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Abstract— Addressing the challenges of feeding the burgeon-
ing world population with limited resources requires innovation
in sustainable, efficient farming. The practice of precision
agriculture offers many benefits towards addressing these
challenges, such as improved yield and efficient use of such
resources as water, fertilizer and pesticides. We describe the
design and development of a light-weight, multi-spectral 3D
imaging device that can be used for automated monitoring in
precision agriculture. The sensor suite consists of a laser range
scanner, multi-spectral cameras, a thermal imaging camera,
and navigational sensors. We present techniques to extract
four key data products—plant morphology, canopy volume,
leaf area index, and fruit counts—using the sensor suite. We
demonstrate its use with two systems: multi-rotor micro aerial
vehicles and on a human-carried, shoulder-mounted harness.
We show results of field experiments conducted in collaboration
with growers and agronomists in vineyards, apple orchards and
orange groves.

I. INTRODUCTION

The world population is estimated to reach 9 billion by

2050. Sustainable food production remains a global concern.

The difficulty of meeting global nutritional needs is further

compounded by endemic crop diseases and scarcity of water

for irrigation. As a consequence, efficient resource manage-

ment and persistent and timely monitoring of crop health

are becoming increasingly crucial. In this paper, we present

the design of a sensing device that allows for effective and

timely monitoring of crop in farms. This device can be used

in hand-held mode as well as mounted on low-flying, aerial

robots, and allows us to extract data products that are crucial

for efficient and sustainable farming.

Traditionally, remote sensing satellites and airborne sens-

ing with winged aircraft have allowed scientists to map

large farmlands and forests through acquisition of multi-

spectral imagery and 3-D structural data [1], [2]. However,

data from these platforms lack the spatio-temporal resolution

necessary for precision agriculture. For example, a typical

remote sensing satellite image may have a pixel resolution

of hundreds of meters, and airborne sensing may provide

resolutions of a few meters. Monitoring orchard or vineyard

health however requires data at a centimeter scale – the

resolution necessary for observing stems, leaves, and fruits.

Unmanned Ground Vehicles (UGVs) have been the first

step towards close-range monitoring of high-value crops.

They can carry a variety of bulky sensors such as LiDAR for

volumetric mapping [3], as well as Ground Penetrating Radar

and electrical conductance sensors for precise soil mapping.

However, due to the mobility constraints of unstructured

farms, it is infeasible to use UGVs for rapid and persistent

monitoring. Additionally, ground vehicles are intrusive. We

assert that the dense mapping of orchards and vineyards is a

task best served by aerial platforms and hand-held sensors.

Fig. 1: The sensor suite was designed to acquire multi-

modal, multi-scale data, while mounted on an Unmanned

Aerial Vehicle (UAV), a steadicam, or through handheld

human operation. The sensor suite consists of multi-spectral

cameras, a thermal imaging camera, a laser range scanner

(LiDAR), and navigational sensors, providing a rich spatially

registered dataset for extraction of a wide range of plant

properties of interest.

A significant portion of prior work in robotics for agri-

culture has tackled the issues of farm preparation, crop

harvesting, and weeding [4]–[7]. In recent years, there has

been a growing interest in the use of imaging sensors

for monitoring plant physiology and morphology. LiDAR

scanners mounted aboard ground vehicles and tractors have

been used to extract morphological properties such as canopy

volume and leaf area [8]. Thermal and multi-spectral im-

agery in the red and near-infrared bands have been used

to monitor plant health, guiding pruning management and



fertilization [9], [10]. Thermal and multi-spectral cameras

have been used together onboard Unmanned Aerial Vehicles

(UAVs) to estimate a range of plant properties related to

photosynthetic efficiency and water stress [11]. However,

the size, weight, and costs of existing multi-modal imaging

systems inhibit large-scale deployment onboard UAVs. It is

hence desirable to develop a portable, low-cost, compact, and

light-weight imaging system along with agile deployment

methodologies to help growers observe farms effectively.

Additionally, current work in precision agriculture does not

sufficiently address the development and evaluation of a

comprehensive data analysis and visualization framework

that can provide growers with actionable intelligence, and

help them interpret the resulting data products efficiently.

To this end, in this work we present a robotic sensing

methodology that exploits a light-weight and portable multi-

spectral 3-D imaging system (Figure 1) that can be mounted

onboard UAVs for rapid sensing in unstructured farmlands

(Figure 2a). The sensor suite can also be deployed in a

harnessed mode (Figure 2b), providing farm owners with

the option of aerial deployment or manual deployment de-

pending on the structure of the environment. For example,

many close-range sensing requirements can only be met in

the harnessed mode, whereas aerial deployment can provide

rapid synoptic imagery from the top.

The closest system to our work is equipped with onboard

LiDARs, a spectrometer, and a thermal camera, developed

for measuring tree characteristics [12]. However, in addition

to possessing the sensing modalities carried by this sensor,

our system can be mounted on multi-rotor UAVs with

payload constraints, as well carried by human operators for

handheld use.

The sensing modalities of the sensor suite were selected

to monitor a range of plant physiological and morphological

properties, and we have developed approaches to extract

actionable intelligence from the data acquired by the system.

Specifically, we present methods to estimate four properties

that are of interest to farm owners – plant morphology, plant

vigor, leaf area, and fruit counts. Results from multiple field

trials are discussed in the paper to demonstrate the deploy-

ment modes and data products, highlighting the applicability

of our system for a variety of precision farming tasks.

The key contributions of our work are as follows. First,

we combine different sensing modalities on a self-contained,

lightweight, and compact platform. Second, we use machine

learning techniques to estimate properties of interest such

leaf area, and fruit count from the data acquired by the sensor

suite. Finally, we use state of the art tools to visualize data

products generated by our system.

The rest of the paper is organized as follows. In Section II,

a detailed description of the hardware design and software

stack is provided. In Section III we describe techniques to

extract four data products from the sensor suite and presents

results from multiple field trials. We conclude in Section IV

along with a discussion of future research directions.

II. SYSTEM DESCRIPTION

In this section, we describe the hardware design, deploy-

ment modes, and software stack of our system.

(a) The sensor suite mounted on a UAV, scanning
plant canopies from the top with the sensors pointing
downwards.

(b) The sensor suite mounted on a hand-carried
steadicam, providing side view of plants (towards the
left in this image, pointing at a row of apple trees). The
white dashed lines show the vertical field of view of the
system. This arrangement provides rich data on fruits,
canopy, and trunks. Such data can also be acquired with
the sensor suite mounted on a UAV flying between trees.

Fig. 2: Our system is currently being deployed in two modes

— mounted on a hand-carried steadicam, and on a UAV.

A. Hardware design

The sensor suite is shown in Figure 1. It consists of

an array of science and navigation sensors, an onboard

computer, a wireless communication link, and onboard bat-

teries. A Hokuyo UST-20LX laser scanner provides high-

resolution laser scans for monitoring plant morphology. Two

monochrome Matrix Vision BlueFox cameras equipped with

narrow-pass filters at 670nm and 800nm allow for calculation

of the Normalized Difference Vegetation Index (NDVI) —

an important indicator of plant vigor. A FLIR A35 thermal
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Fig. 3: The data processing pipeline starts with the sensor

streams from the science and navigation array, which are

fused to generate a multi-spectral 3-D point cloud.

imaging camera collects temperature readings at a resolution

of 320x256. Finally, an RGB BlueFox camera is used to

acquire true-color data, which is used for fruit-counting and

visual inspection. The navigational sensor array consists of a

Microstrain 3DM-GX4-25 Inertial Measurement Unit (IMU),

a µBlox precise point positioning (PPP) GPS sensor, and two

single-channel BlueFox cameras for stereo visual odometry.

An onboard Intel core i5 computer logs data from all the

sensors and facilitates communication with the vehicle it is

mounted on, as well as with a ground station through a wifi

link.

The sensor package has a total weight of ∼ 1.6 kg, and

dimensions of 40 cm x 13 cm x 13 cm, making it lighter and

more compact than sensor suites with similar capabilities. A

carbon fiber frame supports a poly-carbonate base plate on

which all sensors are mounted. Power is delivered by two

2700 mAh lithium polymer batteries. We have observed an

endurance of one hour during the deployments. The sensor

arrangement has been improved over multiple field trials for

reliable operation in different deployment modes.

B. Deployment

The sensor suite has been designed to be versatile, capable

of being mounted on UAVs or used directly in a hand-held

mode. In our work, we have tested the sensor suite on a

DJI Innovations S800 multi-rotor UAV, and a steadicam rig

(Glide Gear DNA 5050 Vest And Arm Stabilization System

Pro). Figure 2a shows the sensor suite mounted on the UAV

while scanning orange tree canopies from above. Figure 2b

demonstrates the sensor suite being used with the steadicam

rig in order to scan apple trees looking from the side while

the operator walks at a normal pace. Mechanical stabilization

of the steadicam improves the quality of the recorded data,

resulting in higher precision of 3-D reconstruction.

C. Software stack

The data acquired by the sensor suite is processed in

multiple stages. The entire pipeline is illustrated in Figure 3.

The Robot Operating System (ROS) [13] forms the backbone

of the data processing pipeline, facilitating sensor data log-

ging and sharing of information between various processing

nodes. The data from the navigation sensors are used by an

Extended Kalman Filter (EKF) to generate pose estimates

for every sensor on the platform. We employ the error-state

formulation of the EKF, similar to the form documented

in [14]. A point cloud assembler uses the EKF pose estimates

and the known relative poses between sensors to reconstruct

a multi-channel 3-D point cloud. The point clouds are also

converted to an octree [15] representation for efficient storage

and analysis.

D. Calibration

Since the sensor suite is a platform for performing de-

tailed and highly accurate environmental reconstruction, it

is important that both the state estimation and scientific

sensors be properly calibrated. Prior to each deployment, we

perform a complete system calibration, wherein the stereo

and sensing cameras are calibrated relative to the IMU.

We employ the toolbox from [16], [17] to perform both

camera-system calibration (stereo, color and multi-spectral)

and spatial/temporal calibration of camera and IMU.

Fig. 4: Camera system calibration between thermal camera

and left stereo camera. The circle grid pattern has been

heated before calibration

In addition, we calibrate the intrinsic and extrinsic pa-

rameters of thermal camera relative to the stereo pair. This

procedure is complicated by the fact that the thermal camera

cannot observe visible wavelengths, and produces only a

low-resolution image (320x256). Thus a standard chessboard

pattern cannot be used to calibrate a thermal camera directly.

In order to address this problem, we leverage a strategy

similar to [18]. An ordinary circle grid pattern printed on

paper is illuminated by a hot lamp, producing a pattern

which is discernible in both the long-wave IR and optical

regions of the spectrum, as shown in Figure 4. This approach

allows us to calibrate thermal camera itself as well as with

other cameras without requiring any complicated calibration

device.

III. DATA PRODUCTS AND FIELD TRIALS

To highlight the applicability to farm management, we

discuss four example data products obtained during the

field trials using our system. These are: reconstructing plant



morphology, computation of plant vigor, estimation of leaf

area, and automated fruit counting or yield estimation using

remotely sensed data. Targeted at improving farm manage-

ment, these applications demand extraction of actionable

intelligence from the data collected by the sensor suite,

mounted either on a UAV or on the harness. Plant vigor,

measured through NDVI, facilitates decision-making for fer-

tilization. Accurate estimation of leaf area has the potential to

improve pruning and spraying management. The capability

to estimate yield accurately will enable growers to plan

labor for harvesting, and storage for harvested fruits. Both

applications require training of predictive models that use the

acquired data to estimate a property of interest, i.e., leaf area

or fruit count.

In this section, we first discuss the characteristics of

reconstructed plant data, followed by description of the other

three data products extracted by the software stack. We

demonstrate the utility of our system through data acquired

and processed during multiple field trials. We used the sensor

suite onboard a UAV and on a shoulder-mounted harness in a

vineyard in Galt, California, an apple orchard in Biglerville,

Pennsylvania, and at an orange grove in Orange Cove,

California.

A. Plant Morphology

Figure 5 shows a reconstructed point cloud of a row

of grape trees from the vineyard in Galt, California. In

Figure 5b, features of the environment, e.g., the canopy,

trunk, ground have been highlighted.

In the apple orchard at Biglerville, PA, we scanned a row

of apple trees of different sizes across two field trials. A 3-D

reconstruction of the scans of a row of semi-dwarf apple trees

was carried out. The reconstruction and canopy dimensions

are shown in Figure 6. The second trial was carried out to

scan smaller, dwarf apple trees. Thermal camera data was

projected on this point cloud as shown in Figure 7. Warmer

sections are showed in red, and cooler sections in blue.

The point clouds from both trials were analyzed to de-

termine canopy volume characteristics. Figure 8 shows two

dwarf apple trees from the row of trees scanned. A com-

parison with Figure 6b shows the difference in dimensions

between semi-dwarf and dwarf apple trees – the semi-dwarf

trees have a height of ∼3.5 m, and the dwarf trees a height

of ∼2.5 m.

B. Plant vigor

Normalized Difference Vegetative Index (NDVI), an in-

dicator of plant vigor, was computed using multi-spectral

imagery acquired by the sensor suite onboard the UAV.

For pixel data corresponding to a multi-spectral image,

NDVI=(NIR-VIS)/(NIR+VIS), where NIR = 800nm (i.e.,

near-infrared) and VIS = 670 nm (i.e., visible). Figure 9

shows a visualization of NDVI map generated using multi-

spectral data acquired by the UAV. These maps will enable

growers to plan fertilization and mitigation in response to

stresses observed in the NDVI imagery.

(a) Reconstruction of a section of the row of grape trees
spanning 30 m. The color shows the intensity of laser
scan echo, red being higher intensity.

(b) Various features of the reconstructed trees. Color
shows the height, red being ground.

Fig. 5: Reconstructed 3-D point cloud of a row of grape

trees at the vineyard in Galt, CA. Data was collected with

the sensor suite mounted on the steadicam facing the side

view of the grape trees.

C. Leaf area estimation

Estimation of the total leaf area of a plant is important

for management of fertilization, pruning, and spraying. We

use the data from the sensor suite to obtain accurate leaf

area for target trees. To develop and test our leaf area

estimation methodology, we defoliated two dwarf apple trees

in the apple orchard in Biglerville, PA, and concurrently

carried out scans with the IRIS imaging system mounted on

a steadicam. The defoliated leaves were used to determine

ground truth leaf area, necessary for developing the algorithm

to estimate leaf area from remotely sensed data. Complete

tree defoliation was done in four passes, with leaves from

two octants (illustrated in Figure 10) removed after each pass.

This emulates four canopy types for each tree – full canopy,

and 1/4, 1/2, and 3/4 leaves removed. The defoliated leaves

were collected and image processing algorithms were used

to compute ground truth leaf area for each octant of the

defoliated trees.

To carry out this estimation, the leaves were flattened on

a table using a polycarbonate sheet and photographed with

a DSLR camera. A calibration target placed at the corner of

the table provided scale and allowed estimation of camera

pose to carry out perspective correction prior to the use

of a segmentation algorithm. In total, sixteen ground truth

leaf area estimates were obtained, one from each octant of

each tree. Four IRIS sensor passes carried out preceding



(a) A section of five semi-dwarf apple
trees (annotated as section 1), recon-
structed using the sensor suite.

(b) Profile view of a semi-dwarf apple tree at
the edge of a row of trees. The 3-D point cloud
was reconstructed through the sensor suite, and
illustrates the tree dimensions.

Fig. 6: Reconstructed 3-D point cloud of a row of semi-dwarf apple trees in an orchard in Biglerville, PA.

(a) Image of leaves placed on a table,
captured through a DSLR camera.

(b) Unwarped image after a per-
spective transform using the cam-
era calibration board placed in
the right top corner of the table.

(c) Individual leaves detected us-
ing an image segmentation algo-
rithm, leading to the computation
of individual and total leaf area.

Fig. 11: The data processing sequence for extracting ground truth leaf area for each octant of defoliated leaf.

Fig. 7: Thermal data projected onto the 3-D point cloud of

a row of dwarf apple trees in Biglerville, PA. The color

corresponds to temperature, red being hot. The right side

of the tree row was facing west, a few hours before sunset.

Hence, it is warmer than the other parts of the canopy.

each stage of defoliation resulted in eight data points that

were used to evaluate the leaf area estimation algorithms.

The point cloud corresponding to each defoliation stage for

each tree was converted into an occupancy grid with 5cm

resolution, taking into account the location of the LiDAR on

the sensor suite, and the resulting paths of the laser beams.

Figure 12 shows the occupancy grids for the two trees. k-

fold cross validation on a linear model of various choices

of input features resulted in the best leaf-area estimates

using weighted occupied-voxel density. Here, an occupied

Fig. 8: Two trees extracted from the dwarf apple tree point

cloud to illustrate the tree geometry.

voxel has an occupancy probability greater than 0.5, and

volume of the tree was taken to be the bounding box of

all occupied voxels. Weighting of the voxels was done using

the occupancy probability. We call this metric the LiDAR

area index. Figure 13 shows the correlation between the

LiDAR area index and the true leaf area for each of the data

points. This choice of input feature (i.e. LiDAR area index)

provided the best performance, with an R-squared value of

0.82. The result demonstrates the use of the IRIS sensor suite

in estimation of leaf area for rows of trees.

Although evaluation was carried out in the harnessed

mode, the methodology can be extended to rapid scanning



Fig. 9: ROS Rviz screenshot showing the UAV in flight above

a row of orange trees in Booth Ranches, CA. The panels on

the right show RGB, NDVI, and IR images acquired by the

IRIS sensor suite onboard the UAV (top to bottom). NDVI

imagery is generated using data from the multi-spectral

cameras of the sensor suite.

(a) Side view. (b) Top view.

Fig. 10: Each octant of the two dwarf apple trees was

defoliated separately for ground truth leaf area measurement.

(a) Tree 1. (b) Tree 2.

Fig. 12: Occupied voxels (probability > 0.5) of the occu-

pancy grids generated from the point clouds.

Fig. 13: Correlation between LiDAR area index and mea-

sured true leaf area for the data points corresponding to the

emulated canopy stages of the two trees. An R-squared value

of 0.82 was observed, suggesting good predictability.

with IRIS mounted on UAVs. Our leaf area estimation

methodology can be used to rapidly estimate the leaf area of

trees in a farms, enabling precise fertilization, spraying, and

pruning.

D. Automated fruit counting

Accurate automated fruit counting will enable growers

to determine storage and labor needs prior to harvest. Our

work uses data acquired from the sensor suite to generate

fruit count to provide this capability. Here, we discuss the

methodology and results from an experiment at the citrus

grove in Orange Cove, CA. We scanned 26 rows of trees

of a block of size 180m x 180m from both sides of each

row using the harnessed IRIS sensor suite. An algorithm was

developed to generate fruit counts for the rows of trees using

the data acquired by the sensor suite. Although discussed

in the context of counting oranges, our approach can be

extended to counting of other fruits such as apples, peaches,

as well as clustered fruits such as grapes and blueberries.

Our fruit counting approach consists of two steps, fruit

detection followed by fruit tracking. We carry out fruit

detection using a support vector machine (SVM) classifier

that uses different color spaces to classify each pixel in an

image as originating from a fruit or not. A series of images

were labeled to annotate regions that have a fruit enclosed

(an orange in our use case). The training dataset of images

were used to train the SVM classier with candidate pixel

colorspace values as input. For estimating fruit yield from

farms, it is necessary to generate a running count as the

sensor suite carries out scans of trees. To do so, we have de-

veloped a fruit tracking algorithm that tracks fruits detected

in a stream of images. To keep track of fruits that have

already been detected in previous frames, we compute the

optical flow of image descriptors across successive frames

to estimation camera motion. The fruit tracking algorithm

uses the estimated camera motion between frames to predict

the locations of fruits detected in previous frames. These

detections are compared with fruits detected in current frame

to ensure previously detected fruits are not recounted.

Using our fruit detection and tracking approach, we carried

out automated counting of a block of orange trees consisting

of ∼ 890 trees distributed along 26 rows. Since many fruits

are occluded from the camera during scans, we needed a

model to predict the total count of fruits on trees based

on fruits observable by the camera. To develop this model,

we carried out manual fruit count of 26 trees distributed

uniformly in the block. We learned a linear model that maps

sensor observed fruit count to the actual count. This model

was used to estimate the true yield for the whole block.

Figure 15 shows a 3-D yield map, with color representing the

fruit count per 0.12m along the row of orange trees. Using

our approach, we computed the total number of oranges for

the 180m x 180m block to be 479,395 or on average 539

fruits per tree.

A limitation of our automated fruit counting algorithm is

its dependence on suitable illumination. For example, fruit

detection quality is poor when the sun faces the camera.



(a) Fruits are detected using an SVM pixel classifier
along with additional logic to count fruits in clusters.
Blue boxes show blob boundaries, and red circles show
detected fruits within the blobs.

(b) Red boxes show detection of fruits, and cyan boxes
show new fruits that were counted in the frame. Cyan
lines show the paths of detected fruits from previous
frames into the current frame. The purple boxes show
predicted positions of the fruits detected in previous
frames.

Fig. 14: Fruit detection and tracking is carried out simultaneously to generate a running count of fruits along a row.

Fig. 15: A 3-D map of orange trees in a 180m x 180m block in Orange Cove, CA, with the color of the point cloud depicting

fruit density. Warmer colors represent higher yield. The total number of oranges for the block was estimated to be 479,395.

On average, there were 539 fruits per tree.

Additionally, color based fruit classifiers are susceptible to

false positives due to canopy features that sometimes match

fruit features. For example, detection and counting of green

oranges is challenging due to the color similarities with

canopy. To address this issue, we are exploring the use of

thermal imagery along with visible camera data to exploit the

temperature differential between fruits and canopy in order

to improve detection accuracy. Figure 16 illustrates canopy

and fruit temperature differential for apples at the orchard in

Biglerville, PA.

Fig. 16: Thermal and visible images of apple trees captured

by the sensor suite. A few apples have been highlighted in

boxes, showing warmer temperature than the foliage.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented a methodology for precision agricul-

ture consisting of a light-weight multi-spectral 3-D imaging

system capable of deployment onboard low-flying micro

aerial vehicles, as well as a shoulder mounted harness. The

hardware design of the sensor suite, and the underlying

software stack was described. We developed data analy-

sis and visualization methodologies to help growers obtain

actionable information from acquired data, and interpret

them for efficient farm management. Towards this end, we

demonstrated the extraction of four data products crucial

to resource management – plant morphology, normalized

difference vegetative index (NDVI), leaf area, and fruit

count. To the best of our knowledge, our work presents the

first versatile system for automated monitoring in precision

agriculture, enabling sustainable production. The compact

and self-contained design allows our system to be used

in multiple deployment modalities, i.e., onboard UAVs and

UGVs, as well as carried by human scouts. This provides

flexibility to growers to choose the appropriate mode of

use. When deployed onboard multiple UAVs, our system can

carry out rapid mapping of a farm, especially for applications

that are time sensitive. We demonstrated the utility of our



system through results from field trials at a vineyard in Galt,

California, an apple orchard in Biglerville, Pennsylvania, and

a citrus grove in Orange Cove, California.

Although in this work we presented UAV data from the

top of canopies looking down, in our future work we will

carry out UAV flights with the sensor suite pointing sideways

at tree canopies, a capability currently demonstrated on

the harnessed deployment mode. Exploiting the low-cost

design of our sensor suite and building upon our expertise

in autonomy for UAV swarms, our long-term goal is to

deploy sensor suites on board multiple UAVs, facilitating

rapid mapping of large farms for tasks that are time sensitive.

Examples include multi-spectral imaging for monitoring crop

stress, a task that demands deployment over narrow time

windows due to the movement of the sun that results in

changes in illumination.
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