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ABSTRACT This paper presents a machine learning method, Gaussian Mixture Hidden Markov Model 

(GMM-HMM), for device-free activity recognition using WiFi channel state information (CSI). The basic 

concept of CSI is introduced and signal changes caused by human activity are described, which demonstrates 

that human activity can be identified using a unique mapping between action and signal variations. The phase 

difference expanded matrix is built by the mean and standard deviation of phase difference as feature matrix 

after linear correction and Savitzky-Golay filter is performed on the CSI raw phase information.  The GMM-

HMM is used for classification as the human activity can be modeled as the Markov process and the complex 

activity patterns can be fitted by multiple Gaussian density functions, respectively. The proposed system is 

verified on the self-collected datasets and several factors affecting the recognition accuracy are analyzed. 

Furthermore, the system has compared with the previous work. High accuracy and robustness in universal 

scenarios are realized. Experimental results show that the average recognition accuracy of the proposed 

system is over 97%. 

INDEX TERMS Activity recognition, channel state information (CSI), device-free, Gaussian Mixture 

Hidden Markov Model (GMM-HMM), phase difference. 

I.  INTRODUCTION 

Recent years have witnessed increasing research interest in 

human activity recognition as it benefits multiple applications, 

such as intrusion detection[1], [2], smart homes[3], and health 

care services[4]. With the popularity of WiFi devices and the 

rich channel characteristics of channel state information (CSI), 

human activity recognition based on WiFi CSI has attracted 

widespread attention. Traditional recognition methods, such 

as sensor-based applications, usually require users to wear or 

attach smart devices, which increases inconvenience and 

obstruction for users [5], [6]. Vision-based human activity 

recognition methods have the problems of privacy security 

invasion and susceptibility to environmental influences such 

as light interference[7]. 

Compared with these approaches, WiFi-based activity 

recognition is capable of overcoming those disadvantages. 

There is no need for users to carry any equipment. Moreover, 

it enjoys the advantages of low cost, easy installation, and 

privacy protection. The current WiFi-based activity 

recognition technology typically utilizes two wireless signals, 

namely Radio Signal Strength Indicator (RSSI) and Channel 

State Information(CSI)[8]. RSSI is susceptible to narrowband 

interference and multipath interference, with low 

identification accuracy and limited performance. In the 

contrast, CSI can present the amplitude and phase of multipath 

propagation at different frequencies, thereby providing more 

abundant and stable channel parameters. 

At the phase of activity recognition, the traditional Gaussian 

Mixture Hidden Markov Model (GMM-HMM) is used for it 

has strong data modeling capabilities and especially Gaussian 

Mixture Model (GMM) is known as the universal distribution 

approximator. Hidden Markov Models (HMM) builds a 

statistical model for the time series structure of the WiFi signal, 

and GMM is applied to fit the probability density function to 

generate the HMM observation sequence. The architecture of 

the human activity recognition system is shown in Fig. 1. In 

previous studies, CARM[9] uses the HMM to identify human 

activities by establishing a corresponding model between CSI 

changes and human activity speed and a corresponding model 

between human activity speed and activity type. CARM 

realizes activity recognition with an accuracy of more than 

96%, but as mentioned above, the construction of the model is 

extremely complicated. WiHACS[10] trains and tests multi-

class support vector machine (SVM) to realize human activity 
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classification based on OFDM Subcarriers' correlation. Even 

if it has a nice recognition performance, SVM is difficult to 

realize multi-classification when the sample size is too large. 

The main innovativeness and contributions of this paper are 

summarized as below:  

1) Phase difference is used as the characteristic signal of 

human activity recognition, due to it uses space diversity and 

frequency diversity technology, and can better perceive the 

weak changes of the environment than phase. Furthermore, the 

phase difference, the mean, and variance of phase difference 

are used as the expanded matrix to make the recognition result 

more accurate.  

2) HMM is selected as a WiFi signal-based recognition 

methodology to enhance robustness and adaptability in the 

work. Different from initializing the HMM parameters 

directly, the HMM parameter B (observation probability 

matrix), which has a great impact on the system accuracy, is 

initialized with GMM.  

3) A powerful system is established which can recognize 

human activities with high precision. Experiments are 

conducted in self-collected datasets to verify the validity of the 

system for user activity recognition under WiFi signals. The 

system performance is evaluated and the factors influencing 

the accuracy are analyzed. Experimental results show that the 

system has a strong ability to identify different activities and 

has robustness under different environments. 

The remaining of the paper is organized as follows: Section 

II introduces the basic knowledge of CSI, data preprocessing, 

and the construction of the feature matrix. Section III describes 

the classification methodology. Then, the work of data 

collection and the experiment results are presented in Section 

IV. Finally, Section V concludes this work.  

II.  DATA PREPARATION AND FEATURE EXTRACTION 

Three basic characteristic quantities are usually obtained from 

CSI data: amplitude, phase, and phase difference between 

adjacent antennas. The CSI phase information collected 

initially will change turbulently, and there are no rules at all, 

for the time and frequency synchronization between the 

receiver and the transmitter in WiFi equipment. Therefore, 

instead of using phase information, CSI amplitude information 

is used in the initial research work. However, the amplitude 

information lacks sensitivity to weak actions and is difficult to 

apply to the recognition of fine-grained behaviors. Thanks to 

the phase correction algorithm[11], phase information is 

gradually being used in various studies. In this paper, the phase 

difference is used as the characteristic signal of human activity 

recognition, due to it uses space diversity and frequency 

diversity technology, and can better perceive the weak 

changes of the environment than phase. 

The phase difference changes when performing different 

activities is illustrated in Fig. 2. It can be observed that the 

phase difference during walking will fluctuate sharply 

compared to in the stationary state. Therefore, the phase 

difference can be used as an evaluation criterion to distinguish 

different actions, and the characteristic information which 

could distinguish any two states can be extracted from the 

phase difference. 

A. BASIC CONCEPT OF CSI 

CSI is a fine-grained signal feature captured from the physical 

layer (PHY) of the WiFi communication via Orthogonal 

Frequency Division Multiplexing (OFDM) technology. It 

describes channel properties of wireless communication links 

and amplitude and phase variations caused by path loss and 

multipath effects, including scattering, diffraction, and 

distance attenuation. CSI can make the signal transmission of 

the communication system adapt to the channel conditions of 

the current system, which enables a MIMO system to achieve 

reliable system communication with high robustness, stability, 

and more transmission information.   

In the frequency domain, the wireless channel can be 

expressed as 𝑌(𝑓, 𝑡) = 𝐻(𝑓, 𝑡) ×  𝑋(𝑓, 𝑡), where 𝑋(𝑓, 𝑡) and 𝑌(𝑓, 𝑡) are the transmitted and received signals at a certain 

OFDM carrier frequency of 𝑓  and time of 𝑡 , respectively. 𝐻(𝑓, 𝑡) is the complex-valued Channel Frequency Response 

(CFR) between a pair of antennas and the time-series of CFR 

values for a given antenna pair and OFDM subcarrier is called 

a CSI stream.  Therefore, CFR can be represented 

as  𝐻(𝑓, 𝑡) =  𝑌(𝑓, 𝑡)/𝑋(𝑓, 𝑡) . Leveraging the off-the-shelf 

Intel 5300 NIC wireless network with modified drivers, CSI 
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FIGURE 1. Activity recognition system architecture. 
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FIGURE 2.  The phase difference when performing different actions. 
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information can be extracted from the received packets. 

Generally, each CSI measurement contains 𝑁 matrices with 

dimensions of 𝑁𝑇𝑥 × 𝑁𝑅𝑥, where 𝑁, 𝑁𝑇𝑥, and 𝑁𝑅𝑥 are the 

number of OFDM subcarriers, the number of transmitting and 

receiving antennas, respectively. This paper uses 20MHz 

bandwidth with 30 subcarriers in5.320GHz for more stable 

and robust signals can be provided compared to 2.4GHz. 

Consequently, the CSI of three data streams from each data 

packet can be expressed in the following equation (1) when 

adopt one transmitting antenna and three receiving antennas. 

𝐶𝑆𝐼 = [𝐻1,1 ⋯ 𝐻1,30⋮ ⋱ ⋮𝐻3,1 ⋯ 𝐻3,30]                             (1)           

B.  PHASE DIFFERENCE EXTRACTION 

The received CSI data contain a relevant noise in the real 

communication process for the wireless signal is interfered 

with by the hardware equipment and the environment. Thus, 

the wireless channel is represented as: H(𝑓, 𝑡) = (∑ 𝑎𝑖(𝑓, 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑖(𝑓,𝑡)𝑁𝑖=1 )𝑒−𝑗(2𝜋𝛥𝑓𝑡+𝜃𝑆+𝜃𝑁)   (2) 

where 𝑎𝑖(𝑓, 𝑡) is the complex-valued representation for both 

the attenuation and the initial phase offset of the  𝑖𝑡ℎ  path, 𝑒−𝑗2𝜋𝑓𝜏𝑖(𝑓,𝑡) is the phase shift on the 𝑖𝑡ℎ  path caused by a 

propagation delay of 𝜏𝑖(𝑓, 𝑡), 𝑁 is the number of subcarriers, 𝑒−𝑗2𝜋𝛥𝑓𝑡 is the phase shift caused by the Carrier Frequency 

Offset (CFO), which is mainly induced by the difference in 

central frequencies (lack of synchronization) between the 

transmitter and receiver clocks. 𝜃𝑆  and 𝜃𝑁  are the phase 

offset caused by sampling frequency offset (SFO), 

environment, and hardware noise, respectively. 

In general, the measured phase of the channel response of 

the 𝑖𝑡ℎ subcarrier can be expressed as:  �̂�𝑖 = 𝜙𝑖 − 2π 𝑘𝑖𝑁 𝛿 + 𝛽 + 𝑍                       (3) 

where �̂�𝑖  and 𝜙𝑖  are the measured and actual phase 

information of the  𝑖𝑡ℎ subcarrier, respectively. 𝛿 is the time 

offset of the receiver, 𝛽 is the constant phase offset, 𝑍 is the 

measured noise, 𝑘𝑖 is the index of the 𝑖𝑡ℎ subcarrier which is 

from -28 to 28 in IEEE 802.11n, and 𝑁 is the window size of 

the Fourier Transform which is 64 in IEEE 802.11a/g/n. The 

unprocessed phase information received by the receiver 

cannot be directly used for human behavior analysis for it 

contains a lot of noise. According to reference[12], a linear 

correction is applied to the original phase data to eliminate the 

main noises 𝛿 and 𝛽. 

Define two variables 𝑎 and 𝑏: 𝑎 = �̂�𝑛−�̂�1𝑘𝑛−𝑘1 = 𝜙𝑛−𝜙1𝑘𝑛−𝑘1 − 2π𝛿                          (4) 𝑏 = 1𝑛 ∑ �̂�𝑗 =𝑛𝑗=1 1𝑛 ∑ 𝜙𝑗 − 2π𝛿𝑁 ∑ 𝑘𝑗 + 𝛽𝑛𝑗=1𝑛𝑗=1         (5) 

when the sub-carrier frequency is symmetrical, ∑ 𝑘𝑗𝑛𝑗=1 = 0, 𝑏  can be simplified to 𝑏 = 1𝑛 ∑ 𝜙𝑗 + 𝛽𝑛𝑗=1 . The calibrated 

phase of the  𝑖𝑡ℎ  subcarrier can be expressed as: �̃�𝑖 = �̂�𝑖 − 𝑎𝑘𝑖 − 𝑏 = 𝜙𝑖 − 𝜙𝑛−𝜙1𝑘𝑛−𝑘1 𝑘𝑖 − 1𝑛 ∑ 𝜙𝑗𝑛𝑗=1         (6) 

The linear noise induced by 𝛿 and 𝛽 is eliminated while the 

measurement noise 𝑍  is small. Fig. 3(a) shows the original 

phase sequence of 30 subcarriers in the stationary state, which 

can be observed that there is a 2𝜋 jump. The phase is converted 

to a continuous form by unwrapping, as shown in Fig. 3(b). 

This process can be referred to as the unwrapping function in 

MATLAB. Then the phase deviation is removed by a linear 

transformation, as shown in Fig. 3(c). The calibrated phase �̃�𝑖 
is used to construct the initial phase difference matrix.  

Subsequently, the Savitzky-Golay filter[13] is utilized to 

eliminate sudden changes and small random variations. 

Savitzky-Golay filter fits successive subset of adjacent data 

points with a low degree polynomial by the method of linear 

least square. The polynomial order and the length of the frame 

are set to be 3 and 7 in our experiments. Finally, the feature 

matrix is built by the phase expanded matrix which is 

expanded using the mean and standard deviation of phase 

difference, as well as phase difference itself. 

III.  CLASSIFICATION METHOD 

The method of activity recognition is introduced in this 

section. Inspired by Sheng et al. [14], which propose an 

HMM-based methodology for action recognition using star 

skeleton, GMM-HMM is used as our method for activity 
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FIGURE 3.  Process of raw phase correction. (a) Raw phase, (b) Unwrapped phase, (c) Calibrated phase. 
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recognition. The basic concept of GMM and HMM is 

presented firstly. And then, the feasibility of GMM-HMM 

for activity recognition is illustrated.  

A. GMM BASICS  

GMM is a parameterized model of the probability distribution, 

which aims to build the probability distribution 𝑃(𝑥) of N-

dimensional datasets into a mixture of finite multivariate 

Gaussian distributions. 𝐾-order Gaussian GMM probability 

density function is as follows: 𝑃(𝑥|𝜇, 𝛴) = ∑ 𝑐𝑘𝑁(𝑥|𝜇𝑘, 𝛴𝑘)𝐾𝑘=1                      (7) 

where 𝑐𝑘 > 0  are mixture coefficient that sum to 1, and 𝑁(𝑥|𝜇𝑘, 𝛴𝑘)  represents a multivariate Gaussian distribution 

which is parameterized by its mean vector 𝜇, and covariance 

matrix 𝛴.  

The initialization of GMM parameters is based on the K-

means algorithm. Since the observation probability density 

function is the 𝑘𝑡ℎ component of GMM, they are completely 

defined by the parameters (𝑐𝑘 , 𝜇𝑘, 𝛴𝑘) . The K-means 

algorithm can calculate the optimization center of component 𝜇 and covariance 𝛴 for each state, and iterate step by step to 

adapt to the state sequence. 

After that, an optimized GMM model will be realized with 

the Expectation-Maximization (EM) method. The EM 

algorithm comprises two steps: E-Step and M-Step. E-Step 

calculates the posterior probability γ(𝑛, 𝑘) according to the 

current 𝑐𝑘 , 𝜇𝑘, 𝛴𝑘.  Then, the calculated value is delivered to 

M-step, so that 𝑐𝑘 , 𝜇𝑘, 𝛴𝑘  are updated. This process is 

repeated until the log-likelihood 𝑙𝑛𝑝(𝑥|𝑐, 𝜇, 𝛴) converges or 

reaches the maximum number of iterations.  Use the 

following formula to update𝑐𝑘 , 𝜇𝑘, 𝛴𝑘:  𝜇𝑘 = ∑ γ(𝑛,𝑘)𝑥𝑛𝑁𝑛=1∑ γ(𝑛,𝑘)𝑁𝑛=1                              (8) 𝑐𝑘 = ∑ γ(𝑛,𝑘)𝑁𝑛=1∑ ∑ γ(𝑛,𝑘)𝐾𝑘=1𝑁𝑛=1                           (9) 

𝛴𝑘 = ∑ γ(𝑛,𝑘)(𝑥𝑛−𝜇𝑘)(𝑥𝑛−𝜇𝑘)𝑇𝑁𝑛=1 ∑ γ(𝑛,𝑘)𝑁𝑛=1        (10) 

where, γ(n, k) = 𝑐𝑘𝑁(𝑥𝑛|𝜇𝑘,𝛴𝑘)∑ 𝑐𝑘𝑁(𝑥𝑛|𝜇𝑘,𝛴𝑘)𝐾𝑘=1                 (11) 

B. HMM BASICS 

HMM is a statistical framework for modeling time-varying 

spectral vector sequences and is a potent tool in pattern 

recognition. HMM is expressed conventionally by five basic 

elements 𝑁, 𝑀, 𝜋, 𝐴, 𝐵.   𝑁 and 𝑀 represent the number of model hidden states and 

observable symbols generated in each state, respectively. The 

state transition probability distribution between state 𝑞𝑖to 𝑞𝑗 is 𝐴 = [𝑎𝑖𝑗]𝑁×𝑀, and the observation probability distribution of 

emitting any vector 𝑜𝑡 at state 𝑞𝑗 is given by 𝐵 = [𝑏𝑗(𝑘)]𝑁×𝑀. 

The probability distribution of the initial state is 𝜋 = [𝜋𝑖]. 

𝜋𝑖 = 𝑃(𝑖1 = 𝑞𝑖)                                     (12) 𝑎𝑖𝑗 = 𝑃(𝑖𝑡+1 = 𝑞𝑗|𝑖𝑡 = 𝑞𝑖)                  (13) 

                        𝑏𝑗(𝑘) =𝑃(𝑜𝑡 = v𝑘|𝑖𝑡 = 𝑞𝑗)                  (14) 

As for HMM, there exist three main problems[15].  First is 

the evaluation problem. Given an observation sequence 𝑂 =o1, o2, … , o𝑇 and a model 𝜆 = (𝐴, 𝐵, 𝜋), the probability of the 

observation sequence generated by the given model 𝑃(𝑂|𝜆) 

can be calculated with the Forward-Backward algorithm. 

After defining the forward probability α𝑡(𝑖) and the backward 

probability β𝑡(𝑖) respectively, the forward probability and the 

backward probability at the next moment can be recursively 

achieved. The probability of the observation sequence can be 

calculated by either of the following two formulas: 𝑃(𝑂|𝜆) = ∑ α𝑇(𝑖)𝑁𝑖=1                              (15) 𝑃(𝑂|𝜆) = ∑ π𝑖β1(𝑖)𝑏𝑖(𝑜1)𝑁𝑖=1                   (16) 

where, β𝑡(𝑖) = 𝑃(o𝑡+1, o𝑡+2, … , o𝑇|𝑖𝑡 = 𝑞𝑖 , 𝜆)           (17) α𝑡(𝑖) = 𝑃(o1, o2, … , o𝑡 , 𝑖𝑡 = 𝑞𝑖|𝜆)                  (18) 

The second problem is the learning problem. Given the 

observation sequence of the model 𝑂 = o1, o2, … , o𝑇 , 

estimate the parameters of the model 𝜆 = (𝐴, 𝐵, 𝜋) through 

the observation sequence to maximize the probability of the 

observation sequence 𝑃(𝑂|𝜆) under the model. The essence is 

the problem of using maximum likelihood estimation to obtain 

parameters. The Baum-Welch algorithm is widely used to 

solve learning problems.  

The Baum-Welch algorithm uses the principle of the EM 

algorithm to find the expected 𝐿(𝜆, 𝜆̅) of the joint distribution 𝑃(𝑂, 𝐼|𝜆) based on the conditional probability 𝑃(𝐼|𝑂, 𝜆̅) at E-

step, where 𝜆̅ is the current model parameter. The expectation 

is maximized at M-step to get the updated model parameter 𝜆. 

EM iteration is continued until the values of the model 

parameters converge. The following parameters are updated to 

test whether the values converge or not:   𝑎𝑖𝑗= ∑ 𝜉𝑡𝑇−1𝑡=1 (𝑖,𝑗)∑ γ𝑡𝑇−1𝑡=1 (𝑖)                                      (19) 

𝑏𝑗(𝑘) =∑ γ𝑡𝑇𝑡=1,𝑜𝑡=𝑣𝑘 (𝑗)∑ γ𝑡𝑇𝑡=1 (𝑖)                            (20) 𝜋𝑖 =γ1(𝑖)                                                (21) 

where 𝜉𝑡(𝑖, 𝑗) is the probability of being in the state 𝑞𝑖 at time 𝑡 and being in the state 𝑞𝑗  at time 𝑡 + 1 giving model 𝜆 and 

observation 𝑂, denoted as: 𝜉𝑡(𝑖, 𝑗) = 𝑃(𝑖𝑡 = 𝑞𝑖 , 𝑖𝑡+1 = 𝑞𝑗|𝑂, 𝜆)      
           = 𝑃(𝑖𝑡 = 𝑞𝑖 , 𝑖𝑡+1 = 𝑞𝑗 , 𝑂|𝜆) 𝑃(𝑂|𝜆)⁄     = α𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)β𝑡+1(𝑗)∑ ∑ α𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)β𝑡+1(𝑗)𝑁𝑗=1𝑁𝑖=1                              (22) 
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And γ𝑡(𝑖) represents the probability of being in the state 𝑞𝑖 
at time 𝑡, denoted as:     γ𝑡(𝑖) =  𝑃(𝑖𝑡 = 𝑞𝑖|𝑂, 𝜆)  = 𝑃(𝑖𝑡 = 𝑞𝑖 , 𝑂|𝜆)𝑃(𝑂|𝜆) = α𝑡(𝑖)β𝑡(𝑖)∑ α𝑡(𝑗)β𝑡(𝑗)𝑁𝑗=1                          (23) 

The last problem is the prediction problem. Also known as 

the decoding problem. Given the model 𝜆 = (𝐴, 𝐵, 𝜋) and the 

observation sequence 𝑂 = o1, o2, … , o𝑇, the state sequence 𝐼 

corresponding to the model can be found when the maximum 

observation sequence conditional probability 𝑃(𝐼|𝜆) is 

obtained. In other words, when the observation sequence is 

given, find the most likely hidden state sequence 

corresponding to it. The Viterbi algorithm is usually used to 

solve the prediction problem. 

Define two variables: 𝛿 and Ψ. 

The maximum probability of all single paths (𝑖1, 𝑖2, … , 𝑖𝑡) 

in state 𝑖 at time 𝑡 is: 𝛿𝑡(𝑖) = max 𝑃(𝑖𝑡+1 = 𝑞𝑖 , 𝑖𝑡 , … , 𝑖1, 𝑖𝑡+1, … , 𝑖1), 𝑖 = 1, … , 𝑁                                   
(24) 

Recursion can be obtained according to the above definition: 𝛿𝑡+1(𝑖) = max[𝛿𝑡(𝑗)𝑎𝑗𝑖] 𝑏𝑖(𝑜𝑡+1), 𝑖 = 1, … , 𝑁;   𝑡 = 1, … , 𝑇 − 1   (25) 

At the same time, define all the single paths (𝑖1, 𝑖2, … , 𝑖𝑡−1, 𝑖) whose state is 𝑞  at time 𝑡 , and record the 

maximum probability of 𝑡 − 1 nodes in the path as: Ψ𝑡(𝑖) = arg  𝑚𝑎𝑥 [𝛿𝑡−1𝑎𝑗𝑖], 𝑖 = 1,2, … , 𝑁            (26) 

In other words, the backward pointer Ψ is used to record the 
previous state which leads to the maximum local probability 

of a certain state, and it is used to backtrack the optimal path 

(optimal hidden state sequence) in the algorithm. 

C.  FORMULATION OF GMM-HMM 

HMM is widely used in speech recognition, gesture 

recognition, and other fields [16]-[18].  Its application in 

activity recognition is based on one basic assumption: the 

activity to be modeled as a Markov process. This process 

comprises visible observations, with each observation 

corresponding to a hidden state which the observer cannot see 

[19]. In this paper, it is observed that human activity is 

composed of body movements which will cause the CSI 

information change. Therefore, the human motion is 

considered to be modeled as HMM, where the visible CSI 

phase value is the observation value and the limb transition is 

a hidden state. The possibility of transition between different 

limbs depends on the particular structure of the action itself. 

Human activity is a continuous motion in time and space, 

and the complex motion patterns can be fitted by multiple 

Gaussian density functions. HMM can be divided into discrete 

HMM and continuous HMM based on the characteristics of 

different observed variables. The difference between the two 

lies in the model parameter B. The observation of the former 

is a discrete random variable, and the corresponding model 

parameter 𝐵 is a probability distribution matrix. In continuous 

HMM, the observation is a continuous random variable, and 

the corresponding model parameter 𝐵  is composed of the 

observation probability density function of the state. Under 

normal circumstances, the distribution of each state can be 

fitted with a mixed Gaussian distribution. The probabilistic 

model can deal with data with strong noise, at the same time 

has good robustness, and performs well on high-dimensional 

data. In particular, the GMM has strong coding capabilities for 

continuous and complex motion trajectory data such as human 

motions. Therefore, the GMM-HMM can be used to imitating 

and learn complex human activities. The model frame is 

shown in Fig. 4.  

  It is generally believed that the initial values of the 

parameters 𝜋  and 𝐴  will not have much influence on the 

model results. When the basic constraints are met, random 

values or uniform values can be used. However, the different 

initialization methods of parameter 𝐵 will greatly affect the 

model results and usually choose a more complicated 

initialization method according to different applications. This 

article uses the GMM method in part A of Section III to 

initialize the model parameters. In particular, 𝛴 is set to the 

diagonal covariance matrix (‘diag’), the Gauss number 𝐾 is 

set as 3, and the maximum number of iterations is set as 20. 

Except that the calculation of probability distribution matrix 𝐵 

is slightly complex, the three basic algorithms of GMM-HMM 

are the same as those of HMM. 

After obtaining the initial model parameters, the Baum-

Welch algorithm described in part B of Section III is used to 

train the model parameters with collected training datasets and 

optimize the model parameters iteratively. For each activity 

sequence, a corresponding model will be trained. Then, the test 

datasets are input to the trained model in the testing phase. The 

Forward-Backward algorithm is utilized to obtain the best 

model. After the observation sequence and model parameters 

are obtained, the model that maximizes the probability of the 

observation value can be solved with each model 

corresponding to a specific activity. Subsequently, the 

recognition of the action is achieved. 

IV.  EXPERIMENTS AND EVALUATION 

The proposed system is assessed on the self-collected datasets, 

the factors affecting the recognition accuracy are discussed, 

and the system performance is compared with previous work. 

𝐴𝑐𝑡𝑖𝑜𝑛1, … , 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 , … 

𝜆1 , … , 𝜆𝑖 , … 

K-Means algorithm

EM 

algorithm 

Training Dataset

Baum-Welch 

algorithm

Test Dataset Forward-Backward

algorithm

𝐾, 𝑐𝑘 , 𝜇𝑘 , 𝛴𝑘  

𝐾, 𝑐0, 𝜇0, 𝛴0 

𝜆 = {𝐴, 𝐵, 𝜋} 

GMM

BA𝐴, 𝐵, 𝜋 

GMM-HMM

 
FIGURE 4. GMM-HMM Model frame. 
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A. EXPERIMENTAL SETUP 

Our system is implemented on COTS hardware. A LENOVO 

desktop with three external antennas is used as a receiver 

pinging packets from a Mini desktop with one antenna. Both 

of them are equipped with Intel 5300 NIC and an open-source 

driver modified by Halperin et al. [20] to promote the correct 

reception of the network card. Then, the Linux 802.11n CSI 

Tool software, working under the Ubuntu 14.04 LTS system, 

is used to obtain the CSI data from the driver. The constructed 

1×3 MIMO system operates in a 5.320 GHz environment and 

collects samples at 100 Hz. After completing the extraction of 

CSI information, the CSI data is preprocessed by Matlab2017a 

and input into HMM to complete training.  

A total of 600 (5actions×30samples× 4volunteers) samples 

are collected by recruiting four volunteers with different 

heights and shapes to imitate five different activities (calling, 

squatting, walking, stand-fall, walk-fall) in a pre-configured 

environment (a washroom as illustrated in Fig. 5(a)).  The 

volunteers are two females and two males ranging in age from 

22 to 25. The datasets are extracted in the washroom of size 

5.4m×5.35m and each sample consumes 10 seconds. When 

each sample is collected, the specified action is only 

performed from the 4th to the 7th second and the volunteer 

remains still the rest of the time to prevent overlapping of the 

action data during data collection. The source data is collected 

and named as 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖_𝑎𝑗_𝑠𝑘 , which represents the 𝑘𝑡ℎ 

record of the 𝑗𝑡ℎ action performed by experimenter 𝑖 . The 

performance of the system is then evaluated in diverse 

environments, such as the washroom, an office of size 

4.75m×4.05m (as shown in Fig. 5(b)), and a classroom of size 

9.5m×7.25m (as shown in Fig. 5(c)).   

Note that unless otherwise specified, 1) the rate of 

transmission is 100Hz. 2) for all samples of each action, 2/3 

samples are randomly selected as training data, and the 

remaining 1/3 samples are applied as test data. 3) A total of 20 

experiments of each action are performed and keep a record of 

the accuracy of every experiment. Then the average values of 

the recorded accuracies of each action are calculated as the 

final results to pursue a fair degree of precision. 

B.  EVALUATION 

1) ACCURACY OF ACTIVITY CLASSIFICATION 

The confusion matrix shown in Fig. 6 is established to assess 

the performance of the proposed system, in which each 

element denotes the ratio used to classify actual activity and 

predicted activity. The results show that the recognition 

accuracy of each activity is larger than 97%, indicating that the 

system achieves a high classification accuracy overall 

activities. Four activities achieve over 96% classification 

accuracy except for squatting activity since squatting is very 

similar to falling and easy to be misjudged. 

2)  COMPARED WITH PREVIOUS WORK 

We compare our recognition system with previous work, 

Random forest, HMM, LSTM in terms of lie down, fall, walk, 

run, sit down, stand up[21]. To make sure it is a fair and 

convincing comparison, the datasets from reference [21] are 

used in  the  proposed  system. In other words,  all  the  methods 

participating in  the  comparison  use  the  same  datasets.  The 

 
FIGURE6. Confusion matrix of 5 activities performed by 4 volunteers.  

TX RX

2.5m

7
.2

5
m

9.5m

4
.0

5
m

4.75m

5
.3

5
m

5.4m

TX

RX

RX
2.5m

TX

TXRX

TX

RX

TX

RX

(a) Washroom (b) Office (c) Classroom
 

FIGURE 5. Experimental scenarios. The height of the WiFi device is 1.2m. 
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participating in the comparison use the same datasets. The 

details of the parameters and datasets are shown below.  

For the Random forest method, the PCA is applied on the 

CSI amplitude and STFT is used to extract features (the first 

25 frequency components are used as the feature vector). Then, 

a Random forest with 100 trees is used for activities 

classification. The extracted features using STFT are also 

applied in HMM and the MATLAB toolbox is used for HMM 

training. The raw CSI amplitude with 90-dimension (3 

antennas × 30 sub-carriers) is used as the feature vector for 

evaluating the performance of LSTM and the number of 

hidden units is set to be 200 where only one hidden layer is 

considered. Furthermore, samples of datasets1 are collected at 

1KHz sampling rate in an indoor office area where the Tx and 

Rx are located 3 m apart in LOS condition and a total of 720 

samples (6actions×20samples× 6volunteers) are collected.  

Fig. 7 and Table 1 give the confusion matrix and comparing 

results, respectively. It can be observed that the proposed 

system has the highest average accuracy of 97.8%, for the 

selected feature is phase difference and the GMM algorithm is 

utilized to initialize HMM parameters, which can identify 

activities more accurately.   

In addition, we also compared the system with references 

[22] in terms of boxing, empty, walking, pushing, waving. 

Reference [22] proposes Mel frequency cepstral coefficient 

(MFCC) feature extraction for audio signals for CSI time 

series classification and MFCC features are used in CNN, 

LSTM, and HMM classification methods. ITI datasets consist 

of five activities with 50 training samples for each one. The 

data were collected from a person moving in a 3.1 m by 7.0 m 

                                                 
1 https://drive.google.com/file/d/19uH0_z1MBLtmMLh8L4BlNA0w-XAFKipM/view?usp=sharing  

office room, in multiple positions and directions. It can be 

observed from Figure 8 and Table 2, which represent 

confusion matrices and comparison results respectively, the 

identification accuracy of our system is 99.0%, which is 

superior to other methods when using ITI datasets.  

3)  OPTIMAL LOCATION PARAMETERS DETERMINATION 

FOR WIFI DEVICES 
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FIGURE 9. Detection accuracies at different heights. 
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TABLE 2. Mean accuracy of different methods 

Method       Average Accuracy 

CNN+MFCC 78.0% 

LSTM+MFCC 78.9% 

HMM+MFCC 80.0% 

Proposed method 99.0% 

 

 
FIGURE 8. Confusion matrix of 5 activities in literature [22] using the 

proposed system.  

TABLE 1. Identification precision of different methods 

Method       Average Accuracy 

Random forest 64.7% 

HMM 73.3% 

LSTM 90.5% 

Proposed method 97.8% 

 

 
FIGURE 7. Confusion matrix of 6 activities in literature [21] using the 

proposed system.  

https://drive.google.com/file/d/19uH0_z1MBLtmMLh8L4BlNA0w-XAFKipM/view?usp=sharing
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When an action occurs, the position of the person changes on 

the vertical plane and the horizontal plane. Therefore, the 

height of the device and the TX-RX distance will affect the 

recognition accuracy. To find the height and distance for WiFi 

devices that can provide the most accurate recognition 

accuracy, two experiments are conducted using the activity 

data of a volunteer (30 samples) collected in the washroom: 

diverse device heights with 0.4m, 0.85m, 0.95m, 1.25m, and 

1.55m, and different TX-RX distances including 1.0m, 1.5m, 

2.5m, 3.5m, and 4.5m. Fig. 9 and Fig. 10 show the evaluation 

results at different heights and distances for WiFi devices. It 

can be observed that when the two elements are set at 0.95m 

and 2.5m, the system can achieve the best identification 

accuracy for all the activities. Therefore, 0.95m and 2.5m are 

selected as the height of the device and the TX-RX distance in 

the following experiments, respectively. 

4) IMPACT OF ENVIRONMENTAL INTERFERENCE 

The CSI characteristics are different for diverse 

environments. The identification precision of our system in 

the classroom, office, and washroom, as well as washroom 

with interference, is evaluated, respectively. Thirty samples 

of each activity for one volunteer are collected in every 

environment so that the total number of all samples in the 

experiment is 600. As shown in Fig. 11, the average 

recognition accuracies in the above environments are 100%, 

100%, and 100%, 98.2%. The accuracy for the washroom in 

the second case is slightly lower due to there is an additional 

subject making pretty small movements at the edge of the 

experimental field in the process of data collection, which 

causes some interference. The results show that the proposed 

method can achieve high accuracy in different environments 

while it is difficult to correctly collect data in an environment 

with interference. 

5) THE MODEL ENVIRONMENT ROBUSTNESS 

To assess the robustness of the proposed model in different 

environments, we tested models trained in each environment 

using data collected from other environments. For example, 

models trained in the classroom will be used to test data 

collected from bathrooms and offices to assess model 

robustness. Thirty samples of each activity are collected 

from a volunteer in each environment. As shown in TABLE 

3, the accuracy of the trained model in other different 

environments is above 95.9%. which indicates that the 

proposed method is robust to different environments. 

6) IMPACT OF DIFFERENT TRANSMISSION RATES 

The impact of transmission rates on human recognition 

accuracy is further investigated. Fig. 12 shows the average 

identification precision of five activities collected from a 

volunteer in the washroom at six diverse sampling rates. It 

can be observed that severely degraded performance 

happens when the sampling rate is around 50 Hz and 

accuracy improves with a higher sampling rate for 

noticeable changes of CSI can be captured during 

movement (maximum accuracy is reached at 800Hz), but 

the increase in accuracy is not obvious beyond 100Hz. 

Therefore, 100Hz is selected in the following experiments 

as our sampling rate to obtain a good compromise between 

computational cost and precision. 

7) IMPACT OF TRAINING-SAMPLE SIZE AND HUMAN 
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FIGURE 11. Recognition accuracy in different environments 
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FIGURE 12. Impact of sampling rates on accuracy 

TABLE 3. The system robustness in different environments 

Train Test 

Accuracy 

Calling Squatting Walking Stand-fall Walk-fall Average 

Model trained in 

classroom 

Test in office 99.8% 100% 98.1% 99.6% 99.6% 99.4% 

Test in washroom 99.0% 100% 98.1% 96.9% 97.7% 98.3% 

Model trained in office 
Test in classroom 99.2% 100% 98.0% 98.2% 97.7% 98.6% 

Test in washroom 97.6% 99.4% 97.4% 96.7% 92.3% 96.7% 

Model trained in 

washroom 

Test in classroom 97.2% 99.5% 97.2% 85.5% 100% 95.9% 

Test in office 99.5% 100% 96.0% 96.3% 91.0% 96.6% 
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Two proof schemes are designed to evaluate and analyze the 

system performance on our own collected datasets. The 

different number of training samples has an important 

influence on the accuracy of activity recognition. The results 

of three different proportions of the training datasets of five 

activities collected from a volunteer in the washroom are 

shown in Fig. 13. The results suggest that increase the size of 

the training datasets appropriately can get a better recognition 

accuracy.   

The diversity of people not only increases the diversity of 

CSI but also increases the difficulty of identifying activities 

for people who have different movement patterns, such as 

speed, ranges, and styles. There are six volunteers in the 

experiment, three of whom do targeted training before the 

experiment and three of whom do not. Fig. 14 shows that 

volunteers A, B, and C who exercise regularly achieve 

accuracy of 100%, 100%, and 99.8%, respectively. The 

remaining volunteers D, E, and F who are not trained reach 

97.8%, 97.5%, and 97.6%, which are slightly lower than the 

former. The accuracy of the fusion data of the six volunteers 

is 98.5% which is better than the three untrained volunteers. 

So that, targeted practice of simulated activities before 

performing experiments could perhaps improve accuracy 

standard.  

V.   CONCLUSION 

In this paper, an activity recognition system using commodity 

WiFi devices is proposed, the factors affecting accuracy are 

explored, and the ability and robustness to recognize human 

activities are demonstrated. The results show that the proposed 

system achieves an average accuracy of greater than 97% on 

self-collected datasets. It is worth noting that the recognized 

activities include two types of falling actions (stand-fall and 

walk-fall), which reminds us that the system has great potential 

to be a practical, non-intrusive solution for activity recognition 

and fall detection. The solutions of how to identify more fine-

grained human activities, simultaneously identify the activities 

of multiple people, and improve the system robustness in 

complex environments are urgent problems to be solved in 

engineering applications. Those above challenges will be 

considered in our future work. 
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FIGURE 13. Impact of training datasets dimensionalities on accuracy. 
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