
N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 244–255, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Device Independent Web Applications –
The Author Once – Display Everywhere Approach

Thomas Ziegert1, Markus Lauff1, and Lutz Heuser2

1 SAP AG, Corporate Research, Vincenz-Prießnitz-Str. 1,
76131 Karlsruhe, Germany

{Thomas.Ziegert, Markus.Lauff }@sap.com
2 SAP AG, Global Research & Innovation, Neurottstraße 16,

69190 Walldorf, Germany
Lutz.Heuser@sap.com

http://www.sap.com/research

Abstract. Building web applications for mobile and other non-desktop devices
using established methods often requires a tremendous development effort. One
of the major challenges is to find sound software engineering approaches ena-
bling the cost efficient application development for multiple devices of varying
technical characteristics. A new approach is to single author web content in a
device independent markup language, which gets then adapted to meet the spe-
cial characteristics of the accessing device. This paper describes our approach
to single authoring, which was developed in the course a large European re-
search project. The project has developed a device-independent language pro-
file based on XHTML 2.0 and implemented a compliant rendering engine. We
focus on layout and pagination capabilities of the RIML (Renderer Independent
Markup Language) and show how authors can be assisted by development tools
supporting device independent authoring.

1 Introduction

The World Wide Web has established itself as one of the most important sources for
information as well as a perfect infrastructure for applications, which need to be ac-
cessible from anywhere. Web-enabled devices potentially offer access to globally
adopted infrastructure. But why is this offer just potentially? Currently, most web
content is optimised for the usage on a PC. This is still true despite the efforts of the
Web Accessibility Initiative [1] which set standards for universal accessibility of web
content. As more and more non-desktop devices enter the market, a convenient way
to access web content and web applications using such devices is required. The in-
dustry addressed that requirement for a limited set of applications particularly in the
B2E (Business-to-Employee) domain by developing device specific versions of such
applications. This application-specific approach tends to be too costly and not man-
ageable if scaled to a large number of diverse devices and applications. Therefore,

Device Independent Web Applications 245

more generic ways to prepare web content in a device-independent way are neces-
sary.
Various approaches have been proposed to address the challenge of high quality ap-
plications at minimal costs. Some approaches (e.g. [2, 3]) automatically compile web
content to fit on a target device. These approaches are based on HTML and use heu-
ristics in addition to tag information to extract structure information, due to the fact
that HTML is lacking the necessary semantics which is needed to perform the conver-
sion to other markup languages. Therefore, some approaches replace HTML by an-
other markup language which is semantically rich enough to serve as a basis for con-
version [4, 5, 6]. However, none of these proposals is standards-based and they were
therefore not widely adopted in the marketplace. To open the path for a widely
adopted device-independent markup language for authoring web content, two consid-
erable efforts have been launched recently: a) The W3C chartered the Device Inde-
pendence Group to establish specifications supporting single authoring, b) a consor-
tium of six European companies, named CONSENSUS1 [7], has built a prototype
which implements authoring and conversion tools for a Renderer-Independent
Markup Language (RIML), which was also developed by this consortium. Both ef-
forts cooperate intensively. The ultimate vision of device independence as stated in
the charter of the W3C Device Independence working group [8] is to provide “Access
to a Unified Web from Any Device in Any Context by Anyone”. In this paper we focus on
layout and pagination capabilities of the RIML (Renderer Independent Markup Lan-
guage) and show how authors can be assisted by development tools supporting device
independent authoring.

2 Requirements for Device Independency

In this section we briefly cover the most important requirements for a device inde-
pendent markup language and explain how the Consensus project has dealt with those
in the RIML. Following the author once, display everywhere approach, an application
is written once and gets then adapted to a particular device, which is accessing it.

A perfect solution according to [9] should offer:

� a device independent markup language preserving the intent of the author,
� an adaptation system transforming it into a device specific form,
� means to retain the authors control over the final result/presentation.

Concentrating on the developer’s part item 1 and 3 are the most important ones. To
keep the intent of the author the markup language should offer semantically rich

1 IST-Programme / KA4 / AL: IST-2001-4.3.2. The project CONSENSUS is supported by the

European Community. This document does not represent the opinion of the European Com-
munity. It is also the sole responsibility of the author and not the responsibility of the Euro-
pean Community using any data that might appear therein.

246 T. Ziegert, M. Lauff, and L. Heuser

markup elements. While XHTML 2.0 [10] provides certain means for device inde-
pendent markup some necessary ingredients are missing. The RIML defines a lan-
guage profile which is based on XHTML 2.0 and includes new elements for function-
ality, which was missing in current standards or proposals. In the reminder of this
section we give a brief overview of these.

Due to the fact that devices widely vary in the amount of content their screens can
accommodate there is a need for providing hints for content splitting and navigation
between split up pieces of content. RIML therefore uses the section element of
XHTML 2.0 as implicit hint for splitting and introduces new elements for combining
layout with pagination and controlling the generation of navigation links between
pages of split documents.

To provide means for the development of interactive web applications (business ap-
plications usually belong into this group) there is furthermore a need for elements
dealing with form interaction. The XForms 1.0 [11] specification perfectly fulfills this
requirement. The RIML language profile includes XForms 1.0, which strictly sepa-
rates data from its presentation and keeps user interface elements device independ-
ent2.

Apart from the fact that a device independent language allows for the generic de-
scription of a user interface for web applications, there should be means allowing for
the inclusion of optional and alternative content. Even if this is somehow contradict-
ing the author once approach, cause it allows for special versions of content for dif-
ferent devices, it enables the author to retain the control over the result of the adapta-
tion process and allows him to consider the specialities of particular device classes
(e. g. the support for certain audio or video formats). The RIML language profile
therefore includes SMIL [12] Basic content control plus some extensions. Content
control furthermore allows for the selection of device (class) specific style sheets.
Style attributes like font sizes and weights tend to be very device specific, therefore
RIML authors should provide different style sheets for different target markup lan-
guages and use the RIML content control mechanisms to select between them.

An optimal layout of a page or presentation unit on a certain device (class) heavily
depends on the special characteristics of it. A generic layout specification, which then
is adapted to the device accessing the content, is hardly to achieve. The layout should
facilitate the usability of the particular application and therefore utilize the special
characteristics of the device, e. g. the available screen size. Therefore RIML supports
the authoring of different layouts for different device classes in a RIML document.
Using content control the author is able to define when to use which layout.

2 The latest draft of the XHTML 2.0 specification now also includes an XForms 1.0 module.

Device Independent Web Applications 247

In this paper we focus on layout and pagination capabilities of the RIML (Renderer
Independent Markup Language) and show how authors can be assisted by develop-
ment tools supporting this novel features.

3 Layout and Pagination

Layout refers to the arranging pieces of content on a presentation unit PU3. The way
layout is specified is a crucial problem when developing device-independent applica-
tions. Usually authors accomplish the layout by using frames and/or abusing tables
for this purpose. Especially the latter is in conflict with the initial meaning of tables to
serve as a structuring element, assembling multiple data records, each of which takes
up exactly one row of the table. A generic layout specification, which then is adapted
to the device accessing the content, is hardly to achieve. Automated layout genera-
tion, as described in [13, 14] might help for certain use cases, like assembling the
layout of a remote control UI on several devices, but removes the author’s control
over the final result to a wide extent.

The layout should facilitate the usability of the particular application and therefore
utilize the special characteristics of the device, e.g. the available screen size. Consid-
ering the limitation of the available screen size on certain devices another challenge
of device independent authoring becomes apparent. Adapting to small screens re-
quires the pagination (decomposition) of content, which in turn has to be taken into
account, when specifying means for the layout of an authoring unit4. Usually some
layout regions should be visible on all pages, e.g. menus and status bars; others in-
clude content, which should get split into a sequence of presentation units the pagina-
tion process generates.

Automated pagination support was a main design goal for RIML. Other approaches
assume selectors that explicitly define device dependent breaks (like [15, 16]), in
effect, falling back to device related authoring. In contrast, a RIML author requires a
minimal knowledge of how a desired layout will be paginated by the RIML adapta-
tion system. In this respect, RIML is related to other approaches [17, 18]. It differs
from these in that it supports generic HTML like (row, column) constructs for adap-
tation, respectively applies adaptation to arbitrarily nested row and column structures.

3 A presentation (PU) unit is this result of splitting the resource into a number of smaller units

(PUs), which are presented to the user in a manner that is appropriate to the device (see
DIWG2002]).

4 An authoring unit is a piece of content the author is working with, but which is less than a
document (see DIWG2002]).

248 T. Ziegert, M. Lauff, and L. Heuser

Layout in RIML

Because of the reasons discussed in the last section RIML supports the specification
of device (class) dependent layouts. Using Content Control the author is able to de-
fine when to use which layout. The overall layout of a RIML document is defined by
using elements specified in the RIML layout module. The layout module defines a set
of container types: rows, columns, grids, as well as frames. Whereas containers define
the overall structure of a layout definition, frames are used to fill the several regions
of the layout with content. Using different layouts and Content Control for layout
selection allows content to be organized differently, depending on the target device
and its unique properties. If a frame cannot simultaneously accommodate all of the
content assigned to it in the target language, the content needs to be paginated. Pagi-
nation, the division of a RIML document into multiple pages, and navigation, the
hyper linking among pages generated from a single authoring unit, are carried out
automatically by the adaptation system.

RIML defines the following layout containers:

grid: A grid is a layout container allowing for the arrangement of container items in
a grid layout. Container items can be (nested) other layout containers as well as
frames. The parameter set of the grid element supports the specification of the maxi-
mum permissible number of columns in a grid and the direction into which grid items
will be led out (either horizontally or vertically).

column: The column container is a special case of the grid container limiting the
number of columns to one by definition.

row: The row container is a special case of the grid container forcing all contained
items to be laid out in a single row.

frame: A frame is the only layout element content is assigned to, therefore a frame
cannot contain any other layout elements. Each layout definition includes one or
several frames. The assignment of content to a frame is done using the
riml:frameId element.

Multiple frames can be used for the same presentation unit. Arranging frames differ-
ently in containers produces different layouts. RIML’s Content Control gives the
author a possibility for defining rules when to use which layout. While layout con-
tainers arrange the layout of frames in different ways, the actual content is assigned to
frames only. All content in the body part of the document must be included into sec-
tions. Each section is assigned to a frame. The content of the section will be rendered
within that frame (see Fig. 1). The content of a section will be ignored, whenever a
section is not assigned to a frame or the frame does not exist. A RIML document
should therefore define at least one frame in the document header. The overall layout
of a document is defined by grouping multiple frames inside containers. RIML offers

Device Independent Web Applications 249

different container types with differing layout and paginating behavior. All frames
must be placed inside a container. The nesting of containers is allowed, i.e. a con-
tainer can include other containers, whereas the innermost container must always
include a frame. Therefore, a frame is the only type of container, which can be asso-
ciated with content.

<head>

 <riml:layout eccdc:deviceClassOneOf="DeviceClass2">

 <riml:column riml:id="root-col">

 <riml:frame riml:id="head" />

 <riml:frame riml:id="nav-menu " />

 <riml:frame riml:id="home" />

 </riml:column>

</riml:layout>

</head>

<body>

 <section id="head-sec" riml:frameId="head">

 ...

 </section>

 <section id="menu-lsec" riml:frameId="nav-menu">

 ...

 </section>

 ...

</body>

Fig. 1. Assigning content to Frames

Pagination in RIML

XHTML 2.0 defines the block level element section as a means for structuring
content. Apart from this a section defines an implicit page break, which is more
“natural” than explicit page break markers. Therefore we decided to use sections as
semantic hints for the adaptation system, when applying pagination. The author is
therefore required to put all content, which should go onto the same screen (e. g. an
input field and its label or a whole address form) into a section. Sections might be
nested5, whereas the innermost sections never get split. As every section moves into a
certain frame defined by the layout in the head part of the RIML document, it is often
the case, that certain regions of the layout should not get distributed over several
pages, because they contain information, which should appear on every page, even if
the document gets split. Taking Fig. 2 as an example, the LogoFrame as well as
FrameB are defined as non-paginating frames (see also Fig. 3). For FrameA pagina-
tion was allowed (paginate is set to true).

5 The current reference implementation does not support nested sections.

250 T. Ziegert, M. Lauff, and L. Heuser

Fig. 2. Pagination and Layout Example

Therefore the content assigned to the LogoFrame and FrameB remains over the se-
quence of pages produced during adaptation. For FrameA the content gets distributed
across all the pages the adaptation process produces. Fig. 3 shows a snippet of the
markup, which was used to produce the results shown in Fig. 2. Section s10 contains
special markup for guiding the automated generation of links between split pages.
According to the definition used here, navigation elements should be generated for
every page, showing a link to the previous and next page respectively. Navigation
links are generated if and only if pagination occurs. The navigation-links
element offers attributes allowing the author to define the type of link to be produced
and to which Frame it is related. In Fig. 3 the scope attribute refers to FrameA, there-
fore navigation links are generated referring to pages containing sections from
FrameA.

The size of a frame is determined by the adaptation system in order to accomplish
pagination. However, the author should be able to provide the system with meta-
information regarding the intended width of a frame. The pagination process consid-
ers the width of the virtual area on which the content gets finally rendered only (ren-
dering surface), because this value can be reasonably defined. In case the browser
supports no scrolling this value typically equals the physical screen width. Using the
aforementioned frame elements the rendering surface can be divided into multiple
parts. A frame serves as a bounding box in which the content will be laid out that it is
assigned to. Using the following frame attributes the author is able to control the
adaptation:

minWidth - the minimum width in pixels - the frame should never be smaller than
this specified width.

preferredWidth - the recommended width of a frame is usually specified as a
percentage in relation to the actual width of the rendering surface of the device. Ab-
solute pixel values for preferredWidth are also supported.

Device Independent Web Applications 251

<head>

 <title>Pagination and Layout</title>

 <riml:layout>

 <riml:column riml:id="col1">

 <riml:frame riml:id="LogoFrame" riml:paginate="false"
 riml:minWidth="200"
riml:preferredWidth="400"/>

 <riml:frame riml:id="FrameA" riml:paginate="true"
 riml:minWidth="200"
riml:preferredWidth="400"/>

 <riml:frame riml:id="FrameB" riml:paginate="false"
 riml:minWidth="200"
riml:preferredWidth="400"/>

 </riml:column>

 </riml:layout>

</head>

<body>

 <section id="s1" riml:frameId="FrameA">

 ...

 </section>

 <section id="s2" riml:frameId="FrameA">

 ...

 </section>

 <section id="s10" riml:frameId="FrameB">

 <riml:navigation>

 <riml:navigation-links riml:scope="FrameA"

 riml:links="previous" riml:linksValue="relative-order"/>

 <riml:navigation-links riml:scope="FrameA"

 riml:links="next" riml:linksValue="relative-order"/>

 </riml:navigation>

 </section>

 <section id="s11" riml:frameId="LogoFrame">

 This is the sticky logo frame

 </section>

</body>

Fig. 3. Example Markup for Layout and Pagination

The preferredWidth attribute of a frame provides a hint to the adaptation process
to determine the actual width of a frame. The author has to ensure that minWidth
attributes in a RIML document layout can be obeyed for all devices. Therefore, the
author should consider the device offering the smallest width of all targeted devices
or better specify multiple layout definitions for different devices respectively device
classes using Content Control.
Given those hints, a pagination algorithm has enough knowledge to paginate without
exceeding the screen surface width. A similar approach cannot be applied with re-

252 T. Ziegert, M. Lauff, and L. Heuser

spect to container height, due to mentioned undetectable user preferences. The deter-
mination of optimal height is based on two observations.
First, we expect that most browsers support vertical scrolling. Vertical scrolling was
shown to be acceptable from a usability point of view [19], in contrast to two-
dimensional panning. Vertical scrolling was shown to be disturbing, if certain limits
are exceeded [20]. To avoid the latter, we enable the user to reduce (resp. increase)
the size limit which is applied during pagination. In support of this, the adaptation
system is to insert corresponding control hyperlinks. In effect, the user exploits the
visible outcome of pagination to avoid undue vertical scrolling depths.

Besides Frames, the RIML furthermore defines other types of paginating elements,
which are: paginatingGrid, paginatingRow and PaginatingColumn. With respect to
pagination all of these container types operate on their child nodes, which might be
either other containers or frames and which might be either paginating or not. To
preserve a useable result, the pagination of nested layout elements is allowed for one
branch only. Assuming that the hierarchy of layout elements forms a tree, this means
that two paginating elements must not have a common ancestor.

For non-interactive content i.e. printed pages, the content will be split when the page
is full and page numbers are inserted to provide a basic means of navigation. Specifi-
cations such as XML Print [17], CSS3 Paged Media [13], and XSL-FO [12] address
that.

4 Tool Support

One major issue with new language proposals like RIML addressing Device Inde-
pendence is the learning curve they require. The necessary authoring environment is
often neglected in similar projects. Therefore, we decided to put considerable effort
into the development of an authoring environment containing innovative tools, ena-
bling the application developer to easily author in a device-independent way. Based
on the Eclipse [21] open source platform, this authoring environment has been devel-
oped as a plugin, gathering a set of views and editors, synchronised around a common
document model. The Consensus authoring environment provides a whole set of
tools.

Besides an XML Editor consisting of a source text editor, code completion based on
the RIML schemas, RIML language validation, and an XML tree editor, the toolset
also provides tools, helping the developer to cope with the new concepts RIML intro-
duce in a visual way. A Frames Layout View allows the author to get a first impres-
sion how the document looks like, based oh the abstract layout he defined in the
document. The concept of this view is to show an early version of the frames layout
of the current RIML document. Depending on the device class one chooses, the view
will show the frames layout, including in each frame the names (or ids) of the section
that belong to this frame. The XML text in the text editor is highlighted depending on

Device Independent Web Applications 253

how the author places the focus in the Frames Layout View. Fig. 4 and 5 show the
Frames Layout View for a PC and a smart phone, respectively.

Fig. 4. Frames Layout View for Device Class 4

Fig. 5. Frames Layout View for Device Class 2

RIML authors often need to know how the developed document will be paginated
depending on a device class. Therefore, the RIML Device Dependent View provides
an overview of how the document is paginated, how many pages are created, and
what they contain. The view was implemented similar to an XML tree view, present-
ing the split pages as a set of nodes. Fig. 6 shows an example of the device dependent
view.

Logo Frame containing s1

FrameA containing s2, s3

FrameB containing s4

Logo Frame containing s1

FrameA containing s2, s3 FrameB containing s4

254 T. Ziegert, M. Lauff, and L. Heuser

Fig. 6. Device Dependent View for Device Class 1

Apart from these rather abstract views, we have also integrated a set of available
device emulators, allowing the author to see the actual result of the adaptation process
on a particular device.

5 Conclusions

The paper has discussed the two particular aspects layout and pagination of content
authoring for non-desktop devices and respective solutions developed in the Consen-
sus research project. Rather than just specifying technology and markup to support
single authoring, the Consensus project undertook the effort to implement a reference
implementation and a set of tools supporting the author in applying these new con-
cepts. Our experience with the Consensus prototype proved the feasibility of the con-
cepts developed by the project. Test applications are now being built and will undergo
a field test under close supervision of usability experts, ensuring that the developed
concepts and technology are not just feasible, but also meet usability requirements. In
parallel to that, the project works in close cooperation with the W3C to standardize
key concepts explored in the project.

References

1. Web Accessibility Initiative, http://www.w3.org/WAI/
2. Bickmore, T.W.: Digestor: Device-independent Access to the World Wide Web, Pro-

ceedings of 6th International WWW Conference (1997)
3. Schilit, B.N., Trevor, J., Hilbert, D., Koh, T.K.: m-Links: An Infrastructure for Very

Small Internet Devices. Proceedings of the 7th Annual International Conference on Mo-
bile Computing and Networking. Rome, Italy, (2001) 122-131

Device Independent Web Applications 255

4. Puerta, A., Eisenstein, J.: XIML: A Common Representation for Interaction Data, avail-
able at: http://www.ximl.org/documents/XIMLBasicPaperES.pdf

5. User Interface Markup Language, http://www.uiml.org
6. Eisenstein, J. et al.: Applying Model-Based Techniques to the Development of UIs for

Mobile Computers, Proc. of the Conf. on Intelligent User Interfaces, Santa Fe, NM, USA,
(2001)

7. Consensus Project Website, http://www.consensus-online.org
8. W3C’s Device Independence Working Group, http://www.w3.org/2001/di/Group/
9. Butler, M., Giannetti, F., Gimson, R., Wiley, T.: Device Independence and the Web, IEEE

Internet Computing, Sep./Oct. (2002) 81-86
10. McCarron, S., Axelsson, J., Epperson, B., Navarro, A., Pemberton, S. (eds): XHTML2,

W3C Working Draft 5 August 2002, work in progress, http://www.w3.org/TR/xhtml2/
11. Dubinko, M., Klotz, L. L., Merrick, R., Raman, T. V.: XForms 1.0, W3C Recommenda-

tion 14. October 2003, http://www.w3.org/MarkUp/Forms/
12. Hoschka, P. (eds): Synchronized Multimedia Integration Language (SMIL) 1.0 Specifica-

tion, http://www.w3.org/TR/1998/REC-smil-19980615 (1998)
13. Myers, B. A., Nichols, J.: Communication Ubiquity Enables Ubiquitous Control. 'Boaster'

for Human-Computer Interaction Consortium (HCIC'2002). Winter Park, CO, Feb. (2002)
14. Nichols, J., Myers, B. A.: Automatically Generating Interfaces for Multi-Device Envi-

ronments, Ubicomp 2003 Workshop on Multi-Device Interfaces for Ubiquitous Peripheral
Interaction. Seattle, WA., October 12 (2003)

15. Adler, S. et al: Extensible Stylesheet Language (XSL), Version 1.0,
http://www.w3.org/TR/xsl/

16. Lie, H. W., Bigelow, J. (eds): CSS3 Paged Media Module, work in progress,
http://www.w3.org/TR/css3-page/

17. Mandyam, S. et al: User Interface Adptations, W3C Workshop on DI Authoring Tech-
niques, http://www.w3.org/2002/07/DIAT

18. Keränen, H., Plomp, J.: Adaptive Runtime Layout of Hierarchical UI Components, Pro-
ceedings of the NordCHI 2002, Arhus, Denmark.

19. Giller, V. et al: Usability Evaluations for Multi-Device Application Development, Three
Example studies, MobileHCI03, September (2003)

20. Baker, J. R.: “The Impact of Paging vs. Scrolling on Reading Passages”,
http://psychology.wichita.edu/surl/usabilitynews/51/paging_scrolling

21. The Eclipse Platform, http://www.eclipse.org/platform

	1 Introduction
	2 Requirements for Device Independency
	3 Layout and Pagination
	Layout in RIML
	Pagination in RIML

	4 Tool Support
	5 Conclusions
	References

