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Human activity recognition plays a significant role in smart building applications, healthcare services, and security monitoring. In
particular, WiFi-based indoor wireless sensing system becomes increasingly popular due to its noninvasiveness. This work
presents the design and implementation of DARMS, a Device-free human Activity Recognition and Monitoring System that
can be deployed with low-cost commodity WiFi devices. DARMS is a passive wireless sensing system, and it can accurately
distinguish various daily activities without the user wearing any sensor. DARMS makes two key technical contributions. First,
an effective signal processing methodology is designed to extract the CSI features both in the time domain and frequency
domain. Second, a dual-channel neural network that combines temporal and frequency information is proposed to achieve
fine-grained activity recognition. In our experiments, DARMS shows outstanding performance in different indoor
environments, with an average accuracy of 96.9% for fall detection and 93.3% for human activity recognition.

1. Introduction

Human activity recognition is an important task, and it plays a
crucial role in smart building applications [1–3], healthcare
services [4–6], and security monitoring [7–9]. Many efforts
have been devoted to building the activity recognition system
based on various sensing devices such as high-resolution cam-
eras or wearable sensors. But these sensing systems still have
limitations in privacy security and deployment cost. For exam-
ple, setting up a camera in a private space, such as toilet or
bedroom, may seriously violate the privacy of users. Wearable
sensors are usually limited by battery capacity and have to be
recharged frequently. A promising approach is to employ per-
vasive WiFi signals for human activity recognition. WiFi-
based passive wireless sensing system does not require users
to wear any equipment, and it is becoming ubiquitous due to
its noninvasive feature.

WiFi channel state information (CSI) portrays the char-
acteristics of wireless channel. In indoor environment, CSI is
affected by human movements through multipath effects
and thus carrying motion features. Many WiFi-based sens-
ing systems have been dedicated to designing and imple-
menting various signal processing methods to combine the
substantial human movement information carried by CSI.

Since the success of deep learning in computer vision,
various accurate and reliable image classification models
have been proposed. Inspired by these models, lots of activ-
ity recognition systems transplant these mature models for
visual tasks into wireless sensing tasks. These studies have
been dedicated to transforming the raw CSI or features
extracted from CSI into images. Then, feeding these pictures
generated by CSI into the image classification model to
obtain activity recognition results. However, this approach
ignores the essential difference between visual images and
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wireless signals. The design of neural network lacks fine-
grained temporal or frequency modeling of human activities
in the wireless signal space. In this paper, we propose
DARMS, a Device-free human Activity Recognition and
Monitoring System that can be deployed with low-cost com-
modity WiFi devices. In summary, our contributions are
threefold:

(i) We analyze the CSI model for passive activity recog-
nition and design an effective signal processing
methodology that can extract the CSI features both
in the time domain and frequency domain

(ii) A novel neural network with the backbone of dual-
channel convolution-enhanced transformer is pro-
posed to achieve fine-grained activity recognition.
Instead of raw CSI, the neural network takes the
CSI features as model input, which can utilize the
human motion information carried by CSI data
more effectively

(iii) We design and implement DARMS with Intel 5300
NIC, which is a low-cost commodity WiFi device.
The experiments conducted in different environ-
ments show that DARMS achieves an average accu-
racy of 96.9% for fall detection and 93.3% for
human activity recognition

The rest of the paper is organized as follows. We provide
a short review of related work in Section 2 and give an over-
view of our system design in Section 3. Section 4 analyzes the
CSI model for passive activity recognition, and Section 5
describes the methodology of data acquisition and process-
ing. In Section 6, we elaborate the design of neural network
in DARMS. Section 7 presents the experimental settings and
evaluation results, followed by a conclusion in Section 8.

2. Related Work

Many efforts have been devoted to building device-free
human activity recognition system based on WiFi signals.
They can be divided into two categories: model-based
method and deep learning-based method.

2.1. Model-Based Method. Model-based activity recognition
systems explicitly build physical models between wireless sig-
nals and human movements [10–16]. Many published works
extract the characteristics from CSI amplitude and phase to
distinguish various movements. CARM [15, 16] builds the
model of WiFi-based human activity recognition and employs
a hidden Markov model-based approach to identify various
activities accurately. Two theoretical models are proposed in
CARM, one is the CSI-speed model which quantifies the rela-
tion between CSI dynamics and human movement speeds,
and the other is the CSI-activity model which establish the
relation between movement speeds and human activities.
Niu et al. model the wireless sensing to reveal the impact of
static multipaths in activity recognition, and a novel method
that exploits multipath effect is proposed to improve the wire-
less sensing performance [10]. WiFall [11] analyzes radio

propagation model to build the correlations between different
radio signal variations and activities. It uses CSI amplitude-
related features to characterize falls and other daily move-
ments. DeFall [13] is a passive fall detection system usingWiFi
signals. It probes the distinctive patterns of speed and acceler-
ation in human falls. DeFall compares the patterns of the real-
time speed and acceleration estimates against the template to
detect falls. WiAct [14] takes the Doppler frequency shift
information as the input for extreme learning machine to clas-
sify different activities. These works have in common that they
extract the signal features on the basis of wireless sensing
models. Then, employing traditional machine learning classi-
fiers (e.g., SVM, random forest, and ELM) or setting threshold
to distinguish the features of various activities. However, for
activity recognition task, it is difficult to handle features with
too high dimension and complex structure only based on tra-
ditional signal model, restricting them to achieve fine-grained
activity recognition with higher accuracy. Thus, DARMS pro-
poses a novel dual-channel neural network to process the CSI
features extracted from the signal processing algorithm.

2.2. Deep Learning-Based Method.Manywireless sensing sys-
tems using WiFi signals rely on data-driven approaches to
learn the complex relationship between signal characteristics
and human activities [2, 6, 17–26].Widar 3.0 [17] uses convo-
lutional neural network (CNN) and recurrent neural network
(RNN) to mine the properties of CSI features in the spatial
dimension and temporal dimension. It can distinguish eight
gestureswithanaverageaccuracyof 92.9%.Chenet al. propose
an attention-based bidirectional long short-term memory
(ABLSTM) network for passive human activity recognition
[21]. The ABLSTM is employed to learn representative fea-
tures in twodirections fromrawsequentialCSImeasurements.
CSAR[24]proposes achannel selectionmechanismtoactively
select available WiFi channels with better quality. It also
employs LSTM to combine the CSI features for activity recog-
nition. Instead of usingCNNandRNN, STFNets [18] propose
anew foundational neural networkblock. It integrates awidely
used time-frequency analysis method, the short-time Fourier
transform, into data processing to learn features directly in
the frequency domain. In RaGAM [25], the statistical charac-
teristics of RSS data in the time domain are fed into a probabi-
listic neural network to achieve target intrusion sensing based
on WiFi. Li et al. design a neural network with two-stream
structure to capture both time-over-channel and channel-
over-time features of CSI [22]. We also notice the concept of
“dual-view” [26] that merges the time series image of XOZ
plane and that of YOZ plane collected by millimeter-wave
radar as the input of neural network, which is different from
the meaning of “dual-channel” in DARMS. Compared with
previous works, the design of neural network inDARMS takes
the signal characteristics into consideration. Instead of raw
CSI, DARMS takes the temporal and frequency features of
CSI asmodel input,which canutilize thehumanmotion infor-
mation carried by CSI data more effectively. Besides, inspired
by state-of-the-art neural network structures, a novel neural
network built with the backbone of convolution-enhanced
transformer is proposed in DARMS to improve the perfor-
mance of activity recognition.
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3. System Overview

Figure 1 illustrates the architecture of DARMS. It is com-
posed of three key components: data acquisition hardware
module, signal preprocessing software module, and activity
recognition module. The hardware and the software compo-
nents work as a unity to transform the low-cost commodity
WiFi devices into a wireless sensing platform.

3.1. Data Acquisition Hardware. This component is aimed at
collecting the WiFi signals that can be used to recognize
human activities. During the data collection process, we
use one transmitter and two vertically placed receivers to
record human movements. Each of them is equipped with
a low-cost commodity WiFi device (Intel 5300 NIC, cost
~ $5). Then, we use the Linux CSI Tool [27] to extract CSI
from the collected WiFi packets.

3.2. Signal Preprocessing Software. In this module, DARMS
sanitizes the CSI data so that they can be fed into the pro-
posed deep learning model. Specifically, we first perform
data denoising to remove the phase offset and amplitude
shift of raw CSI data. Then, we propose an activity indicator
to extract the CSI segment that contains human activities.
Finally, we transform each CSI segment into the representa-
tion that can be fed into the neural network.

3.3. Activity Recognition. This component is designed to rec-
ognize human activities using the processed CSI data that gen-
erated from the signal preprocessing module. To achieve the
goal, we design a dual-channel neural network that considers
both time and frequency domain information to achieve
fine-grained human activity recognition. The details of the
proposed deep learning model are described in Section 6.

4. CSI Model for Passive Activity Recognition

CSI portrays the channel state between the transmitter and
the receiver, which is sensitive to environmental changes
and human body’s movements. Thus, we will model the
impact of human activity on CSI first.

4.1. Multipath Effect. For indoor environment, walls, ceiling,
furniture, human body, etc., can reflect wireless signals.
Thus, multiple transmission paths exist between the trans-
mitter and receiver. Taking the multipath effect into consid-
eration, the CSI of a subcarrier with center frequency f at
time t could be modeled as follows [15, 17, 28]:

H f , tð Þ = e−j2ϕ f ,tð Þ hs fð Þ + hd f , tð Þ½ �,

hd f , tð Þ = 〠
N

l=1
αl f , tð Þe−j2πf τl tð Þ,

8
>><

>>:
ð1Þ

where hsð f Þ describes the channel state of static part,
including the line-of-sight (LoS) signal and the signals
reflected by ambient objects, hdð f , tÞ represents the channel
state of dynamic part, corresponding to the signals reflected
by moving human body. ϕð f , tÞ is the phase shift caused by
carrier frequency offset, sampling frequency offset and tim-
ing alignment offset. αlð f , tÞ and τlðtÞ denote the amplitude
attenuation and propagation delay of the signal transmitted
through lth path, respectively. According to Equation (1),
the amplitude of CSI is determined by the sum of multipath
signals, including the signal transmitted through LoS path
and the signal reflected by objects or human body. The
movement of the human body will change the propagation
path of the signal. Thus, the fluctuation of CSI amplitude
in the time domain portrays the impact of movements on
the signals reflected by human body.

4.2. Doppler Effect. When a person moves between a pair of
transmitter and receiver, his movement will lead to Doppler
effect that shifts the frequency of received signals. The
Doppler frequency shift f DðtÞ is as follows:

f D tð Þ = Δdpath
Δt · c f0, ð2Þ

where Δdpath represents the change in the length of sig-
nal propagation path in the duration Δt, c denotes the prop-
agation speed of WiFi signal in the air, and f0 is the carrier
frequency of the signal. According to Equation (2), the

CSI data

Dual-channel model

Signal pre-processing Activity recognition OutputData acquisition

Denoising

Segmentation

Receiver A

Transmitter Receiver B
Transformation Temporal Frequency
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Walking Fall (forward)
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Figure 1: System overview. DARMS is composed of three key components, hardware module for data acquisition, software module for
signal preprocessing, and neural network for activity recognition.
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Doppler information in the frequency domain contains the
speed of length change in signal propagation path. In indoor
environment, the propagation path can be divided into the
static part and dynamic part. While the dynamic part con-
tains the signals reflected by the moving human body and
environmental noise. Thus, human movements will change
the path length of the signals reflected by human body.
The speed of human body is highly correlated with the speed
of length change in reflection path. Thus, the Doppler infor-
mation extracted from CSI data can be used to infer human
activity from another perspective. After taking the Doppler
effect into consideration, the dynamic part of CSI hdð f , tÞ
in Equation (1) can be transformed as follows:

hd f , tð Þ = 〠
N

l=1
αl f ,tð Þe−j2πf

Ð t

−∞
f Dl xð Þdx

: ð3Þ

According to Equation (1), CSI can be divided into static
part hsð f Þ and dynamic part hdð f , tÞ, but we only interested
in the dynamic part hdð f , tÞ that contains the information of
human body’s movements. Besides, the phase shift e−j2ϕð f ,tÞ
hinders us from directly extracting the hdð f , tÞ. To eliminate
the phase shift, we calculate the conjugate product of CSI:

H f , tð Þj j2 = hs fð Þhs fð Þ∗ + hs fð Þ〠
N

l=1
αl f ,tð Þej2πf

Ð t

−∞
f Dl xð Þdx

+ hs fð Þ∗ 〠
N

l=1
αl f ,tð Þe−j2πf

Ð t

−∞
f Dl xð Þdx

+ hd f , tð Þhd f , tð Þ∗:
ð4Þ

The conjugate product of CSI consists of four terms. In
general, the power of signals transmitted through static path
is much larger than that of the signals reflected by moving
body, i.e., jhsj≫ jhdj. Thus, the first term, denotes the conju-
gate product of static path components, is the largest term.
The fourth term denotes the conjugate product of dynamic
path components, is much smaller than the first three term

and can be ignored, while the second and third terms con-
tain the information of human body movements that can
be used to realize activity recognition.

4.3. Necessity of Multiview Perception. To achieve accurate
and find-grained activity recognition, deploying multiple
Tx-Rx pairs at different angles is necessary. As depicted in
Figure 2, a volunteer stands between two Tx-Rx pairs, if
the volunteer is falling down towards pair-A, the length of
reflection path will change accordingly. The length change
of pair-A ΔdpathA = jdAðt + ΔtÞ − dAðtÞj and that of pair-B
ΔdpathB = jdBðt + ΔtÞ − dBðtÞj are unequal. According to
Equation (2), the Doppler effect of CSI received by pair-A
is different with that of pair-B. Thus, we can take advantage
of the various Doppler effect on multiple Tx-Rx pairs to
sense the direction of human movement.

5. Data Acquisition and Processing

5.1. Data Acquisition. To detect human activity using WiFi
signals, we first collect the channel state information through
the CSI Tool [27]. The CSI Tool logs CSI data on 30 subcar-
riers for each signal transmission link. We combine all
collected CSI data to form a CSI matrixH with the dimension
of Nsub × T ×Nstream, where Nsub represents the number of
subcarriers that can extract CSI data, T represents the total
number of received packets. Nstream is the number of spatial
streams in MIMO system which equals the number of trans-
mitting antennas times that of receiving antennas.

5.2. CSI Preprocessing. Due to the raw CSI data contains a lot
of noise, thus it cannot be fed into the neural network
directly. Figure 3 illustrates our preprocessing workflow to
extract the features from the CSI data. The preprocessing
module can be divided into three parts: denoising, segmen-
tation and transformation.

5.2.1. Denoising. In this stage, DARMS extracts the ampli-
tude of CSI by calculating the modulus of CSI complex.
Figure 3(a) presents the amplitude of raw CSI data (only
one subcarrier is plotted for clarity). Then, DARMS applies
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dB (t)dB (t+𝛥t)
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A
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(b) Reflection path of pair-B

Figure 2: For the Tx-Rx pairs placed vertically, the changes in the length of reflection path are unequal.
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a 6-order Butterworth low-pass filter (the cutoff frequency is
30Hz) on each CSI stream to remove high-frequency noise.
The result after the filter is plotted in Figure 3(b). To remove
the static part of CSI data, DARMS calculates the moving
average for each CSI stream with a 1-second sliding window,
i.e., the length of sliding window is 500 if the sample rate
equals 500Hz. Figure 3(c) shows the amplitude of CSI data
after eliminating the moving mean.

5.2.2. Segmentation. To extract the CSI segment that records
human body movements, we design an activity indicator to
detect the beginning and end of each movement. In the
experiments, one can observe that CSI variance is sensitive
to environmental changes. For instance, we ask a volunteer
to sit on a chair, the collected CSI after denoising is depicted
in Figure 4(a) (only presents the CSI of one subcarrier
among all 180 subcarriers for simplicity). When the volun-
teer is stationary (stand still and sit still), the amplitude of
CSI is relatively stable. While the volunteer is sitting down,
the processed CSI fluctuates violently. Thus, we propose a

variance-based indicator for movement segmentation. The
center of the segment p is decided by the following:

p = arg max
s

〠
i,k

〠
s+L

j=s
std hi,j−L/2,k, hi,j+L/2,k

� �
, ð5Þ

where L represents the length of CSI segment that records
movements, hi,j,k represents the j

th CSI data of ith subcarrier

that received by kth spatial stream, and stdðhi,j−L/2,k, hi,j+L/2kÞ
is the standard deviation of the CSI segment from hi,j−L/2,k to
hi,j+L/2,k.

Figure 4(b) shows the amplitude of activity indicator,
DARMS takes the maximum point of the indicator as the
center of the activity. Then, according to the predefined
segment length L, the beginning and end of the activity are p
− L/2 and p + L/2, respectively. For example, in Figure 3(c),
the data between the two red lines is the CSI segment extracted
by the activity indicator.
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Figure 3: The preprocessing workflow of DARMS.
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5.2.3. Transformation. After the segmentation module, we
obtain the CSI segment that contains human movement
information in the time domain. Figure 3(e) vividly shows
the heatmap of whole CSI segment, including the CSI data
of 180 subcarriers. To extract its Doppler frequency shift
profile, we need to transform the CSI data into frequency
domain. To reduce the size of output, we apply a principal
component analysis (PCA) on CSI streams of each antenna
(each antenna has 30 CSI streams) and only the prominent
dynamic component is retained. Thus, we can reduce the
dimension of CSI matrix from Nsub × L ×Nstream to 1 × L ×
Nstream. Figure 3(d) plots the results of PCA (only one CSI
stream is plotted in the figure for simplicity). Then, we con-
duct short-time Fourier transform to extract the Doppler
spectrum for each row of the new CSI matrix. We also dis-
card the frequency bins that above 30Hz to further com-
press the size of Doppler spectrum. The result of
transformation step is depicted in Figure 3(f).

Algorithm 1 summarizes the workflow of signal prepro-
cessing module, which takes the raw CSI dataH as input and
returns the temporal features Tc and frequency features Fc
extracted from CSI data.

6. Neural Network Design

Figure 5 illustrates the architecture of our dual-channel neu-
ral network. The CSI data after preprocessing is split into
time and frequency streams. The CNN layer extracts dis-
criminative features from the two streams. Then, the features
will be fed into the swin transformer to explore the sequence
information. Finally, the dual-channel features are aggre-
gated and put into the multilayer perceptron for the final
output.

6.1. Model Inputs. After the preprocessing stage, we obtain the
CSI matrix both in the time domain and frequency domain
that will be fed into the temporal channel and frequency chan-
nel, respectively. The input of temporal channel Tc is the
tensor with dimension of N × T × k, and the input of fre-
quency channel is the Doppler spectrum of all spatial streams,
represented by Fc with dimension ofM × L × k, whereN is the
number of subcarriers per spatial stream, T is the length of CSI
segment, k is the number of all spatial streams, and M and L
represent the number of frequency bins of STFT and the
length of Doppler spectrum. To adapt to the subsequent 2D
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Figure 4: (a) The amplitude of processed CSI. (b) The amplitude of the activity indicator reaches the peak while the volunteer is sitting
down.

Input: The raw CSI data H ∈ℂNsub×T×Nstream .
The element hi,j,k in H represents the jth CSI data of ith subcarrier that received by kth spatial stream.

Output: Temporal features Tc, frequency features Fc.

1: Extracting the moving average of CSI amplitude. hmi,j,k = jhi, j,kj − 1/W∑j+W/2
t=j−W/2jhi,t,kj, where W is the length of sliding window.

2: Utilizing a six-order Butterworth low-pass filter along the second dimension of H to remove high-frequency noise. hl =
LowpassðhmÞ

3: Calculating the activity indicator for hl based on Equation (5) and finding the peak index of activity indicator p.
4: Extracting the CSI segment hs from hl , in which hs = ½hli,p−L/2,k, hli,p+L/2,k� and L represents the length of CSI segment.

5: Taking hs as the output of temporal CSI features Tc ∈ℝNsub×L×Nstream .
6: Doing PCA for Tc.
7: Calculating the Doppler spectrum D of Tc based on STFT, in which D ∈ℝN f ×L×Nstream and Nf represents the number of FFT

points in STFT.
8: Discarding the frequency bins above 30Hz in D. Then obtaining the output of frequency features Fc ∈ℝ

N freq bin×L×Nstream , where
N freq bin is the number of frequency bins below 30Hz.

9: return Tc and Fc

Algorithm 1: The pseudocode of preprocessing module.
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convolutional network, we flatten the input data. The dimen-
sion of temporal channel is converted to ðNkÞ × T, and that of
frequency channel is transformed to ðMkÞ × L before feeding
into the neural network.

6.2. Dual-Channel Convolution-Enhanced Transformer. This
layer extracts discriminative features of CSI both from the
temporal channel and frequency channel.

6.2.1. CNN Module. Convolutional neural network (CNN) is
a powerful technique to extract features from complex inputs.
Thus, we first use CNN module to process the input data.
Specifically, we use a stacked six layer 2D CNN module. After
each convolutional layer, we employ a batch normalization
(BN) layer to normalize the mean and variance of the output,
followed by a leaky rectified linear unit (Leaky ReLU) to add
nonlinearity to the model.

6.2.2. Transformer Module. Then, we employ the swin trans-
former (tiny version) [22] to process the feature maps gener-
ated by CNN module. The swin transformer is composed of
patch partition, linear embedding, path merging, and repeated
swin transformer blocks. The structure of swin transformer
block is illustrated in Figure 6. A swin transformer block is
made up of two sequentially stacked subblocks. The first part
contains a window-based multihead self-attention (MSA)
module [29], followed by a multilayer perceptron (2-layer)
which takes Gaussian error linear units (GELU) [30] as its
activation function. A LayerNorm (LN) [31] is applied before
each MSA module and each MLP, and a residual connection
[32] is applied after each module. The second part is built by
replacing the window-based MSA module by the MSA mod-
ule based on shifted windows, with other layers keeping the
same with the first part.

6.3. Aggregation Layer. We use a multilayer perceptron
(MLP) to aggregate the features encoded by the dual-channel
swin transformer. Assume that the features extracted from
the temporal channel and frequency channel with the dimen-
sion of dt × 1 and df × 1 (after flatten). Before feeding into the
MLP, we concatenate the two output vectors to generate the
final feature vector with the dimension of ðdt + df Þ × 1. Then,
the MLP takes the final feature vector to identify different
human activities.

6.4. Loss Function. To minimize the error between the model
outputs and the corresponding ground truth, we employ a
standard cross-entropy loss as the loss function L, which is
defined as follows:

L = −〠
M

i

yi log f θ ; σt ; σf

� �� �
, ð6Þ

where f ð·Þ denotes the distribution of activity prediction and
yi denotes the corresponding ground truth, θ is the weight of
model, σt and σf are the input of temporal and frequency
channel, and M is the total number of activity categories.
We optimize the loss function through Adam algorithm [33].

7. Evaluation

In this section, we present the implementation and perfor-
mance of DARMS in detail.

7.1. Experimental Setup. We evaluate the performance of
DARMS in a rectangular meeting room with area of 52m2

and a smaller office room of 36m2. The layouts of the rooms
are shown in Figure 7, with some furniture and cabinets inside,
making each of them a rich multipath environment. We build
the system prototype using three ThinkPad X200 laptops, and
each of them is equipped with an Intel 5300 NIC. One laptop
is used as transmitter and the other two are receivers. The CSI
Tool [27] developed by Halperin et al. is loaded on all three
computers for transmitting WiFi packets and collecting CSI.
For the transmitter, we employ one antenna to send 500
packets per second and the WiFi carrier frequency is set on

Softmax

Multi-layer perceptron

Concatenate

Swin transformer
for temporal channel

Flatten Flatten

CNNCNN

BN BN

Leaky ReLULeaky ReLU

6⨯
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Swin transformer
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Figure 5: The overview of dual-channel neural network. It
combines temporal and frequency features of CSI to classify
various human activities.
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channel 64 (5.32GHz). For the two receivers, each of them is
equipped with three antennas to received WiFi packets. In
DARMS, the two Tx-Rx pairs are placed perpendicularly to
achieve maximum sensitivity and the distance between each
Tx-Rx pair is 3m. All antennas are placed at the same height
(70 cm) from the ground.

7.1.1. Dataset. We recruit 21 volunteers (16 males and 5
females) with different heights (range from 155 cm to
185 cm) and weights (range from 45 kg to 80 kg) in the
experiments. Volunteers are asked to perform one of the
six movements that happen frequently in daily life. These
movements are depicted in Figure 1. Besides, if there is no
one in the action zone depicted in Figure 7, it will be called
“empty”. In total, we collect CSI data for 3050 sets of move-
ments (empty: 500 sets, walking: 500 sets, standing up: 500
sets, sitting down: 500 sets, fall to the left: 350 sets, fall to
the right: 350 sets, and fall to the front: 350 sets) to form
the dataset.

7.1.2. Model Settings. The input of the neural network is the
CSI data after preprocessing module. It is composed of tem-
poral part and frequency part, both of them with the dimen-
sion of 30 × 800 × 6. When implementing the stacked six-
layer CNN module, 2D convolution operation is used to
process the CSI data of temporal channel and frequency
channel. The numbers of the convolutional filters in these
layers are set as 8, 64, 32, 16, 8, and 1, respectively. The ker-
nel size of all convolutional layers is 3. In the CNN module,
Leaky ReLU with the negative slope set as 0.02 is employed
as the activation function. In the swin transformer, we adopt
the Swin-T, which is detailedly described in [34]. To opti-
mize the loss function, we employ the Adam algorithm.

The learning rate of the optimizer is set as 0.00005, and
the exponential decay rates β1 and β2 are 0.9 and 0.999.

7.2. Experimental Results and Analysis. We now evaluate
how the performance of DARMS is affected by the system
parameter settings. For each activity, we randomly select
80% of the data (2440 sets in total) to form the training
group, while the remaining part (610 sets in total) to form
the test group.

7.2.1. Evaluation Metrics. To evaluate the performance of
DARMS more accurately and comprehensively, we measure
its performance from the accuracy of fall detection and that
of activity recognition, i.e., the proportion of correctly recog-
nized activities among all predictions.

(i) Fall Detection. All the test cases are divided into two
parts: fall movements (fall to the left, fall to the right,
and fall to the front) and nonfall movements (empty,
walking, sitting down, and standing up).

(ii) Activity Recognition. All the test cases are divided
into seven activities: empty, walking, sitting down,
standing up, fall to the left, fall to the right, and fall
to the front.

7.2.2. Impact of Array Size. To understand the impact of the
array size, we repeat the experiments to test DARMS’s per-
formance with one, two, and three antennas of each receiver.
The accuracy of fall detection and activity recognition is
plotted in Figure 8(a). For fall detection, the accuracy is
88.2% with one antenna, 91.8% with two antennas, and
96.9% with all three antennas. Meanwhile, the accuracy of
activity recognition is 83.9%, 89.3%, and 93.3% with one,
two, and three antennas. One can clearly observe that larger
array size brings better accuracy both in fall detection and
activity recognition, while using more antennas increases
the size of data fed into the neural network. Thus, the size
of the model will be larger, which will consume more com-
puting resources. There is a tradeoff between computing
complexity and sensing accuracy.

7.2.3. Impact of Segment Length. The segment length is a key
factor in sensing accuracy. We conduct experiments to test
DARMS’s performance with different segment length set-
tings. In the experiments, we set the segment length as 600,
800, and 1000. The results are plotted in Figure 8(b). For fall
detection, the accuracy is 94.6%, 96.9%, and 97.0% with the
segment length is 600, 800, and 1000. Meanwhile, the accu-
racy of activity recognition is 91.6%, 93.3%, and 93.6%. It is
clearly that the increase in segment length from 600 to 800
brings obvious performance enhancement. While the increas-
ing from 800 to 1000 only brings slight improvement. It is worth
emphasizing that the length of CSI segment determines the input
size of neural network, i.e., longer segment length means larger
model. Thus, to accelerate the computation, we set the segment
length to 800 in the remaining experiments.

7.2.4. Impact of Tx-Rx Pair Layout. To evaluate the impact of
Tx-Rx pair layout, we conduct experiments to compare
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Figure 6: The overview of swin transformer block.
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DARMS’s performance with only using Tx-Rx pair-A, pair-B,
and both of them. The result is shown in Figure 8(c). The
accuracy of fall detection is 92.0% with only using pair-A,
91.1% with pair-B, and 96.9% with both of them, while for
activity recognition, the accuracy is 77.2%, 76.2%, and 93.3%,
respectively. Obviously, one more perception link brings sig-
nificant enhancement. Thus, it is important to employ multi-
view perception links to achieve accurate and fine-grained
wireless sensing.

7.2.5. Impact of Denoising Algorithm. To study the perfor-
mance of denoising algorithm proposed in DARMS, we
compare the performance of four denoising methods. In
method 1, we do not apply any preprocessing algorithm to

denoise the CSI data, i.e., we remove the denoising step in
the signal preprocessing module. The remaining parts of
the preprocessing module, including the step of segmenta-
tion and transformation, keep the same. In method 2, we
utilize the Savitzky-Golay filter to process the noisy CSI data,
which can effectively preserve the envelope of the raw wave-
form [35, 36]. Method 3 applies the singular value decompo-
sition (SVD) to denoise the raw CSI data, which can
eliminate the background CSI and effectively extract the
channel information of signals reflected by human bodies
[37]. Method 4 is the denoising algorithm proposed in
DARMS. The results are listed in Table 1. For method 1,
the accuracy of fall detection is 85.6% and that of activity
recognition is 81.3%. Meanwhile, the accuracy of fall

5.6 m
3 m

3 m

9.2 m
Tx Rx

Action zone

(a) The layout of room A

3 m6 m

6 m

3 m

Tx Rx

Action zone

(b) The layout of room B

Figure 7: Testbed environment. The experiments are conducted in room A and room B.
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detection and activity recognition is 95.8% and 93.0% with
method 2. When taking method 3 as the denoising algorithm,
the accuracy is 94.9% and 92.2%, respectively. Compared with
the methods 2 and 3, the preprocessing workflow proposed by
DARMS can slightly improve the performance of fall detection

and activity recognition, with the accuracy of 96.9% and
93.3%.

7.2.6. Ablation Study.We conduct the ablation study to eval-
uate the contribution of each module in the dual-channel
neural network. In each test, we ablate a specific component
from the full model, including the temporal channel, fre-
quency channel, and transformer block. Table 2 summarizes
the experimental results. The accuracy of fall detection is
96.1% while only applying frequency channel 95.4% with
only temporal channel and 96.9% with dual-channel. For
activity recognition, the accuracy is 90.3%, 87.9%, and
93.3%, respectively. The confusion matrix of activity recog-
nition is depicted in Figure 9. It can be observed that the
ablation on frequency module incurs a bigger decline than
the ablation of temporal channel. One can conclude that
dual-channel structure does truly help DARMS to achieve
a better recognition accuracy. We also test the model
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Figure 8: Factors affecting the system performance. (a) Array size. (b) Segment length. (c) Layout of Tx-Rx pair.

Table 1: Comparison: system performance with various denoising
algorithms.

Fall detection Activity recognition

Without denoising 85.6% 81.3%

SG filter 95.8% 93.0%

SVD 94.9% 92.2%

DARMS 96.9% 93.3%
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performance if the transformer block is removed. It is worth
emphasizing that the output size of CNN module is too large
to be directly fed into the multilayer perceptron. Thus, we use
a stacked three-layer CNN module to replace the transformer
block. In the three-layer CNN module, each convolutional layer
is followed by a max pooling layer (the kernel size and stride
equal 2) to downsample the output. Compared with the full
model of DARMS, the ablation on transformer block incurs an
accuracy decline of 4.7% with fall detection and 6.4% with

Table 2: The results of ablation study compared with the full model of DARMS.

Model
Fall detection Activity recognition

Accuracy Variation Accuracy Variation

DARMS 96.9% - 93.3% -

(i) Removing temporal channel 96.1% -0.8% 90.3% -3.0%

(ii) Removing frequency channel 95.4% -1.5% 87.9% -5.4%

(iii) Removing transformer block 92.2% -4.7% 86.9% -6.4%
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Figure 9: The confusion matrix of activity recognition. (a) Only employ temporal channel. (b) Only employ frequency channel. (c) Employ
dual-channel.

Table 3: Comparison: system performance with various
backbones.

Fall detection Activity recognition

SVM 93.6% 89.8%

ResNet 95.7% 91.2%

CNN+LSTM 96.3% 92.6%

DARMS 96.9% 93.3%
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activity recognition. It reveals that the feature extraction ability of
transformer block is better than the traditional CNN module in
this classification task, which is critical to the improvement of
model performance.

7.2.7. Comparison with Various Backbone. We compare
DARMS’s performance with four CSI-based activity recog-
nition approaches. In the first approach, we design a set of
Gabor filters to extract features from the preprocessed CSI
data. Then, the features are used to train an SVM classifier
(conducted by LIBSVM library [38], using Gaussian kernel)
to distinguish different activities. In the second approach, we
transform the processed CSI data into grey images and then
feeding the images into the neural network (employing the
ResNet-101 as the backbone) to generate the prediction of
activity. In the third approach, the transformer module in
DARMS is replaced with long short-term memory (LSTM)
network and the rest parts (preprocessing module and
dual-channel structure) are the same as DARMS. The hid-
den dimension of the LSTM module is 1024. The fourth
approach is the methodology of DARMS. Table 3 shows
the performance of four approaches, from which we can
observe that DARMS achieves the best performance among
all tested algorithms.

7.2.8. Cross-Environment Performance. We conduct a set of
experiments to evaluate the cross-environment performance
of DARMS. In the first test, we train the model with the
dataset collected in room A and test the model with the data-
set collected in room B. In the second test, we swap the data-
set used for training and validation. Table 4 shows the
results. The model trained by the dataset collected in room
A achieves the accuracy of 92.6% for fall detection and
88.5% for activity recognition. If the model is trained by
the dataset of room B, the accuracy of fall detection and
activity recognition is 90.8% and 87.3%, respectively. The
performance of DARMS only slightly drops when the envi-
ronment changes.

7.2.9. Cross-Person Performance. We also evaluate the
impact of user’s body shape on system performance. In the
evaluation of DARMS, we recruit 21 volunteers (16 males
and 5 females) with various heights (range from 155 cm to
185 cm) and weights (range from 45 kg to 80 kg) to conduct
the experiments. In the experiment, we randomly divide the
CSI dataset into two sets. The CSI data in set 1 is collected by
11 volunteers, and the data in set 2 is collected by the other
volunteers. In the first test, we utilize the data of set 1 to train
the model and take the data of set 2 to test its performance.
In the second test, the dataset used for training and valida-
tion is swapped. It is worth noting that we do not divide
the CSI dataset into more groups or train the neural network
for each volunteer in this experiment. Because the total
number of CSI data collected by a volunteer (or several vol-
unteers) is insufficient to train the neural network thor-
oughly. Too little training dataset may lead to severe
overfitting. Table 5 lists the results. The model trained by
set 1 achieves the accuracy of 95.0% for fall detection and
92.1% for activity recognition. If the model is trained by

set 2, the accuracy of fall detection and activity recognition
slightly decreases to 93.3% and 91.2%. DARMS still main-
tains the recognition accuracy at a high level when tested
by untrained users.

7.2.10. Loss Curve. Figure 10 depicts the training loss curve
and the validation loss curve of 200 epochs. It can be
observed that the validation loss hits the bottom and almost
stops decreasing when the deep learning model has been
trained around 150 epochs. Thus, in the evaluation of
DARMS, we terminate the training when it reaches 150
epochs to avoid overfitting.

8. Conclusion

In this paper, we propose DARMS, a passive wireless sensing
system only employs low-cost commodity WiFi devices. To
achieve fine-grained activity recognition and monitoring,
we carefully analyze the impact of human movement on
CSI and design an effective signal processing method to
extract the movement information both in the time domain
and frequency domain. A novel neural network based on
dual-channel transformer is proposed to combine substan-
tial CSI features to improve the performance of human
activity recognition. The experimental results demonstrate
that DARMS can classify various human activities with high
precision (this work was partially done when the third
author was affiliated with Fudan University).

Table 4: Cross-environment performance of DARMS.

Fall detection Activity recognition

Room A (train) 92.6% 88.5%

Room B (train) 90.8% 87.3%

Table 5: Cross-person performance of DARMS.

Fall detection Activity recognition

Set 1 (train) 95.0% 92.1%

Set 2 (train) 93.3% 91.2%
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Figure 10: Curves of training loss and validation loss.
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It is worth noting that DARMS still has some limitations.
For the current prototype of DARMS, its performance has
only been evaluated in different rooms with similar geomet-
ric setups of Tx-Rx pairs, while the accuracy across various
geometric setups is another important criterion for the per-
formance of cross-domain activity recognition. It will be our
future work to design a system that can adapt to different
geometric setups.
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