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ABSTRACT

By formulating the problem of ordering the outputs observed from a
device over time, we pose a new problem in forensics and propose a
framework for addressing this problem of device temporal forensics.
Our proposed framework is based on a two-stage approach wherein
time-dependent device parameters are first estimated from observed
outputs and the resulting estimates are then temporally ordered by
employing a Markov model for the temporal evolution of device pa-
rameters and exploiting the data processing inequality in informa-
tion theory. We demonstrate and evaluate a simple realization of
the framework for digital camera forensics based on photo-response
non-uniformity. Results obtained over a database of online images
indicate that the method provides accurate temporal ordering.

Index Terms— Device temporal forensics, temporal ordering,
PRNU(photo-response nonuniformity noise)

1. INTRODUCTION

Device forensics represents an important class of image forensic
techniques that have received considerable attention in recent re-
search. The objective of device forensics is to reliably identify
the imaging device associated with a given image signal. Specific
sub-goals within this larger objective, depending on the application
scenario, have included identification of the digital camera or scan-
ner that was used to capture a digital image [1, 2, 3] or identification
of a printer utilized for printing a given document [4, 5].

In a number of image forensic applications, it is not sufficient
to identify the imaging device alone — and additional information is
desirable. Temporal localization of the image and device linkage, in
particular, can be crucial'. For instance, consider a situation where a
digital camera found to be associated with illicit content distributed
over the Internet has also changed ownership. In this situation, tem-
poral localization of the camera image association, i.e. an estimate
of the time when the images with illicit content were captured, can
not only help to improve the “prosecutorial strength” of the evidence
but can also allow for a more focused and effective investigation. In
a similar fashion, temporal localization can also be critical for es-
tablishing the validity of printed legal documents — for instance, by
determining whether a will was printed before or after the expiration
of the purported testator.

Motivated by the importance of temporal localization, in this pa-
per, we propose a framework for device temporal forensics. A num-
ber of device forensic techniques rely on estimation of parameters of
the imaging device [1, 2, 4, 5]. By suitably modeling the temporal
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ITemporal information also plays a vital role for forensic investigations
in domains other than digital image forensics [6, 7].
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Fig. 1. Multimedia recording device with temporally evolving pa-
rameters

evolution of the device parameters, our framework augments several
of these forensic methods to additionally provide time-ordering in-
formation. Specifically, in our framework we utilize a Markov model
for the evolution of device parameters which then allows us to ob-
tain estimates of temporal ordering by exploiting the data process-
ing inequality [8, pp. 34] in information theory. Due to space con-
straints, we demonstrate only one practical realization of the frame-
work and defer additional applications that are under development
to future work. Specifically, here we augment the digital camera
forensic technique of [1] that relies on estimation of photo-response
non-uniformity (PRNU) parameters to obtain temporal ordering ca-
pability based on framework.

In Section 2, we provide a model for temporal evolution in mul-
timedia devices. In Section 3, we outline our framework and propose
an efficient algorithm for temporal ordering based on the data pro-
cessing inequality. Section 4 outlines a specific realization of the
framework for the PRNU based temporal forensics for digital cam-
eras. Experimental results for this realization are presented in Sec-
tion 5. Concluding remarks and a discussion form the final Section 6.

2. TEMPORAL EVOLUTION OF MULTIMEDIA DEVICE
PARAMETERS

In order to capture the temporal characteristics of a multimedia de-
vice, we model the input-output relation for the device using the
generic model illustrated in Fig. 1. At a given time instant ¢, the
device output y(t) is modeled as

y(t) = f (z(t); P()) + n(t), (€]

where z(t) denotes the input, P(t) the intrinsic parameters for the
device, and n(t) denotes non systematic noise that is independent
across different device outputs. For imaging devices, for each time
instant ¢, x(t), y(t) and n(t) are two-dimensional signals and in
general the device intrinsic parameters P (t) also constitute a vector-
valued and potentially multi-dimensional signal. In general, the pa-
rameters P(¢) may represent only a partial subset of the full param-
eter space that characterizes the device operation.

The model outlined above is implicit in a number of device
forensic methods, albeit without the temporal dependence for the
intrinsic device parameters. The typical operation of these meth-
ods can be summarized as follows: First, an estimate of the device
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parameters is obtained from outputs known to be originated by the
device. An image under investigation is then associated with a spe-
cific device by determining whether the image is consistent with the
parameters estimated for the specific device. For practical deploy-
ment of this methodology, systematic device degradations in partic-
ular have proven to be useful device parameters for enabling image
forensics: Among other examples, photo-response non-uniformity
(PRNU) [9, 1] and sensor dust [10] have been exploited for digital
camera forensics, noise features for scanner forensics [11, 2], and
printer geometric distortion for printer identification [5]. Incorporat-
ing, temporal dependence in these intrinsic device parameters allows
us to comprehend their temporal evolution within our model, which
forms the basis of our temporal forensics formulation.

As a specific case of our general model (1), we consider digital
camera forensics based on PRNU estimation. For this scenario, by
adding time dependence to the sensor PRNU representation of [9, 1]
we obtain the following model. At time instant ¢, the image I(¢)
captured by the camera is given by

Ity =10 - 1+ K(t)) + 6(t) @)

where 1) (t) represents the ideal “input” image at the camera sensor
that is free from sensor PRNU variations, K (t) represents the time-
dependent PRNU parameters for the digital camera, - represents the
element-by-element multiplication operation, and O(t) represents
non-systematic noise, which is statistically independent for differ-
ent images captured by the camera. Through the rest of this paper
we will use this particular problem and model for illustrating our
methodology.

3. DATA PROCESSING INEQUALITY FOR TEMPORAL
ORDERING

We consider a two stage process for temporal ordering wherein first
the parameters P(t) are estimated using device outputs and then a
temporal ordering is determined for these estimated parameters. If a
parametric model is available for the temporal evolution of the de-
vice parameters, it can be utilized to establish the temporal ordering.
Invariably, however, such a model is unavailable and we therefore
propose a non-parametric formulation. Specifically, we consider
scenarios where the device parameter evolution can be modeled as a
Markov Process. As indicated earlier, in a number of situations, the
device parameters represent systematic device degradations such as
camera sensor PRNU or dust, printer geometric distortions, etc. If
the systematic degradations are the accumulation of independent in-
dividual degradations, the resulting overall degradation can be mod-
eled as an independent increments process, which forms a Markov
process [12, pp. 501]. Camera sensor pixel failures and sensor dust
specks, for instance, can be readily modeled in this fashion. It
should also be clear that some device parameters, for example the
color filter array pattern, are temporally invariant. While these may
provide useful forensic information, they are ineffective for temporal
forensics.

If P(t) is a Markov Process then for any L monotonically in-
creasing time instants t1 < t2 < ... < tr by the data processing
inequality [8, pp. 34] we have

I(P(ti); P(ty)) > I(P(ti); P(tr)) 3)

for all ¢ < j < k. This suggests that estimates of mutual infor-
mation between estimated device parameters can provide informa-
tion on temporal ordering of the corresponding device parameters.
Specifically, if I(P(t:);P(t;)) < I(P(t:i); P(tx)) then the time

instant ¢; cannot lie between ¢; and t;. This direct consequence
of the data processing inequality suggests the following simple al-
gorithm? for temporal ordering of a set of estimated parameter sets
P(t1)7 P(tg), c. P(tN)I

1. Choose any instant ¢, and estimate the mutual information between the
parameters at this instant and the parameters at all other time instants, i.e.

R N
obtain estimates {I(”P(tk); P(t]))}j:l ;

2. Select the time instant ¢, that has the smallest mutual information value,
viz.,

jo = arg m]in f('P(Uc)? P(t5))

The time instant ¢ 5, is temporally farthest from ¢; and must be at one end of
the temporal range ;

3. Compute mutual information estimates between the parameters at the time
instant ¢, and the parameters at all other time instants, i.e. obtain estimates

. N
{1t PN} s

4. Sort the mutual information estimated obtained in the previous step. This is
the estimated temporal ordering.

Algorithm 1: Temporal Ordering Algorithm

In terms of running time, excluding the effort involved in esti-
mating the mutual information, all steps except the sorting require
time linear in N, whereas the sorting requires O(N log(N)) time.
Note also that the algorithm cannot resolve the direction of temporal
ordering.

If the device parameters P (¢) form a vector of independent iden-
tically distributed 7.i.d. Gaussian processes, i.e.

P(t) = [Vi(t), Va(t), ... V()] “4)

where {V},(t)};_, are independent Gaussian processes each having
identical statistics, i.e., the same mean u(t) = E[VL(t)], n =
1,2,...J and identical auto-covariance functions C(t1,t2) =
E[(Va(t1) — p(t1)) (Va(t2) — p(t2))], Vn. Then, we can read-
ily relate the mutual information to the (common) auto-covariance
function as follows [8]:

(Pt Pt;) = Y 1(Valti); Va(ty))

n=1
J
= —Jlog(l—p(ti,2)") )
where p(t1,t2) = C(t1,t2)/y/C(t1,t1)C(t2, t2) is the correlation

coefficient between times ¢; and ¢; for each of the component pro-
cesses in P(¢) indicated in (4). In this case, we see that the mutual
information I(P(t¢;); P(t;)) is monotonically related to the correla-
tion coefficient p(t1, t2) and hence the data processing inequality ap-
plies directly to the correlation coefficients and estimates thereof can
be used for performing the ordering in Algorithm 1. For the specific
case of sensor PRNU, a zero-mean i.i.d. Gaussian processes model
is particularly apposite for the individual PRNU parameters and has
been partly validated in prior sensor forensics work [9], though again
without incorporating the temporal evolution.

4. PRNU-BASED TEMPORAL FORENSICS OF DIGITAL
IMAGES: PROBLEMS AND CHALLENGES

As a concrete realization of our general framework, next we consider
temporal forensics using PRNU estimates. The temporal model for
this scenario was formulated in (2). Using a set of M images taken

2For simplicity, the algorithm is stated under the assumption of strict in-
equality in (3).
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at the time instant ¢, a maximum likelihood estimate K (t) for the
PRNU at time ¢ is obtained as [1]:

[Z (In(t) — T(£)).Iu( t)] /Z(Ik(t ) 1))

where I & 1s a denoised version of image [, and . / denotes element-
by-element division operation over the pixels.

As outlined in Section 3, an i.i.d. zero-mean Gaussian model is
well-suited for the PRNU parameters and thus the mutual informa-
tion between K (t1) and K (¢2) can be monotonically related to the
correlation coefficient p(¢1,t2), which in turn can be estimated by
computing the correlation coefficient between the PRNUs over the
image pixels

Kap(t2) (6)

pltr ) => > Kap(tr)

a=1b=1

where a and b index the 2-D image pixel locations of the A x B
PRNU estimates.

By utilizing the estimated correlation coefficients in Algo-
rithm 1, we can now obtain a temporal ordering for the PRNU
estimates and by induction for the corresponding images. Note that
this process provides a method for ordering groups/clusters of im-
ages, that are known to be captured by the camera in close temporal
proximity. For several applications, these clusters/groupings may
be determined based on image content (for example images taken
at a birthday party or clearly identifiable as a series) or based on
proximity of upload time. We refer to this problem as Image cluster
ordering (ICO).

A variant of ICO, where temporal ordering of a set of individ-
ual images is desired, may often be important in practice. In this
scenario, the difficulties of estimating PRNU’s from single images
rather severely debilitates our framework. While the PRNU can be
computed in principle from single images (i.e. for N = 1), we
observed that there is strong content interference from dark or tex-
tured regions in this scenario. We also consider a second problem
that makes progress toward the individual image ordering problem,
which we refer to as Individual Image Placement Within An Ordered
Set of Clusters (1IP). This problem involves placing an individual
image within a set of clusters or groups of images that have been
ordered correctly in time and may be useful when the clusters and
individual images have been obtained from different sources with
the grouping preserved in the former. For example, folders of be-
nign camera images could be obtained from a seized disk and it may
be desirable to arrange illicit images taken by the same camera and
posted online within the timeline established by the benign images.

5. EXPERIMENTAL RESULTS

In order to evaluate the performance of temporal forensics frame-
work based on PRNU, we generate a database from native reso-
lution images available on the well-known image sharing website
Flickr [13]. Our database contains 1486 images downloaded from 3
different users with a wide variety of content. There are three unique
cameras a) Canon EOS D10, b) Nikon Coolpix 2100, and c) Sony
DSC HI corresponding uniquely to the three users.

5.1. Image Cluster Ordering (ICO)

Recall, the ICO problem considers time ordering of groups of images
captured within close proximity. For this experiment, we grouped
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images captured during the same month within a cluster and obtain
a PRNU estimate from the cluster.

We then calculate correlation coefficients of PRNU estimates of
different clusters. Figure 2 shows the correlation results for Nikon
Coolpix 2100. In the figure, the axes correspond to time index of ex-
tracted PRNU estimates of a cluster of images. The color bar listed
next to the figure shows the estimated correlation coefficients be-
tween the PRNU for individual clusters. We also list the correlation
results for the Canon camera in Table 1. From the figure and the
table, by comparing the values within each of the rows (equivalently
columns) one can readily infer that Algorithm 1 yields the correct
ordering for the image clusters irrespective of the time instant cho-
sen in the initial step 1. Thus the framework can indeed correctly
order the image clusters.

time index

2 4 6 8 10 12 14 16
time index

Fig. 2. Correlations for cluster of images that were captured a month
apart from each other for Nikon Coolpix 2100. (See electronic ver-
sion in color)

5.2. Individual Image Placement Within An Ordered Cluster
Set (ITP)

We next consider the second problem described in Sec. 4 where it
is desired to find the placement of an individual image relative to
temporally ordered cluster set. In order to evaluate the performance
of the proposed framework for this problem, we utilize the ordered
cluster set from the first experiment (ICO).

The second problem (IIP) can be solved as follows. Given a set
of clusters ordered temporally and an image, we calculate the PRNU
signature of the image. We then calculate the mutual information of
this PRNU with the PRNU estimates of each cluster. We estimate
the timestamp of the image to be that of the cluster whose PRNU
has the highest mutual information with the PRNU of the image.
We conduct this experiment over 3 cameras and tabulate the results
in Table 2. The table reveals that the proposed framework provides
accurate solutions for the IIP problem.. A sample of the images for
which the method provided inaccurate ordering are illustrated in Fig-
ure 3. As shown in the figure, most of the failed images (Figs. 3 (a)-
(b)) fall under the category of having highly textured or dark regions,
and therefore, yield unreliable PRNU estimates. We also note that
some of the failed images (in particular Fig. 3 (c)) were manipulated
before being uploaded to Flickr.

6. CONCLUSION AND DISCUSSION

We pose a new problem of device temporal forensics and propose a
novel two-stage framework to address this problem. By represent-
ing the temporal evolution of selected multimedia device parameters



PRNU Month
yy/mm [ 04/07 | 04/08 | 05/04 | 05/07 | 05/09 | 06/06 | 06/07 | 07/07 | 07/08 | 07/10 | 07/11] 07/12] 08/01] 08/02] 08/03
04/07 1.0 6595 | .6406 | 4509 | 4343 | 4280 | 4243 | 4145 | 4101 | 4036 | 4017 | .3985 | .3965 | .3932| .3922
04008 | 6595 | 1.0 | 9544 | .6059 | .5804 | .5709 | .5645 | .5456 | 5373 | 5182 | .5135| .5016 | .4983 | .4916 | .4898
05/04 | .6406 | .9544 1.0 .6691 | 6432 | 6338 | .6271 | .6084 | .6002 | .5811 | .5760 | .5642 | .5610 | .5548 | .5530
05/07 | 4509 | .6059 | .6691 | 1.0 | .9727 | .9638 | .9558 | .9392 | .9321 | 9121 | .9049 | .8918 | .8899 | .8857 | .8843
05/09 | .4343 | .5804 | .6432 | 9727 1.0 9903 | 9818 | .9636 | 9559 | 9336 | .9259 | 9114 | 9092 | 9041 | .9027
= | 06/06 | 4289 | .5709 | .6338 | .9638 | .9903 1.0 9914 | 9728 | 9648 | 9421 | 9343 | 9195 | 9172 | 9121 | 9105
£ [ 06/07 | 4243 | 5645 | 6271 | 9558 | 9818 | 9914 | 1.0 | 9807 | 9724 | 9488 | 9400 | 9255 | 9231 | 9176 | 9159
= | 07/07 | 4145 | 5456 | .6084 | 9392 | 9636 | .9728 | .9807 1.0 9918 | 9682 | 9604 | 9451 | 9426 | .9370 | .9352
2 07/08 | 4101 | .5373 | .6002 | .9321 | 9559 | .9648 | 9724 | 9918 1.0 9766 | 9689 | .9537 | 9513 | .9456 | .9439
E 07/10 | 4036 | 5182 | .5811 | 9121 | 9336 | 9421 | 9488 | 9682 | .9766 1.0 9922 | 9773 | 9746 | 9686 | .9668
07/11 | 4017 | 5135 | 5760 | 9049 | 9259 | .9343 | 9409 | .9604 | .9689 | .9922 1.0 9849 | 9821 | 9758 | .9740
07/12 | 3985 | 5016 | .5642 | 8918 | 9114 | 9195 | .9255 | .9451 | 9537 | 9773 | 9849 | 1.0 | .9971 | .9908 | .9889
08/01 3965 | 4983 | .5610 | .8899 | 9092 | 9172 | 9231 | .9426 | 9513 | 9746 | 9821 | .9971 1.0 9937 | 9918
08/02 3932 | 4916 | .5548 | .8857 | 9042 | 9121 | 9176 | .9370 | .9456 | .9686 | .9758 | .9908 | .9937 1.0 .9982
08/03 3922 | 4898 | .5530 | .8843 | .9027 | 9105 | 9159 | 9352 | 9439 | 9668 | 9740 | 9889 | .9918 | .9982 1.0
Table 1. Correlation coefficient values between 15 clusters of images captured by Canon EOS D10.
Number of Number of % Correct Info. Forensics and Security, vol. 3, no. 1, pp. 74-90, 2008.
Images Correct Ordering | Ordering . B
Canon 102 37 353 [2] N.Khanna, G. T. C. Chiu, J. P. Allebach, and E. J. Delp, “Scan-
Nikon 12 38 90.59 ner identification with extension to forgery detection,” in Proc.
Sony 5 3 96.49 SPIE, vol. 6819, Jan. 2008, pp. 68 190G-68 190G.

Table 2. Performance evaluation for ordering individual images on
the timeline based on ordered cluster set.

(b) (©

Fig. 3. Example images corresponding to inaccurate temporal order-
ing.

as a Markov process our framework enables temporal ordering by
exploiting the data processing inequality in information theory. We
demonstrate a specific realization of the framework for digital cam-
era temporal forensics on photo-response non-uniformity (PRNU).
Tests on a sampling of the Flickr website [13] indicate that the frame-
work provides accurate temporal ordering for image clusters and ac-
curate placement of individual images on an established timeline via
temporal ordering of image clusters.

The effort presented here suggests several directions for further
research — we highlight a couple of these. The PRNU provides an
extremely high dimensional signal due to which the relatively sim-
ple Algorithm 1 performs well. Robust generalizations of this algo-
rithm are, however, desirable that do not rely on a single “anchor”
for establishing the timeline but instead utilize pair-wise estimates of
mutual information. Alternate realizations of the framework are also
of interest. In particular, we are currently exploring the application
of the proposed framework to temporal forensics for printed images.
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