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Abstract

High-frequency circuits are notoriously difficult to lay out be-
cause of the tight coupling between device-level placement and wir-
ing. Given that successful electrical performance requires careful
control of the lowest-level geometric features—wire bends, precise
length, proximity, planarity, etc.—we suggest a new layout strategy
for these circuits: early floorplanning at the device level. This paper
develops a floorplanner for RF circuits based on a genetic algorithm
(GA) that supports fully simultaneous placement and routing. The
GA evolves slicing-style floorplans comprising devices and
planned areas for wire meanders. Each floorplan candidate is fully
routed with a gridless, detailed maze-router which can dynamically
resize the floorplan as necessary. Experimental results demonstrate
the ability of this approach to successfully optimize for wire planar-
ity, realize multiple constraints on net lengths or phases, and
achieve reasonable area in modest CPU times.

1.   Introduction
Thegrowingmarketforwirelesstechnologieshasincreasedtheneed
fordesigntoolsforhigh-frequencycircuits.Mostworktodateinthis
areahasfocusedonthedifficultproblemsofverificationandsimula-
tion for such designs, e.g., [Feldmann 96], [Kundert 90], [Telichev-
esky 95] [Kundert 97]. As the number of designs proliferates, how-
ever, other phases of the design process are becoming bottlenecks.
Layout is a notorious problem for these designs because of the tight
coupling between device placement and wiring, and the potentially
significantimpactofevensmallgeometricperturbationsontheover-
all performance of the circuit.

Radio frequency (RF) circuits have unique properties which
make their automated layout impossible with standard techniques
developed for lower frequency analog and digital circuits. Because
every geometric property of the layout of an individual wire—its
length, bends, proximity to other wires or devices—may play a key
role in the electrical performance of the overall circuit, most RF lay-
outs are optimized for performance first and density second. Worse,
in some cases the crossing of two wires creates an unacceptable lev-
el of signal degradation and parasitic coupling, requiring a com-
pletely planar layout for some high-performance circuits.

Given this level of electrical and geometric coupling, we sug-
gest in this paper a new layout strategy: device-level early floor-
planning. The central idea, borrowed from chip-level floorplanning,
is to resolve as early as possible all problematic device/wiring inter-
actions by correctly planning the placement and the wiring of the
full circuit. The scale of these problems admits an aggressive opti-

mization-based attack. In our approach, a genetic algorithm (GA)
evolves a population of device-level candidate floorplans; the loca-
tion of not only the active devices but also the necessary extra space
for planned wire meanders (extra detours taken by individual wires
to control total length or phase) are managed by this floorplanning
process. Each candidate floorplan is evaluated by completely rout-
ing it with a fast, gridless, detailed maze router which can dynam-
ically resize the floorplan as necessary. The idea is similar to [Cohn
91b]: for maximum control over performance, we need simulta-
neous placement and routing so that we may evaluate subtle perfor-
mance issues correctly.

Much of the related CAD work for layout here has focussed on
lower-speed CMOS analog designs, e.g. [Cohn 91a], [Cohn 94],
[Lampaert 95], [Malavasi 93], [Malavasi 96], [Rutenbar 96] and is
not directly applicable at higher frequencies. There is some recent
RF circuit synthesis, e.g., [Crols 95] which focuses on efficient rep-
resentations of these circuits for use in numerical optimization.
Most CAD work targeting RF circuits comprises interactive tools
that aid the designer to speed manual design iterations [Jansen 86,
88]. Other work in the area includes semi-automated approaches
that rely on knowledge of the relative position of all cells [HP 92],
[Zurcher 85]. However, these template-based approaches with pre-
defined cells strongly limit the design alternatives possible. Recent-
ly, Charbon et al.  introduced a performance-driven router for RF
circuits [Charbon 95]. In their approach, sensitivity analysis is em-
ployed to compute upper bounds for critical parasitics in the circuit,
which the router then attempts to respect. None of these techniques
plan for both device placement and wiring, and none of them can
target difficult constraints such as planarity.

Our goal in this work is to create a basic substrate of geometric
algorithms that can manage the complex geometric interactions
that determine performance for an RF layout. We assume here that
the critical electrical concerns can be reduced—at least approxi-
mately—to a set of purely geometrical constraints that guide the
device-level floorplanning task. Automatic, sensitivity-based con-
straint-mapping techniques have been demonstrated in
[Charbon 93], [Choudhury 93], [Malavasi 96]. In practice, we ex-
pect designers to use a mix of expertise and extraction/simulation
to guide this floorplanning process.

The remainder of the paper is organized as follows. Sec. 2 re-
visits the general floorplanning strategy outlined here, and de-
scribes more carefully our assumptions. Sec. 3 describes our de-
vice-level floorplanner. Sec. 4 describes the device-level router
used to evaluate each floorplan. Sec 5. offers experimental results
to demonstrate the merits of the approach. Sec. 6 offers concluding
remarks.

2.   Assumptions and Strategy
The critical problems in an RF circuit layout are different from
lower-speed analog or digital CMOS circuits:

• Performance: Every geometric property of a wire is a perfor-
mance concern. Signal degradation can be caused by bends and



airbridges (the 3-D structures used to allow wires to cross with
an insulated air-space in between) on a particular net, and may
impact the functionality of the overall design. 

• Area: Wiring often dominates the layout area. Wire width plus
spacing is quite large, causing substantial area consumption for
routing. More importantly, wire detours which result from ex-
plicit length constraints on nets often take up a large fraction of
the layout area. This can be seen in the manual layout in
Figure 1 from [Lewis 87].

• Optimization: Area minimization is not the primary concern.
Optimizing the planarity of the routing—necessary when
crossing introduces unacceptable coupling and desirable to re-
duce expensive airbridges—and meeting length constraints on
performance-critical nets take precedence. These wire-specific
constraints directly determine the functionality of the circuit.

Given these RF-specific layout issues, we propose a new approach
to layout for RF circuits: early floorplanning . Before going into
specific algorithmic and implementation details in the following
sections, we summarize here our basic strategy and the critical en-
gineering decisions on which it depends:

• Target technology: We assume a one-layer signal routing
technology with airbridges for net crossings. Even when mul-
tiple metal layers are available, despite their area cost, airbridg-
es can be more desirable for performance-critical nets since
they have better signal degradation properties compared to vias
that are needed to switch layers. We assume multi-point nets.
are allowed

• Device level floorplanning: We evolve floorplans that specify
the locations of both active and passive individual devices of
an RF circuit.

• Representation: We use slicing trees to represent the floor-
plans. This restricts the floorplans to some extent, but since
slicing trees can efficiently be manipulated for optimization,
we find this a good trade-off. In fact, very complex floorplans
can be realized with slicing trees. Figure 1 also shows a slicing
tree overlaid on top of the manual layout as a practical example
on the usability of slicing trees.

• Wire meandering as placeable objects: Length constraints
on wires are specified as part of the input. In a particular floor-
plan, wire detours or meanders may be needed to meet this ex-
act length. In our approach, wire meanders are located in the
same floorplan “room” as one of the devices to which the net

Fig. 1.  Slicing overlay of RF limiting amplifier [Lewis 87]  

For many nets detours add extra 
      wire length to meet length constraints 

Gridlines show overlaid tree
      structure of this layout 

connects. The size of the room in the floorplan is adjusted by
the router to accommodate extra meandering if needed.

• Geometric problem abstraction: Rather than evaluating the
exact performance characteristics of our layouts by using ex-
pensive circuit simulation or electromagnetic field analysis, we
focus on optimizing the geometric properties of the layout.
This is primarily due to the high computational cost of field
analysis which we cannot afford for the thousands of layouts
we evaluate. Circuit simulation needs the results of field anal-
ysis to determine element values and is also computationally
intensive. Our strategy strives to provide the designer with ful-
ly routed layout alternatives that meet essential geometric con-
cerns such as net length constraints and planarity. The design-
er, using sensitivity-based analysis tools, can then further ad-
just the layout to resolve subtle performance issues.

• Stochastic optimization of layouts: We evolve floorplans us-
ing a genetic algorithm formulation. The genetic algorithm cre-
ates new solution candidates from promising floorplans and in-
vokes the router for their evaluation.

In the following two sections, we discuss our device-level
floorplanning and routing algorithms in detail.

3.   Device Level Floorplanning
In this section we describe the details of our device-level floorplan-
ning strategy for RF cells. Despite the fact that there is no explicit
placement stage after floorplanning, the floorplanner does not pro-
duce fixed device locations for the router to work on. The result of
the floorplanning is a starting point for the router to work on, laying
out the relative placements of devices and wire detours that are ad-
jacent to them. The router will further expand this “seed” place-
ment and dynamically create a “sized” floorplan that can accom-
modate the optimized routing. Because of this, the device-level
floorplanning strategy introduced here should be regarded as a pre-
liminary stage before the floorplan is finalized. Due to the tight
links between the floorplanner and the genetic algorithm optimizer
around it, genetic optimization issues are also discussed here.

3.1  Floorplanning by Genetic Optimization
We recast the floorplan optimization problem as a stochastic opti-
mization using a genetic algorithm. The critical components of any
genetic algorithm are:

• A representation for individual solutions: In our case this is
a slicing tree representation of floorplans.

• A population of solutions: We evolve a population of device-
level RF cell floorplans, with typical population size of a few
hundred.

• A selection scheme: We use tournament selection as described
in [Goldberg 91] with a tournament size of 2.

• Evolution operators: We use a new subtree-driven crossover
scheme and mutation operations adapted from simulated an-
nealing of slicing trees. 

• An evaluation method: We use our router for evaluation of
the floorplans.

Our specific genetic algorithm implementation uses a continu-
ous population model that replaces a user-controllable fraction of
the population in every generation. The default is replacing the
30% of the population with the worst scores. Keeping the best in-
dividuals of the population after a generation is called elitism [De
Jong 75]. It should be noted that the continuous population model
implements elitism implicitly, since the individuals with better
scores will always be preserved.



The score of the best individual in the population is tracked
during the course of evolution. This is used to determine the stop-
ping criteria, which is to stop if the score of the best answer found
has not changed in a user-defined number of generations more than
a tolerance percentage. The default is to stop if the best individual
has not changed more than 1% in the last 100 generations. 

3.2  Floorplan Representation
In our strategy, we represent the floorplan using canonical polish
expressions of slicing trees [Otten 83] [Wong 86], and the genetic
algorithm evolves the polish expressions directly. Slicing trees
capture the relative placement of objects in a compact way. More
importantly, the optimizer can produce a new floorplan from a giv-
en one with little computational effort, allowing efficient search of
the design space. The choice of slicing trees for representation will
not allow the realization of some nonslicing floorplans. With the
target application of at most 50 devices—where for us a “device”
is any active or passive component that must be placed and wired
in an RF cell—this does not impact area significantly. We believe
efficient traversal of the slicing tree design space can more than
make up for this restriction. 

Each of the objects in the polish expression is either a device
or a device with planned space for wire meandering next to it. The
floorplanner chooses an aspect ratio for every module using the
Stockmeyer algorithm [Wong 86]. The choice of the aspect ratio
for each module is optimal with respect to the given slicing tree.
This optimization allows the router to start with the best packing
possible for each slicing tree.

3.3  Evolution Operators
In their floorplanner that uses simulated annealing to evolve ca-
nonical polish expressions of slicing trees, [Wong 89] used three
moves to perturb the current floorplan. These were:

• M1: Swap two adjacent objects.

• M2: Flip every cut in a chain in the polish expression, where a
chain is a maximal series of operators not delimited by objects.

• M3: Swap an adjacent operator operand pair.

Any new slicing floorplans of n rectangles can be reached from
another with some sequence comprised solely of these three
moves. Our genetic algorithm uses the same three moves as muta-
tion operators to introduce diversity into the population. However,
for efficiency we also need to mate pairs of floorplans, with the goal
of propagating the best components of each. For this purpose, we
introduce a new crossover operator based on subtrees. Subtrees are
a good choice of building blocks for slicing trees since they encap-
sulate the adjacency relations among subsets of nearby devices.
The crossover operator preserves the subtrees in parents as much
as possible with the hope of preserving the adjacency relations that
allowed the parents to have a good score. We call this strategy sub-
tree-driven evolution. Two parents chosen for mating by the genet-
ic algorithm then go through mutation with a fixed mutation prob-
ability.

The crossover operator picks a random location in the first par-
ent tree. If the crossover location holds a device, the child is ob-
tained by swapping two devices in the second parent tree to enforce
the same location for the crossover module in the second parent.
This resembles an M1-type mutation operator, but it is influenced
by the other parent.

A more interesting type of crossover will occur when the cross-
over location in the first parent, P1, contains an operator. The sub-

tree is implanted into a suitable place in the other parent tree, P2.
The primary goal while doing this is to introduce a subtree from P1
into P2 with minimal disruption. This is done in two main ways:

• The crossover algorithm rigorously searches for a subtree of
comparable size in P2 for implantation, in order not to destroy
a significant portion of the organization of P2. 

• Further conservation is sought even within this tree of compa-
rable size, by looking for subtrees that can be preserved.

Figure 2 shows a simple crossover example. Figure 3 has sim-
ple pseudocode for the operation.

Together, these evolution operators can efficiently find dense,
low-area slicing floorplans that can meet the geometric constraints
imposed as input. But to evaluate these layouts accurately in their
context as RF circuit designs, we need to route them.

4.   Detailed Routing of Floorplans
We use a novel router as the evaluation tool for evolving floorplans
generated by the genetic optimizer. However, in our overall layout
strategy this router has responsibilities beyond those of a tradition-
al router. Our router completes the placement process by determin-
ing exact device locations and placing airbridges, which may occu-
py substantial area in RF circuits. 

We use a detailed, one-wire-at-a-time area router. We choose
to do the global and detailed routing simultaneously. There are two
major reasons for this. The first concern is planarity. Without taking
routing details into account, the number of net crossings will not be
optimized. This is very important since the number of airbridges
has a major impact on the quality of a global path. Maximizing pla-
narity is important not only because it decreases area due to fewer
airbridges, but also because it reduces signal degradation at air-
bridges. Similarly, bends require attention to detail for minimiza-
tion. The second concern is the need to update channel dimensions
as routing progresses, which can only be done with detailed routing
information. In our dynamic sizing formulation, channel dimen-
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sions change dramatically as wires and airbridges are embedded,
and global routing decisions have to be made taking this into ac-
count.

4.1  Routing Strategy
We use a cost-based maze router with the cost function described
in pseudo-code form as:

(length of floorplan edges in path)•(net width)

+ (length of routing in floorplan nodes for path)•(net width)

+ airbridge penalty for crossings in expanded path

+ bend penalty for bends in expanded path

+ (number of other nets in edge)•(length of floorplan edge)•(net 
width)

This cost-based method is a practical method for capturing the ef-
fects of routing details during path selection. It also gives the user
the flexibility to choose the criticality of airbridges and bends on a
net-by-net basis, since the corresponding penalties are proportional
to user-set coefficients. The last term in the cost function penalizes
parallel runs of nets in crowded regions, proportional to the length
of the parallel run. This is introduced to control congestion in rout-
ing regions with the aim of reducing long parallel runs of
wires.This—at least qualitatively—reduces some crosstalk prob-
lems.

One key mechanism of the router is dynamic floorplan resiz-
ing.The router starts off on a floorplan with fixed-aspect-ratio de-
vices placed with no extra routing space between them. To ensure
sufficient space, the layout is dynamically enlarged while each net
is embedded. By avoiding fixed, predetermined channel widths, the
layout quality is substantially improved in RF circuits since the
variation of channel widths is higher than for lower-frequency an-
alog or digital circuits. Having a dynamic resizing mechanism also
means that a channel is never blocked due to congestion. The dy-
namic resizing ability is also key to meeting length constraints
since we can resize as needed to create extra wire detour space.

4.2  Basic Routing Engine
The routing engine is a modified maze router that minimizes

channel congestion, number of air bridges and bends. The router is

gridless and works on the floorplan graph. This substantially re-
duces runtime since a channel is completely traversed in only one
expansion step of the maze router. The airbridges required to cross
a channel depend on what direction the net will proceed after tra-
versing that channel. Therefore, every channel is expanded in all
possible directions in which the net can next proceed. Each side of
the adjacent node defines one of these directions. For each of these
sides, expansion produces one or more net orderings. Thus the
units of expansion are net locations or orders on sides of a node in
the floorplan graph, as illustrated in Figure 4.

Routing of signals is done in a single layer of metal with air
bridges inserted to resolve non-planarities. The path search algo-
rithm is an extended form of general maze routing [Sherwani 93].
However, the cost of a net location on the next side is rather more
complex than costs in general cell expansion. The cost of adding a
net location to the evolving wavefront is the sum of the cost to cross
a node and an edge. Both costs include bend and airbridge costs.
Details of expansion will be introduced in the next section. After a
path is selected by the maze router, it is embedded into the current
layout by inserting the required air bridges and resizing the chan-
nels as needed.

4.3  Wavefront Expansion
Maze routing requires a source and a set of targets before expan-
sion can start. One of the two device terminals being connected by
a net is chosen as the target. All possible net orderings on sides at
the ends of the channel that holds the target are initially recorded
as target pins. The goal of path search will be to reach one of these
target pins with minimum cost.

The cost of expanding a side depends on:

• The length and congestion of the channel involved.

• The number of airbridges and bends required to cross it.

• The width of the channel and the nodes at its ends.

Fig. 3. Algorithm for crossover with subtree implantation

Crossover algorithm:
C1.Pick a random subtree S(P1) in parent 1 (P1)
C2.Find the subtree S(P2) rooted at S(P1)’s root in parent 2 (P2)
C3.If S(P2) is not large enough:
   C3.1Search around S(P2)’s root for  subtree with at least
           as many modules as S(P1),make it  S(p2).
C4.Call subroutine Implant(S(P1),S(P2),P2).

Subroutine Implant (S(P1):,S(P2),P2)
I1.Let n1= number of modules in S(P1) 
           n2= number of modules in S(P2) .
I2.Pick T={(n2-n1) modules from S(P2)} from modules that 
     are not in S(P1)
I3.Create random tree Temp composed of S(P1) and modules 
     in T.
I4.Swap Temp and S(P2).
I5. Correct operator chains in Temp in P2
I6.Correct module conflicts by swapping modules from outside
  S(P2) in P2
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Physical channel = edge in floorplan graph

Fig. 4. Floorplan graph of simple layout



The maze router computes the number of air bridges required to in-
sert a net into a channel and considers this in the routing cost. This
is done by keeping track of previously embedded nets in lists at ev-
ery node. There is a net list for every combination of two edges in-
cident on a node. Since a node may have 2, 3 or 4 channels incident
on it, it has up to C(4,2) = 6 net lists. All nets in a given list cross
the node to connect the same pair of edges. The order of nets in a
given list corresponds to the physical routing order while crossing
the node.

If two nets are non-planar in a channel, an air bridge has to be
inserted at the point they become adjacent along the channel. The
number of airbridges a new net requires to cross a channel depends
on two pieces of information which are known for the new net. We
call these the planarity data set:

• The entrance order of the net among previously routed nets in
the edge.

• The direction in which the net will proceed after it exits this
edge.

The net lists at nodes are updated at embedding time. Every list
entry has a net identification along with its order in the opposite
side, the first element of its planarity data set. Since node net lists
are formed according to the edge pairs they connect, the direction
in which they proceed after a given edge is the same for members
of the same list, which is the second entry of the planarity data set.
Therefore, for every list entry the planarity data set is available.

Comparison of the planarity data set for the new net and a list
member is enough to determine if an airbridge is required. By do-
ing this for all nets in the channel, a list of nets that has to be
crossed, and the order in which the new net leaves the edge is com-
puted. This determines the order in the next side, along with the ex-
act cost of airbridges in the edge just traversed.

Since the number of airbridges required to cross an edge de-
pends on the direction in which the net will proceed, each new side
being added to the wavefront may have a different set of airbridges
required, and hence a different cost. This is the primary reason for
expanding for each side separately.

Expansion pushes a net with its order among existing nets on a
given side to the wavefront. Multiple net orders on the same side
may co-exist on the wavefront if different paths lead to different net
orders.

Three causes of wire bends are tracked and penalized during
expansion:

• Bends caused by connecting a vertical edge to a horizontal
edge.

• Bends caused by airbridges.

• Bends caused by connecting two edges that are both horizontal
or both vertical, but not aligned.

Bend costs are user-specified on a per-net basis, giving the user fin-
er control of bends on critical nets.

While expanding the wavefront, it is not sufficient to account
for just the edge lengths, i.e., the simple distance of traversal across
each physical channel, to compute the exact routing length of a net.
Edge widths as well as detours in nodes have to be taken into ac-
count. These are accounted for by a simple algorithm that keeps
track of turns at node corners during expansion. 

4.4  Interaction Between the Router and the Floorplan
It is important to note in our strategy how precise net lengths are
achieved. We do not require the maze router to embed each con-
trolled net at a precise length; rather, we rely on evolution to create
floorplans which can be routed with nets of the correct length. This

is less random than it might initially appear: the floorplanner plans
spaceformeandersonindividualnets,andtherouterthen negotiates
with the floorplan to ensure that the combined length of the embed-
dedwiresandtheflexiblewiringinthemeanderedspacesmeetsthe
length constraints. This is illustrated in Figure 5. This is critical to
the success of the overall approach since, on a net-by-net basis, the
routerisconstantlyresizingthefloorplan.Itisnotpossibletoembed
a net once, early, at a specified length and then maintain this as an
invariant as subsequent routes embed.

After embedding all nets, length constraints are checked. If a
net is shorter than it has to be, it is detoured in the space adjacent
to its source. When that device does not have enough unused space
in its floorplan room, appropriate floorplan resizers are called to
create enough space in the floorplan for meandering this wire. 

When the net is longer than its constraint, this shows that the
current slicing tree is not suitable to meet the constraint, and the we
impose a penalty to the score of the slicing tree, reducing its chance
of survival into the next generation of layout solutions evolved by
the genetic algorithm. Signal phase constraints can be mapped to
length constraints and satisfied with the same mechanism. The only
difference is that a penalty is not needed since a net can always be
made longer until it reaches the required phase.

The router makes fine adjustments on the floorplan by resizing
it. Embedding of nets is done after the maze router finds a path.
Channel heights and lengths are adjusted starting from the source
while embedding the air bridges.While embedding, the ordered list
of airbridges in each channel is updated with the new airbridges.
The height and length of the channel are also adjusted to accommo-
date the new net with resizing operations.There are five major caus-
es for the resizing operations the router invokes:

• Insufficient channel width to place wires and airbridges.

• Insufficient channel length to place airbridges and the bends
they require.

• Improper airbridge-device pin alignment in the channel.

Router is responsible
for part of the precisely
routed length; meander

accounts for the rest

A different
allocation of
the meander
space yields
a different 

route

Spaces for meanders
are allocated in the

floorplan adjacent to
a connected device

Fig. 5. Interaction between floorplanner and router for
precise-length control.



• Insufficient wire meandering space next to a device.

• Insufficient space for airbridges at a channel intersection (i.e.,
a floorplan graph node).

Resizing of channels is done by moving the devices defining the
channel. These moves are always to the “right” or “up”, in the
plane of the device-level floorplan.

Once a channel requests more width, depending on the orien-
tation of the channel, the device to the right or the device above is
passed a request for extra space. Devices first try to satisfy the
space requests from the slacks created by slicing during the Stock-
meyer detailed floorplan sizing algorithm, or previous resizings. If
this is not enough, extra space requests are passed to all channels
on the opposite side. When a device moves, the required slack is
added to its neighboring channels on the side from which the re-
quest originated

This resizing method is equivalent to finding and maintaining
critical paths on the floorplan graph and computing slacks in the
non-critical paths. Devices pass the sizing requests to nodes in the
floorplan graph—channel intersections—rather than requesting
space directly from the channels. 

5.   Results
The algorithms we presented in the preceding sections have been
implemented in roughly 18000 lines of C++ code. We employed a
modified version of a genetic algorithm library, GAlib, available
from MIT [Wall 96].

To begin, let us validate one of the core assumptions of the
overall strategy: the need to have detailed routing geometry to eval-
uate the quality of each proposed device-level floorplan.  We  use a
synthetic netlist with 15 devices, 20 nets, and no length constraints.
The netlist is evolved twice. First, we use a “sizeless” wire routing
without airbridges; the idea is that each route is of zero-width and

so does not require any negotiation with the floorplan for resizing.
In effect, this minimizes a simplified wire length for each net. This
floorplan is optimized for idealized estimates of area and wire-
length. We then evolve another floorplan with the tool’s full real-
geometry routing capabilities. 

It is possible to find very dense—indeed superior—floorplans
if we ignore the details of routing. Unfortunately, when we then ac-
tually route these floorplans, the results can be dramatically inferi-
or, as illustrated in Figure 6. Without real wires, the floorplan at the
top left offers a better packing of the devices. But when routed, it
is clear this is a poor solution candidate: it has 3 times the airbridg-
es and more than twice the area compared to the layout resulting
from full optimization. This effect is especially pronounced in our
RF circuit layouts because of the need to route in single wiring lay-
er under length constraints, and the significant area penalty (much
larger than a conventional via) of each air bridge to resolve non-
planar connections. We believe that this simple result demonstrates
to the need to capture fine details of the routing simultaneous to the
device placement.

Next, we shall highlight two specific capabilities of our floor-
planning strategy: the ability to control length precisely, and the
ability to optimize wire bends.

First, we show the impact of optimizing for precise wire
lengths. We use the simple netlist shown in Figure 7. The floorplan
at left is optimized first without taking the length constraint into ac-
count, and then (at the right) with the length constraint. When we
ignore precise net length requirements during device-level floor-
plan evolution, we cannot guarantee that subsequent routing can
meet the constraints. In this case we can—by adding a meander as
shown at the left in the figure—but at increased area. The layout at
the right is simply better plan ned to meet the constraint, and thus
saves area.

(a) Floorplan from 
optimization with 
sizeless wires
Area: 1612

(b) Floorplan from 
optimization with 
real wires
Area: 2119

(c) Routing the floorplan from (a)
Area 7236,    
Airbridges 12

(d) Routing floorplan from (b)
Area: 3311,   
Airbridges 4

Fig. 6. Validating the need to evaluate device-level 
floorplans with complete, detailed routing.

(a) Input netlist

Fig. 7. Impact of length constraints on optimization

(b) Simple placement 
with optimized 
routing. Area: 234

(c) Optimized 
placement and 
routing. Area: 218

Wire meander

3

6
2

4

5

Fig. 8. Impact of bend costs on optimization

(a) Low bend penalty on this net 
yields 4 bends on final route.

(b) High bend penalty 
reduces this to 2 
bends.

4 bends 2 bends



Next, we show the impact of controlling bends. We use the
same synthetic netlist as from Figure 7. Figure 8 shows the results.
The  layout at left optimizes with uniform bend penalties on all
nets. Increasing the bend cost of the highlighted net results in a dif-
ferent floorplan which allows the net to embed with 2 rather than
with 4 bends, which is minimum for this design. To give a better
view of the capabilities of the approach, we turn finally to a larger
and more realistic layout with several interacting constraints. We
compare an automatic floorplan with a manual layout we extracted
from reference [Lewis 87]. The manual layout comprises 15 devic-
es and 15 nets, 8 of which have precise net length constraints. Since
the manual layout is planar, it has no airbridges. Reverse engineer-
ing this netlist by hand, we ran our tool on a simplified version with
approximately sized rectangles for each device. We imposed the
same net length constraints. However, fixed pads in the manual de-
sign are approximated by movable devices in our netlist. Running
the tool produced the layout at the bottom of Figure 9. Our tool was
able to evolve a planar layout. More importantly all length con-
straints were met. Total runtime for this layout was roughly 12 min-
utes on an IBM 100MHz PowerPC604 workstation.

The automatic layout is roughly 39% larger than the manual
layout. This is primarily because wire meanders of the same net are
spread across multiple floorplan “rooms” in the manual layout,
many of which are dedicated solely to meandering. Currently, our
meandering space model does not support this, resulting in inferior
density. This suggests the need for a more sophisticated model of
how meanders can distribute themselves across a layout. Neverthe-
less, this is the first time to our knowledge that any RF circuit with
these sorts of tightly interacting placement and routing constraints
has been automatically floorplanned.

Table 1 gives the runtimes for the tool with a termination crite-
ria of 1% change tolerance at 50 generations, running on a
100MHz PPC 604-based workstation.

In general, the runtime goes up rapidly as the number of devic-
es and nets is increased.This is due to the larger population size re-
quired for larger problems, the larger number of generations neces-
sary for convergence, and the longer evaluation times (routing
time) for each circuit. However, the tool is capable of optimizing
typical designs in 1-15 minutes. The second row of Table 1 gives
the statistics for one layout optimization with sizeless wires and
airbridges to show an example of the incremental cost of floorplan
resizing operations. A rough analysis using the decrease in the time
spent per generation on examples run with sizeless optimization
shows that sizing operations take about 10%-35% of the total run-
time, depending on the particular circuit.

Overall, we regard this as a very satisfactory set of results a
first attempt at this difficult, tightly constrained, geometrically
complex layout task. 

Table 1. Execution times to floorplan our example circuits 

Example 
Circuit
(Figure 
ref.)

Num.
Devices
/Nets

GA 
Popul.
Size

Number 
of Gens

CPU
 (sec)

CPU /
gen
(sec)

Figure 7b) 5/9 100 65 28.8 0.44

Figure 6c) 
(sizeless 
nets)

15/20 200 102 336 3.29

Figure 6d) 15/20 200 172 637 3.67

Figure 9b) 15/15 250 164 738 4.50

b) Automatic layout: 
Area: 2.98 X 5.32 mm
Norm Area: 1.39
Meets all 8 length constraints
0 Airbridges
Runtime:  12.5 minutes

a) Manual layout from [Lewis 87]:
Area: 3.8X3.0 mm
Norm. area: 1.0
15 Devices 15 Nets
8 Length constraints
0 Airbridges

Fig. 9.  Manual and automatic layouts for limiting amplifier
of Figure 1



6.   Conclusions  
In this paper we suggested that the tight interaction between

performance and layout for RF circuits could be addressed by de-
vice-level early floorplanning. We developed new algorithms for
device-level floorplanning which integrate simultaneous detailed
routing. The key idea is to use a complete—though rough—circuit
layout to evaluate the low-level geometric interactions that must be
carefully controlled in high-frequency designs. One of the more
novel features of the approach is the integration of the placement
and routing algorithms: the floorplanner plans space for large wire
meanders, and the router negotiates fine-grain space for individual
nets one segment at a time. This ensures that all layouts can be
routed, and that both placement and wiring can be adjusted to op-
timize for constraints 

A preliminary implementation of these ideas works well on
small designs. Our prototype can handle multiple constraints on
precise net length, wire bends (and congestion; see [Aktuna 96]),
and optimize for overall area, wirelength and—especially critical
for RF cells—planarity. For these circuits, the floorplanning pro-
cess requires only a few minutes of CPU time.

Preliminary comparison to manual layout suggests the need for
a more sophisticated model for embedding wire meanders to
achieve density comparable to manual designs. The other obvious
extension is to incorporate more direct evaluation of electrical in-
teractions (e.g., local parasitics) on top of the geometric abstrac-
tions we introduced in this paper. This will allow us to take into ac-
count subtle electromagnetic interactions and make more accurate
quantitative trade-offs to optimize performance of the designed cir-
cuits. This should lead the way to a more complete layout optimi-
zation strategy for RF circuits.
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