The MathWorks 2019) (using the function lstmLayer) with 
the following configuration:

– Sequence layer: It takes as input prepossessed CSI data, 
a vector with 270 dimensions/features.

– LSTM layer: Configured with 200 hidden units
– Dropout layer: Set to a value of 0.5 which will decrease 

the probability of overfitting
– Fully connected layer: The classification layer or the 

result of the training

– Softmax layer: It normalizes and prepares the data for 
classification known also as multi-class generalization.

– Classification layer: It applies cross entropy to classify 
and give the final output.

We used as well the Adam Optimizer with a batch size of 20 
to minimize the loss of the data samples and a learning rate 
of 10

−3 , we also shuffled data after every epoch in the learn-
ing process to increase the accuracy. We build two different 
networks with similar properties with some small changes 
between them described below.

7.4.1  Crowd counting activity detection LSTM (CCAC‑LSTM)

For this approach, we use the activities of the people in the 
room to classify how many people are in the room. Spe-
cific properties for this approach were 10 epochs, 200 hid-
den units and a batch size of 20, with 10 classes. With this 
configuration we achieved good performance, which is dis-
cussed below.

7.4.2  Crowd counting LSTM (CC‑LSTM)

From the confusion matrix depicted in Table 7 we can con-
clude that the CCAC-LSTM model can very well classify 
if there are one, two or three person(s) in the room. Based 
on that we reconstructed the data to form a data-set with 
four classes: Empty, 1 SubjEct, 2 SubjEctS, 3 SubjEctS. This 
way we try to predict only the number of people in the room 
which was our original goal. This time we decreased the 
batch size to 10 and number of classes to 4, because the 
entry data is different and it fits better with these properties. 

Fig. 6  CSI values

Table 6  Sensitivity, specificity and precision for Fall

Sensitivity Specificity Precision

fall (80 cases) and 
falSE alaRm (60 cases)

1.00 0.91 0.74

fall alone (80 cases) 1.00 0.92 0.62
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Training the same model with the new data we achieved 
again good results, which are discussed below, too.

7.5  Results

Table 7 represents the complete confusion matrix for five 
different activities and 1–3 person(s) are performing these 
activities.

From the confusion matrix we can see that the accuracy 
is pretty high except for a small misclassification between 2 
and 3 subjects sitting in different parts of the room.

Table 8a is the normalized confusion matrix that we can 
derive from CCAC-LSTM only considering the number of 
subjects in the room, ignoring what are they doing since our 
goal was to count how many people were in the room not 
what they are doing. Table 8b is the confusion matrix for the 
second model CC-LSTM.

Comparing Table 8a with Table 8b we infer that the 
model that uses human activity is more accurate, but also 
we see that the misclassification happens mostly on one 
class Empty and this can happen because while recording the 

empty room scenario, we left the laptops running recording 
the CSI. However, as the room was a regular seminar room 
of the university people passed by in the hallway directly 
next to the sender which could have affected the CSI. And 
from the result of scenario N-LOS in Table 2d we know that 
those factors could have a detrimental effect on the results.

From the confusion matrices we computed an overall 
accuracy of 99.72% for the CAC-LSTM algorithm, and an 
overall accuracy of 97.40% for the CC-LSTM algorithm.

7.6  Future work

For future work, we plan to more systematically analyze 
the counting problem and compare it to more sophisticated 
approaches. It would be interesting to compare whether a 
supervised learning approach using a deep-learning regres-
sion technique can compete with or even outperform explicit 
models like the one developed in Xi et al. (2014) which is 
based on Grey Verhulst Model.

Fig. 7  Data set structure

Table 7  CCAC-LSTM confusion matrix

Predicted Actual

 Empty  Sit doWn  Sitting 1 

SubjEct

 Sitting 2 

SubjEctS

 Sitting 3 

SubjEctS

 Stand up  Walking 

1 SubjEct

 Standing 

2 SubjEctS

 Walking 

1 SubjEct

 Walking 2 

SubjEctS

Empty 1 0 0 0 0 0 0 0 0 0

Sit doWn 0 1 0 0 0 0 0 0 0 0

Sitting 1 SubjEct 0 0 1 0 0 0 0 0 0 0

Sitting 2 SubjEctS 0 0 0 1 0 0 0 0 0 0

Sitting 3 SubjEctS 0 0 0 0.02 0.98 0 0 0 0 0

Stand up 0 0 0 0 0 1 0 0 0 0

Walking 1 SubjEct 0 0 0 0 0 0 1 0 0 0

Standing 2 SubjEctS 0 0 0 0 0 0 0 1 0 0

Walking 1 SubjEct 0 0 0 0 0 0 0 0 1 0

Walking 2 SubjEctS 0 0 0 0 0 0 0 0 0 1
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8  Summary and outlook

We have shown that combining standard machine learning 
algorithms such as SVM and LSTM and combining these 
with sophisticated techniques from signal analysis such as 
wavelet decomposition it is possible to detect various human 
activities with high accuracy including fall, presence and 
counting the number of people in a room. For future research 
we will analyze how to further improve the accuracy by fine-
tuning our algorithms. Furthermore, we will check the sta-
bility of the trained models, i.e. whether pre-trained models 
can be easily transferred into a different environment (such 
as a different flat)—ideally with minimal or no training. For 
future work, we will also combine pre-processing techniques 
with LSTM to further improve performance. Last but not 
least, we will combine contextual information and fuse the 
methods described in this paper with recent work on LSTM 
for fall detection (Yaşar 2019) to achieve better sensitivity 
and specificity.
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