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The simplest device-independent quantum
key distribution protocol is based on the
Clauser-Horne-Shimony-Holt (CHSH) Bell in-
equality and allows two users, Alice and Bob,
to generate a secret key if they observe suffi-
ciently strong correlations. There is, however,
a mismatch between the protocol, in which
only one of Alice’s measurements is used to
generate the key, and the CHSH expression,
which is symmetric with respect to Alice’s two
measurements. We therefore investigate the
impact of using an extended family of Bell
expressions where we give different weights
to Alice’s measurements. Using this fam-
ily of asymmetric Bell expressions improves
the robustness of the key distribution pro-
tocol for certain experimentally-relevant cor-
relations. As an example, the tolerable er-
ror rate improves from 7.15% to about 7.42%
for the depolarising channel. Adding random
noise to Alice’s key before the postprocessing
pushes the threshold further to more than
8.34%. The main technical result of our work
is a tight bound on the von Neumann entropy
of one of Alice’s measurement outcomes condi-
tioned on a quantum eavesdropper for the fam-
ily of asymmetric CHSH expressions we con-
sider and allowing for an arbitrary amount of
noise preprocessing.

1 Introduction
Device-independent quantum key distribution
(DIQKD) allows distant parties to create and share a
cryptographic key whose security can be proved based
only on the detection of Bell-nonlocal correlations
[1–3]. Its signature feature is that no assumptions are
made about the quantum state and measurements
performed during the security analysis. DIQKD
schemes are, correspondingly, naturally robust
against imperfections and some forms of malicious
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tampering with the equipment.
The simplest protocol [3, 4], inspired by a pro-

posal by Ekert [5], is based around the well-known
CHSH Bell inequality [6]. In this scheme, pairs of en-
tangled particles are repeatedly prepared and distrib-
uted between two parties, Alice and Bob. On a ran-
dom subset of these entangled pairs, Alice performs
one out of two ±1-valued measurements, A1 or A2,
on the particles she receives, and Bob similarly per-
forms randomly one of three ±1-valued measurements
B1, B2, or B3. The measurement results are used to
estimate the value of the CHSH correlator,

S = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 , (1)
as well as the value of the correlator 〈A1B3〉, where
〈AxBy〉 = P (Ax = By) − P (Ax 6= By) and P (Ax =
By) and P (Ax 6= By) are the probability that the out-
comes of the measurements Ax and By are equal and
different, respectively. On the remaining subset of
entangled particles, Alice always performs the meas-
urement A1 and Bob always performs the measure-
ment B3. The corresponding outcomes are then used
to generate, after classical postprocessing, a shared
secret key known only to Alice and Bob. This is pos-
sible if the estimates of the correlator 〈A1B3〉 and of
the CHSH value are both sufficiently large. Indeed,
the first condition implies that the raw outcomes of
Alice and Bob are correlated enough to be turned into
a shared key using classical error correction. A strong
CHSH value implies, on the other hand, that their
outcomes are only weakly correlated to a potential
adversary and thus that the key can be made almost
ideally secret using privacy amplification.

This tradeoff between the CHSH expression and the
adversary’s knowledge, which forms the basis of the
security, can be expressed as the following tight bound

H(A1|E) ≥ 1− φ
(√

S2/4− 1
)
, (2)

on the von Neumann entropy of Alice’s outcome con-
ditioned on an eavesdropper’s quantum side informa-
tion, where

φ(x) = 1− 1
2 (1 + x) log2(1 + x)− 1

2 (1− x) log2(1− x)
(3)
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is a function related to the binary entropy by φ(x) =
h
( 1

2 + 1
2x
)
. This bound is device-independent in that

it is valid independently of the measurements A1, A2,
B1, B2 performed by Alice and Bob and the state
they share, which could be arbitrarily entangled with
the adversary, under the constraint of the expected
CHSH value S observed between Alice and Bob.

The bound (2) is not only of fundamental interest.
It has recently been shown through the Entropy Accu-
mulation Theorem (EAT) [7] (see also [8]) that prov-
ing unconditional security in the finite-key regime of
a DIQKD protocol consisting of n measurement runs
can be entirely reduced to bounding the conditional
von Neumann entropy as a function of a Bell expres-
sion, exactly as (2) does for the CHSH case.

Furthermore, a bound on the conditional von Neu-
mann entropy directly translates into a bound on the
rate at which key bits can be generated securely per
key generation round in the asymptotic limit of many
runs n → ∞. Indeed, the rates derived from the
EAT approach in this asymptotic limit (up to terms
that are sublinearly decreasing in n) are given by the
Devetak-Winter rate [9, 10]

r = H(A1|E)−H(A1|B3) , (4)

where H(A1|B3) is the conditional Shannon entropy
associated with probabilities P (ab|13) that Alice and
Bob jointly obtain the outcomes a and b when they
measure A1 and B3. The Devetak-Winter rate is
saturated by a class of attacks, called collective at-
tacks, where an eavesdropper attacks the protocol in
an i.i.d. fashion, but where the eavesdropper can re-
tain quantum side information indefinitely. Inserting
the bound (2) in the Devetak-Winter rate (4) gives
the tight lower bound

r ≥ 1− φ
(√

S2/4− 1
)
−H(A1|B3) (5)

on the asymptotic key rate for the CHSH protocol in
terms of the CHSH parameter S and H(A1|B3). It
is positive for sufficiently high values of S and suffi-
ciently good correlations between the outcomes of the
measurements A1 and B3.

The lower bound (5) on the Devetak-Winter rate
for the CHSH-based protocol was first presented in
[3] and derived in detail in [4]. The main result of
[3, 4] was essentially1 a derivation of the bound (2) on
the conditional entropy H(A1|E) through an explicit
attack saturating it (thus establishing the tightness of
the bound).

1More precisely, Ref. [4] derived the tight bound χ(A1 : E) ≤
φ
(√

S2/4− 1
)

on the Holevo quantity assuming a symmetrisa-
tion procedure is applied in the protocol. This was necessary in
[4] as the bound on χ(A1 : E) no longer generally holds if Alice’s
measurement outcomes are not equiprobable. By contrast, the
analogue (2) that we state here for the conditional von Neumann
entropy holds generally and this will also be a feature of the
more general bound we derive in this work.

The main result presented in this paper is a tight
bound on the conditional von Neumann entropy that
extends the bound (2) in two ways. First, it general-
ises it to the family of CHSH-like expressions

Sα = α〈A1B1〉+ α〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 , (6)

where α ∈ R is a parameter that can be chosen freely
(α = 1 corresponds to the regular CHSH expression).
Second, it incorporates an arbitrary level of noise pre-
processing [10].

A first motivation for considering these generalisa-
tions is purely theoretical. While we now understand
how the security of a generic DIQKD protocol can be
reduced to computing bounds on the conditional von
Neumann entropy (or more precisely the derivation of
what the authors of [7] call min-tradeoff functions),
obtaining tight or reasonably good bounds beyond
the already solved case of the CHSH expression, the
simplest Bell expression, is challenging [11–14]. Our
work shows how the von Neumann entropy can be
computed for a new class of protocols and our ap-
proach, which partly relies on reducing the problem
to the well-known BB84 protocol [15], might inspire
further, more general, results.

A second motivation is more practical. Demonstrat-
ing a working and secure device-independent protocol
remains technologically highly challenging [16, 17] as
it requires entangled particles to be distributed and
detected with low noise and a high detection rate over
long distances. Our results lead to two refinements to
the CHSH-based protocol that ease these demands.

The first refinement, basing the security analysis on
the extended family (6) of Bell expressions, is motiv-
ated by the tightness of (2). While the entropy bound
(2) can be attained with equality, the eavesdropping
strategy [3] that achieves it produces asymmetric cor-
relations. For the optimal collective attack, the two-
body correlators in the CHSH expression are related
to the CHSH expectation value S by

〈A1B1〉 = 2
S
, 〈A1B2〉 = 2

S
, (7)

〈A2B1〉 = S2/2− 2
S

, 〈A2B2〉 = −S
2/2− 2
S

. (8)

This reflects an asymmetry in the protocol: Alice uses
the A1 measurement to generate the key while A2 is
only used for parameter estimation. To mitigate this,
instead of using only CHSH we will consider the ex-
tended family of Bell expressions (6) where a differ-
ent weight α ∈ R is given to the correlation terms
involving A1.

Bounding the conditional entropy for the family
(6) and then choosing whichever value of α gives
the highest result amounts to the same as bound-
ing the conditional entropy in terms of the com-
binations 〈A1B1〉 + 〈A1B2〉 and 〈A2B1〉 − 〈A2B2〉
viewed as independent parameters. In general, it has
been observed that using more information about the
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statistics can improve the performance of a device-
independent cryptography protocol [18, 19].

The second refinement, noise preprocessing, con-
sists of a classical change to the protocol in which
Alice randomly flips each of her key bits intended for
key generation with some probability q, known pub-
licly, before the classical postprocessing to distil the
secret key is applied. Noise preprocessing is known to
improve the robustness of QKD protocols [10]. Intuit-
ively, adding random noise to Alice’s outcomes makes
things worse (increases H(A1|B3)) for Alice and Bob,
but it also makes things worse (increases H(A1|E))
for the eavesdropper and it turns out the result can
be a net increase to the key rate.

Both refinements are simply incorporated to the
standard DIQKD protocol of [3] given our generalisa-
tion of the conditional entropy bound (2) for the fam-
ily Sα of Bell expressions with noise preprocessing. As
we will see in our case, deriving the entropy bound es-
sentially reduces to deriving the conditional entropy
bound for the well-known BB84 [15] QKD protocol.
We give a short outline of how this works for the en-
tropy bound (2) for CHSH in section 3 before giving
the full derivation of our main result in section 4. We
then derive some examples of its effect on the robust-
ness of the DIQKD protocol in section 5.

2 The entropy bound
Let Alice, Bob, and an adversary, Eve, share some
arbitrary tripartite state ρABE, and let A1 and A2 be
two arbitrary binary-valued2 measurements on Alice’s
system and B1 and B2 two arbitrary binary-valued
measurements on Bob’s system. We can think of the
state and measurements as chosen by Eve. Without
loss of generality we may assume the measurements
to be projective (if necessary by increasing the Hilbert
space dimensions).

If Alice measures A1 and flips her outcome with
probability q ∈ [0, 1], the correlations between Alice
and Eve are described by the classical-quantum state

τAE = [0]A ⊗ (q̄ρ0
E + qρ1

E) + [1]A ⊗ (qρ0
E + q̄ρ1

E) , (9)

where q̄ = 1− q, [0] and [1] are shorthand for classical
register states |0〉〈0| and |1〉〈1|, and

ρaE = TrAB[ΠaρABE] , (10)

where Π0,1 = (1 ± A1)/2 are the projectors associ-
ated with Alice’s A1 measurement. The conditional
entropy of Alice’s final outcome conditioned on Eve’s
knowledge is then defined as

H(A1|E) = S(τAE)− S(τE) (11)
2In the following, we freely switch back and forth from

a description where Alice’s and Bob’s measurement results
take the values {0, 1} or the values {+1,−1}. This is just a
convention and the choice depends on what is more convenient
in terms of notation.

where τE = TrA[τAE] =
∑
a ρ

a
E = ρE is Eve’s average

reduced state, S(ρ) = −Tr[ρ log2(ρ)] is the von Neu-
mann entropy, and log2 is the logarithm function in
base 2.

The main result that we derive is a family of lower
bounds

H(A1|E) ≥ ḡq,α(Sα) (12)
on the conditional von Neumann entropy in terms of
the expectation value (6) of the Bell expression Sα
computed on the reduced state ρAB = TrE[ρABE],
valid for any values of the parameters α ∈ R and
q ∈ [0, 1]. These bounds hold for any state ρABE and
measurements A1, A2, B1, B2 and are hence device-
independent.

The function ḡq,α is piecewise defined and its con-
struction is described below and illustrated for q = 0
and α = 0.9 in figure 1. As a way of explaining its
form, we introduce it via a strategy that we considered
as a candidate for the optimal collective attack.

The strategy is a minor modification of the optimal
attack [3, 4] saturating the CHSH bound (2). Eve pre-
pares a pure tripartite state ρABE = |ΨABE〉〈ΨABE|
of the form

|Ψ〉ABE = 1√
2

(
|00〉AB|ψ0〉E + |11〉AB|ψ1〉E

)
, (13)

where the strength of the attack is determined by the
overlap

〈ψ0|ψ1〉 = F ∈ [0, 1] . (14)
Alice and Bob then measure

A1 = Z , A2 = X (15)

and

B1 = cos
(
ϕB
2
)
Z + sin

(
ϕB
2
)
X , (16)

B2 = cos
(
ϕB
2
)
Z− sin

(
ϕB
2
)
X , (17)

where Z and X are the eponymous Pauli operators
and ϕB is an angle that we will optimise momentar-
ily. The classical-quantum state after Alice measures
A1 and flips her outcome with probability q is thus
given by (9) with ρaE = ψa/2, where ψa is a shorthand
for |ψa〉〈ψa|. The conditional entropy (11) can then
directly be computed in terms of the overlap F to be

H(A1|E) = 1 + φ
(√

(q̄ − q)2 + 4qq̄F 2
)
− φ(F ) . (18)

On the other hand, the marginal state of Alice and
Bob is

ρAB = 1
4

[
1⊗ 1 + Z⊗ Z + F

(
X⊗X−Y⊗Y

)]
. (19)

For the above measurements and choosing an optimal
angle ϕB that maximises the expectation value of Sα,
we find

Sα = 2α cos
(
ϕB
2
)

+ 2F sin
(
ϕB
2
)

= 2
√
α2 + F 2 , (20)
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which rearranges for F to

F =
√
S 2
α /4− α2 . (21)

Substituting (21) into (18), we find that the con-
ditional entropy is related to Sα for the particular
strategy we have described by

H(A1|E) = gq,α(Sα) , (22)

where

gq,α(s) = 1 + φ
(√

(1− 2q)2 + 4q(1− q)(s2/4− α2)
)

− φ
(√

s2/4− α2
)
. (23)

A little consideration shows that the above strategy
cannot be the optimal one minimising the entropy in
all cases. The Bell expression Sα has the classical and
quantum bounds [20, 21]

Cα =
{

2|α| if |α| ≥ 1
2 if |α| ≤ 1

and Qα = 2
√

1 + α2 . (24)

At the quantum maximum Sα = Qα we find
gq,α(Qα) = 1, i.e., the eavesdropper has no knowledge
whatsoever about Alice’s outcome as we would natur-
ally expect for any conceivable strategy.

At the classical boundary Sα = Cα, we would ex-
pect an optimal attack to yield H(A1|E) = h(q) since
Alice and Bob’s correlations can be attained with a
deterministic strategy and the only randomness in
Alice’s outcome then comes from the noise prepro-
cessing. The function (23) attains

gq,α(Sα) = h(q) (25)

at Sα = 2|α|. If |α| ≥ 1, this is the same as the
classical bound and there is no problem. However, if
|α| < 1 then the classical bound is Cα = 2 and the
value of gq,α(Sα) at Sα = 2 is too high to describe
the optimal strategy. However, we can improve it
by taking probabilistic mixtures of the above strategy
with the classical one achieving H(A1|E) = h(q) at
Sα = 2. Geometrically we are considering, in the
plane

(
Sα, H(A1|E)

)
, the convex hull of the points(

Sα, gq,α(Sα)
)

and
(
2, h(q)

)
. As illustrated in fig-

ure 1, this amounts to extending the curve gq,α(s)
linearly from the point where its tangent intersects
H(A1|E) = h(q) at Sα = 2.

Our main result, which we prove in section 4, is that
the explicit attack that we just described is optimal.
That is, the construction shown in figure 1 gives the
device-independent lower bound on the conditional en-
tropy for all |α| < 1 while the bound is simply given
by gq,α(Sα) for |α| ≥ 1.

Main result. To summarise in more mathematical
terms, our main result is that the conditional von Neu-
mann entropy, computed on the post-measurement

2 2.2 2.4 2.60

0.2

0.4

0.6

0.8

1

S∗

Sα

H
(A

1|E
)

gq,α(Sα)
ḡq,α(Sα)

Figure 1: Conditional von Neumann entropy H(A1|E) as a
function on the observed value of Sα given by our explicit
attack, illustrated here for q = 0 and α = 0.9, which is
representative for values |α| < 1. The dashed line is a plot
of (23). It is visibly too high to be the optimal device-
independent strategy for all Sα given that the real curve
must be convex and attain h(q) = 0 at the classical bound
Sα = 2. To get the correct relation, we use the tangent of
gq,α for values of Sα less than the point S∗ where the tangent
intersects the point

(
H(A1|E), Sα

)
=
(
h(q), 2

)
. For q = 0

and α = 0.9 this happens at S∗ ≈ 2.4634.

classical-quantum state (9) following an amount q of
noise preprocessing, is bounded in terms of Sα by

H(A1|E) ≥ ḡq,α(Sα) , (26)

where ḡ ≡ ḡq,α is defined in terms of

g(s) = 1 + φ
(√

(1− 2q)2 + 4q(1− q)(s2/4− α2)
)

− φ
(√

s2/4− α2
)

(27)

as

ḡ(s) =
{
g(s) if |α| ≥ 1 or s ≥ s∗
h(q) + g′(s∗)(|s| − 2) if |α| < 1 and s < s∗

,

(28)
where in turn g′ ≡ g′q,α is the first derivative of g ≡
gq,α and, for |α| < 1, s∗ ≡ s∗(q, α) is the unique point
where the tangent of g(s) crosses h(q) at s = 2, i.e.,
such that

h(q) + g′(s∗)(s∗ − 2) = g(s∗) . (29)

We note that it is sufficient to consider s∗ in the
range

2
√

1 + α2 − α4 ≤ s∗ ≤ 2
√

1 + α2 . (30)

The upper bound corresponds to the quantum max-
imal value; the origin of the lower bound will be ex-
plained at the end of section 4. The attack strategy
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we started with shows that the entropy bound (26) is
tight and can be attained for any values of the para-
meters q and α.

For given correlations, ḡq,α(Sα) can be maximised
over α to obtain the best bound on the conditional
entropy in terms of 〈A1B1〉 + 〈A1B2〉 and 〈A2B1〉 −
〈A2B2〉 seen as separate parameters. The result for
q = 0 and correlations satisfying

〈A1B1〉+ 〈A1B2〉 = 〈A2B1〉 − 〈A2B2〉 = S/2 (31)

is shown and compared with the CHSH entropy bound
(2) in figure 2.

2 2.2 2.4 2.6 2.80

0.2

0.4

0.6

0.8

1

S

H
(A

1|E
)

α = 1
α = αopt

Figure 2: Lower bound on the conditional von Neumann
entropy in terms of the CHSH expectation value using the
CHSH entropy bound (2) (dashed line) and the bound (26)
for the Sα family for q = 0 and the optimal value of α
(solid line) for correlations satisfying 〈A1B1〉 + 〈A1B2〉 =
〈A2B1〉 − 〈A2B2〉 = S/2. The optimal value of α decreases
from 1 to about 0.84 as S goes from 2 to about 2.7 and then
increases back to 1 again as S approaches 2

√
2.

3 Short derivation for CHSH
In the special case of the CHSH expression (α = 1)
and that no noise preprocessing is applied (q = 0), the
von Neumann entropy bound (26) and main result of
this paper simplifies to

H(A1|E) ≥ 1− φ
(√

S2/4− 1
)
. (32)

Before proving the main result (26) we give a short
derivation here for the special case (32). We do this
partly just to show that there is a much simpler way
to derive (32) than the approach originally followed
in [4]; it also can serve as an outline for the full deriv-
ation of (26) that we undertake in section 4. The de-
rivation is a simplified version3 of one done in [22, 23]

3In terms of the notation and basis choices we use in this
section, [22] essentially did the prepare-and-measure analogue

for a prepare-and-measure version of the CHSH-based
protocol.

The main idea is that we can reduce deriving (32) to
bounding the conditional entropy for the well-known
BB84 protocol [15]. To do this, we exploit two facts
that are by now well established for this problem: first,
we can assume without loss of generality that Alice’s
and Bob’s measurements are projective and, second,
since both parties perform only two dichotomic meas-
urements to estimate CHSH, we can use the Jordan
lemma to reduce the analysis to qubit systems.

Concentrating on qubit systems, then, we know
from security analyses of the BB84 protocol (see e.g.
[24] or [25, 26]) that the conditional entropy of the
outcome of a Pauli Z measurement by Alice is lower
bounded by

H(Z|E) ≥ 1− φ
(
|〈X⊗X〉|

)
(33)

in terms of the correlation 〈X ⊗ X〉 between the out-
comes of Pauli X measurements performed by Alice
and Bob on the same initial state. To apply (33) to
the device-independent protocol we need to identify
Alice’s measurement A1 with Z. Since we assume the
measurements are projective this is straightforward
to justify: the CHSH inequality cannot be violated
if any of the measurements are degenerate (i.e., ±1)
and thus must all be linear combinations of the three
Pauli operators. The only basis-independent prop-
erties characterising the measurements then are the
angles between them on the Bloch sphere. We can
therefore choose the local bases in such a way that

A1 = Z , (34)

A2 = cos(ϕA)Z + sin(ϕA)X (35)

and

B1 +B2 = 2 cos
(
ϕB
2
)
Z , (36)

B1 −B2 = 2 sin
(
ϕB
2
)
X , (37)

where ϕA and ϕB are unknown angles. With this
choice of bases, the CHSH expectation value can be
expressed as and then bounded by

S = 〈A1(B1 +B2)〉+ 〈A2(B1 −B2)〉
= 2 cos

(
ϕB
2
)
〈Z⊗ Z〉+ 2 cos(ϕA) sin

(
ϕB
2
)
〈Z⊗X〉

+ 2 sin(ϕA) sin
(
ϕB
2
)
〈X⊗X〉

≤ 2
√
〈Z⊗ Z〉2 + 〈Z⊗X〉2 + 〈X⊗X〉2

≤ 2
√

1 + 〈X⊗X〉2 , (38)

of deriving |〈Y ⊗ Y〉| ≥
√
S2/4− 1 and combining this with

the BB84 bound Hmin(Z|E) ≥ 1 − log2
(
1 +
√

1− 〈Y ⊗Y〉2
)

for the min-entropy. Ref. [22] concentrated on bounding the
min-entropy due to a complication called “basis dependence”
specific to the prepare-and-measure setting that makes it more
difficult to tightly bound the conditional von Neumann entropy
in that case. Some results for the conditional von Neumann
entropy under different assumptions are nevertheless presented
for this setting as Eqs. (4.33) and (4.36) in section 4.4 of [23].
They can be generalised to incorporate noise preprocessing by
using Eq. (3.22) in place of Eq. (3.14) there to obtain the final
entropy bound.
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where we used the Cauchy-Schwarz inequality and
that

cos
(
ϕB
2
)2 +

[
cos(ϕA) sin

(
ϕB
2
)]2

+
[
sin(ϕA) sin

(
ϕB
2
)]2 = 1 (39)

to get to the third line and a constraint

〈Z⊗ Z〉2 + 〈Z⊗X〉2 ≤ 1 (40)

respected by correlations between Pauli operators to
get to the fourth. The inequality (38) rearranges to a
lower bound

|〈X⊗X〉| ≥
√
S2/4− 1 (41)

for the absolute value |〈X ⊗ X〉| of the correlator ap-
pearing in the BB84 entropy bound (33). Since we
chose the bases in such a way as to identify A1 with
Z, we simply substitute (41) into (33) to obtain (32).
The convexity of the result in S then allows the qubit
bound to be extended to arbitrary dimension through
Jordan’s lemma.

4 Derivation of main result
The short derivation for CHSH above illustrates the
general approach and kinds of technical ingredients
we will work with to obtain a proof of the main result
(26). A summary of the key steps is:

• We reduce the problem to one where Alice’s and
Bob’s subsystems are qubits.

• We need a generalisation of the BB84 entropy
bound (33) allowing for noise preprocessing (q 6=
0).

• We derive constraints on correlations between
Pauli operators that we can work with, such as
(40), in order to transform the Sα family of Bell
expressions into a bound for a correlator |〈X⊗B〉|
that we can use in the BB84 entropy bound.

• Finally, we should determine whether the res-
ulting qubit bound is convex and, if it is not,
take its convex hull to obtain the fully device-
independent bound.

While we focus here on the family of Sα expressions,
for which we are able to bound the conditional en-
tropy analytically, we remark that our approach of
reducing the problem to qubits and then using the
entropy bound for the BB84 protocol applies generic-
ally to the two-input/two-output device-independent
setting.

4.1 Reduction to qubits
Following the approach used in many studies of the
CHSH Bell scenario, we start by reducing the problem
to one where Alice and Bob perform qubit measure-
ments. We recapitulate how this works here.

The reduction is based on the Jordan lemma [27],
which tells us that any pair A1, A2 of observable op-
erators whose eigenvalues are all ±1 admit a common
block diagonalisation in blocks of dimension no larger
than two. That is, there is a choice of bases in which
the observables appearing in the Sα Bell expression
can be expressed as

Ax =
∑
j

Ax|j ⊗ [j]A′ , x = 1, 2 , (42)

By =
∑
k

By|k ⊗ [k]B′ , y = 1, 2 (43)

for qubit operators Ax|j and By|k4. Proofs of this
result can be found in [4, 28, 29].

After Alice measures A1 and flips her outcome with
probability q, we remind that the correlation between
Alice and Eve is described by the classical-quantum
state

τAE = [0]A⊗ (q̄ρ0
E + qρ1

E) + [1]A⊗ (qρ0
E + q̄ρ1

E) , (44)

where
ρaE = TrAB[ΠaρABE] (45)

and Π0,1 = (1 ± A1)/2 are the projectors associated
with Alice’s A1 measurement. Introducing the block
diagonalisation, we can reexpress ρaE as

ρaE =
∑
jk

pjkρ
a
jk (46)

where5

pjk = Tr
[
[jk]A′B′ ρABE

]
, (47)

pjk ρ
a
jk = TrAB

[
(Πa ⊗ [jk]A′B′)ρABE

]
. (48)

This allows us to reexpress τAE as

τAE =
∑
jk

pjk τjk , (49)

where

τjk = [0]A⊗(q̄ρ0
jk+qρ1

jk)+[1]A⊗(qρ0
jk+ q̄ρ1

jk) . (50)

4For simplicity we ignore possible 1 × 1 Jordan blocks;
any such blocks can be grouped together into larger 2 × 2
blocks. Since the analysis we intend to perform is also device-
independent we can also assume Alice’s and Bob’s Hilbert spaces
are of even dimension without loss of generality, extending them
if necessary.

5Here A′ and B′ are subsystems, respectively, of A and B.
When taking the product of operators such as [jk]A′B′ ρABE,
we omit in the notation identity operators on unspecified sub-
systems. That is, [jk]A′B′ ρABE =

(
1Ā ⊗ [j]A′ ⊗ 1B̄ ⊗ [j]B′ ⊗

1E
)
ρABE, where Ā = A \A′ and B̄ = B \ B′.
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The expectation value of Sα similarly decomposes
according to

Sα =
∑
jk

pjkSα|jk (51)

where Sα|jk is the contribution to Sα from the pair
(j, k) of Jordan blocks. Importantly, the expecta-
tion value Sα|jk and classical-quantum state τjk con-
ditioned on the Jordan blocks are both determined by
the same conditional state

pjk ρABE|jk = TrA′B′
[
[jk]A′B′ ρABE

]
(52)

where Alice’s and Bob’s subsystems are qubits. This
allows us to reduce the entire problem to qubit sys-
tems. More precisely, suppose we have derived a lower
bound

H(A1|E) ≥ ḡ(Sα) (53)
for the conditional entropy for qubit systems that is
convex6. Then, concavity of the conditional von Neu-
mann entropy and the convexity of ḡ imply in arbit-
rary dimension

H(A1|E)τ ≥
∑
jk

pjkH(A1|E)τjk

≥
∑
jk

pjk ḡ(Sα|jk)

≥ ḡ
(∑
jk

pjk Sα|jk
)

= ḡ(Sα) . (54)

4.2 BB84 entropy bound
We now derive the required BB84 entropy bound in-
cluding noise preprocessing. The result we derive here
is the following. Suppose that Alice, Bob, and Eve
share a tripartite state ρABE, that Alice’s subsystem
is limited to a two-dimensional Hilbert space, and
that Alice performs a Pauli Z measurement on her
subsystem (in some chosen basis) and flips the out-
come with probability q. Then, the von Neumann en-
tropy H(Z|E) of Alice’s outcome conditioned on Eve’s
quantum side information is bounded by

H(Z|E) ≥ 1 + φ
(√

(1− 2q)2 + 4q(1− q)|〈X⊗B〉|2
)

− φ
(
|〈X⊗B〉|

)
, (55)

where
〈X⊗B〉 = Tr

[
(X⊗B)ρAB

]
(56)

is the correlation between the Pauli X observable on
Alice’s side and any ±1-valued observable B on Bob’s
side computed on their part ρAB of the initial state
ρABE. Note that, for q = 0, (55) simplifies to the more
familiar BB84 bound

H(Z|E) ≥ 1− φ
(
|〈X⊗B〉|

)
(57)

6If we have a bound that is not convex we take its convex
hull.

that we used in the outline in section 3.
Before proving (55) we draw attention to a few of

its properties that are important for us here:

1. (55) holds for any initial state ρABE. In particu-
lar, we do not assume that Alice’s and Bob’s mar-
ginal ρAB must respect any symmetries or that
the outcomes of any measurements they could
perform on it must be equiprobable.

2. The right side of (55) is a monotonically increas-
ing function in the argument |〈X ⊗ B〉|. This
means that if we know a (nonnegative) lower
bound for the argument |〈X ⊗ B〉| then we can
safely substitute it into (55) to obtain a lower
bound for the conditional entropy.

3. Although we will later only need to apply it to
bipartite qubit systems, we remark that (55) is
fully device-independent on Bob’s side.

A derivation of (55) written for the prepare-and-
measure version of the BB84 protocol that is device-
independent on Bob’s side already exists [30]; we
simply restate it here for the entanglement-based set-
ting that we are working in and modify it to confirm
that the result still holds even if Alice’s measurement
outcomes are not equiprobable, i.e., that property 1
holds. Property 2 only concerns the end result and
was already pointed out in [30]; appendix B of [30] in
particular proves that (55) is convex in the argument
〈X⊗B〉 and attains its global minimum at 〈X⊗B〉 = 0.
This is also implied by lemma 1 in section 4.5 of this
article.

We start with the fact that we can assume Alice,
Bob, and Eve initially share a state |Ψ〉ABE that is
pure; this can be justified, for instance, by the fact
that the conditional entropy cannot increase if we
purify the initial state and give the extension to Eve.
Next, using that Alice’s system is a qubit, we express
the state as

|Ψ〉ABE = |0〉A ⊗ |ψ0〉BE + |1〉A ⊗ |ψ1〉BE , (58)

where |0〉 and |1〉 are the eigenstates of Z and the
states |ψ0〉 and |ψ1〉 are subnormalised so that ‖ψ0‖2+
‖ψ1‖2 = 1. We don’t assume |ψ0〉 and |ψ1〉 are or-
thogonal to one another. The correlation between
Alice and Eve after Alice measures Z and flips the out-
come with probability q is described by the classical-
quantum state

τAE = [0]A⊗(q̄ψE
0 +qψE

1 )+[1]A⊗(qψE
0 + q̄ψE

1 ) , (59)

where ψE
a = TrB[ψa].

To simplify the end result, we use that the con-
ditional entropy H(Z|E)τ of (59) is identical to the
conditional entropy H(Z|E)τ ′ of a state

τ ′AE = [1]A⊗ (q̄ψE
0 + qψE

1 ) + [0]A⊗ (qψE
0 + q̄ψE

1 ) (60)
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which is identical to (59) except with [0] and [1]
swapped. Furthermore, the entropy in both cases is
the same as the conditional entropy H(Z|EF)τ̄ com-
puted on a symmetrised state

τ̄AEF = 1
2τAE ⊗ [0]F + 1

2τ
′
AE ⊗ [1]F . (61)

That is, one can verify that

H(Z|EF)τ̄ = 1
2H(Z|E)τ + 1

2H(Z|E)τ ′ = H(Z|E)τ .
(62)

Hence, we can bound H(Z|E) by deriving a lower
bound for the conditional entropy H(Z|EF)τ̄ of (61).

Grouping the terms in [0]A and [1]A together we
rewrite τ̄ as

τ̄AEF = 1
2 [0]A ⊗ (q̄σ= + qσ6=) + 1

2 [1]A ⊗ (qσ= + q̄σ6=)
(63)

with

σ= = ψE
0 ⊗ [0]F + ψE

1 ⊗ [1]F , (64)

σ 6= = ψE
1 ⊗ [0]F + ψE

0 ⊗ [1]F , (65)

which are normalised to Tr[σ=] = Tr[σ 6=] = 1. Next,
we use that

H(Z|EF) ≥ H(Z|BEFF′) (66)

for any extension of (63), i.e., any state τ̄ABEFF′ such
that

TrBF′ [τ̄ABEFF′ ] = τ̄AEF . (67)
Specifically, we use

τ̄ABEFF′ = 1
2 [0]A⊗(q̄χ= +qχ6=)+ 1

2 [1]A⊗(qχ= + q̄χ6=)
(68)

where we replace σ= and σ 6= in (63) with purifications

|χ=〉 = |ψ0〉BE ⊗ |00〉FF′ + |ψ′1〉BE ⊗ |11〉FF′ , (69)

|χ6=〉 = |ψ′1〉BE ⊗ |00〉FF′ + |ψ0〉BE ⊗ |11〉FF′ , (70)

where, in turn,

|ψ′1〉 = B ⊗ 1E|ψ1〉 (71)

and B is a (any) Hermitian operator satisfying B2 =
1B. Direct computation of the conditional entropy on
the state (68) gives

H(Z|E) ≥ H(Z|BEFF′)
= S(τ̄ABEFF′)− S(τ̄BEFF′)
= 1 + 1

2S
(
q̄χ= + qχ6=

)
+ 1

2S
(
qχ= + q̄χ6=

)
− S

( 1
2 (χ= + χ6=)

)
= 1 + φ

(√
(q̄ − q)2 + 4qq̄

∣∣〈χ=|χ 6=〉
∣∣2)

− φ
(∣∣〈χ=|χ6=〉

∣∣) . (72)

Finally, we obtain the result (55) by observing, using
the expression (58) for the initial state |Ψ〉ABE, that

〈χ=|χ 6=〉 = 〈ψ0|B ⊗ 1E|ψ1〉+ 〈ψ1|B ⊗ 1E|ψ0〉
= 〈Ψ|X⊗B ⊗ 1E|Ψ〉ABE

= 〈X⊗B〉 . (73)

Before returning to the device-independent pro-
tocol we remark that the BB84 entropy bound (55)
is tight and can be attained with, for example, B = X
and any tripartite state of the form

|Ψ〉ABE = 1
2

[√
1 + Ezz

√
1 + Exx |φ+〉AB|++〉E

+
√

1 + Ezz
√

1− Exx |φ−〉AB|+−〉E
+
√

1− Ezz
√

1 + Exx |ψ+〉AB|−+〉E
+
√

1− Ezz
√

1− Exx |ψ−〉AB|−−〉E
]
,

(74)

where

|φ±〉 = 1√
2

(
|00〉 ± |11〉

)
, (75)

|ψ±〉 = 1√
2

(
|01〉 ± |10〉

)
(76)

are the Bell states, for Exx = 〈X ⊗ X〉 and any value
−1 ≤ Ezz ≤ 1 of Ezz = 〈Z ⊗ Z〉. One can verify that
Alice’s and Bob’s marginal of (74) is

ΨAB = 1
4

[
1⊗ 1 + Exx X⊗X

− ExxEzz Y ⊗Y + Ezz Z⊗ Z
]
. (77)

This is the entanglement-based version of a family of
optimal attacks originally derived in the first security
proof of the BB84 protocol against individual attacks
[31]. The attack state (13) that we applied to the
device-independent protocol in section 2 corresponds
to the special case of (74) with Ezz = 1. In both cases,
the attack strategy is independent of the amount of
noise preprocessing applied.

4.3 Correlations in the Z-X plane
As we saw in the outline, the BB84 bound effectively
reduces the problem of bounding the conditional en-
tropy to applying quantum-mechanical constraints on
correlations that can appear in the subsystem shared
by just Alice and Bob. We show here that, for any un-
derlying quantum state, the correlations between the
Z and X Pauli operators always respect the bounds

E 2
zz + E 2

zx ≤ 1 , (78)

E 2
xz + E 2

xx ≤ 1 , (79)

and (
1− E 2

zz − E 2
zx
)(

1− E 2
xz − E 2

xx
)

≥
(
EzzExz + EzxExx

)2
, (80)

where we use an abbreviated notation Ezz = 〈Z⊗ Z〉,
Ezx = 〈Z ⊗ X〉, and so on for the correlations. Note
that one of these constraints, (78), is the constraint
(40) that we used earlier in the outline.
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To prove these constraints we use the fact that, for
normalised Bloch vectors a = (az, ax) and b = (bz, bx),
the linear combinations a·σ and b·σ have eigenvalues
±1. It follows that, for any state,〈

(a · σ)⊗ (b · σ)
〉
≤ 1 . (81)

We can rewrite the left side as〈
(a · σ)⊗ (b · σ)

〉
=
∑
ij

aibj〈σi ⊗ σj〉

= aTE b , (82)

where E is the 2×2 matrix of coefficients Eij = 〈σi⊗
σj〉 for i, j ∈ {z, x}. Since the relation

aTE b ≤ 1 (83)

holds for any normalised vectors a = [az, ax]T and
b = [bz, bx]T , it necessarily holds for whichever vectors
maximise the left side. Using these implies

‖E‖∞ ≤ 1 . (84)

This is equivalent to the operator inequality EET ≤ 1

or, put differently, that the matrix

1−EET =
[

1− E 2
zz − E 2

zx −EzzExz − EzxExx
−EzzExz − EzxExx 1− E 2

xz − E 2
xx

]
(85)

is positive semidefinite. According to the Sylvester
criterion, this is the case if and only if all of its prin-
cipal minors are of nonnegative determinant, i.e., if

1− E 2
zz − E 2

zx ≥ 0 , (86)

1− E 2
xz − E 2

xx ≥ 0 , (87)

det
[
1−EET

]
≥ 0 . (88)

These are exactly the constraints (78), (79), and (80)
asserted at the beginning of this subsection.

4.4 Entropy bound for qubits
We are now ready to derive the bound satisfied by
the conditional entropy for qubit systems in terms of
the Sα Bell expression. As we did in the outline, we
choose the bases of Alice’s and Bob’s systems such
that their measurement operators are of the form

A1 = Z , (89)

A2 = cos(ϕA)Z + sin(ϕA)X (90)

and

B1 +B2 = 2 cos
(
ϕB
2
)
Z , (91)

B1 −B2 = 2 sin
(
ϕB
2
)
X . (92)

In this case the expectation value of Sα satisfies

Sα/2 = cos
(
ϕB
2
)
α〈Z⊗ Z〉+ cos(ϕA) sin

(
ϕB
2
)
〈Z⊗X〉

+ sin(ϕA) sin
(
ϕB
2
)
〈X⊗X〉

≤
√
α2〈Z⊗ Z〉2 + 〈Z⊗X〉2 + 〈X⊗X〉2 . (93)

For |α| ≥ 1, the problem from this point is straight-
forward. Using the constraint

〈Z⊗ Z〉2 + 〈Z⊗X〉2 ≤ 1 (94)

from the previous subsection we obtain

S 2
α /4 ≤ α2 + 〈X⊗X〉2 , (95)

which, making the choice B = X, rearranges to

|〈X⊗B〉| ≥
√
S 2
α /4− α2 . (96)

Using this in the BB84 entropy bound gives

H(A1|E)
≥ 1 + φ

(√
(1− 2q)2 + 4q(1− q)(S 2

α /4− α2)
)

− φ
(√

S 2
α /4− α2

)
(97)

for all |α| ≥ 1 for qubits, and we only need to verify
that the right side is convex in Sα to justify extending
the result to arbitrary dimension, which we do in the
next subsection.

For |α| < 1 we need to do a bit more work. In this
case, we choose B to be of the form cos(θ)Z + sin(θ)X
such that

〈X⊗B〉 = cos(θ)〈X⊗ Z〉+ sin(θ)〈X⊗X〉 . (98)

For the best θ,

|〈X⊗B〉| =
√
〈X⊗ Z〉2 + 〈X⊗X〉2 . (99)

Together with (93), and using the notation and con-
straints derived in the previous section, the full prob-
lem we want to solve is

Eα(Sα) = min.
√
E 2

xz + E 2
xx

s.t.



α2E 2
zz + E 2

zx + E 2
xx ≥ S 2

α /4
E 2

zz + E 2
zx ≤ 1

E 2
xz + E 2

xx ≤ 1
(1− E 2

zz − E 2
zx )

× (1− E 2
xz − E 2

xx )
− (EzzExz + EzxExx)2 ≥ 0

(100)
in the variables Ezz, Ezx, Exz, Exx. The solution to
this optimisation problem is derived in detail in ap-
pendix A. The end result, depending on Sα, is

Eα(Sα) =
√
S 2
α /4− α2 (101)

for |Sα| ≥ 2
√

1 + α2 − α4 and

Eα(Sα) =
√

1−
(

1− 1
|α|
√

(1− α2)(S 2
α /4− 1)

)2

(102)
for |Sα| ≤ 2

√
1 + α2 − α4. Applying this in the BB84

bound (55) gives

H(A1|E) ≥ 1 + φ
(√

(1− 2q)2 + 4q(1− q)Eα(Sα)2
)

− φ
(
Eα(Sα)

)
, (103)
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with Eα(Sα) given by (101) or (102) depending on the
value of Sα.

As a side remark, we note that the lower bounds on
|〈X ⊗ B〉| that we just derived in term of Sα can be
used to derive the tight bound for the min-entropy in
terms of Sα. This is discussed in appendix D.

4.5 Device-independent entropy bound
Having bounded the conditional entropy for qubit sys-
tems, the remaining step is to establish the convexity
with respect to the Bell expectation value Sα, or to
construct the convex hull, of the family of bounds we
have derived.

2 2.2 2.4 2.60

0.2

0.4

0.6

0.8

1

S∗

Sα

H
(A

1|E
)

Figure 3: Conditional entropy bound (103) for q = 0 and
α = 0.9 derived assuming Alice and Bob perform projective
qubit measurements. Its form depends on how Sα compares to
S∗ = 2

√
1 + α2 − α4 ≈ 2.1484: it is concave and described

by (103) and (102) for Sα ≤ S∗ and it is convex and described
by (103) and (101) for Sα ≥ S∗.

The qubit bound (103) is illustrated for q = 0 and
α = 0.9 in figure 3. It visibly has the appearance
of being concave for Sα ≤ 2

√
1 + α2 − α4 and convex

for Sα above this value. We show here that this is
generally true of (103) for all q and all |α| < 1 while
the qubit bound (97) for |α| ≥ 1, which has the same
form as (103) for |α| < 1 and Sα ≥ 2

√
1 + α2 − α4, is

always convex.

We establish the concavity or convexity of the qubit
bounds by bounding their second derivatives. To do
this, we recall some conditions under which concavity
or convexity are preserved under function composi-
tion. The second derivative of the composition f ◦ g
of two functions is given by

(f ◦g)′′(x) = f ′′
(
g(x)

)
g′(x)2+f ′

(
g(x)

)
g′′(x) . (104)

From this we can see that f ◦ g is guaranteed to be
convex if both f and g are convex and if f is monoton-
ically increasing. Conversely, f ◦g is guaranteed to be

concave if f is concave and monotonically decreasing
while g is convex.

Using this approach, we prove that the bound given
by (103) and (101) as well as (97) is convex by express-
ing it as f ◦g(Sα) for the function f in lemma 1 below
with Q = (1− 2q)2 and with

g(Sα) = S 2
α /4− α2 , (105)

which is clearly convex7. The following result, which
we prove in appendix B.1, confirms that f has the
properties needed for us to infer that the composition
f ◦ g is convex.

Lemma 1. The function

f(x) = 1 + φ
(√

Q+ (1−Q)x
)
− φ

(√
x
)

(106)

is convex and monotonically increasing in x for 0 ≤
x ≤ 1 and for any 0 ≤ Q ≤ 1.

We similarly prove that the curve described by (103)
and (102) is concave by expressing it as f ◦ g(Sα),
this time with the function f in lemma 2 below with
Q = (1− 2q)2 and with

g(Sα) = 1− 1
|α|
√

(1− α2)(S 2
α /4− 1) . (107)

Checking that g is convex amounts to checking that
the function s 7→

√
s2 − 1 is concave, which doesn’t

present any particular problem. The following result,
proved in appendix B.2, verifies that f has the prop-
erties required to guarantee that f ◦ g is concave.

Lemma 2. The function

f(x) = 1 +φ
(√

Q+ (1−Q)(1− x2)
)
−φ
(√

1− x2
)

(108)
is concave and monotonically decreasing in x for 0 ≤
x ≤ 1 and for any 0 ≤ Q ≤ 1.

Finally, one can verify that the qubit entropy bound
for |α| < 1 and its first derivative in Sα are continuous.
This amounts to checking that (101) and (102) both
have the same values and first derivatives,

Eα(S∗) =
√

1− α4 , (109)

E′α(S∗) =
√

1 + α2 − α4

2
√

1− α4
, (110)

at the point S∗ = 2
√

1 + α2 − α4. One can also verify
that its gradient becomes infinite as Sα approaches
the quantum bound 2

√
1 + α2.

The device-independent bound in arbitrary dimen-
sion is given by the convex hull of the qubit bound.

7Note that using the BB84 bound for f and using g(Sα) =√
S 2
α /4− α2 for g does not work with this approach since g

would be concave in that case.
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This implies that the part of the qubit bound de-
scribed by (103) and (102) for Sα ≤ 2

√
1 + α2 − α4,

which is concave, may be ignored and the device-
independent bound is thus given by the construction
described at the end of section 2 and illustrated in
figure 1. In particular, this is where the lower limit of
2
√

1 + α2 − α4 in the range (30) for the root-finding
problem (29) comes from. The fact that the qubit
entropy bound and its gradient are continuous every-
where, that it is concave for Sα ≤ 2

√
1 + α2 − α4 and

reaches h(q) at the classical bound Sα = 2, that it
is convex for Sα ≥ 2

√
1 + α2 − α4, and that its gradi-

ent becomes infinite at the quantum bound imply that
there is necessarily a solution to the root-finding prob-
lem (29) in the range (30) and that it is unique.

5 Applications to DIQKD key rates
The entropy bound H(A1|E) ≥ ḡq,α(Sα) we have
now proved can be applied in QKD security frame-
works that reduce proving the security of a protocol
to bounding the conditional von Neumann entropy in
a single round. Applying it in the Devetak-Winter
rate (4) gives a lower bound

r ≥ ḡq,α(Sα)−H(A1|B3) (111)

on the asymptotic key rate that depends only on para-
meters – the Bell expectation value Sα and probabil-
ities P (ab|13) – that Alice and Bob working together
can estimate.

In this section, we apply (111) to obtain explicit
estimates of the robustness of the device-independent
QKD protocol in two commonly studied imperfection
models, both of which were also used as examples
in [4]: depolarising noise, where we assume that the
optimal Bell state for the protocol is mixed with white
noise, and a generic loss model.

All the thresholds we report when using noise pre-
processing were computed in the limit q → 1/2 of
maximal random noise. This typically seems to give
the best threshold and this was what we saw in cases
where we computed the key rate for different amounts
of noise preprocessing, although we have not checked
that q → 1/2 is optimal in every case. We describe
how the Devetak-Winter rate can be computed in this
limit in appendix C.

5.1 Depolarising noise
In this model we suppose that Alice and Bob share a
noisy version,

ρAB = v φ+ + (1− v) 1AB/4 , (112)

of the optimal two-qubit Bell state

|φ+〉 = 1√
2
(
|00〉+ |11〉

)
(113)
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Figure 4: Lower bound (121) on the Devetak-Winter rate
as a function of channel error rate δ, assuming correlations
satisfying 〈A1(B1 + B2)〉 = 〈A1(B1 − B2)〉 =

√
2(1 − 2δ),

for the optimal values of q and α (solid curve) and for q = 0
and α = 1 (dashed curve).

parametrised by some visibility v. For the ideal meas-
urements A1 = Z and B3 = Z for key generation, the
possible outcomes are obtained with joint probabilit-
ies

P (++|13) = P (−−|13) = (1− δ)/2 , (114)

P (+−|13) = P (−+|13) = δ/2 , (115)

where the error rate δ is related to the visibility in
(112) by

v = 1− 2δ . (116)

When Alice additionally applies noise preprocessing,
the resulting joint distribution retains the same form
but with a worse error rate,

δq = q + (1− 2q)δ . (117)

The conditional Shannon entropy associated with this
distribution is

H(A1|B3) = h(δq) , (118)

depending on the amount q of noise preprocessing ap-
plied.

In the CHSH-based protocol, the ideal measure-
ments in the Bell test are A1 = Z, A2 = X, and
B1,2 = (Z ± X)/

√
2. With these measurements the

two-body correlation terms satisfy〈
A1(B1+B2)

〉
=
〈
A1(B1−B2)

〉
=
√

2(1−2δ) , (119)

which translates to an expectation value

Sα =
√

2(1 + α)(1− 2δ) (120)

of the asymmetric CHSH expression.
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q = 0 q → 1/2
α = 1 7.1492 8.0848
α = opt 7.4002 8.3320
α,By = opt 7.4177 8.3453

Table 1: Threshold error rates (%) obtained using either
CHSH (α = 1) or the optimal asymmetric expression (α =
opt), both without (q = 0) and with maximal (q → 1/2)
noise preprocessing. The third row (α,By = opt) gives the
thresholds when in addition Bob’s measurements are optimised
such that Sα = 2

√
1 + α2(1− 2δ).

The lower bound on the Devetak-Winter rate we
obtain for the depolarising noise model is then expli-
citly

r ≥ ḡq,α
(√

2(1 + α)(1− 2δ)
)
− h(δq) . (121)

The best possible bound on the key rate is obtained
by maximising the right side of (121) over α and q.
We illustrate the result as a function of the channel
noise rate δ in figure 4. The key rate computed using
only the CHSH bound of [4], i.e., q = 0 and α = 1,
is also shown for comparison. The combination of
applying noise preprocessing and optimising over the
Sα family of Bell expressions increases the threshold
error rate, up to which the key rate remains positive,
from δ ≈ 7.15% found in [4] to 8.33%.

In table 1 we list the threshold error rates obtained
for the different combinations of using CHSH or the
optimal Sα expressions without or with noise pre-
processing. Table 1 in addition gives the thresholds
obtained when using, instead of the measurements
B1,2 = (Z ± X)/

√
2 that are optimal for CHSH, the

measurements that attain the maximal value

Sα = 2
√

1 + α2(1− 2δ) (122)

of the Sα expression for the depolarised state. This
gives marginally better threshold error rates.

Since the conditional entropy bounds used in the
above security analysis are tight, the threshold er-
ror rates that we compute are optimal in terms of
the asymmetric CHSH expressions Sα, and the val-
ues reported in table 1 optimised over α are optimal
in terms of the combinations 〈A1B1〉 + 〈A1B2〉 and
〈A2B1〉 − 〈A2B2〉 viewed as independent parameters.
But they are actually also optimal with respect to an
analysis that would take into account the full set of
statistics. This is because according to the measure-
ment and noise model considered above, Alice’s and
Bob’s marginal measurement outcomes are equiprob-
able, i.e.,

〈A1〉 = 〈A2〉 = 〈B1〉 = 〈B2〉 = 0 , (123)

and the two-body correlations satisfy

〈A1B1〉 = 〈A1B2〉 (124)

and
〈A2B1〉 = −〈A2B2〉 . (125)

But these relations, which completely fix the full
set of correlators once the independent combinations
〈A1B1〉+ 〈A1B2〉 and 〈A2B1〉 − 〈A2B2〉 are specified,
are also satisfied for the family of optimal attacks
presented in section 2 and saturating our entropy
bound. Thus, specifying other correlation terms bey-
ond those involved in the definition of Sα would not
restrict the attack strategies further than already con-
sidered.

5.2 Losses
In this setting, we suppose that Alice and Bob detect
their particles and obtain definite measurement out-
comes with some probability η which, for simplicity,
we take to be the same on both sides. We model
this formally by treating nondetection events as a
third measurement outcome, obtained independently
by Alice and Bob with probability 1− η. In this case,
as well as the maximally-entangled Bell state we also
consider a possible type of strategy in which Alice and
Bob deliberately use partially-entangled states, which
have been shown to improve the robustness of Bell
experiments based on the CHSH inequality to losses
[32].

We consider the maximally-entangled state first. In
order to apply our entropy bound we need to reduce
the setting to one where the measurements used in
the Bell test all have only two outcomes. The typ-
ical way to do this, which we apply here, is to map
(“bin”) nondetection events to one of the outcomes
+1 or −1. In terms of the global detection efficiency
η, the maximum value of the Sα expression over the
different possible binning strategies is

Sα =
√

2(1 + α)η2 + 2 max(1, |α|)η̄2 , (126)

where η̄ = 1 − η, if Bob uses the diagonal measure-
ments B1,2 = (Z±X)/

√
2 or

Sα = 2
√

1 + α2 η2 + 2 max(1, |α|)η̄2 (127)

if Bob uses the optimal ones. For the key genera-
tion measurements A1 = B3 = Z, Alice and Bob
obtain outcomes (including nondetections) with the
joint probabilities

(
PAB(ab|13)

)
=

 1
2η

2 0 1
2ηη̄

0 1
2η

2 1
2ηη̄

1
2ηη̄

1
2ηη̄ η̄2

 ; (128)

however, since we map nondetection events to (for
example) A1 = +1 on Alice’s side to use the entropy
bound we must do the same here, that is, we should
add the third row of (128) to the first. This gives the
joint distribution(

PAB(ab|13)
)

=
[

1
2η

1
2ηη̄

1
2 η̄(1 + η̄)

0 1
2η

2 1
2ηη̄

]
. (129)
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q = 0 q → 1/2
α = 1 90.7768 90.3046
α = opt 90.4970 90.0230
α,By = opt 90.4856 90.0122

Table 2: Threshold detection efficiencies (%) obtained both
without (q = 0) and with maximal (q → 1/2) noise prepro-
cessing for the maximally-entangled state. The first (α = 1)
and second (α = opt) rows give the thresholds obtained
using only CHSH and the optimal asymmetric Bell expres-
sion using diagonal measurements (Z ± X)/

√
2 on Bob’s

side. In the third row (α,By = opt) we also use the optimal
measurements on Bob’s side.

Finally, as before, when noise preprocessing is applied
we also need to swap the rows of (129) with probabil-
ity q, i.e., transform (129) according to

PAB(±, b|13) 7→ (1− q)PAB(±, b|13) + qPAB(∓, b|13) ,
(130)

before computing the conditional Shannon entropy
H(A1|B3).

The threshold global detection efficiencies we
found for the resulting Devetak-Winter rate for the
maximally-entangled state are reported in table 2. In
this case the thresholds are all a little over 90% with
little variation depending on whether the Sα fam-
ily or noise preprocessing are used. The threshold
η ≈ 90.78% that we obtain using only CHSH and with
no noise preprocessing is better than the threshold
η ≈ 92.4% found in [4] as a result of computing the
conditional Shannon entropy on the full probability
distribution (129) without binning the nondetection
event on Bob’s side. It is also slightly better than the
threshold of 90.9% found in [33] due to a small ad-
vantage in bounding the Devetak-Winter rate via the
conditional von Neumann entropy rather than via the
Holevo quantity as was originally done in [4].

We now consider partially-entangled states which,
as we mentioned, are known to increase the robustness
to losses in the CHSH Bell experiment. In this case,
we suppose that Alice and Bob share a state

|ψθ〉 = cos
(
θ
2
)
|00〉+ sin

(
θ
2
)
|11〉 (131)

dependent on a parameter θ characterising the degree
of entanglement. The density operator associated to
|ψθ〉 is

ψθ = 1
4

[
1⊗ 1 + cos(θ)

(
Z⊗ 1 + 1⊗ Z

)
+ sin(θ)

(
X⊗X−Y ⊗Y

)
+ Z⊗ Z

]
. (132)

We then suppose that Alice and Bob measure A1 = Z
and B3 = Z to generate their key and use whichever
measurements A2, B1, and B2 give the highest expect-
ation value of the Sα expression given that A1 is fixed
to Z and the global detection efficiency is fixed to some

value η. For this problem, the best thresholds we saw
were obtained by mapping all nondetection events to
+1. For this binning strategy, the expectation value
of Sα can be expressed as

Sα = η2〈αA1(B1 +B2) +A2(B1 −B2)
〉

+ ηη̄
〈
2αA1 + (α+ 1)B1 + (α− 1)B2

〉
+ 2η̄2α (133)

in terms of η and the expectation values 〈Ax〉, 〈By〉,
and 〈AxBy〉 that would be obtained from (131) if
there were no losses. Setting

A2 = cos(ϕA)Z + sin(ϕA)X (134)

and optimising over the measurements B1 and B2 on
Bob’s side gives

Sα = η
√
R2 + (P +Q)2 + η

√
R2 + (P −Q)2

+ 2ηη̄α cos(θ) + 2η̄2α , (135)

where

R = η sin(ϕA) sin(θ) , (136)

P = αη + αη̄ cos(θ) , (137)

Q = η cos(ϕA) + η̄ cos(θ) , (138)

in terms of θ, ϕA, and η. With this strategy, for small
θ8 the expectation value in the special case of CHSH
is approximated by

S ≈ 2 + η

[
3η − 2− ηη̄

(
1− cos(ϕA)

)
2− η

(
1− cos(ϕA)

)]θ2 (139)

to the smallest nontrivial order in θ, or

S ≈ 2 + η
(

3η − 2− 1
4ηη̄ϕA

2
)
θ2 (140)

if ϕA is also small. This shows that the strategy we
have described can violate the CHSH inequality as
long as the global detection efficiency is better than
η = 2/3, the same as was found in [32], although our
choice to fix A1 = Z means that the CHSH violation
we can attain is not as high as it could otherwise be.

The outcomes including nondetections when Alice
and Bob measure A1 = Z and B3 = Z on the partially-
entangled state occur with joint probabilities

(
PAB(ab|13)

)
=

η2c2 0 ηη̄c2

0 η2s2 ηη̄s2

ηη̄c2 ηη̄s2 η̄2

 (141)

where c2 = cos
(
θ
2
)2

and s2 = sin
(
θ
2
)2

. As before,
we should merge the nondetection events on Alice’s

8More precisely, the approximation (139) is valid if |θ| is
small compared to |ϕA|. This means that ϕA can be taken
arbitrarily close to zero as long as θ is taken even smaller. This
condition is also why (139) does not imply that the CHSH
inequality can be violated with ϕA = 0.
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q = 0 q → 1/2
α = 1 86.5479 82.5742
α = opt 86.5255 82.5742

Table 3: Threshold detection efficiencies (%) obtained using
either CHSH (α = 1) or the optimal asymmetric expression
(α = opt), both without (q = 0) and with maximal (q → 1/2)
noise preprocessing, for the strategy using partially-entangled
states.

side with the +1 outcome and swap the rows with
probability q if noise preprocessing is also used before
computing H(A1|B3).

Computing the Devetak-Winter rate using the
value (135) of Sα and maximising the result over θ
and ϕA gives a positive rate up to the global detec-
tion efficiencies listed in table 3. The thresholds for
q = 0 are attained for partially-entangled states with
θ a little under 0.5 radians. The threshold for q → 1/2
by contrast is attained in the limit θ → 0 of a separ-
able state. The approximations of the key rate for
q = (1 − ε)/2 described in appendix C and (140) of
CHSH for small θ and ϕA can be used to derive an
approximate lower bound,

r &
η

6 log(2)

(
3η2 + 6η − 7− 1

2ηη̄ϕA
2
)
θ2ε2 , (142)

for the key rate when ε and the angles are small. In
this vicinity the key rate can be positive, albeit minus-
cule, as long as the global detection efficiency is better
than

η =
√

10/3− 1 ≈ 82.5742% . (143)

For q → 1/2 we didn’t see any improvement to the
threshold when using the Sα family instead of the
CHSH expression.

The results in table 3 should be taken with a pinch
of salt as they were derived assuming only losses occur
in an otherwise perfect experiment, which is not real-
istic. The threshold detection efficiency using noise
preprocessing in particular was derived by taking the
limit θ → 0 of a separable state and is accordingly very
vulnerable to noise. To model this, we computed the
best thresholds (i.e., using both noise preprocessing
and the Sα family) when we replace the initial state
with an attenuated one of the form

ρ = v ψθ + (1− v) 1AB/4 . (144)

The threshold detection efficiencies both for θ = π/2
(the maximally-entangled state) and for whichever
partially-entangled state gave the best result are il-
lustrated as a function of the error rate in figure 5.
The threshold using partially-entangled states visibly
increases very rapidly as soon as we add even a
small amount of channel noise. We also recomputed
the thresholds of table 3 with the visibility set to
v = 99%, corresponding to a more realistic error rate

of δ = 0.5%. This increases the thresholds, listed in
table 4, to above 87%.

Finally, note that while the conditional entropy
bound we used holds generally, it is only really op-
timised for the case that Alice and Bob’s correlations
satisfy Eqs. (123)–(125) and in particular obtain equi-
probable measurement outcomes. Deterministically
binning nondetection events and deliberately using a
partially-entangled state both spoil this and the real
thresholds could actually be significantly better than
the ones we report here.

0 2 4 6 880
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Figure 5: Threshold detection efficiency as a function of
channel noise when partially-entangled states (solid curve) or
maximally-entangled states (dashed curve) are used. The
thresholds start respectively at η ≈ 82.5742% and η ≈
90.0122% for δ = 0 and increase to η = 100% as the error
rate approaches δ ≈ 8.3453%. δ is defined here to be related
to the visibility in (144) by v = 1− 2δ.

q = 0 q → 1/2
α = 1 88.8316 87.6469
α = opt 88.7149 87.5714

Table 4: Threshold detection efficiencies (%) obtained using
either CHSH (α = 1) or the optimal asymmetric expression
(α = opt), both without (q = 0) and with maximal (q → 1/2)
noise preprocessing, using partially-entangled states but with
a 0.5% channel error rate.

6 Discussion
In our work we derived a tight lower bound on the con-
ditional von Neumann entropy following an arbitrary
amount of noise preprocessing and for the family Sα of
asymmetric CHSH Bell expressions, which allows us
to make more effective use of the statistics than when
using the standard CHSH expression. Our proof heav-
ily exploited the similarity of the device-independent
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protocol to the entanglement-based version of the
BB84 protocol. Section 5 showed that these modifica-
tions, both individually and together, can improve the
robustness of the original CHSH-based protocol using
two commonly-used imperfection models as examples.
For a maximally entangled two-qubit state subject to
a depolarising noise model, the threshold error rate
according to our analysis is just above 8.34%. This
is actually the optimal error rate, equalling a security
analysis that takes into account the full set of statist-
ics.

As is typically the case of research based on the
CHSH Bell setting, our analysis is heavily dependent
on the fact that the setting can be effectively reduced
to the study of bipartite qubit systems. Obviously,
it would be interesting in the future to learn how to
derive good bounds for the conditional von Neumann
entropy in Bell settings with more inputs and/or out-
puts, where we cannot rely on such a reduction.

Within the CHSH setting however there are still
some possible avenues for further work. First, while
the entropy bound we have derived is tight in terms
of the parameters it depends on, this does not mean
it is always optimal for every scenario. Our approach
in particular is optimised for the case that Alice’s and
Bob’s marginal measurement outcomes are equiprob-
able. This is fine if the imperfections in a real imple-
mentation most closely correspond to the depolarising
noise model but not, as we cautioned in section 5,
if they more closely resemble the loss model. It is
likely that our entropy bound gives suboptimal res-
ults in the latter case. This is partly confirmed by
a recent result for partially-entangled qubits in [14],
where a threshold of about 84.3% is obtained for the
global detection efficiency without using noise prepro-
cessing, which is somewhat better than the thresholds
of around 86.5% that we obtained for this case here.

Our proof, however, has a rather modular nature;
parts of it could no doubt be changed, generalised, or
applied to different problems without affecting other
parts. Different preprocessings could be considered
and may only require changing the derivation of the
BB84 bound in section 4.2; we have not checked, for
instance, if flipping both of Alice’s outcomes with
the same probability q is always the optimal choice.
Optimisation problems of the kind we landed on in
section 4.4 may lend themselves to numerical ap-
proaches9, although it should be kept in mind that
solving the problem analytically made it much more
straightforward for us to prove when the result was
and was not convex. Lemmas 1 and 2 in section 4.5
may help prove the convexity or nonconvexity of en-

9In particular, Eq. (100) as written is the square root of
a polynomial optimisation problem and could in principle be
solved numerically using the Lasserre hierarchy [34]. This would
still be true, albeit the problem larger, if we had not optimised
out the measurements; the sines and cosines of the angles ϕA
and ϕB could still be treated as additional variables satisfying
polynomial constraints c2 + s2 = 1.

tropy bounds with similar functional forms to what
we derived in section 4.

Second, our approach exploits two refinements – us-
ing more information about the statistics and noise
preprocessing – that were already known to improve
the performance of cryptography protocols. A third
refinement that we have not exploited here would con-
sist of using both of Alice’s measurements to gener-
ate the key, which forces an eavesdropper to have to
gain information about both bases without knowing
in advance which will be used. This kind of modifica-
tion has previously been shown to improve the average
bound on the min-entropy in the device-independent
setting [19].

This variant of the CHSH-based protocol has re-
cently been considered [12], however the approach
of [12] requires a rather elaborate numerical proced-
ure to bound the key rate and the threshold error
rate of 8.2% reported by the authors for the depolar-
ising channel does not exceed the threshold just above
8.34% that we found for the single-basis version of the
protocol using the refinements we considered here.

We suspect that the result of [12] is not quite op-
timal, however, and thus a good candidate for further
study. One possible way to bound the average entropy
of Alice’s measurements for this problem may be to
try to apply the same method we have applied to the
single-basis protocol here. According to a quick nu-
merical test we performed, the best bound on the aver-
age conditional entropy that could be obtained using
only the BB84 entropy bound of section 4.2 and Pauli
correlation bounds of section 4.3 should give a slightly
better threshold of around 8.36%, or alternatively up
to 9.24% if noise preprocessing is also used. Even
these thresholds do not appear to be optimal, however.
We also performed a brute-force numerical minimisa-
tion of the average conditional von Neumann entropy.
The results seemed to show that the optimal attack for
qubit systems involves Alice and Bob using measure-
ments of the form A1,2 = cos

(
ϕA
2
)
Z ± sin

(
ϕA
2
)
X and

B1,2 = Z,X on an asymmetric version of the optimal
BB84 attack state10, i.e., (74) with different values of
Ezz and Exx. In other words, the tight lower bound
on the average entropy for qubit systems appeared to
us to coincide with the result of minimising

1
2H(A1|E) + 1

2H(A2|E)

= 1 + φ
(√

cos
(
ϕA
2
)2
E 2

zz + sin
(
ϕA
2
)2
E 2

xx

)
− φ(Ezz)− φ(Exx) (145)

10Section I.H of the supplementary information to Ref. [12]
conjectures that the reduced state shared by Alice and Bob in
the optimal attack is Bell diagonal with two nonzero eigenval-
ues, which would correspond to an attack state like (74) with,
e.g., Ezz = 1, but this is not consistent with what we found
when minimising the average conditional von Neumann entropy
directly. The minimum of (145) subject to (146) is generally
not attained with either Ezz = ±1 or Exx = ±1.
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subject to

2 cos
(
ϕA
2
)
Ezz + 2 sin

(
ϕA
2
)
Exx = S (146)

for a given expectation value S of the CHSH correl-
ator. Furthermore, similar to the qubit bound we
derived in section 4.4, the resulting bound appears
to be concave except in a region close to the quantum
bound, where the optimal qubit attack appears to con-
sist of mutually unbiased measurements (ϕA = π/2)
on a state for which Ezz = Exx = S/

√
8. Assuming

these observations are correct, this would mean that
the average bound for qubit systems is given by

1
2H(A1|E) + 1

2H(A2|E) ≥ 1− φ
(
S/
√

8
)

(147)

if the CHSH expectation value is close to the quantum
maximum, with the device-independent bound ob-
tained by extending one of the tangents of (147) as in
the construction of our main result in section 2. This
result would imply that the threshold noise rate of
the DIQKD protocol using both bases (without noise
preprocessing) is around 8.44%.

Eqs. (145) and (146) suggest it may be difficult to
rigorously prove the tight bound on the average condi-
tional entropy for the two-basis version of the DIQKD
protocol. Nevertheless, the thresholds we have estim-
ated numerically suggest there is some room for im-
provement in the results of [12], particularly if noise
preprocessing is also used.

Note added. A derivation of the conditional en-
tropy bound for CHSH incorporating noise prepro-
cessing, i.e., the special case α = 1 of the conditional
entropy bound we derive here for the full Sα family,
has recently been published in [35] independently of
us, which the authors apply to an investigation of the
performance of an optical model. This entropy bound
is obtained by parametrising and explicitly optimising
over all qubit attacks, following the approach of [3, 4].
Here, we exploited the fact that we already know how
to derive the entropy bound including noise prepro-
cessing for the BB84 protocol [23, 30]. The qubit ana-
lysis of [35] can be promoted to a fully, dimension-free,
device-independent bound using the convexity proof
we give in appendix B (as this step is incomplete in
[35]).

After making public the present results, a follow-
up to [35] providing an analytical derivation of the
same entropic bounds for the Sα expressions for α ≥ 1
and proposing a numerical method for |α| < 1 has
appeared in [36].

Finally, the conjecture described around (147) on
the average entropy of both of Alice’s measurement
outcomes was also made independently in [37].
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A Qubit optimisation problem
Here we solve the optimisation problem (100) in sec-
tion 4 of the main text. We first simplify it by intro-
ducing polar coordinates,

Ezz = λ cos(z) , Exz = µ cos(x) , (148)

Ezx = λ sin(z) , Exx = µ sin(x) . (149)

With this change of variables the problem becomes

minimise |µ|

subject to



α2λ2 cos(z)2 + λ2 sin(z)2

+ µ2 sin(x)2 ≥ S 2
α /4

λ2 ≤ 1
µ2 ≤ 1

(1− λ2)(1− µ2)
− λ2µ2 cos(z − x)2 ≥ 0

(150)

in the free variables µ, λ, z, and x. From here, it is an
algebra problem to eliminate the unwanted variables
λ, z, and x so that only a constraint between |µ| and
the constants α and Sα remains.

We begin with the first constraint. Using the tri-
gonometric identities cos(x)2 =

(
1 + cos(2x)

)
/2 and

sin(x)2 =
(
1− cos(2x)

)
/2, it can be rewritten

(1 + α2)λ2 + µ2 − (1− α2)λ2 cos(2z)
− µ2 cos(2x) ≥ S 2

α /2 . (151)

Substituting Σ = z + x and ∆ = z − x and using the
trigonometric angle sum and difference identities, we
get

(1 + α2)λ2 + µ2

−
(
(1− α2)λ2 + µ2) cos(Σ) cos(∆)

−
(
(1− α2)λ2 − µ2) sin(Σ) sin(∆) ≥ S 2

α /2 . (152)

We can then maximise the left-hand side over Σ,
which doesn’t appear in any of the other constraints.
After simplifying a little this gives

(1 + α2)λ2 + µ2

+
√(

(1− α2)λ2 − µ2
)2 + 4(1− α2)λ2µ2 cos(∆)2

≥ S 2
α /2 , (153)

which we can rearrange to√(
(1− α2)λ2 − µ2

)2 + 4(1− α2)λ2µ2 cos(∆)2

≥
(
(1− α2)λ2 − µ2)+ 2(S 2

α /4− λ2) . (154)

Now note that, if α2 < 1, the term (1 −
α2)λ2µ2 cos(∆)2 is nonnegative. Hence we also have√(

(1− α2)λ2 − µ2
)2 + 4(1− α2)λ2µ2 cos(∆)2

≥
∣∣(1− α2)λ2 − µ2∣∣

≥ −
(
(1− α2)λ2 − µ2)

≥ −
(
(1− α2)λ2 − µ2)− 2(S 2

α /4− λ2) , (155)

where we assume that |Sα| ≥ 2 (i.e., Sα is attaining
or exceeding the classical bound) and λ2 ≤ 1 (which
is one of the problem constraints in (150)), which to-
gether imply S 2

α /4− λ2 ≥ 0, in order to get the last
line. Eqs. (154) and (155) together confirm that√(

(1− α2)λ2 − µ2
)2 + 4(1− α2)λ2µ2 cos(∆)2

≥
∣∣((1− α2)λ2 − µ2)+ 2(S 2

α /4− λ2)
∣∣ (156)

holds with the absolute value term on the right. Now,
since the right side of (156) is nonnegative we are
justified to square both sides of the inequality. After
doing this and simplifying the result, we obtain

(1− α2)λ2µ2 cos(∆)2

≥ (S 2
α /4− α2λ2 − µ2)(S 2

α /4− λ2) . (157)

We now eliminate ∆ from the problem by applying
the constraint

(1− λ2)(1− µ2) ≥ λ2µ2 cos(∆)2 (158)

to the left side of (157), obtaining

(1− α2)(1− λ2)(1− µ2)
≥ (S 2

α /4− α2λ2 − µ2)(S 2
α /4− λ2) . (159)

Collecting the terms in µ2 together we can rewrite
(159) as

(X + α2Λ)µ2 ≥ X + (X + α2Λ)Λ (160)

where

X = (1− α2)(S 2
α /4− 1) , (161)

Λ = S 2
α /4− λ2 . (162)

Note that here both X and Λ are strictly positive
assuming λ2 ≤ 1, |S|α > 2, and |α| < 1, and only Λ
depends on the remaining parameter λ. Subject to
these conditions, (160) gives a lower bound for µ2 in
terms of λ which we can express as

µ2 ≥
√
X

|α| f
(
X + α2Λ
|α|
√
X

)
− X

α2 , (163)

where we have made appear the function

f(t) = t+ 1/t . (164)

The remaining problem is to minimise the right side
of (163) subject to the condition λ2 ≤ 1. This is
straightforward due to the characteristics of the func-
tion f (164) that we expressed it in terms of: for
t > 0, t is convex and its global minimum of f(t) = 2
is attained at t = 1, so the lower bound for µ2 is
determined by how close we can make the argument

t = X + α2Λ
|α|
√
X

(165)
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to 1. The limits 0 ≤ λ2 ≤ 1 translate to

t ≤ α2 + S 2
α /4− 1√

α2(1− α2)(S 2
α /4− 1)

(166)

and

t ≥
√
S 2
α /4− 1

α2(1− α2) . (167)

The upper limit (166) can be rewritten as

t ≤
√

1 +
α2
(
(1 + α2)S 2

α /4− 1
)

+ (S 2
α /4− 1)2

α2(1− α2)(S 2
α /4− 1) ,

(168)
which makes it clear that the right side is never less
than 1. The lower limit (167) on the other hand may
be less than 1 depending on α and Sα. Specifically, if

|Sα| ≤ 2
√

1 + α2 − α4 (169)

then the right side of (167) is not more than 1, in
which case it is possible to choose λ such that t = 1.
Recalling that |µ| = |〈X⊗B〉|, we obtain in this case

〈X⊗B〉2 ≥ 1−
(

1− 1
|α|
√

(1− α2)(S 2
α /4− 1)

)2
.

(170)
On the other hand, if |Sα| ≥ 2

√
1 + α2 − α4 then the

minimum is attained with the smallest value allowed
of the argument,

t =

√
S 2
α /4− 1

α2(1− α2) =
√
X

|α|(1− α2) , (171)

in which case the constraint (163) simplifies to the
same expression,

|〈X⊗B〉| ≥
√
S 2
α /4− α2 , (172)

that we derived in the main text for |α| ≥ 1.

B Concav/exity of the qubit bound
Here we prove lemmas 1 and 2 in the main text by
bounding the first and second derivatives of the func-
tions they concern. Both of these depend on the func-
tion

φ(x) = 1− 1
2 (1 + x) log(1 + x)− 1

2 (1− x) log(1− x)
(173)

that we defined in the introduction. We give its first
and second derivatives, which are used in the proofs,
here for convenience:

φ′(x) = −1
2 log2

(
1 + x

1− x

)
, (174)

φ′′(x) = − 1
log(2)

1
1− x2 . (175)

B.1 Proof of lemma 1
We express the function f defined in Eq. (106) as

f(x) = 1 + φ(R)− φ(r) (176)

with R =
√
Q+ (1−Q)x and r =

√
x. The first and

second derivatives of r and R are

r′ = 1
2r , r′′ = − 1

4r3 , (177)

R′ = 1−Q
2R , R′′ = − (1−Q)2

4R3 . (178)

Let us first verify that f is monotonically increasing.
Its first derivative is

f ′(x) = φ′(R)R′ − φ′(r)r′

= 1
2 log(2)

[
−1−Q

2R log
(

1 +R

1−R

)

+ 1
2r log

(
1 + r

1− r

) ]
. (179)

To change the terms with logs into something easier
to work with we substitute

1
2ξ log

(
1 + ξ

1− ξ

)
=
∫ 1

0
du 1

1− ξ2u2 (180)

for both ξ = R and ξ = r. The rest of the proof then
amounts to manipulating and simplifying quotients of
polynomials:

f ′(x) = 1
2 log(2)

∫ 1

0
du
[
− 1−Q

1−R2u2 + 1
1− r2u2

]
= 1

2 log(2)

∫ 1

0
du Q(1− r2u2)− (R2 − r2)u2

(1− r2u2)(1−R2u2)

= Q

2 log(2)

∫ 1

0
du 1− u2

(1− r2u2)(1−R2u2)
≥ 0 , (181)

where we used that R2 − r2 = Q(1− r2).
We prove that f is convex in a similar way. Its

second derivative is

f ′′(x) = φ′′(R)R′2 − φ′′(r)r′2
+ φ′(R)R′′ − φ′(r)r′′ . (182)

The first and second lines on the right side evaluate
to

φ′′(R)R′2 − φ′′(r)r′2

= 1
4 log(2)

[
− (1−Q)2

R2(1−R2) + 1
r2(1− r2)

]
(183)

and

φ′(R)R′′ − φ′(r)r′′

= 1
4 log(2)

[
(1−Q)2

R2
1

2R log
(

1 +R

1−R

)

− 1
r2

1
2r log

(
1 + r

1− r

) ]
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= 1
4 log(2)

∫ 1

0
du
[

(1−Q)2

R2(1−R2u2) −
1

r2(1− r2u2)

]
.

(184)

Adding (183) and (184) and using that

1
ξ2(1− ξ2) −

1
ξ2(1− ξ2u2) = (1− u2)

(1− ξ2)(1− ξ2u2)
(185)

for ξ = r and ξ = R and that

1−R2 = (1−Q)(1− r2) (186)

we get

f ′′(x) = 1
4 log(2)

∫ 1

0
du
[
− (1−Q)2(1− u2)

(1−R2)(1−R2u2)

+ 1− u2

(1− r2)(1− r2u2)

]

= 1
4 log(2)

∫ 1

0
du 1− u2

1− r2

×
[
− 1−Q

1−R2u2 + 1
1− r2u2

]
= 1

4 log(2)
Q

1− r2

∫ 1

0
du (1− u2)2

(1− r2u2)(1−R2u2)
≥ 0 . (187)

B.2 Proof of lemma 2
We proceed similarly to the proof of lemma 1. We
write the function f defined in (108) as

f(x) = 1 + φ(R)− φ(r) , (188)

this time with r =
√

1− x2 and R =
√
Q+ (1−Q)r2,

for which

r′ = −
√

1− r2

r
, r′′ = − 1

r3 , (189)

R′ = −
√

(1−Q)(1−R2)
R

, R′′ = −1−Q
R3 . (190)

The first derivative of f is

f ′(x) = φ′(R)R′ − φ′(r)r′

= 1
log(2)

[√
(1−Q)(1−R2)

2R log
(

1 +R

1−R

)

−
√

1− r2

2r log
(

1 + r

1− r

) ]

= 1
log(2)

∫ 1

0
du
[√

(1−Q)(1−R2)
1−R2u2

−
√

1− r2

1− r2u2

]

=
√

1− r2

log(2)

∫ 1

0
du
[

1−Q
1−R2u2 −

1
1− r2u2

]
= −Q

√
1− r2

log(2)

∫ 1

0
du 1− u2

(1− r2u2)(1−R2u2)
≤ 0 , (191)

where we used that
√

1−R2 =
√

(1−Q)(1− r2) to
get to the fourth line.

The second derivative of f is

f ′′(x) = φ′′(R)R′2 + φ′(R)R′′ − φ′′(r)r′2 − φ′(r)r′′

= 1
log(2)

[
−1−Q

R2 + 1−Q
2R3 log

(
1 +R

1−R

)

+ 1
r2 −

1
2r3 log

(
1 + r

1− r

) ]

= 1
log(2)

∫ 1

0
du
[
−1−Q

R2

(
1− 1

1−R2u2

)

+ 1
r2

(
1− 1

1− r2u2

) ]

= 1
log(2)

∫ 1

0
du
[

(1−Q)u2

1−R2u2 −
u2

1− r2u2

]
= − Q

log(2)

∫ 1

0
du u2(1− u2)

(1− r2u2)(1−R2u2)
≤ 0 . (192)

C Maximal noise preprocessing
Thresholds to the Devetak-Winter rate can be com-
puted accurately in the limit q → 1/2 of maximal
noise preprocessing by setting q = (1− ε)/2 and then
expanding the expression for the key rate to the first
nontrivial power in ε [30]. For the BB84 bound (55)
the result is

H(Z|E) ' 1− 1− 〈X⊗B〉2
4|〈X⊗B〉| log2

(
1 + |〈X⊗B〉|
1− |〈X⊗B〉|

)
ε2 .

(193)
The approximate device-independent bound can be
derived by substituting |〈X ⊗ B〉| ≥

√
S 2
α /4− α2

and, for |α| < 1, replacing part of the result with
its tangent as we did for the general entropy bound
in section 2.

To derive a generally useful approximation for the
conditional Shannon entropy we consider a joint prob-
ability distribution pab of the form

pab = pb + ε∆ab

nA
(194)

with
∑
a ∆ab = 0, i.e., such that

∑
a pab = pb. The

joint entropy of this distribution is

H(AB) = −
∑
ab

pab log2(pab)

= −
∑
ab

pb + ε∆ab

nA
log2

(pb + ε∆ab

nA

)
= −

∑
ab

pb + ε∆ab

nA
log2

[ pb
nA

(
1 + ε

∆ab

pb

)]
= −

∑
ab

pb
nA

(
log2(pb)− log2(nA)

)
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−
∑
ab

pb + ε∆ab

nA
log2

(
1 + ε

∆ab

pb

)
= H(B) + log2(nA)

− 1
nA

∑
ab

(pb + ε∆ab) log2

(
1 + ε

∆ab

pb

)
≈ H(B) + log2(nA)

− 1
nA log(2)

∑
ab

(pb + ε∆ab)

×
(
ε

∆ab

pb
− ε2 ∆ 2

ab

2p 2
b

)
≈ H(B) + log2(nA)

− 1
2nA log(2)

∑
ab

∆ 2
ab

pb
ε2 . (195)

Rearranging this gives

H(A|B) ≈ log2(nA)− 1
2nA log(2)

∑
ab

∆ 2
ab

pb
ε2 (196)

for the conditional Shannon entropy.

In the applications we considered in this paper,
Alice always has two outcomes. In this case the dis-
tribution for ε = 1 is

pab = 1
2 (pb ±∆b) (197)

with ∆b = p+b−p−b, and the approximation becomes

H(A|B) ≈ 1− 1
2 log(2)

∑
b

(p+b − p−b)2

pb
ε2 (198)

in terms of the joint distribution pab before noise pre-
processing is applied.

In the special case that the probabilities P (ab|13)
prior to noise preprocessing being applied are of the
form

P (++|13) = P (−−|13) = (1− δ)/2 , (199)

P (+−|13) = P (−+|13) = δ/2 , (200)

the approximation (198) gives

H(A1|B3) ≈ 1− (1− 2δ)2

2 log2(2) ε
2 . (201)

This combined with the approximation for H(Z|E)
above recovers Eq. (10) in [30].

Losses turn an initial probability distribution p(ab)
to

(p′ab) =

η2 p(++) η2 p(+−) ηη̄ pA(+)
η2 p(−+) η2 p(−−) ηη̄ pA(−)
ηη̄ pB(+) ηη̄ pB(−) η̄2

 (202)

where η̄ = 1− η. Labelling the nondetection outcome
‘⊥’, the sum in (198) after binning nondetections on

Alice’s side with ‘+’ evaluates to∑
b

(p′+b + p′⊥b − p′−b)2

pb

= η̄2 + ηη̄〈A〉
(
2 + η〈A〉

)
+ η3

1− 〈B〉2
(
〈A〉2 + 〈AB〉2 − 2〈A〉〈B〉〈AB〉

)
,

(203)

where

〈A〉 = pA(+)− pA(−) , (204)

〈B〉 = pB(+)− pB(−) , (205)

〈AB〉 = p(++)− p(−+)− p(+−) + p(−−) . (206)

For p(±±) = (1± cos(θ))/2 this gives

H(A1|B3)

≈ 1− 1
2 log2(2)

[(
η̄ + η cos(θ)

)2 + η3 sin(θ)2
]
ε2 .

(207)

D Min-entropy and Iβα Bell expression
The lower bound

|〈X⊗B〉| ≥
√
S 2
α /4− α2 (208)

we derived for |α| ≥ 1 and

|〈X⊗B〉| ≥ Eα(Sα) (209)

for |α| < 1 in section 4 can be used to derive the
tight bound for the min-entropy in terms of Sα as
well as the conditional von Neumann entropy. The
min-entropy is defined as

Hmin(A1|E) = − log2
(
Pg(A1|E)

)
, (210)

where the guessing probability Pg(A1|E) is defined as
the highest probability with which an eavesdropper
can correctly guess the outcome when Alice measures
A1. This is given by

Pg(A1|E) = P (A1 = E) = 1
2 + 1

2 〈A1 ⊗ E〉 (211)

for whichever±1-valued observable E on Eve’s system
maximises the right-hand side of (211).

Recalling that we identifyA1 with Z, the correlation
term 〈A1 ⊗ E〉 is bounded by

〈A1 ⊗ E〉2 + 〈X⊗B〉2 ≤ 1 . (212)

This is implied, for instance, by the family(
1−cos(θ) Z⊗1B⊗E−sin(θ) X⊗B⊗1E

)2 ≥ 0 (213)

of sum-of-squares decompositions. The inequalities
(212) and (208) recover the tight upper bound

Pg(A1|E) ≤ 1
2 + 1

2
√

1 + α2 − S 2
α /4 (214)
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for the guessing probability derived for |α| ≥ 1 in
[21]. Taking the tangents of this upper bound and
applying them to the special case E = 1, together
with the trivial bound |A1| ≤ 1, likewise recovers the
Tsirelson bound

β〈A1〉+ Sα ≤

2
√

(1 + α2)(1 + β2/4) if |β| ≤ 2/|α|
|β|+ 2|α| if |β| ≥ 2/|α|

(215)
derived for the family Iβα = β〈A1〉+Sα of Bell expres-
sions for |α| ≥ 1 in [21].

For |α| < 1 the qubit bound on the guessing probab-
ility implied by (209) needs to be partly replaced with
one of its tangents, as we needed to do for the condi-
tional von Neumann entropy. The result of doing this
is

Pg(A1|E) ≤


1
2 + 1

2
√

1 + α2 − S 2
α /4 if |Sα| ≥ S∗

1− 1
β∗

(|Sα|/2− 1) if |Sα| ≤ S∗
(216)

where
S∗ = 1 + α2 +

√
1− α4 (217)

and

β∗ = 2
α2

(
1−

√
1− α4

)
. (218)

Taking the tangents again with E = 1 this time gives

β〈A1〉+ Sα ≤

2
√

(1 + α2)(1 + β2/4) if |β| ≤ β∗
|β|+ 2 if |β| ≥ β∗

.

(219)
This confirms that the quantum bound

Iβα ≤ 2
√

(1 + α2)(1 + β2/4) (220)

originally derived for |α| ≥ 1 in [21] also holds for
|α| < 1 as long as |β| is not too high.
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