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We present the optimal collective attack on a quantum key distribution protocol in the ‘‘device-

independent’’ security scenario, where no assumptions are made about the way the quantum key

distribution devices work or on what quantum system they operate. Our main result is a tight bound

on the Holevo information between one of the authorized parties and the eavesdropper, as a function of the

amount of violation of a Bell-type inequality.
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Quantum key distribution (QKD) allows two parties,

Alice and Bob, to generate a secret key in the presence

of an eavesdropper, Eve [1]. All QKD schemes rely for

security on several assumptions. The basic one is that any

eavesdropper, however powerful, must obey the laws of

quantum physics. In addition to it, there are two other

requirements, without which no shared secret key can be

established. The first one is the freedom and secrecy of

measurement settings: on each particle, both Alice and Bob

should be allowed to choose freely among at least two

measurement settings [e.g., the two bases of the Bennett-

Brassard 1984 (BB84) protocol [2]] and this choice should

not be known to Eve, at least as long as she can act on the

incoming quantum states (in BB84, the bases are revealed,

but only after the measurements are performed). The sec-

ond requirement, even more obvious, is the secrecy of

outcomes: at no stage should there be a leakage of infor-

mation about the final key. These two requirements can be

summarized by saying that no unwanted classical informa-

tion must leak out of Alice’s and Bob’s laboratories. If an

implementation has a default in this point (e.g., if a Trojan

Horse attack is possible, or if Eve can access Bob’s com-

puter), no security can be guaranteed.

In addition to these essential requirements, existing

security proofs [3–5] assume that Alice and Bob have

(almost) perfect control of the state preparation and

of the measurement devices. This assumption is often

critical: for instance, the security of the BB84 protocol is

entirely compromised if Alice and Bob, instead of sharing

qubits as usually assumed, share four-dimensional systems

[6,7].

At first sight, control of the apparatuses seems to be an

inescapable requirement. Remarkably, this is not the case:

we present here a device-independent security proof

against collective attacks by a quantum Eve for the proto-

col described in Ref. [8]. Our proof holds under no other

requirements than the essential ones listed above. It is

therefore ‘‘device independent’’ in the sense that it needs

no knowledge of the way the QKD devices work, provided

quantum physics is correct and provided Alice and Bob do

not allow any unwanted signal to escape from their

laboratories.

In a collective attack, Eve applies the same attack on

each particle of Alice and Bob, but no other limitations are

imposed to her. In particular, she can keep her systems in a

quantum memory and perform a (coherent) measurement

on them at any time. Collective attacks are very meaningful

in QKD because a bound on the key rate for these attacks

becomes automatically a bound for the most general at-

tacks if a de Finetti theorem can be applied, as is the case in

the usual security scenario [9].

The physical basis for our device-independent security

proof is the fact that measurements on entangled particles

can provide Alice and Bob with nonlocal correlations, i.e.,

correlations that cannot be reproduced by shared random-

ness (local variables), as detected by the violation of Bell-

type inequalities. Considered in the perspective of QKD,

the fact that Alice’s and Bob’s symbols are correlated in a

nonlocal way, whatever be the underlying physical details

of the apparatuses that produced those symbols, implies

that Eve cannot have full information about them, other-

wise her own symbol would be a local variable able to

reproduce the correlations.

This intuition was at the origin of Ekert’s 1991 proposal

[10] and implicit in subsequent works [11,12]. Quantitative

progress has been possible, however, only recently, thanks

to the pioneering work of Barrett, Hardy, and Kent [13] and

to further extensions [6,8,14]. For conceptual interest and

mathematical simplicity, all these works studied security

against a supra-quantum Eve, who could perform any

operation compatible with the no-signaling principle. The

proof of Ref. [13] applies only to the zero-error case; those

in Refs. [6,8] allow for errors but restrict Eve to perform

individual attacks; Masanes and Winter [14] proved non-

universally composable security under the assumption that

Eve’s attack is arbitrary but is not correlated with the

classical post-processing of the raw key. In this Letter,

we focus on the more realistic situation in which Eve is

constrained by quantum physics, and we prove universally

composable security against collective attacks.
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The protocol.—The protocol that we study is a modifi-

cation of the Ekert 1992 protocol [10] proposed in Ref. [8].

Alice and Bob share a quantum channel consisting of a

source that emits pairs of entangled particles. On each of

her particles, Alice chooses between three possible mea-

surements A0, A1, and A2, and Bob between two possible

measurements B1 and B2. All measurements have binary

outcomes labeled by ai, bj 2 f�1;�1g (note, however,

that the quantum systems may be of dimension larger

than 2). The raw key is extracted from the pair fA0; B1g.
In particular, the quantum bit error rate (QBER) is Q �
prob �a0 � b1�. As mentioned in the introduction, Eve’s

information is bounded by evaluating Bell-type inequal-

ities, since these are the only entanglement witnesses

which are independent of the details of the system. In our

case, Alice and Bob use the measurements A1, A2, B1, and

B2 on a subset of their particles to compute the Clauser-

Horne-Shimony-Holt (CHSH) polynomial [15]

 S � ha1b1i � ha1b2i � ha2b1i � ha2b2i; (1)

which defines the CHSH inequality S � 2. We note that

there is no a priori relation between the value of S and the

value of Q: these are the two parameters which are avail-

able to estimate Eve’s information. Without loss of gen-

erality, we suppose that the marginals are random for each

measurement, i.e., haii � hbji � 0 for all i and j. Were this

not the case, Alice and Bob could achieve it a posteriori

through public one-way communication by agreeing on

flipping a chosen half of their bits. This operation would

not change the value of Q and S and would be known to

Eve.

Eavesdropping.—In the device-independent scenario,

Eve is assumed not only to control the source (as in usual

entanglement-based QKD), but also to have fabricated

Alice’s and Bob’s measuring devices. The only data avail-

able to Alice and Bob to bound Eve’s knowledge are the

observed relation between the measurement settings and

outcomes, without any assumption on how the measure-

ments are actually carried out or on what system they

operate. In complete generality, we may describe this

situation as follows. Alice, Bob, and Eve share a state

j�iABE in H �n
A �H �n

B �H E, where n is the number

of bits of the raw key. The dimension d of Alice and Bob

Hilbert spaces H A � H B � Cd is unknown to them and

fixed by Eve. The measurement Mk yielding the kth out-

come of Alice is defined on the kth subspace of Alice and

chosen by Eve. This measurement depends on the kth

setting Ajk chosen by Alice, but possibly also on all pre-

vious settings and outcomes: Mk � M�Ajk ; �Ak�1; �ak�1�,
where �Ak�1 � �Aj1 ; . . . ; Ajk�1

� and �ak�1 � �aj1 ; . . . ; ajk�1
�.

The situation is similar for Bob.

Collective attacks.—In this Letter, we focus on collec-

tive attacks where Eve applies the same attack to each

system of Alice and Bob. Specifically, we assume that

the total state shared by the three parties has the product

form j�ABEi � j ABEi�n and that the measurements are a

function of the current setting only, e.g., for Alice Mk �
M�Ajk� � Ajk .

For collective attacks, the secret-key rate r under one-

way classical post-processing from Bob to Alice is lower

bounded by the Devetak-Winter rate [16],

 r 	 rDW � I�A0:B1� � ��B1:E�; (2)

which is the difference between the mutual information

between Alice and Bob, I�A0:B1� � 1� h�Q� (h is the

binary entropy), and the Holevo quantity between Eve

and Bob, ��B1:E� � S��E� � 1
2

P

b1�
1S��Ejb1�. Note that

the rate is given by (2) because ��A0:E� 	 ��B1:E� holds

for our protocol [8]; it is therefore advantageous for Alice

and Bob to do the classical post-processing with public

communication from Bob to Alice.

Upper bound on the Holevo quantity.—To find Eve’s

optimal collective attack, we must find the largest value of

��B1:E� compatible with the observed parameters without

assuming anything about the physical systems and the

measurements that are performed. Our main result is the

following.

Theorem.—Let j ABEi be a quantum state and

fA1; A2; B1; B2g a set of measurements yielding a violation

S of the CHSH inequality. Then after Alice and Bob have

symmetrized their marginals,

 ��B1:E� � h

�

1�
�����������������������

�S=2�2 � 1
p

2

�

: (3)

Before presenting the proof of this bound, we give an

explicit attack which saturates it; this example clarifies

why the bound (3) is independent of Q. Eve sends to

Alice and Bob the two-qubit Bell-diagonal state

 �AB�S� �
1� C

2
P�� � 1� C

2
P�� ; (4)

where P�
 are the projectors on the Bell states j�
i �
�j00i 
 j11i�

���

2
p

and C �
�����������������������

�S=2�2 � 1
p

. She defines the

measurements to be B1 � �z, B2 � �x, and A1;2 �
1
���������

1�C2
p �z 
 C

���������

1�C2
p �x. Any value of Q can be obtained by

choosing A0 to be �z with probability 1� 2Q and to be a

randomly chosen bit with probability 2Q. This attack is

impossible within the usual assumptions because here not

only the state �AB, but also the measurements taking place

in Alice’s apparatus depend explicitly on the observed

values of S and Q. The state (4) has a nice interpretation:

it is the two-qubit state which gives the highest violation S

of the CHSH inequality for a given value of the entangle-

ment, measured by the concurrence C [17].

We now present the proof of the Theorem stated above,

in four steps; more details will be given in a forthcoming

paper.

Proof, Step 1.—It is not restrictive to suppose that Eve

sends to Alice and Bob a mixture �AB � P

cpc�
c
AB of two-

qubit states, together with a classical ancilla (known to her)

that carries the value c and determines which measure-

ments Aci and Bcj are to be used on �cAB.
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The proof of this first statement relies critically on the

simplicity of the CHSH inequality (two binary settings on

each side). We present the argument for Alice; the same

holds for Bob. First, we may assume that the two measure-

ments A1;2 of Alice are von Neumann measurements, if

necessary by including ancillas in the state �AB shared by

Alice and Bob. Thus A1 and A2 are Hermitian operators on

Cd with eigenvalues 
1. It follows from this that A1A2 is a

unitary, hence diagonalizable, operator. In the basis of Cd

formed by the eigenvectors of A1A2, one can show that A1

and A2 are block diagonal, with blocks of size 1� 1 or 2�
2 [18]. In other words, Aj �

P

cPcAjPc, where the Pcs are

projectors of rank 1 or 2. From Alice’s standpoint, the

measurement of Ai thus amounts at projecting in one of

the (at most) two-dimensional subspaces defined by the

projectors Pc, followed by a measurement of the reduced

observable PcAiPc � ~aci � ~�. Clearly, it cannot be worse

for Eve to perform the projection herself before sending the

state to Alice and learning the value of c. The same holds

for Bob. We conclude that in each run of the experiment

Alice and Bob receive a two-qubit state. The deviation

from usual proofs lies in the fact that the measurements

to be applied can depend explicitly on the state.

Proof, Step 2.—Each state �cAB can be taken to be a Bell-

diagonal state and the measurements Aci and Bcj to be

measurements in the (x, z) plane.

To reduce the problem further in this way, we use some

freedom in the labeling together with two applications of a

usual argument. For fixed c (we now omit the index c), let

us first choose the axis of the Bloch sphere on Alice’s side

in such a way that ~a1 and ~a2 define the (x, z) plane, and

similarly on Bob’s side. Eve is a priori distributing any

two-qubit state � of which she holds a purification. Now,

recall that we have supposed, without loss of generality,

that all the marginals are uniformly random. Here comes

an argument which is typical of QKD [4]: knowing that

Alice and Bob are going to symmetrize their marginals,

Eve does not lose anything in providing them a state with

the suitable symmetry. The reason is as follows. First note

that since the (classical) randomization protocol that en-

sures haii � hbji � 0 is done by Alice and Bob through

public communication, we can as well assume that it is Eve

who does it; i.e., she flips the value of each outcome bit

with probability one half. But because the measurements of

Alice and Bob are in the (x, z) plane, we can equivalently,

i.e., without changing Eve’s information, view the classical

flipping of the outcomes as the quantum operation �!
~� � ��y � �y����y � �y� on the state �. We conclude that

it is not restrictive to assume that Eve is in fact sending the

mixture �� � 1
2
��� ~��, i.e., that she is sending a state

invariant under �y � �y. Now, through an appropriate

choice of basis that leaves invariant the (x, z) plane, and

corresponding to the freedom to define the orientation of ŷ
and the direction of x̂ for both Alice and Bob, every �y �
�y invariant two-qubit state can be written in the Bell basis,

ordered as fj��i; j��i; j��i; j��ig, in the canonical form

 �� �
��� ir1
�ir1 ���

��� ir2
�ir2 ���

0

B

B

B

@

1

C

C

C

A

; (5)

with ��� 	 ��� , ��� 	 ��� 	 ��� and r1, r2 real.

Finally, we repeat an argument similar to the one given

above: since �� and its conjugate ��
 produce the same

statistics for Alice and Bob’s measurements and provide

Eve with the same information, we can suppose without

loss of generality that Alice and Bob rather receive the

mixture 1
2
� ��� ��
�, which is Bell diagonal.

Proof, Step 3.—For a Bell-diagonal state �� with eigen-

values � ordered as above and for measurements in the (x,

z) plane,

 ���B1:E� � F�S�� � h

�

1�
��������������������������

�S�=2�2 � 1
p

2

�

; (6)

where S� � 2
���

2
p �����������������������������������������������������������������

���� � ����2 � ���� � ����2
p

is the

largest violation of the CHSH inequality by the state ��.

This step is mainly computational; we sketch it here and

refer to a forthcoming paper for details. For Bell-diagonal

states, for any choice of B1 � cos’�z � sin’�x, one

has S��Ejb1�0� � S��Ejb1�1� 	 h���� � ���� with equal-

ity if and only if B1 � �z. It follows that ���B1:E� �
H��� � h���� � ����. The right-hand side of this

expression is in turn bounded by the function F�S�� ap-

pearing in (6). It now suffices to notice that S� �
2

���

2
p �����������������������������������������������������������������

���� � ����2 � ���� � ����2
p

is the maximal vio-

lation of the CHSH inequality by the state �� [17,19]; it is

achieved for B1 � �z, B2 � �x, and A1 and A2 depending

explicitly on the �’s.

Proof, Step 4.—To conclude the proof, note that if Eve

sends a mixture of Bell-diagonal states
P

�p��� and choo-

ses the measurements to be in the (x, z) plane, then

��B1:E� �
P

�p����B1:E�. Using (6), we then find

��B1:E� �
P

�p�F�S�� � F�P�p�S��, where the last in-

equality holds because F is concave. But since the ob-

served violation S of CHSH is necessarily such that

S � P

�p�S� and since F is a monotonically decreasing

function, we find ��B1:E� � F�S�.
Key rate.—Given the bound (3), the key rate (2) can be

computed for any values of Q and S. As an illustration, we

study correlations satisfying S � 2
���

2
p

�1� 2Q�, and which

arise from the state j��i after going through a depolarizing

channel, or through a phase-covariant cloner, or more

generally from any Bell-diagonal �AB such that ��� 	
��� and ��� � ��� , when doing the measurements A0 �
B1 � �z, B2 � �x, A1 � ��z � �x�=

���

2
p

, and A2 � ��z �
�x�=

���

2
p

. We consider these correlations because of their

experimental significance, but it is important to stress that

Alice and Bob do not need to assume that they perform the

above qubit measurements. The corresponding key rate is

plotted in Fig. 1 as a function of Q. For the sake of

comparison, we have also plotted the key rate under the

usual assumptions of QKD for the same set of correlations.
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In this case, Alice and Bob have a perfect control of their

apparatuses, which we have assumed to faithfully perform

the qubit measurements given above. The protocol is then

equivalent to Ekert’s, which in turn is equivalent to the

entanglement-based version of BB84, and one finds

 ��B1:E� � h�Q� S=2
���

2
p

�: (7)

If S � 2
���

2
p

�1� 2Q�, this expression yields the well-

known critical QBER of 11% [3], to be compared to

7.1% in the device-independent scenario (Fig. 1). [Note

that the key rate given by Eq. (3) is much higher than the

one against a no-signaling eavesdropper obtained by ap-

plying the security proof of [14].]

Final remarks.—Through its remarkable generality, our

device-independent security proof allows us to ignore the

detailed implementation of the QKD protocol and there-

fore applies in a simple way to situations where the quan-

tum apparatuses are noisy or where uncontrolled side

channels are present. It also applies to the situation where

the apparatuses are entirely untrusted and provided by the

eavesdropper herself. In this latter case, the proof cannot be

applied to any existing device yet, because of the detection

loophole which arises due to inefficient detectors and

photon absorption. These processes imply that sometimes

Alice’s and Bob’s detectors will not fire. A possible strat-

egy to apply our proof to this new situation is for Alice and

Bob to replace the absence of a click by a chosen outcome,

in effect replacing detection inefficiency by noise.

However, the amount of detection inefficiency that can

be tolerated in this way is much lower than the one present

in current quantum communication experiments. In Bell

tests, this problem is often circumvented by invoking addi-

tional assumptions such as the fair sampling hypothesis—

a very reasonable one if the aim is to constrain possible

models of Nature, but hardly justified if the device is

provided by an untrusted Eve. In the light of the present

work, the ‘‘detection loophole’’ thus becomes a meaning-

ful issue in applied physics.

In conclusion, we have found the optimal collective

attack on a QKD protocol in the device-independent sce-

nario, in which no other assumptions are made than the

validity of quantum physics and the absence of any leakage

of classical information from Alice’s and Bob’s laborato-

ries. If a suitable de Finetti-like theorem can be demon-

strated in this scenario, the bound that we have presented

here will in fact be the bound against the most general

attacks.
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FIG. 1 (color online). Extractable secret-key rate against col-

lective attacks in the usual scenario [��B1:E� given by Eq. (7)]

and in the device-independent scenario [��B1:E� given by

Eq. (3)], for correlations satisfying S � 2
���

2
p

�1� 2Q�.
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