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Abstract: In this paper, we explore the properties of the Channel State Information (CSI) of WiFi

signals and present a device-free indoor activity recognition system. Our proposed system uses only

one ubiquitous router access point and a laptop as a detection point, while the user is free and neither

needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as

walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction

method and a fast classification algorithm. The proposed system has been evaluated in a real and

complex environment in both line-of-sight (LOS) and none-line-of-sight (NLOS) scenarios, and the

results validate the performance of the proposed system.
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1. Introduction

Human activity recognition (HAR) has increasingly attracted intense academic and industrial

interest due to its various applications in real life such as elderly monitoring. In general, traditional

HAR systems have been considered as device-based approaches such as vision-based [1], body-worn

sensors [2], and smartphone interior sensors [3]. However, both vision-based and sensor-based

activity recognition systems have certain drawbacks. For instance, vision-based systems cannot

work through walls and require good lighting conditions. Moreover, they invade human privacy.

Sensor-based approaches are inappropriate for the user to carry a device that is sometimes easy to

forget or inconvenient in some conditions.

With the rapid development of wireless communication, mobile computing and artificial

intelligence, the common broadband wireless signal has been gradually extended from pure

communication and networking to environment perception and localization services, forming a new

research direction, namely: device-free wireless-based sensing technology [4]. Unlike special complex

ultra-wideband (UWB) wireless sensing systems or radar perception technologies [4,5], wireless-based

sensing systems principally refer to the use of ordinary broadband wireless equipment (such as WLAN)

to achieve the general context-aware technology. This technology is primarily called device-free sensing

technology. It gains this label owing to the fact that perceived environments do not require to be

supplied with sensor devices or cameras. Furthermore, the perceived objects do not require carrying

wireless devices or wearing sensor devices.

Earlier, Youssef et al. [6] introduced the concept of device-free passive (DfP) localization,

which enables locating and tracking entities that do not carry a device nor participate in the localization

process. They leveraged the fluctuation of the received signal strength indicators (RSSI) as a metric

for a human appearance in the observed area. Therefore, RSSI has been adopted in vast approaches
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such as localization [7,8], activity recognition [9,10], and gesture recognition [11]. However, RSSI is

an unstable metric due to the severe performance degradation of RSSI in complex environments

because of multipath fading and temporal dynamics [4].

Recently, researchers have tried to leverage wireless physical layer channel state information

(CSI) instead of wireless medium access layer received signal strength indicators (RSSI), since CSI

achieves finer sensing granularity and can use information dimensions to obtain a qualitative

improvement. Unlike RSSI, CSI is measured from radio links per orthogonal frequency-division

multiplexing (OFDM) subcarriers of each received packet. Therefore, CSI has more information

since RSSI value is only per received packet. Moreover, CSI is more robust to complex environments.

Therefore, CSI helps in building a more sophisticated, more sensitive, and more robust sensing model.

Such progress also makes more sophisticated sensing applications become more possible. Accordingly,

in recent years, CSI has been leveraged in different device-free sensing approaches such as human

localization [12,13], motion detection [14,15], people counting [16], activity recognition [17,18],

and gesture recognition [19,20].

In this paper, we present a device-free human activity recognition system which leverages

the fluctuation of CSI at the receiver end of the wireless system. The proposed human activity

recognition method detects human activity without specific devices. The human activity recognition

method proposed in this paper is motivated by a need for decreasing the installation complexity and

development costs induced by the traditional device-based activity recognition systems. The system

recognizes activities by analyzing the channel state information variation at the receiver end of wireless

system. We exploit the fact that human motion in an indoor environment interferes with wireless

signals and causes fading and shadowing effects. Thus, human motion creates perturbations in channel

state information, and each human activity creates unique perturbations in the raw CSI. Our system

can recognize several human activities such as walking, crawling standing, sitting, lying, falling, and

empty (i.e., no human) in line-of-sight (LOS) and none-line-of-sight (NLOS) scenarios. Experimentally,

we find that each activity has a unique affection on the raw CSI, and, thus, our proposed system can be

used in monitoring people in the indoor environments, including detecting their activities. Unlike

previous CSI-based human activity recognition approaches, our system detects human activity in LOS

and NLOS with high and stable accuracy.

Our main contributions are as follows:

• We present a device-free activity recognition system which enables us to classify several human

activities in both LOS and NLOS scenarios.

• We present a pattern segmentation algorithm based on local outlier factor (LOF) to detect the

abnormal CSI segments that are caused by human activities; then, we extract useful features from

both time domain and frequency domain of raw CSI.

• We adopt sparse representation classification (SRC) algorithm to recognize the proposed activities,

and our classification algorithm gains high-accuracy rates in LOS and NLOS.

• We conduct exhaustive experiments with different users that provide us with important insights.

Therefore, the system classification ability can be improved by choosing the best parameters

gained by experiments.

The remainder of the paper is organized as follows. Section 2 presents methodology. Section 3

describes experiment setup and evaluation. Section 4 presents discussion. Section 5 concludes the

paper and presents some suggestions for the future work.

2. Methodology

In this section, we describe the architecture and the main components of our system. Figure 1

shows the workflow of the proposed system. The proposed system extracts the amplitude information

from WiFi signals, and then filters out the noise. Thereafter, the system selects the appropriate CSI

streams that can reflect the fluctuation of CSI caused by human activities. From the selected streams,
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our system extracts the features of each activity in order to simplify the classification process. Finally,

the system uses SRC to determine the type of the activity. In what follows, we describe the whole

procedure in detail.
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Figure 1. System architecture and workflow, Channel State Information (CSI); Sparse Representation

Classification (SRC).

2.1. Preprocessing

We collect CSI from WiFi signals that emit from WiFi router (TP-LINK) which has two transmitter

antennas, and the receiver is a Lenovo ThinkPad X201 which was equipped with Intel Wifi Link

(IWL) 5300 Network Interface Controller (NIC) that has three receiver antennas (Intel Corporation,

Santa Clara, CA, USA). The laptop is installed with Ubuntu version 14.04 and run the Open Source

CSI-Tools [21]. As is known in the OFDM system, we can get 2 × 3 the Multiple-Input and

Multiple-Output (MIMO) system. Thus, we get six streams. In each stream, there are 30 subcarriers

because 5300 NIC reports CSI 30 groups of subcarriers for each stream [21]. Thus, the CSI we get can

be represented as Equation (1):

H =







Hi1,j1 Hi1,j2 ... Hi1,j30

: : : :

Hi6,j1 Hi6,j2 ... Hi6,j30






, (1)

where H is the CSI, i and j are the streams and subcarriers, respectively. Each element in the CSI matrix

in Equation (1) is expressed as the following:

Hi,j =‖ Hi,j( fk) ‖ ej 6 Hi,j( fk) + n, (2)

where ‖ Hi,j( fk) ‖ is the amplitude, 6 Hi,j( fk) is the phase, and fk is the central frequency, where n is

the electromagnetic noise from the adjoining devices. Here, we use only the amplitude information

of CSI.
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Figure 2 shows the 30 subcarriers that represent one CSI stream value of the walking activity.

However, the real trend of CSI is drowned in the noise from the bordering environments. To remove

the noise and obtain the actual trend and the useful information of CSI, we employ a weighted moving

average (WMA). From Figure 2 (bottom), we see that the weighted moving average eliminates noise

effectively and keeps the real trend of CSI.
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Figure 2. Original CSI information (top) and CSI after Weighted Moving Average (WMA) (bottom).

Figure 3 shows the whole streams that we got from a walking activity experiment. The values

of subcarriers in each stream are different. Accordingly, to reduce the computing complexity,

we aggregate all 30 subcarriers of each stream into one single value (stream vector) by calculating the

average value of the 30 subcarriers of each stream as portrayed in Figure 4.

Figure 3. Thirty subcarriers of each stream.
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Figure 4. Raw CSI aggregated subcarriers represented by six streams.

As shown in Figure 4, the CSI streams have a distinctive sensitivity to the fluctuation of CSI due

to human motion, so the values of the six streams are different. In Figure 4, streams 1 and 4 do not

have enough sensitivity to the human activity, so, as shown in the figure, stream 1 and stream 4 are

almost flat. Therefore, such streams must be eliminated. To this end, we use the bad stream elimination

algorithm, which was described in the previous work [22], to eliminate bad streams. The bad stream

elimination algorithm calculates the difference between the maximum peaks and valleys (Max–Min),

the mean value (Means) and standard deviation (STD) as features in every spatial diversity. These

three features are put into the Naive Bayesian classifier as vectors. Thereafter, the Naive Bayesian

classifier is used to find and eliminate bad streams in case significant error happens when we choose

bad streams as our source data. Thus, our system chooses only the best streams that can provide us

useful information and also avoid false detection.

2.2. Feature Extraction

2.2.1. Pattern Segmentation

Anomaly detection is a very important issue in order to obtain the correct segment of the

implemented activity. To this end, we present an efficient pattern segmentation method to expose the

real segment of an anomaly CSI caused by a human activity. Markus et al. [23] presented the Local

Outlier Factor (LOF) algorithm to detect anomaly segments by comparing the local density of a point

to the local density of its k-nearest neighbors. Here, we use LOF to detect the anomaly changes in WiFi

signals caused by human activities such as walk, sit, stand, crawl, fall, and lie. These activities have

significant impact on the raw CSI. The fluctuation of CSI because of implementing such activities is

very clear and differs from one activity to another. Local density can be estimated by calculating the

reachability distance reach − dk(p, n), where k(p) is the set of k-nearest neighbors, and n is a neighbor

point. The reachability distance can be computed as the following:

reach − dk(p, n) = max(k − d(p), d(p, n)), (3)

whereas the local density Lrd of p is calculated as Equation (4):

Lrd(p) =
k

∑n∈k(p) reach − dk(p, n)
, (4)

where the LOF of data point p is computed as Equation (5):

LOF(p) =
∑n∈k(p) Lrd(n)

Lrd(p)
. (5)
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Therefore, LOF is the ratio of the of average local densities of n’s point neighbors to the local

density of p.

2.2.2. Feature Extraction

The human motion in the test area is associated with time domain and frequency domain of raw

CSI. In time domain, we choose three features as follows. Firstly, we calculate the maximum peak

as the following:

Peak = max
n∈w

(CSI(n))− min
n∈w

(CSI(n)), (6)

where CSI refers to the value of Channel State Information, and n refers to the sample in |W| window

intervals. Then, we calculate the third central moment γ as delineated in Equation (7):

γ = exp[(CSI(n)− µ)2], (7)

where exp is the expectation value, and µ is the mean value of CSI amplitude which can be calculated as:

µ =
∑
|W|
n=1 CSI(n)

|W|
, (8)

where n = 1 is the start point of window W .

Moreover, we calculate the root of the mean square (RMS) deviation of the CSI to the mean

value µ, as the following expression:

RMS =

√

√

√

√

(∑
|W|
n=1 CSI(n)− µ)2

|W|
. (9)

Furthermore, it is very important to analyze the frequency components to discriminate

two different actions. The time domain features may not enough to achieve this goal. Hence, we choose

two frequency features as follows. Firstly, we calculate the DC component a0. To calculate a0, we

must apply Fast Fourier Transform (FFT) to all n samples in dynamic window W, so we calculate ith

frequency component as the following expression:

FFT(i) =
|W|

∑
n=1

CSI(n) e
−j 2π

|W|
in

. (10)

DC component is the average of FFT(i) and can be calculated as:

a0 =

∫

|W|
2

− |W|
2

CSI(n)dn

|W|
. (11)

The last feature is the entropy which can be calculated in chosen points in the n sample set,

as explained in Equation (12):

entropy =

|W|
2

∑
n=1

P(n) · ln(P(n)), (12)

where P is the probability of each spectral FFT(i) band.

2.3. Activity Classification

We adopt Sparse Representation Classification (SRC) to discriminate the proposed human activity.

Sparse representation classification (SRC) has been adopted in various signal and image processing

tasks such as image classification and face recognition [24]. Moreover, recently, SRC is used in
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device-free activity recognition [25]. Wei et al. [25] relied on the superiority of SRC which is featureless,

since SRC training can be built from CSI measurements without extracting features. However, this

may lead to false detection specifically in the case of radio interferences or environmental changes.

Unlike previous work, we build our classifier with several feature vectors extracted from training data.

As shown in Figure 1, the proposed system first preprocessed the training samples, and then

computed the features mentioned above by a sliding window with a length of 5 s. Each piece of activity

information is contained inside each sliding window. The extracted features over CSI streams within

each window, forming feature vectors. Thereafter, such feature vectors are concatenated together

to build the overcomplete dictionary. In the activity classification, the unknown CSI samples are

preprocessed as the training samples, and then modeled as feature vectors. Lastly, SRC classifies the

unknown activity based on the overcomplete dictionary that is constructed from training.

We model the dictionary as a concatenation of extracted and computed features for each activity

class from training. Suppose that we have c activity classes and ni training samples from class

i, where i ∈ [1, 2, ..., c]. Then, ni training samples are arranged as columns of the data matrix

Mi =
[

xi,1, xi,2, ..., xi,ni

]

∈ Rdxni , and d is the dimensions of feature vector. Any new test sample

y ∈ Rd for the same activity class, and can be represented as a linear combination of the learning

samples in Mi as:

y = ai,1xi,1 + ai,2, xi,2, ...,+ai,ni
xi,ni

, (13)

where coefficients ai,j ∈ R, j = 1, 2, ..., ni. Then, the concatenations of the training samples of all activity

classes can be defined as A matrix as the following expression:

A = [M1 + M2 + ....,+MA] ∈ Rd×n =
[

x1,1, ..., x1,ni
x2,1, ..., x2,ni

, ..., xc,1, ..., xc,ni

]

. (14)

The test y can be defined as:

y = Aa, (15)

where a is the sparse coefficient vector, and the entries of a sparse coefficient vector are zero except for

the entries that are associated with class i as explained in Equation (16):

a =
[

0, ...0, ai,1, ai,2, ..., ai,ni
, 0, ..., 0

]T
. (16)

Thereafter, we solve ℓ1 minimization problem as:

∧
a = arg min

a
‖a‖1 , subjected to y = Aa. (17)

To discriminate an activity class, we compare
∧
a of each class with different activity classes that

reproduce y as the following:

ri(y) =
∥

∥

∥
y − Aδi(

∧
a)
∥

∥

∥

2
, (18)

where ri is the residual of class i. Then, the activity class can be determined as:

c = arg min
i

ri(y). (19)

3. Evaluation

3.1. Experiments Setup

We use a TP-LINK (TL-WR845N) as an access point (AP), and Lenovo ThinkPad X201 with IWL

5300NIC (Intel Corporation, Santa Clara, CA, USA) and installed CSI-Tools [21] as a detection point

(DP). The transmission rate is set to 100 HZ. We conducted extensive experiments in an apartment

with two bedrooms and a living room with three volunteers in LOS and NLOS scenarios.
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In the LOS scenario, access point (AP), detection point (DP), and the target user are placed in

the living room. The AP and DP are fixed at two desks with 1 m height, separated by 4 m distance.

The target user implemented the proposed activities in a fixed position between AP and DP. In the

NLOS scenario, AP is fixed in the living room, where DP is fixed in the bedroom, separated by a

six-inch hollow wall with a 4 m distance. The target user implemented the proposed activities in a fixed

position in the bedroom in front of DP. Figure 5 shows the floor plan of the experiments’ environments.

LOS

APDP

DP

NLOS

Figure 5. Floor plan of the experiment environment.

We collect activity samples from each user individually. Table 1 shows the details of collected

samples from three volunteer users during the experiments. The volunteer users are asked to

implement the proposed activity in an apartment that has different electronic appliances and is

full of furniture. We collect samples in two different scenarios as described in Table 1. In each

scenario, we collect 450 samples of each activity from three users during nine sessions. In each session,

50 samples of each activity are collected from each user. Thus, in each session, a total of 150 samples of

each activity are collected from three volunteer users. We train our classifier with 100 samples of each

activity, and we test the accuracy of 50 samples. The system preprocesses each CSI collected for each

activity and computes the selected features by a sliding window with a length of 5 s.

Table 1. Collected sample details, Line-of-Sight (LOS); Non-Line-of-Sight (NLOS).

Activity Scenario # of Samples # of Sessions # of Users

Walk
LOS 450 9 3

NLOS 450 9 3

Crawl
LOS 450 9 3

NLOS 450 9 3

Fall
LOS 450 9 3

NLOS 450 9 3

Stand
LOS 450 9 3

NLOS 450 9 3

Sit
LOS 450 9 3

NLOS 450 9 3

Lie
LOS 450 9 3

NLOS 450 9 3

Empty
LOS 450 9 0

NLOS 450 9 0
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3.2. Results

We use the confusion matrix to evaluate our system. Thus, the accuracy can be computed as:

accuracy =
∑(TP + TN)

∑(TP + TN + FP + FN)
, (20)

where TP, TN, FP and FN are the true positive, true negative, false positive and false negative,

respectively. The users are asked to implement the proposed six activities mentioned in Table 1

individually, while the last one (Empty) is the measurement of a test environment with no moving

entities. Figure 6a shows the confusion matrix for the activity classification in LOS scenario. From the

confusion matrix, we see that the average accuracy in LOS scenario is about 95.85%. Each activity has

been classified accurately with high TP. Therefore, the accuracy is very high. Moreover, our system has

gained high accuracy in NLOS of 92.57% as shown in Figure 2b.
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Figure 6. Confusion matrices for the activities classification. (a) confusion matrix for Line-of-Sight

(LOS); and (b) confusion matrix for Non-Line-of-Sight (NLOS).

Researchers have used numerous classification algorithms to build activity classification models.

Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) are among the most popular

classification algorithms. Thus, we compare our proposed SRC with SVM and KNN in both LOS and

NLOS. However, experimentally, we find that SRC classification accuracy outperforms both SVM and

KNN. Figure 7 shows the averaged accuracy of the three methods.
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Figure 7. Classification method comparison, Support Vector Machine (SVM); k-Nearest Neighbor (kNN).
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4. Discussion

As shown in the results section, the achieved results have gained a high accuracy rate in both LOS

and NLOS scenarios. However, we also tried to test a single user activity with less training samples,

we train the classifier for each individual user with 50 samples of each activity, and we test 100 samples

of each activity. Figure 8 shows that the system still has stability and gained high accuracy, Thus, the

proposed method is capable and may improve the human activity classification technology based only

on wireless signals without special devices.
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Figure 8. Classification accuracy results with less training samples. (a) the results in LOS scenario; and

(b) the results in NLOS scenario.

Moreover, it is very important to demonstrate the system accuracy in case the testing samples do

not overlap with training samples. We train the classifier with 100 samples of each activity collected

from User 1 and User 2. We test 50 samples of each activity collected from User 3 during two sessions.

In addition, we decrease the training samples collected from User 1 and User 2 to 50 samples of

each activity, and we test 100 samples collected from User 3. As shown in Figure 9, the accuracy

slightly decreased.
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Figure 9. Classification accuracy results with 100 and 50 training samples.
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By observing the results in Figures 8 and 9, we noticed that, in Figure 8, although the samples are

50, each user activity classification accuracy has gained higher accuracy rates because the classifier has

been trained with samples that included samples from the target user. Whereas in Figure 9, the classifier

has not been trained with samples collected from the target users. Thus, the accuracy slightly decreased.

Overall results show that the system has a high accuracy rate under different conditions.

Furthermore, to approve the validity of our feature extraction method, we compare our

feature-based classification methodology (SRC with feature extraction) with the featureless-SRC

methodology. Wei et al. [25] proposed a device-free human activity system by leveraging the fluctuation

of CSI, and they adopted SRC to classify several activities. Unlike our system, Wei et al. used

SRC without the feature extraction method. They relied on the main superiority of SRC, which is

featureless. They built training sets from CSI measurements without feature extraction. However,

this methodology is not robust to environment changes or electromagnetic noise, and it leads to false

detection. The result in Figure 10 shows that our system outperforms the SRC-featureless method.

Thus, the feature extraction method promotes the classification accuracy and improved the whole

sensing process.
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Figure 10. SRC-classification accuracy with feature extraction and with featureless property.

Furthermore, it should be noticed that in each evaluated session the proposed activities must

be implemented in a fixed position to be correctly detected. Thus, CSI-based activity classification

techniques can be considered as location-based because the CSI value is different in different positions.

5. Conclusions

In this paper, we present a device-free indoor activity recognition system which leverages the

fluctuation of channel state information (CSI) of WiFi signals. We present an effective method to

obtain the best information of raw CSI. We design an efficient pattern segmentation method to

get the real segments of activities and choose the useful features from both time and frequency

domains. Moreover, we present a fast classification algorithm which accurately recognizes several

activities with high-accuracy rates in different scenarios. Experiment results manifest that our SRC

algorithm outperforms SVM and kNN in classification accuracy. Moreover, results provide evidence

that feature-based SRC outperforms featureless-SRC.

Device-free sensing technology is very immature and needs deeper investigation because the

interference of moving objects leads to incorrect detection or false detection. Moreover, to detect

and recognize different activities implemented simultaneously by multiple users is still a prominent

challenge in current approaches. Thus, we plan to focus on such challenges in future work in order to

build a more stable and reliable system that can be used in more complex scenarios.
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Abbreviations

The following abbreviations are used in this manuscript:

CSI Channel State Information

AP Access Point

DP Detection Point

LOS Line-of-Sight

NLOS Non-Line-of-Sight

RSS Received Signal Strength

OFDM Orthogonal Frequency-Division Multiplexing

LOF Local Outlier Factor

SRC Sparse Representation Classification

TP True Positive

FP False Positive

TN True Negative

FN False Negative
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